linux/drivers/clocksource/arc_timer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2016-17 Synopsys, Inc. (www.synopsys.com)
   4 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
   5 */
   6
   7/* ARC700 has two 32bit independent prog Timers: TIMER0 and TIMER1, Each can be
   8 * programmed to go from @count to @limit and optionally interrupt.
   9 * We've designated TIMER0 for clockevents and TIMER1 for clocksource
  10 *
  11 * ARCv2 based HS38 cores have RTC (in-core) and GFRC (inside ARConnect/MCIP)
  12 * which are suitable for UP and SMP based clocksources respectively
  13 */
  14
  15#include <linux/interrupt.h>
  16#include <linux/bits.h>
  17#include <linux/clk.h>
  18#include <linux/clk-provider.h>
  19#include <linux/clocksource.h>
  20#include <linux/clockchips.h>
  21#include <linux/cpu.h>
  22#include <linux/of.h>
  23#include <linux/of_irq.h>
  24#include <linux/sched_clock.h>
  25
  26#include <soc/arc/timers.h>
  27#include <soc/arc/mcip.h>
  28
  29
  30static unsigned long arc_timer_freq;
  31
  32static int noinline arc_get_timer_clk(struct device_node *node)
  33{
  34        struct clk *clk;
  35        int ret;
  36
  37        clk = of_clk_get(node, 0);
  38        if (IS_ERR(clk)) {
  39                pr_err("timer missing clk\n");
  40                return PTR_ERR(clk);
  41        }
  42
  43        ret = clk_prepare_enable(clk);
  44        if (ret) {
  45                pr_err("Couldn't enable parent clk\n");
  46                return ret;
  47        }
  48
  49        arc_timer_freq = clk_get_rate(clk);
  50
  51        return 0;
  52}
  53
  54/********** Clock Source Device *********/
  55
  56#ifdef CONFIG_ARC_TIMERS_64BIT
  57
  58static u64 arc_read_gfrc(struct clocksource *cs)
  59{
  60        unsigned long flags;
  61        u32 l, h;
  62
  63        /*
  64         * From a programming model pov, there seems to be just one instance of
  65         * MCIP_CMD/MCIP_READBACK however micro-architecturally there's
  66         * an instance PER ARC CORE (not per cluster), and there are dedicated
  67         * hardware decode logic (per core) inside ARConnect to handle
  68         * simultaneous read/write accesses from cores via those two registers.
  69         * So several concurrent commands to ARConnect are OK if they are
  70         * trying to access two different sub-components (like GFRC,
  71         * inter-core interrupt, etc...). HW also supports simultaneously
  72         * accessing GFRC by multiple cores.
  73         * That's why it is safe to disable hard interrupts on the local CPU
  74         * before access to GFRC instead of taking global MCIP spinlock
  75         * defined in arch/arc/kernel/mcip.c
  76         */
  77        local_irq_save(flags);
  78
  79        __mcip_cmd(CMD_GFRC_READ_LO, 0);
  80        l = read_aux_reg(ARC_REG_MCIP_READBACK);
  81
  82        __mcip_cmd(CMD_GFRC_READ_HI, 0);
  83        h = read_aux_reg(ARC_REG_MCIP_READBACK);
  84
  85        local_irq_restore(flags);
  86
  87        return (((u64)h) << 32) | l;
  88}
  89
  90static notrace u64 arc_gfrc_clock_read(void)
  91{
  92        return arc_read_gfrc(NULL);
  93}
  94
  95static struct clocksource arc_counter_gfrc = {
  96        .name   = "ARConnect GFRC",
  97        .rating = 400,
  98        .read   = arc_read_gfrc,
  99        .mask   = CLOCKSOURCE_MASK(64),
 100        .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
 101};
 102
 103static int __init arc_cs_setup_gfrc(struct device_node *node)
 104{
 105        struct mcip_bcr mp;
 106        int ret;
 107
 108        READ_BCR(ARC_REG_MCIP_BCR, mp);
 109        if (!mp.gfrc) {
 110                pr_warn("Global-64-bit-Ctr clocksource not detected\n");
 111                return -ENXIO;
 112        }
 113
 114        ret = arc_get_timer_clk(node);
 115        if (ret)
 116                return ret;
 117
 118        sched_clock_register(arc_gfrc_clock_read, 64, arc_timer_freq);
 119
 120        return clocksource_register_hz(&arc_counter_gfrc, arc_timer_freq);
 121}
 122TIMER_OF_DECLARE(arc_gfrc, "snps,archs-timer-gfrc", arc_cs_setup_gfrc);
 123
