linux/drivers/cpufreq/tegra194-cpufreq.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved
   4 */
   5
   6#include <linux/cpu.h>
   7#include <linux/cpufreq.h>
   8#include <linux/delay.h>
   9#include <linux/dma-mapping.h>
  10#include <linux/module.h>
  11#include <linux/of.h>
  12#include <linux/of_platform.h>
  13#include <linux/platform_device.h>
  14#include <linux/slab.h>
  15
  16#include <asm/smp_plat.h>
  17
  18#include <soc/tegra/bpmp.h>
  19#include <soc/tegra/bpmp-abi.h>
  20
  21#define KHZ                     1000
  22#define REF_CLK_MHZ             408 /* 408 MHz */
  23#define US_DELAY                500
  24#define CPUFREQ_TBL_STEP_HZ     (50 * KHZ * KHZ)
  25#define MAX_CNT                 ~0U
  26
  27/* cpufreq transisition latency */
  28#define TEGRA_CPUFREQ_TRANSITION_LATENCY (300 * 1000) /* unit in nanoseconds */
  29
  30enum cluster {
  31        CLUSTER0,
  32        CLUSTER1,
  33        CLUSTER2,
  34        CLUSTER3,
  35        MAX_CLUSTERS,
  36};
  37
  38struct tegra194_cpufreq_data {
  39        void __iomem *regs;
  40        size_t num_clusters;
  41        struct cpufreq_frequency_table **tables;
  42};
  43
  44struct tegra_cpu_ctr {
  45        u32 cpu;
  46        u32 coreclk_cnt, last_coreclk_cnt;
  47        u32 refclk_cnt, last_refclk_cnt;
  48};
  49
  50struct read_counters_work {
  51        struct work_struct work;
  52        struct tegra_cpu_ctr c;
  53};
  54
  55static struct workqueue_struct *read_counters_wq;
  56
  57static void get_cpu_cluster(void *cluster)
  58{
  59        u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
  60
  61        *((uint32_t *)cluster) = MPIDR_AFFINITY_LEVEL(mpidr, 1);
  62}
  63
  64/*
  65 * Read per-core Read-only system register NVFREQ_FEEDBACK_EL1.
  66 * The register provides frequency feedback information to
  67 * determine the average actual frequency a core has run at over
  68 * a period of time.
  69 *      [31:0] PLLP counter: Counts at fixed frequency (408 MHz)
  70 *      [63:32] Core clock counter: counts on every core clock cycle
  71 *                      where the core is architecturally clocking
  72 */
  73static u64 read_freq_feedback(void)
  74{
  75        u64 val = 0;
  76
  77        asm volatile("mrs %0, s3_0_c15_c0_5" : "=r" (val) : );
  78
  79        return val;
  80}
  81
  82static inline u32 map_ndiv_to_freq(struct mrq_cpu_ndiv_limits_response
  83                                   *nltbl, u16 ndiv)
  84{
  85        return nltbl->ref_clk_hz / KHZ * ndiv / (nltbl->pdiv * nltbl->mdiv);
  86}
  87
  88static void tegra_read_counters(struct work_struct *work)
  89{
  90        struct read_counters_work *read_counters_work;
  91        struct tegra_cpu_ctr *c;
  92        u64 val;
  93
  94        /*
  95         * ref_clk_counter(32 bit counter) runs on constant clk,
  96         * pll_p(408MHz).
  97         * It will take = 2 ^ 32 / 408 MHz to overflow ref clk counter
  98         *              = 10526880 usec = 10.527 sec to overflow
  99         *
 100         * Like wise core_clk_counter(32 bit counter) runs on core clock.
 101         * It's synchronized to crab_clk (cpu_crab_clk) which runs at
 102         * freq of cluster. Assuming max cluster clock ~2000MHz,
 103         * It will take = 2 ^ 32 / 2000 MHz to overflow core clk counter
 104         *              = ~2.147 sec to overflow
 105         */
 106        read_counters_work = container_of(work, struct read_counters_work,
 107                                          work);
 108        c = &read_counters_work->c;
 109
 110        val = read_freq_feedback();
 111        c->last_refclk_cnt = lower_32_bits(val);
 112        c->last_coreclk_cnt = upper_32_bits(val);
 113        udelay(US_DELAY);
 114        val = read_freq_feedback();
 115        c->refclk_cnt = lower_32_bits(val);
 116        c->coreclk_cnt = upper_32_bits(val);
 117}
 118
 119/*
 120 * Return instantaneous cpu speed
 121 * Instantaneous freq is calculated as -
 122 * -Takes sample on every query of getting the freq.
