linux/drivers/clocksource/sh_tmu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH Timer Support - TMU
   4 *
   5 *  Copyright (C) 2009 Magnus Damm
   6 */
   7
   8#include <linux/clk.h>
   9#include <linux/clockchips.h>
  10#include <linux/clocksource.h>
  11#include <linux/delay.h>
  12#include <linux/err.h>
  13#include <linux/init.h>
  14#include <linux/interrupt.h>
  15#include <linux/io.h>
  16#include <linux/ioport.h>
  17#include <linux/irq.h>
  18#include <linux/module.h>
  19#include <linux/of.h>
  20#include <linux/platform_device.h>
  21#include <linux/pm_domain.h>
  22#include <linux/pm_runtime.h>
  23#include <linux/sh_timer.h>
  24#include <linux/slab.h>
  25#include <linux/spinlock.h>
  26
  27#ifdef CONFIG_SUPERH
  28#include <asm/platform_early.h>
  29#endif
  30
  31enum sh_tmu_model {
  32        SH_TMU,
  33        SH_TMU_SH3,
  34};
  35
  36struct sh_tmu_device;
  37
  38struct sh_tmu_channel {
  39        struct sh_tmu_device *tmu;
  40        unsigned int index;
  41
  42        void __iomem *base;
  43        int irq;
  44
  45        unsigned long periodic;
  46        struct clock_event_device ced;
  47        struct clocksource cs;
  48        bool cs_enabled;
  49        unsigned int enable_count;
  50};
  51
  52struct sh_tmu_device {
  53        struct platform_device *pdev;
  54
  55        void __iomem *mapbase;
  56        struct clk *clk;
  57        unsigned long rate;
  58
  59        enum sh_tmu_model model;
  60
  61        raw_spinlock_t lock; /* Protect the shared start/stop register */
  62
  63        struct sh_tmu_channel *channels;
  64        unsigned int num_channels;
  65
  66        bool has_clockevent;
  67        bool has_clocksource;
  68};
  69
  70#define TSTR -1 /* shared register */
  71#define TCOR  0 /* channel register */
  72#define TCNT 1 /* channel register */
  73#define TCR 2 /* channel register */
  74
  75#define TCR_UNF                 (1 << 8)
  76#define TCR_UNIE                (1 << 5)
  77#define TCR_TPSC_CLK4           (0 << 0)
  78#define TCR_TPSC_CLK16          (1 << 0)
  79#define TCR_TPSC_CLK64          (2 << 0)
  80#define TCR_TPSC_CLK256         (3 << 0)
  81#define TCR_TPSC_CLK1024        (4 << 0)
  82#define TCR_TPSC_MASK           (7 << 0)
  83
  84static inline unsigned long sh_tmu_read(struct sh_tmu_channel *ch, int reg_nr)
  85{
  86        unsigned long offs;
  87
  88        if (reg_nr == TSTR) {
  89                switch (ch->tmu->model) {
  90                case SH_TMU_SH3:
  91                        return ioread8(ch->tmu->mapbase + 2);
  92                case SH_TMU:
  93                        return ioread8(ch->tmu->mapbase + 4);
  94                }
  95        }
  96
  97        offs = reg_nr << 2;
  98
  99        if (reg_nr == TCR)
 100                return ioread16(ch->base + offs);
 101        else
 102                return ioread32(ch->base + offs);
 103}
 104
 105static inline void sh_tmu_write(struct sh_tmu_channel *ch, int reg_nr,
 106                                unsigned long value)
 107{
 108        unsigned long offs;
 109
 110        if (reg_nr == TSTR) {
 111                switch (ch->tmu->model) {
 112                case SH_TMU_SH3:
 113                        return iowrite8(value, ch->tmu->mapbase + 2);
 114                case SH_TMU:
 115                        return iowrite8(value, ch->tmu->mapbase + 4);
 116                }
 117        }
 118
 119        offs = reg_nr << 2;
 120
 121        if (reg_nr == TCR)
 122                iowrite16(value, ch->base + offs);
 123        else
 124                iowrite32(value, ch->base + offs);
 125}
 126
 127static void sh_tmu_start_stop_ch(struct sh_tmu_channel *ch, int start)
