linux/drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * sun4i-ss-hash.c - hardware cryptographic accelerator for Allwinner A20 SoC
   4 *
   5 * Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com>
   6 *
   7 * This file add support for MD5 and SHA1.
   8 *
   9 * You could find the datasheet in Documentation/arm/sunxi.rst
  10 */
  11#include "sun4i-ss.h"
  12#include <asm/unaligned.h>
  13#include <linux/scatterlist.h>
  14
  15/* This is a totally arbitrary value */
  16#define SS_TIMEOUT 100
  17
  18int sun4i_hash_crainit(struct crypto_tfm *tfm)
  19{
  20        struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
  21        struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
  22        struct sun4i_ss_alg_template *algt;
  23        int err;
  24
  25        memset(op, 0, sizeof(struct sun4i_tfm_ctx));
  26
  27        algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
  28        op->ss = algt->ss;
  29
  30        err = pm_runtime_resume_and_get(op->ss->dev);
  31        if (err < 0)
  32                return err;
  33
  34        crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  35                                 sizeof(struct sun4i_req_ctx));
  36        return 0;
  37}
  38
  39void sun4i_hash_craexit(struct crypto_tfm *tfm)
  40{
  41        struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
  42
  43        pm_runtime_put(op->ss->dev);
  44}
  45
  46/* sun4i_hash_init: initialize request context */
  47int sun4i_hash_init(struct ahash_request *areq)
  48{
  49        struct sun4i_req_ctx *op = ahash_request_ctx(areq);
  50        struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
  51        struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg);
  52        struct sun4i_ss_alg_template *algt;
  53
  54        memset(op, 0, sizeof(struct sun4i_req_ctx));
  55
  56        algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
  57        op->mode = algt->mode;
  58
  59        return 0;
  60}
  61
  62int sun4i_hash_export_md5(struct ahash_request *areq, void *out)
  63{
  64        struct sun4i_req_ctx *op = ahash_request_ctx(areq);
  65        struct md5_state *octx = out;
  66        int i;
  67
  68        octx->byte_count = op->byte_count + op->len;
  69
  70        memcpy(octx->block, op->buf, op->len);
  71
  72        if (op->byte_count) {
  73                for (i = 0; i < 4; i++)
  74                        octx->hash[i] = op->hash[i];
  75        } else {
  76                octx->hash[0] = SHA1_H0;
  77                octx->hash[1] = SHA1_H1;
  78                octx->hash[2] = SHA1_H2;
  79                octx->hash[3] = SHA1_H3;
  80        }
  81
  82        return 0;
  83}
  84
  85int sun4i_hash_import_md5(struct ahash_request *areq, const void *in)
  86{
  87        struct sun4i_req_ctx *op = ahash_request_ctx(areq);
  88        const struct md5_state *ictx = in;
  89        int i;
  90
  91        sun4i_hash_init(areq);
  92
  93        op->byte_count = ictx->byte_count & ~0x3F;
  94        op->len = ictx->byte_count & 0x3F;
  95
  96        memcpy(op->buf, ictx->block, op->len);
  97
  98        for (i = 0; i < 4; i++)
  99                op->hash[i] = ictx->hash[i];
 100
 101        return 0;
 102}
 103
 104int sun4i_hash_export_sha1(struct ahash_request *areq, void *out)
 105{
 106        struct sun4i_req_ctx *op = ahash_request_ctx(areq);
 107        struct sha1_state *octx = out;
 108        int i;
 109
 110        octx->count = op->byte_count + op->len;
 111
 112        memcpy(octx->buffer, op->buf, op->len);
 113
 114        if (op->byte_count) {
 115                for (i = 0; i < 5; i++)
 116                        octx->state[i] = op->hash[i];
 117        } else {
 118                octx->state[0] = SHA1_H0;
 119                octx->state[1] = SHA1_H1;
 120                octx->state[2] = SHA1_H2;
 121                octx->state[3] = SHA1_H3;
 122                octx->state[4] = SHA1_H4;
 123        }
 124
 125        return 0;
 126}
 127
 128int sun4i_hash_import_sha1(struct ahash_request *areq, const void *in)
 129{
 130        struct sun4i_req_ctx *op = ahash_request_ctx(areq);
 131        const struct sha1_state *ictx = in;
 132        int i;
 133
 134        sun4i_hash_init(areq);
 135
 136        op->byte_count = ictx->count & ~0x3F;
 137        op->len = ictx->count & 0x3F;
 138
 139        memcpy(op->buf, ictx->buffer, op->len);
 140
 141        for (i = 0; i < 5; i++)
 142                op->hash[i] = ictx->state[i];
 143
 144        return 0;
 145}
 146
 147#define SS_HASH_UPDATE 1
 148#define SS_HASH_FINAL 2
 149
 150/*
 151 * sun4i_hash_update: update hash engine
 152 *
 153 * Could be used for both SHA1 and MD5
 154 * Write data by step of 32bits and put then in the SS.
