linux/drivers/clocksource/hyperv_timer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2
   3/*
   4 * Clocksource driver for the synthetic counter and timers
   5 * provided by the Hyper-V hypervisor to guest VMs, as described
   6 * in the Hyper-V Top Level Functional Spec (TLFS). This driver
   7 * is instruction set architecture independent.
   8 *
   9 * Copyright (C) 2019, Microsoft, Inc.
  10 *
  11 * Author:  Michael Kelley <mikelley@microsoft.com>
  12 */
  13
  14#include <linux/percpu.h>
  15#include <linux/cpumask.h>
  16#include <linux/clockchips.h>
  17#include <linux/clocksource.h>
  18#include <linux/sched_clock.h>
  19#include <linux/mm.h>
  20#include <linux/cpuhotplug.h>
  21#include <linux/interrupt.h>
  22#include <linux/irq.h>
  23#include <linux/acpi.h>
  24#include <clocksource/hyperv_timer.h>
  25#include <asm/hyperv-tlfs.h>
  26#include <asm/mshyperv.h>
  27
  28static struct clock_event_device __percpu *hv_clock_event;
  29static u64 hv_sched_clock_offset __ro_after_init;
  30
  31/*
  32 * If false, we're using the old mechanism for stimer0 interrupts
  33 * where it sends a VMbus message when it expires. The old
  34 * mechanism is used when running on older versions of Hyper-V
  35 * that don't support Direct Mode. While Hyper-V provides
  36 * four stimer's per CPU, Linux uses only stimer0.
  37 *
  38 * Because Direct Mode does not require processing a VMbus
  39 * message, stimer interrupts can be enabled earlier in the
  40 * process of booting a CPU, and consistent with when timer
  41 * interrupts are enabled for other clocksource drivers.
  42 * However, for legacy versions of Hyper-V when Direct Mode
  43 * is not enabled, setting up stimer interrupts must be
  44 * delayed until VMbus is initialized and can process the
  45 * interrupt message.
  46 */
  47static bool direct_mode_enabled;
  48
  49static int stimer0_irq = -1;
  50static int stimer0_message_sint;
  51static DEFINE_PER_CPU(long, stimer0_evt);
  52
  53/*
  54 * Common code for stimer0 interrupts coming via Direct Mode or
  55 * as a VMbus message.
  56 */
  57void hv_stimer0_isr(void)
  58{
  59        struct clock_event_device *ce;
  60
  61        ce = this_cpu_ptr(hv_clock_event);
  62        ce->event_handler(ce);
  63}
  64EXPORT_SYMBOL_GPL(hv_stimer0_isr);
  65
  66/*
  67 * stimer0 interrupt handler for architectures that support
  68 * per-cpu interrupts, which also implies Direct Mode.
  69 */
  70static irqreturn_t hv_stimer0_percpu_isr(int irq, void *dev_id)
  71{
  72        hv_stimer0_isr();
  73        return IRQ_HANDLED;
  74}
  75
  76static int hv_ce_set_next_event(unsigned long delta,
  77                                struct clock_event_device *evt)
  78{
  79        u64 current_tick;
  80
  81        current_tick = hv_read_reference_counter();
  82        current_tick += delta;
  83        hv_set_register(HV_REGISTER_STIMER0_COUNT, current_tick);
  84        return 0;
  85}
  86
  87static int hv_ce_shutdown(struct clock_event_device *evt)
  88{
  89        hv_set_register(HV_REGISTER_STIMER0_COUNT, 0);
  90        hv_set_register(HV_REGISTER_STIMER0_CONFIG, 0);
  91        if (direct_mode_enabled && stimer0_irq >= 0)
  92                disable_percpu_irq(stimer0_irq);
  93
  94        return 0;
  95}
  96
  97static int hv_ce_set_oneshot(struct clock_event_device *evt)
  98{
  99        union hv_stimer_config timer_cfg;
 100
 101        timer_cfg.as_uint64 = 0;
 102        timer_cfg.enable = 1;
 103        timer_cfg.auto_enable = 1;
 104        if (direct_mode_enabled) {
 105                /*
 106                 * When it expires, the timer will directly interrupt
 107                 * on the specified hardware vector/IRQ.