 128{
 129        unsigned long flags, value;
 130
 131        /* start stop register shared by multiple timer channels */
 132        raw_spin_lock_irqsave(&ch->tmu->lock, flags);
 133        value = sh_tmu_read(ch, TSTR);
 134
 135        if (start)
 136                value |= 1 << ch->index;
 137        else
 138                value &= ~(1 << ch->index);
 139
 140        sh_tmu_write(ch, TSTR, value);
 141        raw_spin_unlock_irqrestore(&ch->tmu->lock, flags);
 142}
 143
 144static int __sh_tmu_enable(struct sh_tmu_channel *ch)
 145{
 146        int ret;
 147
 148        /* enable clock */
 149        ret = clk_enable(ch->tmu->clk);
 150        if (ret) {
 151                dev_err(&ch->tmu->pdev->dev, "ch%u: cannot enable clock\n",
 152                        ch->index);
 153                return ret;
 154        }
 155
 156        /* make sure channel is disabled */
 157        sh_tmu_start_stop_ch(ch, 0);
 158
 159        /* maximum timeout */
 160        sh_tmu_write(ch, TCOR, 0xffffffff);
 161        sh_tmu_write(ch, TCNT, 0xffffffff);
 162
 163        /* configure channel to parent clock / 4, irq off */
 164        sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
 165
 166        /* enable channel */
 167        sh_tmu_start_stop_ch(ch, 1);
 168
 169        return 0;
 170}
 171
 172static int sh_tmu_enable(struct sh_tmu_channel *ch)
 173{
 174        if (ch->enable_count++ > 0)
 175                return 0;
 176
 177        pm_runtime_get_sync(&ch->tmu->pdev->dev);
 178        dev_pm_syscore_device(&ch->tmu->pdev->dev, true);
 179
 180        return __sh_tmu_enable(ch);
 181}
 182
 183static void __sh_tmu_disable(struct sh_tmu_channel *ch)
 184{
 185        /* disable channel */
 186        sh_tmu_start_stop_ch(ch, 0);
 187
 188        /* disable interrupts in TMU block */
 189        sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
 190
 191        /* stop clock */
 192        clk_disable(ch->tmu->clk);
 193}
 194
 195static void sh_tmu_disable(struct sh_tmu_channel *ch)
 196{
 197        if (WARN_ON(ch->enable_count == 0))
 198                return;
 199
 200        if (--ch->enable_count > 0)
 201                return;
 202
 203        __sh_tmu_disable(ch);
 204
 205        dev_pm_syscore_device(&ch->tmu->pdev->dev, false);
 206        pm_runtime_put(&ch->tmu->pdev->dev);
 207}
 208
 209static void sh_tmu_set_next(struct sh_tmu_channel *ch, unsigned long delta,
 210                            int periodic)
 211{
 212        /* stop timer */
 213        sh_tmu_start_stop_ch(ch, 0);
 214
 215        /* acknowledge interrupt */
 216        sh_tmu_read(ch, TCR);
 217
 218        /* enable interrupt */
 219        sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
 220
 221        /* reload delta value in case of periodic timer */
 222        if (periodic)
 223                sh_tmu_write(ch, TCOR, delta);
 224        else
 225                sh_tmu_write(ch, TCOR, 0xffffffff);
 226
 227        sh_tmu_write(ch, TCNT, delta);
 228
 229        /* start timer */
 230        sh_tmu_start_stop_ch(ch, 1);
 231}
 232
 233static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
 234{
 235        struct sh_tmu_channel *ch = dev_id;
 236
 237        /* disable or acknowledge interrupt */
 238        if (clockevent_state_oneshot(&ch->ced))
 239                sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
 240        else
 241                sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
 242
 243        /* notify clockevent layer */
 244        ch->ced.event_handler(&ch->ced);
 245        return IRQ_HANDLED;
 246}
 247
 248static struct sh_tmu_channel *cs_to_sh_tmu(struct clocksource *cs)
 249{
