linux/drivers/clocksource/timer-fttmr010.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Faraday Technology FTTMR010 timer driver
   4 * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
   5 *
   6 * Based on a rewrite of arch/arm/mach-gemini/timer.c:
   7 * Copyright (C) 2001-2006 Storlink, Corp.
   8 * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
   9 */
  10#include <linux/interrupt.h>
  11#include <linux/io.h>
  12#include <linux/of.h>
  13#include <linux/of_address.h>
  14#include <linux/of_irq.h>
  15#include <linux/clockchips.h>
  16#include <linux/clocksource.h>
  17#include <linux/sched_clock.h>
  18#include <linux/clk.h>
  19#include <linux/slab.h>
  20#include <linux/bitops.h>
  21#include <linux/delay.h>
  22
  23/*
  24 * Register definitions common for all the timer variants.
  25 */
  26#define TIMER1_COUNT            (0x00)
  27#define TIMER1_LOAD             (0x04)
  28#define TIMER1_MATCH1           (0x08)
  29#define TIMER1_MATCH2           (0x0c)
  30#define TIMER2_COUNT            (0x10)
  31#define TIMER2_LOAD             (0x14)
  32#define TIMER2_MATCH1           (0x18)
  33#define TIMER2_MATCH2           (0x1c)
  34#define TIMER3_COUNT            (0x20)
  35#define TIMER3_LOAD             (0x24)
  36#define TIMER3_MATCH1           (0x28)
  37#define TIMER3_MATCH2           (0x2c)
  38#define TIMER_CR                (0x30)
  39
  40/*
  41 * Control register set to clear for ast2600 only.
  42 */
  43#define AST2600_TIMER_CR_CLR    (0x3c)
  44
  45/*
  46 * Control register (TMC30) bit fields for fttmr010/gemini/moxart timers.
  47 */
  48#define TIMER_1_CR_ENABLE       BIT(0)
  49#define TIMER_1_CR_CLOCK        BIT(1)
  50#define TIMER_1_CR_INT          BIT(2)
  51#define TIMER_2_CR_ENABLE       BIT(3)
  52#define TIMER_2_CR_CLOCK        BIT(4)
  53#define TIMER_2_CR_INT          BIT(5)
  54#define TIMER_3_CR_ENABLE       BIT(6)
  55#define TIMER_3_CR_CLOCK        BIT(7)
  56#define TIMER_3_CR_INT          BIT(8)
  57#define TIMER_1_CR_UPDOWN       BIT(9)
  58#define TIMER_2_CR_UPDOWN       BIT(10)
  59#define TIMER_3_CR_UPDOWN       BIT(11)
  60
  61/*
  62 * Control register (TMC30) bit fields for aspeed ast2400/ast2500 timers.
  63 * The aspeed timers move bits around in the control register and lacks
  64 * bits for setting the timer to count upwards.
  65 */
  66#define TIMER_1_CR_ASPEED_ENABLE        BIT(0)
  67#define TIMER_1_CR_ASPEED_CLOCK         BIT(1)
  68#define TIMER_1_CR_ASPEED_INT           BIT(2)
  69#define TIMER_2_CR_ASPEED_ENABLE        BIT(4)
  70#define TIMER_2_CR_ASPEED_CLOCK         BIT(5)
  71#define TIMER_2_CR_ASPEED_INT           BIT(6)
  72#define TIMER_3_CR_ASPEED_ENABLE        BIT(8)
  73#define TIMER_3_CR_ASPEED_CLOCK         BIT(9)
  74#define TIMER_3_CR_ASPEED_INT           BIT(10)
  75
  76/*
  77 * Interrupt status/mask register definitions for fttmr010/gemini/moxart
  78 * timers.
  79 * The registers don't exist and they are not needed on aspeed timers
  80 * because:
  81 *   - aspeed timer overflow interrupt is controlled by bits in Control
  82 *     Register (TMC30).
  83 *   - aspeed timers always generate interrupt when either one of the
  84 *     Match registers equals to Status register.