 108                 */
 109                timer_cfg.direct_mode = 1;
 110                timer_cfg.apic_vector = HYPERV_STIMER0_VECTOR;
 111                if (stimer0_irq >= 0)
 112                        enable_percpu_irq(stimer0_irq, IRQ_TYPE_NONE);
 113        } else {
 114                /*
 115                 * When it expires, the timer will generate a VMbus message,
 116                 * to be handled by the normal VMbus interrupt handler.
 117                 */
 118                timer_cfg.direct_mode = 0;
 119                timer_cfg.sintx = stimer0_message_sint;
 120        }
 121        hv_set_register(HV_REGISTER_STIMER0_CONFIG, timer_cfg.as_uint64);
 122        return 0;
 123}
 124
 125/*
 126 * hv_stimer_init - Per-cpu initialization of the clockevent
 127 */
 128static int hv_stimer_init(unsigned int cpu)
 129{
 130        struct clock_event_device *ce;
 131
 132        if (!hv_clock_event)
 133                return 0;
 134
 135        ce = per_cpu_ptr(hv_clock_event, cpu);
 136        ce->name = "Hyper-V clockevent";
 137        ce->features = CLOCK_EVT_FEAT_ONESHOT;
 138        ce->cpumask = cpumask_of(cpu);
 139        ce->rating = 1000;
 140        ce->set_state_shutdown = hv_ce_shutdown;
 141        ce->set_state_oneshot = hv_ce_set_oneshot;
 142        ce->set_next_event = hv_ce_set_next_event;
 143
 144        clockevents_config_and_register(ce,
 145                                        HV_CLOCK_HZ,
 146                                        HV_MIN_DELTA_TICKS,
 147                                        HV_MAX_MAX_DELTA_TICKS);
 148        return 0;
 149}
 150
 151/*
 152 * hv_stimer_cleanup - Per-cpu cleanup of the clockevent
 153 */
 154int hv_stimer_cleanup(unsigned int cpu)
 155{
 156        struct clock_event_device *ce;
 157
 158        if (!hv_clock_event)
 159                return 0;
 160
 161        /*
 162         * In the legacy case where Direct Mode is not enabled
 163         * (which can only be on x86/64), stimer cleanup happens
 164         * relatively early in the CPU offlining process. We
 165         * must unbind the stimer-based clockevent device so
 166         * that the LAPIC timer can take over until clockevents
 167         * are no longer needed in the offlining process. Note
 168         * that clockevents_unbind_device() eventually calls
 169         * hv_ce_shutdown().
 170         *
 171         * The unbind should not be done when Direct Mode is
 172         * enabled because we may be on an architecture where
 173         * there are no other clockevent devices to fallback to.
 174         */
 175        ce = per_cpu_ptr(hv_clock_event, cpu);
 176        if (direct_mode_enabled)
 177                hv_ce_shutdown(ce);
 178        else
 179                clockevents_unbind_device(ce, cpu);
 180
 181        return 0;
 182}
 183EXPORT_SYMBOL_GPL(hv_stimer_cleanup);
 184
 185/*
 186 * These placeholders are overridden by arch specific code on
 187 * architectures that need special setup of the stimer0 IRQ because
 188 * they don't support per-cpu IRQs (such as x86/x64).
 189 */
 190void __weak hv_setup_stimer0_handler(void (*handler)(void))
 191{
 192};
 193
 194void __weak hv_remove_stimer0_handler(void)
 195{
 196};
 197
 198/* Called only on architectures with per-cpu IRQs (i.e., not x86/x64) */
 199static int hv_setup_stimer0_irq(void)
 200{
 201        int ret;
 202
 203        ret = acpi_register_gsi(NULL, HYPERV_STIMER0_VECTOR,
 204                        ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_HIGH);
 205        if (ret < 0) {
 206                pr_err("Can't register Hyper-V stimer0 GSI. Error %d", ret);
 207                return ret;
 208        }
 209        stimer0_irq = ret;
 210
 211        ret = request_percpu_irq(stimer0_irq, hv_stimer0_percpu_isr,
 212                "Hyper-V stimer0", &stimer0_evt);
 213        if (ret) {
 214                pr_err("Can't request Hyper-V stimer0 IRQ %d. Error %d",
 215                        stimer0_irq, ret);
 216                acpi_unregister_gsi(stimer0_irq);
 217                stimer0_irq = -1;
 218        }
 219        return ret;
 220}
 221
 222static void hv_remove_stimer0_irq(void)
 223{
 224        if (stimer0_irq == -1) {
 225                hv_remove_stimer0_handler();
 226        } else {
 227                free_percpu_irq(stimer0_irq, &stimer0_evt);
 228                acpi_unregister_gsi(stimer0_irq);
 229                stimer0_irq = -1;
 230        }
 231}
 232
 233/* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
 234int hv_stimer_alloc(bool have_percpu_irqs)
 235{
 236        int ret;
 237
 238        /*
 239         * Synthetic timers are always available except on old versions of
 240         * Hyper-V on x86.  In that case, return as error as Linux will use a
 241         * clockevent based on emulated LAPIC timer hardware.