 250        return container_of(cs, struct sh_tmu_channel, cs);
 251}
 252
 253static u64 sh_tmu_clocksource_read(struct clocksource *cs)
 254{
 255        struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
 256
 257        return sh_tmu_read(ch, TCNT) ^ 0xffffffff;
 258}
 259
 260static int sh_tmu_clocksource_enable(struct clocksource *cs)
 261{
 262        struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
 263        int ret;
 264
 265        if (WARN_ON(ch->cs_enabled))
 266                return 0;
 267
 268        ret = sh_tmu_enable(ch);
 269        if (!ret)
 270                ch->cs_enabled = true;
 271
 272        return ret;
 273}
 274
 275static void sh_tmu_clocksource_disable(struct clocksource *cs)
 276{
 277        struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
 278
 279        if (WARN_ON(!ch->cs_enabled))
 280                return;
 281
 282        sh_tmu_disable(ch);
 283        ch->cs_enabled = false;
 284}
 285
 286static void sh_tmu_clocksource_suspend(struct clocksource *cs)
 287{
 288        struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
 289
 290        if (!ch->cs_enabled)
 291                return;
 292
 293        if (--ch->enable_count == 0) {
 294                __sh_tmu_disable(ch);
 295                dev_pm_genpd_suspend(&ch->tmu->pdev->dev);
 296        }
 297}
 298
 299static void sh_tmu_clocksource_resume(struct clocksource *cs)
 300{
 301        struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
 302
 303        if (!ch->cs_enabled)
 304                return;
 305
 306        if (ch->enable_count++ == 0) {
 307                dev_pm_genpd_resume(&ch->tmu->pdev->dev);
 308                __sh_tmu_enable(ch);
 309        }
 310}
 311
 312static int sh_tmu_register_clocksource(struct sh_tmu_channel *ch,
 313                                       const char *name)
 314{
 315        struct clocksource *cs = &ch->cs;
 316
 317        cs->name = name;
 318        cs->rating = 200;
 319        cs->read = sh_tmu_clocksource_read;
 320        cs->enable = sh_tmu_clocksource_enable;
 321        cs->disable = sh_tmu_clocksource_disable;
 322        cs->suspend = sh_tmu_clocksource_suspend;
 323        cs->resume = sh_tmu_clocksource_resume;
 324        cs->mask = CLOCKSOURCE_MASK(32);
 325        cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
 326
 327        dev_info(&ch->tmu->pdev->dev, "ch%u: used as clock source\n",
 328                 ch->index);
 329
 330        clocksource_register_hz(cs, ch->tmu->rate);
 331        return 0;
 332}
 333
 334static struct sh_tmu_channel *ced_to_sh_tmu(struct clock_event_device *ced)
 335{
 336        return container_of(ced, struct sh_tmu_channel, ced);
 337}
 338
 339static void sh_tmu_clock_event_start(struct sh_tmu_channel *ch, int periodic)
 340{
 341        sh_tmu_enable(ch);
 342
 343        if (periodic) {
 344                ch->periodic = (ch->tmu->rate + HZ/2) / HZ;
 345                sh_tmu_set_next(ch, ch->periodic, 1);
 346        }
 347}
 348
 349static int sh_tmu_clock_event_shutdown(struct clock_event_device *ced)
 350{
 351        struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
 352
 353        if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
 354                sh_tmu_disable(ch);
 355        return 0;
 356}
 357
 358static int sh_tmu_clock_event_set_state(struct clock_event_device *ced,
 359                                        int periodic)
 360{
 361        struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
 362
 363        /* deal with old setting first */
 364        if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
 365                sh_tmu_disable(ch);
 366