 155 *
 156 * Since we cannot leave partial data and hash state in the engine,
 157 * we need to get the hash state at the end of this function.
 158 * We can get the hash state every 64 bytes
 159 *
 160 * So the first work is to get the number of bytes to write to SS modulo 64
 161 * The extra bytes will go to a temporary buffer op->buf storing op->len bytes
 162 *
 163 * So at the begin of update()
 164 * if op->len + areq->nbytes < 64
 165 * => all data will be written to wait buffer (op->buf) and end=0
 166 * if not, write all data from op->buf to the device and position end to
 167 * complete to 64bytes
 168 *
 169 * example 1:
 170 * update1 60o => op->len=60
 171 * update2 60o => need one more word to have 64 bytes
 172 * end=4
 173 * so write all data from op->buf and one word of SGs
 174 * write remaining data in op->buf
 175 * final state op->len=56
 176 */
 177static int sun4i_hash(struct ahash_request *areq)
 178{
 179        /*
 180         * i is the total bytes read from SGs, to be compared to areq->nbytes
 181         * i is important because we cannot rely on SG length since the sum of
 182         * SG->length could be greater than areq->nbytes
 183         *
 184         * end is the position when we need to stop writing to the device,
 185         * to be compared to i
 186         *
 187         * in_i: advancement in the current SG
 188         */
 189        unsigned int i = 0, end, fill, min_fill, nwait, nbw = 0, j = 0, todo;
 190        unsigned int in_i = 0;
 191        u32 spaces, rx_cnt = SS_RX_DEFAULT, bf[32] = {0}, v, ivmode = 0;
 192        struct sun4i_req_ctx *op = ahash_request_ctx(areq);
 193        struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
 194        struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg);
 195        struct sun4i_tfm_ctx *tfmctx = crypto_ahash_ctx(tfm);
 196        struct sun4i_ss_ctx *ss = tfmctx->ss;
 197        struct sun4i_ss_alg_template *algt;
 198        struct scatterlist *in_sg = areq->src;
 199        struct sg_mapping_iter mi;
 200        int in_r, err = 0;
 201        size_t copied = 0;
 202        u32 wb = 0;
 203
 204        dev_dbg(ss->dev, "%s %s bc=%llu len=%u mode=%x wl=%u h0=%0x",
 205                __func__, crypto_tfm_alg_name(areq->base.tfm),
 206                op->byte_count, areq->nbytes, op->mode,
 207                op->len, op->hash[0]);
 208
 209        if (unlikely(!areq->nbytes) && !(op->flags & SS_HASH_FINAL))
 210                return 0;
 211
 212        /* protect against overflow */
 213        if (unlikely(areq->nbytes > UINT_MAX - op->len)) {
 214                dev_err(ss->dev, "Cannot process too large request\n");
 215                return -EINVAL;
 216        }
 217
 218        if (op->len + areq->nbytes < 64 && !(op->flags & SS_HASH_FINAL)) {
 219                /* linearize data to op->buf */
 220                copied = sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
 221                                            op->buf + op->len, areq->nbytes, 0);
 222                op->len += copied;
 223                return 0;
 224        }
 225
 226        spin_lock_bh(&ss->slock);
 227
 228        /*
 229         * if some data have been processed before,
 230         * we need to restore the partial hash state
 231         */
 232        if (op->byte_count) {
 233                ivmode = SS_IV_ARBITRARY;
 234                for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
 235                        writel(op->hash[i], ss->base + SS_IV0 + i * 4);
 236        }
 237        /* Enable the device */
 238        writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL);
 239
 240        if (!(op->flags & SS_HASH_UPDATE))
 241                goto hash_final;
 242
 243        /* start of handling data */
 244        if (!(op->flags & SS_HASH_FINAL)) {
 245                end = ((areq->nbytes + op->len) / 64) * 64 - op->len;
 246
 247                if (end > areq->nbytes || areq->nbytes - end > 63) {
 248                        dev_err(ss->dev, "ERROR: Bound error %u %u\n",
 249                                end, areq->nbytes);
 250                        err = -EINVAL;
 251                        goto release_ss;
 252                }
 253        } else {
 254                /* Since we have the flag final, we can go up to modulo 4 */
 255                if (areq->nbytes < 4)
 256                        end = 0;
 257                else
 258                        end = ((areq->nbytes + op->len) / 4) * 4 - op->len;
 259        }
 260
 261        /* TODO if SGlen % 4 and !op->len then DMA */
 262        i = 1;
 263        while (in_sg && i == 1) {
 264                if (in_sg->length % 4)
 265                        i = 0;
 266                in_sg = sg_next(in_sg);
 267        }
 268        if (i == 1 && !op->len && areq->nbytes)
 269                dev_dbg(ss->dev, "We can DMA\n");
 270
 271        i = 0;
 272        sg_miter_start(&mi, areq->src, sg_nents(areq->src),
 273                       SG_MITER_FROM_SG | SG_MITER_ATOMIC);
 274        sg_miter_next(&mi);
 275        in_i = 0;
 276