 242         */
 243        if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
 244                return -EINVAL;
 245
 246        hv_clock_event = alloc_percpu(struct clock_event_device);
 247        if (!hv_clock_event)
 248                return -ENOMEM;
 249
 250        direct_mode_enabled = ms_hyperv.misc_features &
 251                        HV_STIMER_DIRECT_MODE_AVAILABLE;
 252
 253        /*
 254         * If Direct Mode isn't enabled, the remainder of the initialization
 255         * is done later by hv_stimer_legacy_init()
 256         */
 257        if (!direct_mode_enabled)
 258                return 0;
 259
 260        if (have_percpu_irqs) {
 261                ret = hv_setup_stimer0_irq();
 262                if (ret)
 263                        goto free_clock_event;
 264        } else {
 265                hv_setup_stimer0_handler(hv_stimer0_isr);
 266        }
 267
 268        /*
 269         * Since we are in Direct Mode, stimer initialization
 270         * can be done now with a CPUHP value in the same range
 271         * as other clockevent devices.
 272         */
 273        ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING,
 274                        "clockevents/hyperv/stimer:starting",
 275                        hv_stimer_init, hv_stimer_cleanup);
 276        if (ret < 0) {
 277                hv_remove_stimer0_irq();
 278                goto free_clock_event;
 279        }
 280        return ret;
 281
 282free_clock_event:
 283        free_percpu(hv_clock_event);
 284        hv_clock_event = NULL;
 285        return ret;
 286}
 287EXPORT_SYMBOL_GPL(hv_stimer_alloc);
 288
 289/*
 290 * hv_stimer_legacy_init -- Called from the VMbus driver to handle
 291 * the case when Direct Mode is not enabled, and the stimer
 292 * must be initialized late in the CPU onlining process.
 293 *
 294 */
 295void hv_stimer_legacy_init(unsigned int cpu, int sint)
 296{
 297        if (direct_mode_enabled)
 298                return;
 299
 300        /*
 301         * This function gets called by each vCPU, so setting the
 302         * global stimer_message_sint value each time is conceptually
 303         * not ideal, but the value passed in is always the same and
 304         * it avoids introducing yet another interface into this
 305         * clocksource driver just to set the sint in the legacy case.
 306         */
 307        stimer0_message_sint = sint;
 308        (void)hv_stimer_init(cpu);
 309}
 310EXPORT_SYMBOL_GPL(hv_stimer_legacy_init);
 311
 312/*
 313 * hv_stimer_legacy_cleanup -- Called from the VMbus driver to
 314 * handle the case when Direct Mode is not enabled, and the
 315 * stimer must be cleaned up early in the CPU offlining
 316 * process.
 317 */
 318void hv_stimer_legacy_cleanup(unsigned int cpu)
 319{
 320        if (direct_mode_enabled)
 321                return;
 322        (void)hv_stimer_cleanup(cpu);
 323}
 324EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup);
 325
 326/*
 327 * Do a global cleanup of clockevents for the cases of kexec and
 328 * vmbus exit
 329 */
 330void hv_stimer_global_cleanup(void)
 331{
 332        int     cpu;
 333
 334        /*
 335         * hv_stime_legacy_cleanup() will stop the stimer if Direct
 336         * Mode is not enabled, and fallback to the LAPIC timer.