 124#define AUX_RTC_CTRL    0x103
 125#define AUX_RTC_LOW     0x104
 126#define AUX_RTC_HIGH    0x105
 127
 128static u64 arc_read_rtc(struct clocksource *cs)
 129{
 130        unsigned long status;
 131        u32 l, h;
 132
 133        /*
 134         * hardware has an internal state machine which tracks readout of
 135         * low/high and updates the CTRL.status if
 136         *  - interrupt/exception taken between the two reads
 137         *  - high increments after low has been read
 138         */
 139        do {
 140                l = read_aux_reg(AUX_RTC_LOW);
 141                h = read_aux_reg(AUX_RTC_HIGH);
 142                status = read_aux_reg(AUX_RTC_CTRL);
 143        } while (!(status & BIT(31)));
 144
 145        return (((u64)h) << 32) | l;
 146}
 147
 148static notrace u64 arc_rtc_clock_read(void)
 149{
 150        return arc_read_rtc(NULL);
 151}
 152
 153static struct clocksource arc_counter_rtc = {
 154        .name   = "ARCv2 RTC",
 155        .rating = 350,
 156        .read   = arc_read_rtc,
 157        .mask   = CLOCKSOURCE_MASK(64),
 158        .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
 159};
 160
 161static int __init arc_cs_setup_rtc(struct device_node *node)
 162{
 163        struct bcr_timer timer;
 164        int ret;
 165
 166        READ_BCR(ARC_REG_TIMERS_BCR, timer);
 167        if (!timer.rtc) {
 168                pr_warn("Local-64-bit-Ctr clocksource not detected\n");
 169                return -ENXIO;
 170        }
 171
 172        /* Local to CPU hence not usable in SMP */
 173        if (IS_ENABLED(CONFIG_SMP)) {
 174                pr_warn("Local-64-bit-Ctr not usable in SMP\n");
 175                return -EINVAL;
 176        }
 177
 178        ret = arc_get_timer_clk(node);
 179        if (ret)
 180                return ret;
 181
 182        write_aux_reg(AUX_RTC_CTRL, 1);
 183
 184        sched_clock_register(arc_rtc_clock_read, 64, arc_timer_freq);
 185
 186        return clocksource_register_hz(&arc_counter_rtc, arc_timer_freq);
 187}
 188TIMER_OF_DECLARE(arc_rtc, "snps,archs-timer-rtc", arc_cs_setup_rtc);
 189
 190#endif
 191
 192/*
 193 * 32bit TIMER1 to keep counting monotonically and wraparound
 194 */
 195
 196static u64 arc_read_timer1(struct clocksource *cs)
 197{
 198        return (u64) read_aux_reg(ARC_REG_TIMER1_CNT);
 199}
 200
 201static notrace u64 arc_timer1_clock_read(void)
 202{
 203        return arc_read_timer1(NULL);
 204}
 205
 206static struct clocksource arc_counter_timer1 = {
 207        .name   = "ARC Timer1",
 208        .rating = 300,
 209        .read   = arc_read_timer1,
 210        .mask   = CLOCKSOURCE_MASK(32),
 211        .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
 212};
 213
 214static int __init arc_cs_setup_timer1(struct device_node *node)
 215{
 216        int ret;
 217
 218        /* Local to CPU hence not usable in SMP */
 219        if (IS_ENABLED(CONFIG_SMP))
 220                return -EINVAL;
 221
 222        ret = arc_get_timer_clk(node);
 223        if (ret)
 224                return ret;
 225
 226        write_aux_reg(ARC_REG_TIMER1_LIMIT, ARC_TIMERN_MAX);
 227        write_aux_reg(ARC_REG_TIMER1_CNT, 0);
 228        write_aux_reg(ARC_REG_TIMER1_CTRL, TIMER_CTRL_NH);
 229
 230        sched_clock_register(arc_timer1_clock_read, 32, arc_timer_freq);
 231
 232        return clocksource_register_hz(&arc_counter_timer1, arc_timer_freq);
 233}
 234
 235/********** Clock Event Device *********/
 236
 237static int arc_timer_irq;
 238
 239/*
 240 * Arm the timer to interrupt after @cycles
 241 * The distinction for oneshot/periodic is done in arc_event_timer_ack() below
 242 */
 243static void arc_timer_event_setup(unsigned int cycles)
 244{
 245        write_aux_reg(ARC_REG_TIMER0_LIMIT, cycles);
 246        write_aux_reg(ARC_REG_TIMER0_CNT, 0);   /* start from 0 */
 247
 248        write_aux_reg(ARC_REG_TIMER0_CTRL, TIMER_CTRL_IE | TIMER_CTRL_NH);
 249}
 250
 251
 252static int arc_clkevent_set_next_event(unsigned long delta,
 253                                       struct clock_event_device *dev)
 254{
 255        arc_timer_event_setup(delta);
 256        return 0;
