linux/drivers/clocksource/timer-stm32.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) Maxime Coquelin 2015
   4 * Author:  Maxime Coquelin <mcoquelin.stm32@gmail.com>
   5 *
   6 * Inspired by time-efm32.c from Uwe Kleine-Koenig
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/clocksource.h>
  11#include <linux/clockchips.h>
  12#include <linux/delay.h>
  13#include <linux/irq.h>
  14#include <linux/interrupt.h>
  15#include <linux/of.h>
  16#include <linux/of_address.h>
  17#include <linux/of_irq.h>
  18#include <linux/clk.h>
  19#include <linux/reset.h>
  20#include <linux/sched_clock.h>
  21#include <linux/slab.h>
  22
  23#include "timer-of.h"
  24
  25#define TIM_CR1         0x00
  26#define TIM_DIER        0x0c
  27#define TIM_SR          0x10
  28#define TIM_EGR         0x14
  29#define TIM_CNT         0x24
  30#define TIM_PSC         0x28
  31#define TIM_ARR         0x2c
  32#define TIM_CCR1        0x34
  33
  34#define TIM_CR1_CEN     BIT(0)
  35#define TIM_CR1_UDIS    BIT(1)
  36#define TIM_CR1_OPM     BIT(3)
  37#define TIM_CR1_ARPE    BIT(7)
  38
  39#define TIM_DIER_UIE    BIT(0)
  40#define TIM_DIER_CC1IE  BIT(1)
  41
  42#define TIM_SR_UIF      BIT(0)
  43
  44#define TIM_EGR_UG      BIT(0)
  45
  46#define TIM_PSC_MAX     USHRT_MAX
  47#define TIM_PSC_CLKRATE 10000
  48
  49struct stm32_timer_private {
  50        int bits;
  51};
  52
  53/**
  54 * stm32_timer_of_bits_set - set accessor helper
  55 * @to: a timer_of structure pointer
  56 * @bits: the number of bits (16 or 32)
  57 *
  58 * Accessor helper to set the number of bits in the timer-of private
  59 * structure.
  60 *
  61 */
  62static void stm32_timer_of_bits_set(struct timer_of *to, int bits)
  63{
  64        struct stm32_timer_private *pd = to->private_data;
  65
  66        pd->bits = bits;
  67}
  68
  69/**
  70 * stm32_timer_of_bits_get - get accessor helper
  71 * @to: a timer_of structure pointer
  72 *
  73 * Accessor helper to get the number of bits in the timer-of private
  74 * structure.
  75 *
  76 * Returns an integer corresponding to the number of bits.
  77 */
  78static int stm32_timer_of_bits_get(struct timer_of *to)
  79{
  80        struct stm32_timer_private *pd = to->private_data;
  81
  82        return pd->bits;
  83}
  84
  85static void __iomem *stm32_timer_cnt __read_mostly;
  86
  87static u64 notrace stm32_read_sched_clock(void)
  88{
  89        return readl_relaxed(stm32_timer_cnt);
  90}
  91
  92static struct delay_timer stm32_timer_delay;
  93
  94static unsigned long stm32_read_delay(void)
  95{
  96        return readl_relaxed(stm32_timer_cnt);
  97}
  98
  99static void stm32_clock_event_disable(struct timer_of *to)
 100{
 101        writel_relaxed(0, timer_of_base(to) + TIM_DIER);
 102}
 103
 104/**
 105 * stm32_timer_start - Start the counter without event
 106 * @to: a timer_of structure pointer
 107 *
 108 * Start the timer in order to have the counter reset and start
 109 * incrementing but disable interrupt event when there is a counter
 110 * overflow. By default, the counter direction is used as upcounter.