 337         */
 338        for_each_present_cpu(cpu) {
 339                hv_stimer_legacy_cleanup(cpu);
 340        }
 341
 342        if (!hv_clock_event)
 343                return;
 344
 345        if (direct_mode_enabled) {
 346                cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING);
 347                hv_remove_stimer0_irq();
 348                stimer0_irq = -1;
 349        }
 350        free_percpu(hv_clock_event);
 351        hv_clock_event = NULL;
 352
 353}
 354EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);
 355
 356/*
 357 * Code and definitions for the Hyper-V clocksources.  Two
 358 * clocksources are defined: one that reads the Hyper-V defined MSR, and
 359 * the other that uses the TSC reference page feature as defined in the
 360 * TLFS.  The MSR version is for compatibility with old versions of
 361 * Hyper-V and 32-bit x86.  The TSC reference page version is preferred.
 362 */
 363
 364static union {
 365        struct ms_hyperv_tsc_page page;
 366        u8 reserved[PAGE_SIZE];
 367} tsc_pg __aligned(PAGE_SIZE);
 368
 369struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
 370{
 371        return &tsc_pg.page;
 372}
 373EXPORT_SYMBOL_GPL(hv_get_tsc_page);
 374
 375static u64 notrace read_hv_clock_tsc(void)
 376{
 377        u64 current_tick = hv_read_tsc_page(hv_get_tsc_page());
 378
 379        if (current_tick == U64_MAX)
 380                current_tick = hv_get_register(HV_REGISTER_TIME_REF_COUNT);
 381
 382        return current_tick;
 383}
 384
 385static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg)
 386{
 387        return read_hv_clock_tsc();
 388}
 389
 390static u64 notrace read_hv_sched_clock_tsc(void)
 391{
 392        return (read_hv_clock_tsc() - hv_sched_clock_offset) *
 393                (NSEC_PER_SEC / HV_CLOCK_HZ);
 394}
 395
 396static void suspend_hv_clock_tsc(struct clocksource *arg)
 397{
 398        u64 tsc_msr;
 399
 400        /* Disable the TSC page */
 401        tsc_msr = hv_get_register(HV_REGISTER_REFERENCE_TSC);
 402        tsc_msr &= ~BIT_ULL(0);
 403        hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr);
 404}
 405
 406
 407static void resume_hv_clock_tsc(struct clocksource *arg)
 408{
 409        phys_addr_t phys_addr = virt_to_phys(&tsc_pg);
 410        u64 tsc_msr;
 411
 412        /* Re-enable the TSC page */
 413        tsc_msr = hv_get_register(HV_REGISTER_REFERENCE_TSC);
 414        tsc_msr &= GENMASK_ULL(11, 0);
 415        tsc_msr |= BIT_ULL(0) | (u64)phys_addr;
 416        hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr);
 417}
 418
 419#ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
 420static int hv_cs_enable(struct clocksource *cs)
 421{
 422        vclocks_set_used(VDSO_CLOCKMODE_HVCLOCK);
 423        return 0;
 424}
 425#endif
 426
 427static struct clocksource hyperv_cs_tsc = {
 428        .name   = "hyperv_clocksource_tsc_page",
 429        .rating = 500,
 430        .read   = read_hv_clock_tsc_cs,
 431        .mask   = CLOCKSOURCE_MASK(64),
 432        .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
 433        .suspend= suspend_hv_clock_tsc,
 434        .resume = resume_hv_clock_tsc,
 435#ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
 436        .enable = hv_cs_enable,
 437        .vdso_clock_mode = VDSO_CLOCKMODE_HVCLOCK,
 438#else
 439        .vdso_clock_mode = VDSO_CLOCKMODE_NONE,
 440#endif
 441};
 442
 443static u64 notrace read_hv_clock_msr(void)
 444{
 445        /*
 446         * Read the partition counter to get the current tick count. This count
 447         * is set to 0 when the partition is created and is incremented in
 448         * 100 nanosecond units.
 449         */
 450        return hv_get_register(HV_REGISTER_TIME_REF_COUNT);
 451}
 452
 453static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg)
 454{
 455        return read_hv_clock_msr();
 456}
 457
 458static u64 notrace read_hv_sched_clock_msr(void)
 459{
 460        return (read_hv_clock_msr() - hv_sched_clock_offset) *
 461                (NSEC_PER_SEC / HV_CLOCK_HZ);
 462}
 463
 464static struct clocksource hyperv_cs_msr = {
 465        .name   = "hyperv_clocksource_msr",
 466        .rating = 500,
 467        .read   = read_hv_clock_msr_cs,
 468        .mask   = CLOCKSOURCE_MASK(64),
 469        .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
 470};
 471
 472/*
 473 * Reference to pv_ops must be inline so objtool
 474 * detection of noinstr violations can work correctly.