 367        dev_info(&ch->tmu->pdev->dev, "ch%u: used for %s clock events\n",
 368                 ch->index, periodic ? "periodic" : "oneshot");
 369        sh_tmu_clock_event_start(ch, periodic);
 370        return 0;
 371}
 372
 373static int sh_tmu_clock_event_set_oneshot(struct clock_event_device *ced)
 374{
 375        return sh_tmu_clock_event_set_state(ced, 0);
 376}
 377
 378static int sh_tmu_clock_event_set_periodic(struct clock_event_device *ced)
 379{
 380        return sh_tmu_clock_event_set_state(ced, 1);
 381}
 382
 383static int sh_tmu_clock_event_next(unsigned long delta,
 384                                   struct clock_event_device *ced)
 385{
 386        struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
 387
 388        BUG_ON(!clockevent_state_oneshot(ced));
 389
 390        /* program new delta value */
 391        sh_tmu_set_next(ch, delta, 0);
 392        return 0;
 393}
 394
 395static void sh_tmu_clock_event_suspend(struct clock_event_device *ced)
 396{
 397        dev_pm_genpd_suspend(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
 398}
 399
 400static void sh_tmu_clock_event_resume(struct clock_event_device *ced)
 401{
 402        dev_pm_genpd_resume(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
 403}
 404
 405static void sh_tmu_register_clockevent(struct sh_tmu_channel *ch,
 406                                       const char *name)
 407{
 408        struct clock_event_device *ced = &ch->ced;
 409        int ret;
 410
 411        ced->name = name;
 412        ced->features = CLOCK_EVT_FEAT_PERIODIC;
 413        ced->features |= CLOCK_EVT_FEAT_ONESHOT;
 414        ced->rating = 200;
 415        ced->cpumask = cpu_possible_mask;
 416        ced->set_next_event = sh_tmu_clock_event_next;
 417        ced->set_state_shutdown = sh_tmu_clock_event_shutdown;
 418        ced->set_state_periodic = sh_tmu_clock_event_set_periodic;
 419        ced->set_state_oneshot = sh_tmu_clock_event_set_oneshot;
 420        ced->suspend = sh_tmu_clock_event_suspend;
 421        ced->resume = sh_tmu_clock_event_resume;
 422
 423        dev_info(&ch->tmu->pdev->dev, "ch%u: used for clock events\n",
 424                 ch->index);
 425
 426        clockevents_config_and_register(ced, ch->tmu->rate, 0x300, 0xffffffff);
 427
 428        ret = request_irq(ch->irq, sh_tmu_interrupt,
 429                          IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
 430                          dev_name(&ch->tmu->pdev->dev), ch);
 431        if (ret) {
 432                dev_err(&ch->tmu->pdev->dev, "ch%u: failed to request irq %d\n",
 433                        ch->index, ch->irq);
 434                return;
 435        }
 436}
 437
 438static int sh_tmu_register(struct sh_tmu_channel *ch, const char *name,
 439                           bool clockevent, bool clocksource)
 440{
 441        if (clockevent) {
 442                ch->tmu->has_clockevent = true;
 443                sh_tmu_register_clockevent(ch, name);
 444        } else if (clocksource) {
 445                ch->tmu->has_clocksource = true;
 446                sh_tmu_register_clocksource(ch, name);
 447        }
 448
 449        return 0;
 450}
 451
 452static int sh_tmu_channel_setup(struct sh_tmu_channel *ch, unsigned int index,
 453                                bool clockevent, bool clocksource,
 454                                struct sh_tmu_device *tmu)
 455{
 456        /* Skip unused channels. */
 457        if (!clockevent && !clocksource)
 458                return 0;
 459
 460        ch->tmu = tmu;
 461        ch->index = index;
 462
 463        if (tmu->model == SH_TMU_SH3)
 464                ch->base = tmu->mapbase + 4 + ch->index * 12;