 111 */
 112static void stm32_timer_start(struct timer_of *to)
 113{
 114        writel_relaxed(TIM_CR1_UDIS | TIM_CR1_CEN, timer_of_base(to) + TIM_CR1);
 115}
 116
 117static int stm32_clock_event_shutdown(struct clock_event_device *clkevt)
 118{
 119        struct timer_of *to = to_timer_of(clkevt);
 120
 121        stm32_clock_event_disable(to);
 122
 123        return 0;
 124}
 125
 126static int stm32_clock_event_set_next_event(unsigned long evt,
 127                                            struct clock_event_device *clkevt)
 128{
 129        struct timer_of *to = to_timer_of(clkevt);
 130        unsigned long now, next;
 131
 132        next = readl_relaxed(timer_of_base(to) + TIM_CNT) + evt;
 133        writel_relaxed(next, timer_of_base(to) + TIM_CCR1);
 134        now = readl_relaxed(timer_of_base(to) + TIM_CNT);
 135
 136        if ((next - now) > evt)
 137                return -ETIME;
 138
 139        writel_relaxed(TIM_DIER_CC1IE, timer_of_base(to) + TIM_DIER);
 140
 141        return 0;
 142}
 143
 144static int stm32_clock_event_set_periodic(struct clock_event_device *clkevt)
 145{
 146        struct timer_of *to = to_timer_of(clkevt);
 147
 148        stm32_timer_start(to);
 149
 150        return stm32_clock_event_set_next_event(timer_of_period(to), clkevt);
 151}
 152
 153static int stm32_clock_event_set_oneshot(struct clock_event_device *clkevt)
 154{
 155        struct timer_of *to = to_timer_of(clkevt);
 156
 157        stm32_timer_start(to);
 158
 159        return 0;
 160}
 161
 162static irqreturn_t stm32_clock_event_handler(int irq, void *dev_id)
 163{
 164        struct clock_event_device *clkevt = (struct clock_event_device *)dev_id;
 165        struct timer_of *to = to_timer_of(clkevt);
 166
 167        writel_relaxed(0, timer_of_base(to) + TIM_SR);
 168
 169        if (clockevent_state_periodic(clkevt))
 170                stm32_clock_event_set_periodic(clkevt);
 171        else
 172                stm32_clock_event_shutdown(clkevt);
 173
 174        clkevt->event_handler(clkevt);
 175
 176        return IRQ_HANDLED;
 177}
 178
 179/**
 180 * stm32_timer_width - Sort out the timer width (32/16)
 181 * @to: a pointer to a timer-of structure
 182 *
 183 * Write the 32-bit max value and read/return the result. If the timer
 184 * is 32 bits wide, the result will be UINT_MAX, otherwise it will
 185 * be truncated by the 16-bit register to USHRT_MAX.
 186 *
 187 */
 188static void __init stm32_timer_set_width(struct timer_of *to)
 189{
 190        u32 width;
 191
 192        writel_relaxed(UINT_MAX, timer_of_base(to) + TIM_ARR);
 193
 194        width = readl_relaxed(timer_of_base(to) + TIM_ARR);
 195
 196        stm32_timer_of_bits_set(to, width == UINT_MAX ? 32 : 16);
 197}
 198
 199/**
 200 * stm32_timer_set_prescaler - Compute and set the prescaler register
 201 * @to: a pointer to a timer-of structure
 202 *
 203 * Depending on the timer width, compute the prescaler to always
 204 * target a 10MHz timer rate for 16 bits. 32-bit timers are
 205 * considered precise and long enough to not use the prescaler.
 206 */
 207static void __init stm32_timer_set_prescaler(struct timer_of *to)
 208{
 209        int prescaler = 1;
 210
 211        if (stm32_timer_of_bits_get(to) != 32) {
 212                prescaler = DIV_ROUND_CLOSEST(timer_of_rate(to),
 213                                              TIM_PSC_CLKRATE);
 214                /*
 215                 * The prescaler register is an u16, the variable
 216                 * can't be greater than TIM_PSC_MAX, let's cap it in
 217                 * this case.
 218                 */
 219                prescaler = prescaler < TIM_PSC_MAX ? prescaler : TIM_PSC_MAX;
 220        }
 221
 222        writel_relaxed(prescaler - 1, timer_of_base(to) + TIM_PSC);
 223        writel_relaxed(TIM_EGR_UG, timer_of_base(to) + TIM_EGR);
 224        writel_relaxed(0, timer_of_base(to) + TIM_SR);
 225
 226        /* Adjust rate and period given the prescaler value */
 227        to->of_clk.rate = DIV_ROUND_CLOSEST(to->of_clk.rate, prescaler);
 228        to->of_clk.period = DIV_ROUND_UP(to->of_clk.rate, HZ);
 229}
 230
 231static int __init stm32_clocksource_init(struct timer_of *to)
 232{
 233        u32 bits = stm32_timer_of_bits_get(to);
 234        const char *name = to->np->full_name;
 235
 236        /*
 237         * This driver allows to register several timers and relies on
 238         * the generic time framework to select the right one.
