linux/drivers/cpufreq/sa1110-cpufreq.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/mach-sa1100/cpu-sa1110.c
   4 *
   5 *  Copyright (C) 2001 Russell King
   6 *
   7 * Note: there are two erratas that apply to the SA1110 here:
   8 *  7 - SDRAM auto-power-up failure (rev A0)
   9 * 13 - Corruption of internal register reads/writes following
  10 *      SDRAM reads (rev A0, B0, B1)
  11 *
  12 * We ignore rev. A0 and B0 devices; I don't think they're worth supporting.
  13 *
  14 * The SDRAM type can be passed on the command line as cpu_sa1110.sdram=type
  15 */
  16#include <linux/cpufreq.h>
  17#include <linux/delay.h>
  18#include <linux/init.h>
  19#include <linux/io.h>
  20#include <linux/kernel.h>
  21#include <linux/moduleparam.h>
  22#include <linux/types.h>
  23
  24#include <asm/cputype.h>
  25#include <asm/mach-types.h>
  26
  27#include <mach/generic.h>
  28#include <mach/hardware.h>
  29
  30#undef DEBUG
  31
  32struct sdram_params {
  33        const char name[20];
  34        u_char  rows;           /* bits                          */
  35        u_char  cas_latency;    /* cycles                        */
  36        u_char  tck;            /* clock cycle time (ns)         */
  37        u_char  trcd;           /* activate to r/w (ns)          */
  38        u_char  trp;            /* precharge to activate (ns)    */
  39        u_char  twr;            /* write recovery time (ns)      */
  40        u_short refresh;        /* refresh time for array (us)   */
  41};
  42
  43struct sdram_info {
  44        u_int   mdcnfg;
  45        u_int   mdrefr;
  46        u_int   mdcas[3];
  47};
  48
  49static struct sdram_params sdram_tbl[] __initdata = {
  50        {       /* Toshiba TC59SM716 CL2 */
  51                .name           = "TC59SM716-CL2",
  52                .rows           = 12,
  53                .tck            = 10,
  54                .trcd           = 20,
  55                .trp            = 20,
  56                .twr            = 10,
  57                .refresh        = 64000,
  58                .cas_latency    = 2,
  59        }, {    /* Toshiba TC59SM716 CL3 */
  60                .name           = "TC59SM716-CL3",
  61                .rows           = 12,
  62                .tck            = 8,
  63                .trcd           = 20,
  64                .trp            = 20,
  65                .twr            = 8,
  66                .refresh        = 64000,
  67                .cas_latency    = 3,
  68        }, {    /* Samsung K4S641632D TC75 */
  69                .name           = "K4S641632D",
  70                .rows           = 14,
  71                .tck            = 9,
  72                .trcd           = 27,
  73                .trp            = 20,
  74                .twr            = 9,
  75                .refresh        = 64000,
  76                .cas_latency    = 3,
  77        }, {    /* Samsung K4S281632B-1H */
  78                .name           = "K4S281632B-1H",
  79                .rows           = 12,
  80                .tck            = 10,
  81                .trp            = 20,
  82                .twr            = 10,
  83                .refresh        = 64000,
  84                .cas_latency    = 3,
  85        }, {    /* Samsung KM416S4030CT */
  86                .name           = "KM416S4030CT",
  87                .rows           = 13,
  88                .tck            = 8,
  89                .trcd           = 24,   /* 3 CLKs */
  90                .trp            = 24,   /* 3 CLKs */
  91                .twr            = 16,   /* Trdl: 2 CLKs */
  92                .refresh        = 64000,
  93                .cas_latency    = 3,
  94        }, {    /* Winbond W982516AH75L CL3 */
  95                .name           = "W982516AH75L",
  96                .rows           = 16,
  97                .tck            = 8,
  98                .trcd           = 20,
  99                .trp            = 20,
 100                .twr            = 8,
 101                .refresh        = 64000,
 102                .cas_latency    = 3,
 103        }, {    /* Micron MT48LC8M16A2TG-75 */
 104                .name           = "MT48LC8M16A2TG-75",
 105                .rows           = 12,
 106                .tck            = 8,
 107                .trcd           = 20,
 108                .trp            = 20,
 109                .twr            = 8,
 110                .refresh        = 64000,
 111                .cas_latency    = 3,
 112        },
 113};
 114
 115static struct sdram_params sdram_params;
 116
 117/*
 118 * Given a period in ns and frequency in khz, calculate the number of
 119 * cycles of frequency in period.  Note that we round up to the next
 120 * cycle, even if we are only slightly over.
 121 */
 122static inline u_int ns_to_cycles(u_int ns, u_int khz)
 123{
 124        return (ns * khz + 999999) / 1000000;
 125}
 126
 127/*
 128 * Create the MDCAS register bit pattern.