  85 */
  86#define TIMER_INTR_STATE        (0x34)
  87#define TIMER_INTR_MASK         (0x38)
  88#define TIMER_1_INT_MATCH1      BIT(0)
  89#define TIMER_1_INT_MATCH2      BIT(1)
  90#define TIMER_1_INT_OVERFLOW    BIT(2)
  91#define TIMER_2_INT_MATCH1      BIT(3)
  92#define TIMER_2_INT_MATCH2      BIT(4)
  93#define TIMER_2_INT_OVERFLOW    BIT(5)
  94#define TIMER_3_INT_MATCH1      BIT(6)
  95#define TIMER_3_INT_MATCH2      BIT(7)
  96#define TIMER_3_INT_OVERFLOW    BIT(8)
  97#define TIMER_INT_ALL_MASK      0x1ff
  98
  99struct fttmr010 {
 100        void __iomem *base;
 101        unsigned int tick_rate;
 102        bool is_aspeed;
 103        u32 t1_enable_val;
 104        struct clock_event_device clkevt;
 105        int (*timer_shutdown)(struct clock_event_device *evt);
 106#ifdef CONFIG_ARM
 107        struct delay_timer delay_timer;
 108#endif
 109};
 110
 111/*
 112 * A local singleton used by sched_clock and delay timer reads, which are
 113 * fast and stateless
 114 */
 115static struct fttmr010 *local_fttmr;
 116
 117static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
 118{
 119        return container_of(evt, struct fttmr010, clkevt);
 120}
 121
 122static unsigned long fttmr010_read_current_timer_up(void)
 123{
 124        return readl(local_fttmr->base + TIMER2_COUNT);
 125}
 126
 127static unsigned long fttmr010_read_current_timer_down(void)
 128{
 129        return ~readl(local_fttmr->base + TIMER2_COUNT);
 130}
 131
 132static u64 notrace fttmr010_read_sched_clock_up(void)
 133{
 134        return fttmr010_read_current_timer_up();
 135}
 136
 137static u64 notrace fttmr010_read_sched_clock_down(void)
 138{
 139        return fttmr010_read_current_timer_down();
 140}
 141
 142static int fttmr010_timer_set_next_event(unsigned long cycles,
 143                                       struct clock_event_device *evt)
 144{
 145        struct fttmr010 *fttmr010 = to_fttmr010(evt);
 146        u32 cr;
 147
 148        /* Stop */
 149        fttmr010->timer_shutdown(evt);
 150
 151        if (fttmr010->is_aspeed) {
 152                /*
 153                 * ASPEED Timer Controller will load TIMER1_LOAD register
 154                 * into TIMER1_COUNT register when the timer is re-enabled.
 155                 */
 156                writel(cycles, fttmr010->base + TIMER1_LOAD);
 157        } else {
 158                /* Setup the match register forward in time */
 159                cr = readl(fttmr010->base + TIMER1_COUNT);
 160                writel(cr + cycles, fttmr010->base + TIMER1_MATCH1);
 161        }
 162
 163        /* Start */
 164        cr = readl(fttmr010->base + TIMER_CR);
 165        cr |= fttmr010->t1_enable_val;
 166        writel(cr, fttmr010->base + TIMER_CR);
 167
 168        return 0;
 169}
 170
 171static int ast2600_timer_shutdown(struct clock_event_device *evt)
 172{
 173        struct fttmr010 *fttmr010 = to_fttmr010(evt);
 174
 175        /* Stop */
 176        writel(fttmr010->t1_enable_val, fttmr010->base + AST2600_TIMER_CR_CLR);
 177
 178        return 0;
 179}
 180
 181static int fttmr010_timer_shutdown(struct clock_event_device *evt)
 182{
 183        struct fttmr010 *fttmr010 = to_fttmr010(evt);
 184        u32 cr;
 185
 186        /* Stop */
 187        cr = readl(fttmr010->base + TIMER_CR);
 188        cr &= ~fttmr010->t1_enable_val;
 189        writel(cr, fttmr010->base + TIMER_CR);
 190
 191        return 0;
 192}
 193
 194static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
 195{
 196        struct fttmr010 *fttmr010 = to_fttmr010(evt);
 197        u32 cr;
 198
 199        /* Stop */
 200        fttmr010->timer_shutdown(evt);
 201
 202        /* Setup counter start from 0 or ~0 */
 203        writel(0, fttmr010->base + TIMER1_COUNT);
 204        if (fttmr010->is_aspeed) {
 205                writel(~0, fttmr010->base + TIMER1_LOAD);
 206        } else {
 207                writel(0, fttmr010->base + TIMER1_LOAD);
 208
 209                /* Enable interrupt */
 210                cr = readl(fttmr010->base + TIMER_INTR_MASK);
 211                cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
 212                cr |= TIMER_1_INT_MATCH1;
 213                writel(cr, fttmr010->base + TIMER_INTR_MASK);
 214        }
 215
 216        return 0;
 217}
 218
 219static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
 220{
 221        struct fttmr010 *fttmr010 = to_fttmr010(evt);