 239         * However, nothing allows to do the same for the
 240         * sched_clock. We are not interested in a sched_clock for the
 241         * 16-bit timers but only for the 32-bit one, so if no 32-bit
 242         * timer is registered yet, we select this 32-bit timer as a
 243         * sched_clock.
 244         */
 245        if (bits == 32 && !stm32_timer_cnt) {
 246
 247                /*
 248                 * Start immediately the counter as we will be using
 249                 * it right after.
 250                 */
 251                stm32_timer_start(to);
 252
 253                stm32_timer_cnt = timer_of_base(to) + TIM_CNT;
 254                sched_clock_register(stm32_read_sched_clock, bits, timer_of_rate(to));
 255                pr_info("%s: STM32 sched_clock registered\n", name);
 256
 257                stm32_timer_delay.read_current_timer = stm32_read_delay;
 258                stm32_timer_delay.freq = timer_of_rate(to);
 259                register_current_timer_delay(&stm32_timer_delay);
 260                pr_info("%s: STM32 delay timer registered\n", name);
 261        }
 262
 263        return clocksource_mmio_init(timer_of_base(to) + TIM_CNT, name,
 264                                     timer_of_rate(to), bits == 32 ? 250 : 100,
 265                                     bits, clocksource_mmio_readl_up);
 266}
 267
 268static void __init stm32_clockevent_init(struct timer_of *to)
 269{
 270        u32 bits = stm32_timer_of_bits_get(to);
 271
 272        to->clkevt.name = to->np->full_name;
 273        to->clkevt.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
 274        to->clkevt.set_state_shutdown = stm32_clock_event_shutdown;
 275        to->clkevt.set_state_periodic = stm32_clock_event_set_periodic;
 276        to->clkevt.set_state_oneshot = stm32_clock_event_set_oneshot;
 277        to->clkevt.tick_resume = stm32_clock_event_shutdown;
 278        to->clkevt.set_next_event = stm32_clock_event_set_next_event;
 279        to->clkevt.rating = bits == 32 ? 250 : 100;
 280
 281        clockevents_config_and_register(&to->clkevt, timer_of_rate(to), 0x1,
 282                                        (1 <<  bits) - 1);
 283
 284        pr_info("%pOF: STM32 clockevent driver initialized (%d bits)\n",
 285                to->np, bits);
 286}
 287
 288static int __init stm32_timer_init(struct device_node *node)
 289{
 290        struct reset_control *rstc;
 291        struct timer_of *to;
 292        int ret;
 293
 294        to = kzalloc(sizeof(*to), GFP_KERNEL);
 295        if (!to)
 296                return -ENOMEM;
 297
 298        to->flags = TIMER_OF_IRQ | TIMER_OF_CLOCK | TIMER_OF_BASE;
 299        to->of_irq.handler = stm32_clock_event_handler;
 300
 301        ret = timer_of_init(node, to);
 302        if (ret)
 303                goto err;
 304
 305        to->private_data = kzalloc(sizeof(struct stm32_timer_private),
 306                                   GFP_KERNEL);
 307        if (!to->private_data) {
 308                ret = -ENOMEM;
 309                goto deinit;
 310        }
 311
 312        rstc = of_reset_control_get(node, NULL);
 313        if (!IS_ERR(rstc)) {
 314                reset_control_assert(rstc);
 315                reset_control_deassert(rstc);
 316        }
 317
 318        stm32_timer_set_width(to);
 319
 320        stm32_timer_set_prescaler(to);
 321
 322        ret = stm32_clocksource_init(to);
 323        if (ret)
 324                goto deinit;
 325
 326        stm32_clockevent_init(to);
 327        return 0;
 328
 329deinit:
 330        timer_of_cleanup(to);
 331err:
 332        kfree(to);
 333        return ret;
 334}
 335
 336TIMER_OF_DECLARE(stm32, "st,stm32-timer", stm32_timer_init);
 337