 257}
 258
 259static int arc_clkevent_set_periodic(struct clock_event_device *dev)
 260{
 261        /*
 262         * At X Hz, 1 sec = 1000ms -> X cycles;
 263         *                    10ms -> X / 100 cycles
 264         */
 265        arc_timer_event_setup(arc_timer_freq / HZ);
 266        return 0;
 267}
 268
 269static DEFINE_PER_CPU(struct clock_event_device, arc_clockevent_device) = {
 270        .name                   = "ARC Timer0",
 271        .features               = CLOCK_EVT_FEAT_ONESHOT |
 272                                  CLOCK_EVT_FEAT_PERIODIC,
 273        .rating                 = 300,
 274        .set_next_event         = arc_clkevent_set_next_event,
 275        .set_state_periodic     = arc_clkevent_set_periodic,
 276};
 277
 278static irqreturn_t timer_irq_handler(int irq, void *dev_id)
 279{
 280        /*
 281         * Note that generic IRQ core could have passed @evt for @dev_id if
 282         * irq_set_chip_and_handler() asked for handle_percpu_devid_irq()
 283         */
 284        struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
 285        int irq_reenable = clockevent_state_periodic(evt);
 286
 287        /*
 288         * 1. ACK the interrupt
 289         *    - For ARC700, any write to CTRL reg ACKs it, so just rewrite
 290         *      Count when [N]ot [H]alted bit.
 291         *    - For HS3x, it is a bit subtle. On taken count-down interrupt,
 292         *      IP bit [3] is set, which needs to be cleared for ACK'ing.
 293         *      The write below can only update the other two bits, hence
 294         *      explicitly clears IP bit
 295         * 2. Re-arm interrupt if periodic by writing to IE bit [0]
 296         */
 297        write_aux_reg(ARC_REG_TIMER0_CTRL, irq_reenable | TIMER_CTRL_NH);
 298
 299        evt->event_handler(evt);
 300
 301        return IRQ_HANDLED;
 302}
 303
 304
 305static int arc_timer_starting_cpu(unsigned int cpu)
 306{
 307        struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
 308
 309        evt->cpumask = cpumask_of(smp_processor_id());
 310
 311        clockevents_config_and_register(evt, arc_timer_freq, 0, ARC_TIMERN_MAX);
 312        enable_percpu_irq(arc_timer_irq, 0);
 313        return 0;
 314}
 315
 316static int arc_timer_dying_cpu(unsigned int cpu)
 317{
 318        disable_percpu_irq(arc_timer_irq);
 319        return 0;
 320}
 321
 322/*
 323 * clockevent setup for boot CPU
 324 */
 325static int __init arc_clockevent_setup(struct device_node *node)
 326{
 327        struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
 328        int ret;
 329
 330        arc_timer_irq = irq_of_parse_and_map(node, 0);
 331        if (arc_timer_irq <= 0) {
 332                pr_err("clockevent: missing irq\n");
 333                return -EINVAL;
 334        }
 335
 336        ret = arc_get_timer_clk(node);
 337        if (ret)
 338                return ret;
 339
 340        /* Needs apriori irq_set_percpu_devid() done in intc map function */
 341        ret = request_percpu_irq(arc_timer_irq, timer_irq_handler,
 342                                 "Timer0 (per-cpu-tick)", evt);
 343        if (ret) {
 344                pr_err("clockevent: unable to request irq\n");
 345                return ret;
 346        }
 347
 348        ret = cpuhp_setup_state(CPUHP_AP_ARC_TIMER_STARTING,
 349                                "clockevents/arc/timer:starting",
 350                                arc_timer_starting_cpu,
 351                                arc_timer_dying_cpu);
 352        if (ret) {
 353                pr_err("Failed to setup hotplug state\n");
 354                return ret;
 355        }
 356        return 0;
 357}
 358
 359static int __init arc_of_timer_init(struct device_node *np)
 360{
 361        static int init_count = 0;
 362        int ret;
 363
 364        if (!init_count) {
 365                init_count = 1;
 366                ret = arc_clockevent_setup(np);
 367        } else {
 368                ret = arc_cs_setup_timer1(np);
 369        }
 370
 371        return ret;
 372}
 373TIMER_OF_DECLARE(arc_clkevt, "snps,arc-timer", arc_of_timer_init);
 374