 123 *      - Read core and ref clock counters;
 124 *      - Delay for X us
 125 *      - Read above cycle counters again
 126 *      - Calculates freq by subtracting current and previous counters
 127 *        divided by the delay time or eqv. of ref_clk_counter in delta time
 128 *      - Return Kcycles/second, freq in KHz
 129 *
 130 *      delta time period = x sec
 131 *                        = delta ref_clk_counter / (408 * 10^6) sec
 132 *      freq in Hz = cycles/sec
 133 *                 = (delta cycles / x sec
 134 *                 = (delta cycles * 408 * 10^6) / delta ref_clk_counter
 135 *      in KHz     = (delta cycles * 408 * 10^3) / delta ref_clk_counter
 136 *
 137 * @cpu - logical cpu whose freq to be updated
 138 * Returns freq in KHz on success, 0 if cpu is offline
 139 */
 140static unsigned int tegra194_calculate_speed(u32 cpu)
 141{
 142        struct read_counters_work read_counters_work;
 143        struct tegra_cpu_ctr c;
 144        u32 delta_refcnt;
 145        u32 delta_ccnt;
 146        u32 rate_mhz;
 147
 148        /*
 149         * udelay() is required to reconstruct cpu frequency over an
 150         * observation window. Using workqueue to call udelay() with
 151         * interrupts enabled.
 152         */
 153        read_counters_work.c.cpu = cpu;
 154        INIT_WORK_ONSTACK(&read_counters_work.work, tegra_read_counters);
 155        queue_work_on(cpu, read_counters_wq, &read_counters_work.work);
 156        flush_work(&read_counters_work.work);
 157        c = read_counters_work.c;
 158
 159        if (c.coreclk_cnt < c.last_coreclk_cnt)
 160                delta_ccnt = c.coreclk_cnt + (MAX_CNT - c.last_coreclk_cnt);
 161        else
 162                delta_ccnt = c.coreclk_cnt - c.last_coreclk_cnt;
 163        if (!delta_ccnt)
 164                return 0;
 165
 166        /* ref clock is 32 bits */
 167        if (c.refclk_cnt < c.last_refclk_cnt)
 168                delta_refcnt = c.refclk_cnt + (MAX_CNT - c.last_refclk_cnt);
 169        else
 170                delta_refcnt = c.refclk_cnt - c.last_refclk_cnt;
 171        if (!delta_refcnt) {
 172                pr_debug("cpufreq: %d is idle, delta_refcnt: 0\n", cpu);
 173                return 0;
 174        }
 175        rate_mhz = ((unsigned long)(delta_ccnt * REF_CLK_MHZ)) / delta_refcnt;
 176
 177        return (rate_mhz * KHZ); /* in KHz */
 178}
 179
 180static void get_cpu_ndiv(void *ndiv)
 181{
 182        u64 ndiv_val;
 183
 184        asm volatile("mrs %0, s3_0_c15_c0_4" : "=r" (ndiv_val) : );
 185
 186        *(u64 *)ndiv = ndiv_val;
 187}
 188
 189static void set_cpu_ndiv(void *data)
 190{
 191        struct cpufreq_frequency_table *tbl = data;
 192        u64 ndiv_val = (u64)tbl->driver_data;
 193
 194        asm volatile("msr s3_0_c15_c0_4, %0" : : "r" (ndiv_val));
 195}
 196
 197static unsigned int tegra194_get_speed(u32 cpu)
 198{
 199        struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
 200        struct cpufreq_frequency_table *pos;
 201        unsigned int rate;
 202        u64 ndiv;
 203        int ret;
 204        u32 cl;
 205
 206        smp_call_function_single(cpu, get_cpu_cluster, &cl, true);
 207
 208        /* reconstruct actual cpu freq using counters */
 209        rate = tegra194_calculate_speed(cpu);
 210
 211        /* get last written ndiv value */
 212        ret = smp_call_function_single(cpu, get_cpu_ndiv, &ndiv, true);
 213        if (WARN_ON_ONCE(ret))
 214                return rate;
 215
 216        /*
 217         * If the reconstructed frequency has acceptable delta from
 218         * the last written value, then return freq corresponding
 219         * to the last written ndiv value from freq_table. This is
 220         * done to return consistent value.