 222        u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
 223        u32 cr;
 224
 225        /* Stop */
 226        fttmr010->timer_shutdown(evt);
 227
 228        /* Setup timer to fire at 1/HZ intervals. */
 229        if (fttmr010->is_aspeed) {
 230                writel(period, fttmr010->base + TIMER1_LOAD);
 231        } else {
 232                cr = 0xffffffff - (period - 1);
 233                writel(cr, fttmr010->base + TIMER1_COUNT);
 234                writel(cr, fttmr010->base + TIMER1_LOAD);
 235
 236                /* Enable interrupt on overflow */
 237                cr = readl(fttmr010->base + TIMER_INTR_MASK);
 238                cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
 239                cr |= TIMER_1_INT_OVERFLOW;
 240                writel(cr, fttmr010->base + TIMER_INTR_MASK);
 241        }
 242
 243        /* Start the timer */
 244        cr = readl(fttmr010->base + TIMER_CR);
 245        cr |= fttmr010->t1_enable_val;
 246        writel(cr, fttmr010->base + TIMER_CR);
 247
 248        return 0;
 249}
 250
 251/*
 252 * IRQ handler for the timer
 253 */
 254static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
 255{
 256        struct clock_event_device *evt = dev_id;
 257
 258        evt->event_handler(evt);
 259        return IRQ_HANDLED;
 260}
 261
 262static irqreturn_t ast2600_timer_interrupt(int irq, void *dev_id)
 263{
 264        struct clock_event_device *evt = dev_id;
 265        struct fttmr010 *fttmr010 = to_fttmr010(evt);
 266
 267        writel(0x1, fttmr010->base + TIMER_INTR_STATE);
 268
 269        evt->event_handler(evt);
 270        return IRQ_HANDLED;
 271}
 272
 273static int __init fttmr010_common_init(struct device_node *np,
 274                                       bool is_aspeed, bool is_ast2600)
 275{
 276        struct fttmr010 *fttmr010;
 277        int irq;
 278        struct clk *clk;
 279        int ret;
 280        u32 val;
 281
 282        /*
 283         * These implementations require a clock reference.
 284         * FIXME: we currently only support clocking using PCLK
 285         * and using EXTCLK is not supported in the driver.
 286         */
 287        clk = of_clk_get_by_name(np, "PCLK");
 288        if (IS_ERR(clk)) {
 289                pr_err("could not get PCLK\n");
 290                return PTR_ERR(clk);
 291        }
 292        ret = clk_prepare_enable(clk);
 293        if (ret) {
 294                pr_err("failed to enable PCLK\n");
 295                return ret;
 296        }
 297
 298        fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
 299        if (!fttmr010) {
 300                ret = -ENOMEM;
 301                goto out_disable_clock;
 302        }
 303        fttmr010->tick_rate = clk_get_rate(clk);
 304
 305        fttmr010->base = of_iomap(np, 0);
 306        if (!fttmr010->base) {
 307                pr_err("Can't remap registers\n");
 308                ret = -ENXIO;
 309                goto out_free;
 310        }
 311        /* IRQ for timer 1 */
 312        irq = irq_of_parse_and_map(np, 0);
 313        if (irq <= 0) {
 314                pr_err("Can't parse IRQ\n");
 315                ret = -EINVAL;
 316                goto out_unmap;
 317        }
 318
 319        /*
 320         * The Aspeed timers move bits around in the control register.
 321         */
 322        if (is_aspeed) {
 323                fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
 324                        TIMER_1_CR_ASPEED_INT;
 325                fttmr010->is_aspeed = true;
 326        } else {
 327                fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
 328
 329                /*
 330                 * Reset the interrupt mask and status
 331                 */
 332                writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
 333                writel(0, fttmr010->base + TIMER_INTR_STATE);
 334        }
 335
 336        /*
 337         * Enable timer 1 count up, timer 2 count up, except on Aspeed,
 338         * where everything just counts down.
 339         */
 340        if (is_aspeed)
 341                val = TIMER_2_CR_ASPEED_ENABLE;
 342        else {
 343                val = TIMER_2_CR_ENABLE | TIMER_1_CR_UPDOWN |
 344                        TIMER_2_CR_UPDOWN;
 345        }
 346        writel(val, fttmr010->base + TIMER_CR);
 347
 348        /*
 349         * Setup free-running clocksource timer (interrupts
 350         * disabled.)