 129 */
 130static inline void set_mdcas(u_int *mdcas, int delayed, u_int rcd)
 131{
 132        u_int shift;
 133
 134        rcd = 2 * rcd - 1;
 135        shift = delayed + 1 + rcd;
 136
 137        mdcas[0]  = (1 << rcd) - 1;
 138        mdcas[0] |= 0x55555555 << shift;
 139        mdcas[1]  = mdcas[2] = 0x55555555 << (shift & 1);
 140}
 141
 142static void
 143sdram_calculate_timing(struct sdram_info *sd, u_int cpu_khz,
 144                       struct sdram_params *sdram)
 145{
 146        u_int mem_khz, sd_khz, trp, twr;
 147
 148        mem_khz = cpu_khz / 2;
 149        sd_khz = mem_khz;
 150
 151        /*
 152         * If SDCLK would invalidate the SDRAM timings,
 153         * run SDCLK at half speed.
 154         *
 155         * CPU steppings prior to B2 must either run the memory at
 156         * half speed or use delayed read latching (errata 13).
 157         */
 158        if ((ns_to_cycles(sdram->tck, sd_khz) > 1) ||
 159            (read_cpuid_revision() < ARM_CPU_REV_SA1110_B2 && sd_khz < 62000))
 160                sd_khz /= 2;
 161
 162        sd->mdcnfg = MDCNFG & 0x007f007f;
 163
 164        twr = ns_to_cycles(sdram->twr, mem_khz);
 165
 166        /* trp should always be >1 */
 167        trp = ns_to_cycles(sdram->trp, mem_khz) - 1;
 168        if (trp < 1)
 169                trp = 1;
 170
 171        sd->mdcnfg |= trp << 8;
 172        sd->mdcnfg |= trp << 24;
 173        sd->mdcnfg |= sdram->cas_latency << 12;
 174        sd->mdcnfg |= sdram->cas_latency << 28;
 175        sd->mdcnfg |= twr << 14;
 176        sd->mdcnfg |= twr << 30;
 177
 178        sd->mdrefr = MDREFR & 0xffbffff0;
 179        sd->mdrefr |= 7;
 180
 181        if (sd_khz != mem_khz)
 182                sd->mdrefr |= MDREFR_K1DB2;
 183
 184        /* initial number of '1's in MDCAS + 1 */
 185        set_mdcas(sd->mdcas, sd_khz >= 62000,
 186                ns_to_cycles(sdram->trcd, mem_khz));
 187
 188#ifdef DEBUG
 189        printk(KERN_DEBUG "MDCNFG: %08x MDREFR: %08x MDCAS0: %08x MDCAS1: %08x MDCAS2: %08x\n",
 190                sd->mdcnfg, sd->mdrefr, sd->mdcas[0], sd->mdcas[1],
 191                sd->mdcas[2]);
 192#endif
 193}
 194
 195/*
 196 * Set the SDRAM refresh rate.
 197 */
 198static inline void sdram_set_refresh(u_int dri)
 199{
 200        MDREFR = (MDREFR & 0xffff000f) | (dri << 4);
 201        (void) MDREFR;
 202}
 203
 204/*
 205 * Update the refresh period.  We do this such that we always refresh
 206 * the SDRAMs within their permissible period.  The refresh period is
 207 * always a multiple of the memory clock (fixed at cpu_clock / 2).
 208 *
 209 * FIXME: we don't currently take account of burst accesses here,
 210 * but neither do Intels DM nor Angel.
 211 */
 212static void
 213sdram_update_refresh(u_int cpu_khz, struct sdram_params *sdram)
 214{
 215        u_int ns_row = (sdram->refresh * 1000) >> sdram->rows;
 216        u_int dri = ns_to_cycles(ns_row, cpu_khz / 2) / 32;
 217
 218#ifdef DEBUG
 219        mdelay(250);
 220        printk(KERN_DEBUG "new dri value = %d\n", dri);
 221#endif
 222
 223        sdram_set_refresh(dri);
 224}
 225
 226/*
 227 * Ok, set the CPU frequency.
 228 */
 229static int sa1110_target(struct cpufreq_policy *policy, unsigned int ppcr)
 230{
 231        struct sdram_params *sdram = &sdram_params;
 232        struct sdram_info sd;
 233        unsigned long flags;
 234        unsigned int unused;
 235
 236        sdram_calculate_timing(&sd, sa11x0_freq_table[ppcr].frequency, sdram);
 237
 238#if 0
 239        /*
 240         * These values are wrong according to the SA1110 documentation
 241         * and errata, but they seem to work.  Need to get a storage
 242         * scope on to the SDRAM signals to work out why.
 243         */
 244        if (policy->max < 147500) {
 245                sd.mdrefr |= MDREFR_K1DB2;
 246                sd.mdcas[0] = 0xaaaaaa7f;
 247        } else {
 248                sd.mdrefr &= ~MDREFR_K1DB2;
 249                sd.mdcas[0] = 0xaaaaaa9f;
 250        }
 251        sd.mdcas[1] = 0xaaaaaaaa;
 252        sd.mdcas[2] = 0xaaaaaaaa;
 253#endif
 254
 255        /*
 256         * The clock could be going away for some time.  Set the SDRAMs
 257         * to refresh rapidly (every 64 memory clock cycles).  To get
 258         * through the whole array, we need to wait 262144 mclk cycles.