 221         */
 222        cpufreq_for_each_valid_entry(pos, data->tables[cl]) {
 223                if (pos->driver_data != ndiv)
 224                        continue;
 225
 226                if (abs(pos->frequency - rate) > 115200) {
 227                        pr_warn("cpufreq: cpu%d,cur:%u,set:%u,set ndiv:%llu\n",
 228                                cpu, rate, pos->frequency, ndiv);
 229                } else {
 230                        rate = pos->frequency;
 231                }
 232                break;
 233        }
 234        return rate;
 235}
 236
 237static int tegra194_cpufreq_init(struct cpufreq_policy *policy)
 238{
 239        struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
 240        u32 cpu;
 241        u32 cl;
 242
 243        smp_call_function_single(policy->cpu, get_cpu_cluster, &cl, true);
 244
 245        if (cl >= data->num_clusters)
 246                return -EINVAL;
 247
 248        /* set same policy for all cpus in a cluster */
 249        for (cpu = (cl * 2); cpu < ((cl + 1) * 2); cpu++)
 250                cpumask_set_cpu(cpu, policy->cpus);
 251
 252        policy->freq_table = data->tables[cl];
 253        policy->cpuinfo.transition_latency = TEGRA_CPUFREQ_TRANSITION_LATENCY;
 254
 255        return 0;
 256}
 257
 258static int tegra194_cpufreq_set_target(struct cpufreq_policy *policy,
 259                                       unsigned int index)
 260{
 261        struct cpufreq_frequency_table *tbl = policy->freq_table + index;
 262
 263        /*
 264         * Each core writes frequency in per core register. Then both cores
 265         * in a cluster run at same frequency which is the maximum frequency
 266         * request out of the values requested by both cores in that cluster.
 267         */
 268        on_each_cpu_mask(policy->cpus, set_cpu_ndiv, tbl, true);
 269
 270        return 0;
 271}
 272
 273static struct cpufreq_driver tegra194_cpufreq_driver = {
 274        .name = "tegra194",
 275        .flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_INITIAL_FREQ_CHECK,
 276        .verify = cpufreq_generic_frequency_table_verify,
 277        .target_index = tegra194_cpufreq_set_target,
 278        .get = tegra194_get_speed,
 279        .init = tegra194_cpufreq_init,
 280        .attr = cpufreq_generic_attr,
 281};
 282
 283static void tegra194_cpufreq_free_resources(void)
 284{
 285        destroy_workqueue(read_counters_wq);
 286}
 287
 288static struct cpufreq_frequency_table *
 289init_freq_table(struct platform_device *pdev, struct tegra_bpmp *bpmp,
 290                unsigned int cluster_id)
 291{
 292        struct cpufreq_frequency_table *freq_table;
 293        struct mrq_cpu_ndiv_limits_response resp;
 294        unsigned int num_freqs, ndiv, delta_ndiv;
 295        struct mrq_cpu_ndiv_limits_request req;
 296        struct tegra_bpmp_message msg;
 297        u16 freq_table_step_size;
 298        int err, index;
 299
 300        memset(&req, 0, sizeof(req));
 301        req.cluster_id = cluster_id;
 302
 303        memset(&msg, 0, sizeof(msg));
 304        msg.mrq = MRQ_CPU_NDIV_LIMITS;
 305        msg.tx.data = &req;
 306        msg.tx.size = sizeof(req);
 307        msg.rx.data = &resp;
 308        msg.rx.size = sizeof(resp);
 309
 310        err = tegra_bpmp_transfer(bpmp, &msg);
 311        if (err)
 312                return ERR_PTR(err);
 313
 314        /*
 315         * Make sure frequency table step is a multiple of mdiv to match
 316         * vhint table granularity.