 351         */
 352        local_fttmr = fttmr010;
 353        writel(0, fttmr010->base + TIMER2_COUNT);
 354        writel(0, fttmr010->base + TIMER2_MATCH1);
 355        writel(0, fttmr010->base + TIMER2_MATCH2);
 356
 357        if (fttmr010->is_aspeed) {
 358                writel(~0, fttmr010->base + TIMER2_LOAD);
 359                clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
 360                                      "FTTMR010-TIMER2",
 361                                      fttmr010->tick_rate,
 362                                      300, 32, clocksource_mmio_readl_down);
 363                sched_clock_register(fttmr010_read_sched_clock_down, 32,
 364                                     fttmr010->tick_rate);
 365        } else {
 366                writel(0, fttmr010->base + TIMER2_LOAD);
 367                clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
 368                                      "FTTMR010-TIMER2",
 369                                      fttmr010->tick_rate,
 370                                      300, 32, clocksource_mmio_readl_up);
 371                sched_clock_register(fttmr010_read_sched_clock_up, 32,
 372                                     fttmr010->tick_rate);
 373        }
 374
 375        /*
 376         * Setup clockevent timer (interrupt-driven) on timer 1.
 377         */
 378        writel(0, fttmr010->base + TIMER1_COUNT);
 379        writel(0, fttmr010->base + TIMER1_LOAD);
 380        writel(0, fttmr010->base + TIMER1_MATCH1);
 381        writel(0, fttmr010->base + TIMER1_MATCH2);
 382
 383        if (is_ast2600) {
 384                fttmr010->timer_shutdown = ast2600_timer_shutdown;
 385                ret = request_irq(irq, ast2600_timer_interrupt,
 386                                  IRQF_TIMER, "FTTMR010-TIMER1",
 387                                  &fttmr010->clkevt);
 388        } else {
 389                fttmr010->timer_shutdown = fttmr010_timer_shutdown;
 390                ret = request_irq(irq, fttmr010_timer_interrupt,
 391                                  IRQF_TIMER, "FTTMR010-TIMER1",
 392                                  &fttmr010->clkevt);
 393        }
 394        if (ret) {
 395                pr_err("FTTMR010-TIMER1 no IRQ\n");
 396                goto out_unmap;
 397        }
 398
 399        fttmr010->clkevt.name = "FTTMR010-TIMER1";
 400        /* Reasonably fast and accurate clock event */
 401        fttmr010->clkevt.rating = 300;
 402        fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
 403                CLOCK_EVT_FEAT_ONESHOT;
 404        fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
 405        fttmr010->clkevt.set_state_shutdown = fttmr010->timer_shutdown;
 406        fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
 407        fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
 408        fttmr010->clkevt.tick_resume = fttmr010->timer_shutdown;
 409        fttmr010->clkevt.cpumask = cpumask_of(0);
 410        fttmr010->clkevt.irq = irq;
 411        clockevents_config_and_register(&fttmr010->clkevt,
 412                                        fttmr010->tick_rate,
 413                                        1, 0xffffffff);
 414
 415#ifdef CONFIG_ARM
 416        /* Also use this timer for delays */
 417        if (fttmr010->is_aspeed)
 418                fttmr010->delay_timer.read_current_timer =
 419                        fttmr010_read_current_timer_down;
 420        else
 421                fttmr010->delay_timer.read_current_timer =
 422                        fttmr010_read_current_timer_up;
 423        fttmr010->delay_timer.freq = fttmr010->tick_rate;
 424        register_current_timer_delay(&fttmr010->delay_timer);
 425#endif
 426
 427        return 0;
 428
 429out_unmap:
 430        iounmap(fttmr010->base);
 431out_free:
 432        kfree(fttmr010);
 433out_disable_clock:
 434        clk_disable_unprepare(clk);
 435
 436        return ret;
 437}
 438
 439static __init int ast2600_timer_init(struct device_node *np)
 440{
 441        return fttmr010_common_init(np, true, true);
 442}
 443
 444static __init int aspeed_timer_init(struct device_node *np)
 445{
 446        return fttmr010_common_init(np, true, false);
 447}
 448
 449static __init int fttmr010_timer_init(struct device_node *np)
 450{
 451        return fttmr010_common_init(np, false, false);
 452}
 453
 454TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
 455TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
 456TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
 457TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
 458TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);
 459TIMER_OF_DECLARE(ast2600, "aspeed,ast2600-timer", ast2600_timer_init);
 460