 465        else
 466                ch->base = tmu->mapbase + 8 + ch->index * 12;
 467
 468        ch->irq = platform_get_irq(tmu->pdev, index);
 469        if (ch->irq < 0)
 470                return ch->irq;
 471
 472        ch->cs_enabled = false;
 473        ch->enable_count = 0;
 474
 475        return sh_tmu_register(ch, dev_name(&tmu->pdev->dev),
 476                               clockevent, clocksource);
 477}
 478
 479static int sh_tmu_map_memory(struct sh_tmu_device *tmu)
 480{
 481        struct resource *res;
 482
 483        res = platform_get_resource(tmu->pdev, IORESOURCE_MEM, 0);
 484        if (!res) {
 485                dev_err(&tmu->pdev->dev, "failed to get I/O memory\n");
 486                return -ENXIO;
 487        }
 488
 489        tmu->mapbase = ioremap(res->start, resource_size(res));
 490        if (tmu->mapbase == NULL)
 491                return -ENXIO;
 492
 493        return 0;
 494}
 495
 496static int sh_tmu_parse_dt(struct sh_tmu_device *tmu)
 497{
 498        struct device_node *np = tmu->pdev->dev.of_node;
 499
 500        tmu->model = SH_TMU;
 501        tmu->num_channels = 3;
 502
 503        of_property_read_u32(np, "#renesas,channels", &tmu->num_channels);
 504
 505        if (tmu->num_channels != 2 && tmu->num_channels != 3) {
 506                dev_err(&tmu->pdev->dev, "invalid number of channels %u\n",
 507                        tmu->num_channels);
 508                return -EINVAL;
 509        }
 510
 511        return 0;
 512}
 513
 514static int sh_tmu_setup(struct sh_tmu_device *tmu, struct platform_device *pdev)
 515{
 516        unsigned int i;
 517        int ret;
 518
 519        tmu->pdev = pdev;
 520
 521        raw_spin_lock_init(&tmu->lock);
 522
 523        if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
 524                ret = sh_tmu_parse_dt(tmu);
 525                if (ret < 0)
 526                        return ret;
 527        } else if (pdev->dev.platform_data) {
 528                const struct platform_device_id *id = pdev->id_entry;
 529                struct sh_timer_config *cfg = pdev->dev.platform_data;
 530
 531                tmu->model = id->driver_data;
 532                tmu->num_channels = hweight8(cfg->channels_mask);
 533        } else {
 534                dev_err(&tmu->pdev->dev, "missing platform data\n");
 535                return -ENXIO;
 536        }
 537
 538        /* Get hold of clock. */
 539        tmu->clk = clk_get(&tmu->pdev->dev, "fck");
 540        if (IS_ERR(tmu->clk)) {
 541                dev_err(&tmu->pdev->dev, "cannot get clock\n");
 542                return PTR_ERR(tmu->clk);
 543        }
 544
 545        ret = clk_prepare(tmu->clk);
 546        if (ret < 0)
 547                goto err_clk_put;
 548
 549        /* Determine clock rate. */
 550        ret = clk_enable(tmu->clk);
 551        if (ret < 0)
 552                goto err_clk_unprepare;
 553
 554        tmu->rate = clk_get_rate(tmu->clk) / 4;
 555        clk_disable(tmu->clk);
 556
 557        /* Map the memory resource. */
 558        ret = sh_tmu_map_memory(tmu);
 559        if (ret < 0) {
 560                dev_err(&tmu->pdev->dev, "failed to remap I/O memory\n");
 561                goto err_clk_unprepare;
 562        }
 563
 564        /* Allocate and setup the channels. */
 565        tmu->channels = kcalloc(tmu->num_channels, sizeof(*tmu->channels),
 566                                GFP_KERNEL);
 567        if (tmu->channels == NULL) {
 568                ret = -ENOMEM;
 569                goto err_unmap;
 570        }
 571
 572        /*
 573         * Use the first channel as a clock event device and the second channel
 574         * as a clock source.