 317         */
 318        freq_table_step_size = resp.mdiv *
 319                        DIV_ROUND_UP(CPUFREQ_TBL_STEP_HZ, resp.ref_clk_hz);
 320
 321        dev_dbg(&pdev->dev, "cluster %d: frequency table step size: %d\n",
 322                cluster_id, freq_table_step_size);
 323
 324        delta_ndiv = resp.ndiv_max - resp.ndiv_min;
 325
 326        if (unlikely(delta_ndiv == 0)) {
 327                num_freqs = 1;
 328        } else {
 329                /* We store both ndiv_min and ndiv_max hence the +1 */
 330                num_freqs = delta_ndiv / freq_table_step_size + 1;
 331        }
 332
 333        num_freqs += (delta_ndiv % freq_table_step_size) ? 1 : 0;
 334
 335        freq_table = devm_kcalloc(&pdev->dev, num_freqs + 1,
 336                                  sizeof(*freq_table), GFP_KERNEL);
 337        if (!freq_table)
 338                return ERR_PTR(-ENOMEM);
 339
 340        for (index = 0, ndiv = resp.ndiv_min;
 341                        ndiv < resp.ndiv_max;
 342                        index++, ndiv += freq_table_step_size) {
 343                freq_table[index].driver_data = ndiv;
 344                freq_table[index].frequency = map_ndiv_to_freq(&resp, ndiv);
 345        }
 346
 347        freq_table[index].driver_data = resp.ndiv_max;
 348        freq_table[index++].frequency = map_ndiv_to_freq(&resp, resp.ndiv_max);
 349        freq_table[index].frequency = CPUFREQ_TABLE_END;
 350
 351        return freq_table;
 352}
 353
 354static int tegra194_cpufreq_probe(struct platform_device *pdev)
 355{
 356        struct tegra194_cpufreq_data *data;
 357        struct tegra_bpmp *bpmp;
 358        int err, i;
 359
 360        data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
 361        if (!data)
 362                return -ENOMEM;
 363
 364        data->num_clusters = MAX_CLUSTERS;
 365        data->tables = devm_kcalloc(&pdev->dev, data->num_clusters,
 366                                    sizeof(*data->tables), GFP_KERNEL);
 367        if (!data->tables)
 368                return -ENOMEM;
 369
 370        platform_set_drvdata(pdev, data);
 371
 372        bpmp = tegra_bpmp_get(&pdev->dev);
 373        if (IS_ERR(bpmp))
 374                return PTR_ERR(bpmp);
 375
 376        read_counters_wq = alloc_workqueue("read_counters_wq", __WQ_LEGACY, 1);
 377        if (!read_counters_wq) {
 378                dev_err(&pdev->dev, "fail to create_workqueue\n");
 379                err = -EINVAL;
 380                goto put_bpmp;
 381        }
 382
 383        for (i = 0; i < data->num_clusters; i++) {
 384                data->tables[i] = init_freq_table(pdev, bpmp, i);
 385                if (IS_ERR(data->tables[i])) {
 386                        err = PTR_ERR(data->tables[i]);
 387                        goto err_free_res;
 388                }
 389        }
 390
 391        tegra194_cpufreq_driver.driver_data = data;
 392
 393        err = cpufreq_register_driver(&tegra194_cpufreq_driver);
 394        if (!err)
 395                goto put_bpmp;
 396
 397err_free_res:
 398        tegra194_cpufreq_free_resources();
 399put_bpmp:
 400        tegra_bpmp_put(bpmp);
 401        return err;
 402}
 403
 404static int tegra194_cpufreq_remove(struct platform_device *pdev)
 405{
 406        cpufreq_unregister_driver(&tegra194_cpufreq_driver);
 407        tegra194_cpufreq_free_resources();
 408
 409        return 0;
 410}
 411
 412static const struct of_device_id tegra194_cpufreq_of_match[] = {
 413        { .compatible = "nvidia,tegra194-ccplex", },
 414        { /* sentinel */ }
 415};
 416MODULE_DEVICE_TABLE(of, tegra194_cpufreq_of_match);
 417
 418static struct platform_driver tegra194_ccplex_driver = {
 419        .driver = {
 420                .name = "tegra194-cpufreq",
 421                .of_match_table = tegra194_cpufreq_of_match,
 422        },
 423        .probe = tegra194_cpufreq_probe,
 424        .remove = tegra194_cpufreq_remove,
 425};
 426module_platform_driver(tegra194_ccplex_driver);
 427
 428MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
 429MODULE_AUTHOR("Sumit Gupta <sumitg@nvidia.com>");
 430MODULE_DESCRIPTION("NVIDIA Tegra194 cpufreq driver");
 431MODULE_LICENSE("GPL v2");
 432