 475 */
 476#ifdef CONFIG_GENERIC_SCHED_CLOCK
 477static __always_inline void hv_setup_sched_clock(void *sched_clock)
 478{
 479        /*
 480         * We're on an architecture with generic sched clock (not x86/x64).
 481         * The Hyper-V sched clock read function returns nanoseconds, not
 482         * the normal 100ns units of the Hyper-V synthetic clock.
 483         */
 484        sched_clock_register(sched_clock, 64, NSEC_PER_SEC);
 485}
 486#elif defined CONFIG_PARAVIRT
 487static __always_inline void hv_setup_sched_clock(void *sched_clock)
 488{
 489        /* We're on x86/x64 *and* using PV ops */
 490        paravirt_set_sched_clock(sched_clock);
 491}
 492#else /* !CONFIG_GENERIC_SCHED_CLOCK && !CONFIG_PARAVIRT */
 493static __always_inline void hv_setup_sched_clock(void *sched_clock) {}
 494#endif /* CONFIG_GENERIC_SCHED_CLOCK */
 495
 496static bool __init hv_init_tsc_clocksource(void)
 497{
 498        u64             tsc_msr;
 499        phys_addr_t     phys_addr;
 500
 501        if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
 502                return false;
 503
 504        if (hv_root_partition)
 505                return false;
 506
 507        /*
 508         * If Hyper-V offers TSC_INVARIANT, then the virtualized TSC correctly
 509         * handles frequency and offset changes due to live migration,
 510         * pause/resume, and other VM management operations.  So lower the
 511         * Hyper-V Reference TSC rating, causing the generic TSC to be used.
 512         * TSC_INVARIANT is not offered on ARM64, so the Hyper-V Reference
 513         * TSC will be preferred over the virtualized ARM64 arch counter.
 514         * While the Hyper-V MSR clocksource won't be used since the
 515         * Reference TSC clocksource is present, change its rating as
 516         * well for consistency.
 517         */
 518        if (ms_hyperv.features & HV_ACCESS_TSC_INVARIANT) {
 519                hyperv_cs_tsc.rating = 250;
 520                hyperv_cs_msr.rating = 250;
 521        }
 522
 523        hv_read_reference_counter = read_hv_clock_tsc;
 524        phys_addr = virt_to_phys(hv_get_tsc_page());
 525
 526        /*
 527         * The Hyper-V TLFS specifies to preserve the value of reserved
 528         * bits in registers. So read the existing value, preserve the
 529         * low order 12 bits, and add in the guest physical address
 530         * (which already has at least the low 12 bits set to zero since
 531         * it is page aligned). Also set the "enable" bit, which is bit 0.
 532         */
 533        tsc_msr = hv_get_register(HV_REGISTER_REFERENCE_TSC);
 534        tsc_msr &= GENMASK_ULL(11, 0);
 535        tsc_msr = tsc_msr | 0x1 | (u64)phys_addr;
 536        hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr);
 537
 538        clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
 539
 540        hv_sched_clock_offset = hv_read_reference_counter();
 541        hv_setup_sched_clock(read_hv_sched_clock_tsc);
 542
 543        return true;
 544}
 545
 546void __init hv_init_clocksource(void)
 547{
 548        /*
 549         * Try to set up the TSC page clocksource. If it succeeds, we're
 550         * done. Otherwise, set up the MSR clocksource.  At least one of
 551         * these will always be available except on very old versions of
 552         * Hyper-V on x86.  In that case we won't have a Hyper-V
 553         * clocksource, but Linux will still run with a clocksource based
 554         * on the emulated PIT or LAPIC timer.
 555         */
 556        if (hv_init_tsc_clocksource())
 557                return;
 558
 559        if (!(ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE))
 560                return;
 561
 562        hv_read_reference_counter = read_hv_clock_msr;
 563        clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
 564
 565        hv_sched_clock_offset = hv_read_reference_counter();
 566        hv_setup_sched_clock(read_hv_sched_clock_msr);
 567}
 568EXPORT_SYMBOL_GPL(hv_init_clocksource);
 569