 575         */
 576        for (i = 0; i < tmu->num_channels; ++i) {
 577                ret = sh_tmu_channel_setup(&tmu->channels[i], i,
 578                                           i == 0, i == 1, tmu);
 579                if (ret < 0)
 580                        goto err_unmap;
 581        }
 582
 583        platform_set_drvdata(pdev, tmu);
 584
 585        return 0;
 586
 587err_unmap:
 588        kfree(tmu->channels);
 589        iounmap(tmu->mapbase);
 590err_clk_unprepare:
 591        clk_unprepare(tmu->clk);
 592err_clk_put:
 593        clk_put(tmu->clk);
 594        return ret;
 595}
 596
 597static int sh_tmu_probe(struct platform_device *pdev)
 598{
 599        struct sh_tmu_device *tmu = platform_get_drvdata(pdev);
 600        int ret;
 601
 602        if (!is_sh_early_platform_device(pdev)) {
 603                pm_runtime_set_active(&pdev->dev);
 604                pm_runtime_enable(&pdev->dev);
 605        }
 606
 607        if (tmu) {
 608                dev_info(&pdev->dev, "kept as earlytimer\n");
 609                goto out;
 610        }
 611
 612        tmu = kzalloc(sizeof(*tmu), GFP_KERNEL);
 613        if (tmu == NULL)
 614                return -ENOMEM;
 615
 616        ret = sh_tmu_setup(tmu, pdev);
 617        if (ret) {
 618                kfree(tmu);
 619                pm_runtime_idle(&pdev->dev);
 620                return ret;
 621        }
 622
 623        if (is_sh_early_platform_device(pdev))
 624                return 0;
 625
 626 out:
 627        if (tmu->has_clockevent || tmu->has_clocksource)
 628                pm_runtime_irq_safe(&pdev->dev);
 629        else
 630                pm_runtime_idle(&pdev->dev);
 631
 632        return 0;
 633}
 634
 635static int sh_tmu_remove(struct platform_device *pdev)
 636{
 637        return -EBUSY; /* cannot unregister clockevent and clocksource */
 638}
 639
 640static const struct platform_device_id sh_tmu_id_table[] = {
 641        { "sh-tmu", SH_TMU },
 642        { "sh-tmu-sh3", SH_TMU_SH3 },
 643        { }
 644};
 645MODULE_DEVICE_TABLE(platform, sh_tmu_id_table);
 646
 647static const struct of_device_id sh_tmu_of_table[] __maybe_unused = {
 648        { .compatible = "renesas,tmu" },
 649        { }
 650};
 651MODULE_DEVICE_TABLE(of, sh_tmu_of_table);
 652
 653static struct platform_driver sh_tmu_device_driver = {
 654        .probe          = sh_tmu_probe,
 655        .remove         = sh_tmu_remove,
 656        .driver         = {
 657                .name   = "sh_tmu",
 658                .of_match_table = of_match_ptr(sh_tmu_of_table),
 659        },
 660        .id_table       = sh_tmu_id_table,
 661};
 662
 663static int __init sh_tmu_init(void)
 664{
 665        return platform_driver_register(&sh_tmu_device_driver);
 666}
 667
 668static void __exit sh_tmu_exit(void)
 669{
 670        platform_driver_unregister(&sh_tmu_device_driver);
 671}
 672
 673#ifdef CONFIG_SUPERH
 674sh_early_platform_init("earlytimer", &sh_tmu_device_driver);
 675#endif
 676
 677subsys_initcall(sh_tmu_init);
 678module_exit(sh_tmu_exit);
 679
 680MODULE_AUTHOR("Magnus Damm");
 681MODULE_DESCRIPTION("SuperH TMU Timer Driver");
 682MODULE_LICENSE("GPL v2");
 683