 259         * We wait 20ms to be safe.
 260         */
 261        sdram_set_refresh(2);
 262        if (!irqs_disabled())
 263                msleep(20);
 264        else
 265                mdelay(20);
 266
 267        /*
 268         * Reprogram the DRAM timings with interrupts disabled, and
 269         * ensure that we are doing this within a complete cache line.
 270         * This means that we won't access SDRAM for the duration of
 271         * the programming.
 272         */
 273        local_irq_save(flags);
 274        asm("mcr p15, 0, %0, c7, c10, 4" : : "r" (0));
 275        udelay(10);
 276        __asm__ __volatile__("\n\
 277                b       2f                                      \n\
 278                .align  5                                       \n\
 2791:              str     %3, [%1, #0]            @ MDCNFG        \n\
 280                str     %4, [%1, #28]           @ MDREFR        \n\
 281                str     %5, [%1, #4]            @ MDCAS0        \n\
 282                str     %6, [%1, #8]            @ MDCAS1        \n\
 283                str     %7, [%1, #12]           @ MDCAS2        \n\
 284                str     %8, [%2, #0]            @ PPCR          \n\
 285                ldr     %0, [%1, #0]                            \n\
 286                b       3f                                      \n\
 2872:              b       1b                                      \n\
 2883:              nop                                             \n\
 289                nop"
 290                : "=&r" (unused)
 291                : "r" (&MDCNFG), "r" (&PPCR), "0" (sd.mdcnfg),
 292                  "r" (sd.mdrefr), "r" (sd.mdcas[0]),
 293                  "r" (sd.mdcas[1]), "r" (sd.mdcas[2]), "r" (ppcr));
 294        local_irq_restore(flags);
 295
 296        /*
 297         * Now, return the SDRAM refresh back to normal.
 298         */
 299        sdram_update_refresh(sa11x0_freq_table[ppcr].frequency, sdram);
 300
 301        return 0;
 302}
 303
 304static int __init sa1110_cpu_init(struct cpufreq_policy *policy)
 305{
 306        cpufreq_generic_init(policy, sa11x0_freq_table, 0);
 307        return 0;
 308}
 309
 310/* sa1110_driver needs __refdata because it must remain after init registers
 311 * it with cpufreq_register_driver() */
 312static struct cpufreq_driver sa1110_driver __refdata = {
 313        .flags          = CPUFREQ_NEED_INITIAL_FREQ_CHECK |
 314                          CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING,
 315        .verify         = cpufreq_generic_frequency_table_verify,
 316        .target_index   = sa1110_target,
 317        .get            = sa11x0_getspeed,
 318        .init           = sa1110_cpu_init,
 319        .name           = "sa1110",
 320};
 321
 322static struct sdram_params *sa1110_find_sdram(const char *name)
 323{
 324        struct sdram_params *sdram;
 325
 326        for (sdram = sdram_tbl; sdram < sdram_tbl + ARRAY_SIZE(sdram_tbl);
 327             sdram++)
 328                if (strcmp(name, sdram->name) == 0)
 329                        return sdram;
 330
 331        return NULL;
 332}
 333
 334static char sdram_name[16];
 335
 336static int __init sa1110_clk_init(void)
 337{
 338        struct sdram_params *sdram;
 339        const char *name = sdram_name;
 340
 341        if (!cpu_is_sa1110())
 342                return -ENODEV;
 343
 344        if (!name[0]) {
 345                if (machine_is_assabet())
 346                        name = "TC59SM716-CL3";
 347                if (machine_is_pt_system3())
 348                        name = "K4S641632D";
 349                if (machine_is_h3100())
 350                        name = "KM416S4030CT";
 351                if (machine_is_jornada720() || machine_is_h3600())
 352                        name = "K4S281632B-1H";
 353                if (machine_is_nanoengine())
 354                        name = "MT48LC8M16A2TG-75";
 355        }
 356
 357        sdram = sa1110_find_sdram(name);
 358        if (sdram) {
 359                printk(KERN_DEBUG "SDRAM: tck: %d trcd: %d trp: %d"
 360                        " twr: %d refresh: %d cas_latency: %d\n",
 361                        sdram->tck, sdram->trcd, sdram->trp,
 362                        sdram->twr, sdram->refresh, sdram->cas_latency);
 363
 364                memcpy(&sdram_params, sdram, sizeof(sdram_params));
 365
 366                return cpufreq_register_driver(&sa1110_driver);
 367        }
 368
 369        return 0;
 370}
 371
 372module_param_string(sdram, sdram_name, sizeof(sdram_name), 0);
 373arch_initcall(sa1110_clk_init);
 374