 277        do {
 278                /*
 279                 * we need to linearize in two case:
 280                 * - the buffer is already used
 281                 * - the SG does not have enough byte remaining ( < 4)
 282                 */
 283                if (op->len || (mi.length - in_i) < 4) {
 284                        /*
 285                         * if we have entered here we have two reason to stop
 286                         * - the buffer is full
 287                         * - reach the end
 288                         */
 289                        while (op->len < 64 && i < end) {
 290                                /* how many bytes we can read from current SG */
 291                                in_r = min(end - i, 64 - op->len);
 292                                in_r = min_t(size_t, mi.length - in_i, in_r);
 293                                memcpy(op->buf + op->len, mi.addr + in_i, in_r);
 294                                op->len += in_r;
 295                                i += in_r;
 296                                in_i += in_r;
 297                                if (in_i == mi.length) {
 298                                        sg_miter_next(&mi);
 299                                        in_i = 0;
 300                                }
 301                        }
 302                        if (op->len > 3 && !(op->len % 4)) {
 303                                /* write buf to the device */
 304                                writesl(ss->base + SS_RXFIFO, op->buf,
 305                                        op->len / 4);
 306                                op->byte_count += op->len;
 307                                op->len = 0;
 308                        }
 309                }
 310                if (mi.length - in_i > 3 && i < end) {
 311                        /* how many bytes we can read from current SG */
 312                        in_r = min_t(size_t, mi.length - in_i, areq->nbytes - i);
 313                        in_r = min_t(size_t, ((mi.length - in_i) / 4) * 4, in_r);
 314                        /* how many bytes we can write in the device*/
 315                        todo = min3((u32)(end - i) / 4, rx_cnt, (u32)in_r / 4);
 316                        writesl(ss->base + SS_RXFIFO, mi.addr + in_i, todo);
 317                        op->byte_count += todo * 4;
 318                        i += todo * 4;
 319                        in_i += todo * 4;
 320                        rx_cnt -= todo;
 321                        if (!rx_cnt) {
 322                                spaces = readl(ss->base + SS_FCSR);
 323                                rx_cnt = SS_RXFIFO_SPACES(spaces);
 324                        }
 325                        if (in_i == mi.length) {
 326                                sg_miter_next(&mi);
 327                                in_i = 0;
 328                        }
 329                }
 330        } while (i < end);
 331
 332        /*
 333         * Now we have written to the device all that we can,
 334         * store the remaining bytes in op->buf
 335         */
 336        if ((areq->nbytes - i) < 64) {
 337                while (i < areq->nbytes && in_i < mi.length && op->len < 64) {
 338                        /* how many bytes we can read from current SG */
 339                        in_r = min(areq->nbytes - i, 64 - op->len);
 340                        in_r = min_t(size_t, mi.length - in_i, in_r);
 341                        memcpy(op->buf + op->len, mi.addr + in_i, in_r);
 342                        op->len += in_r;
 343                        i += in_r;
 344                        in_i += in_r;
 345                        if (in_i == mi.length) {
 346                                sg_miter_next(&mi);
 347                                in_i = 0;
 348                        }
 349                }
 350        }
 351
 352        sg_miter_stop(&mi);
 353
 354        /*
 355         * End of data process
 356         * Now if we have the flag final go to finalize part
 357         * If not, store the partial hash
 358         */
 359        if (op->flags & SS_HASH_FINAL)
 360                goto hash_final;
 361
 362        writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
 363        i = 0;
 364        do {
 365                v = readl(ss->base + SS_CTL);
 366                i++;
 367        } while (i < SS_TIMEOUT && (v & SS_DATA_END));
 368        if (unlikely(i >= SS_TIMEOUT)) {
 369                dev_err_ratelimited(ss->dev,
 370                                    "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
 371                                    i, SS_TIMEOUT, v, areq->nbytes);
 372                err = -EIO;
 373                goto release_ss;
 374        }
 375
 376        /*
 377         * The datasheet isn't very clear about when to retrieve the digest. The
 378         * bit SS_DATA_END is cleared when the engine has processed the data and
 379         * when the digest is computed *but* it doesn't mean the digest is
 380         * available in the digest registers. Hence the delay to be sure we can
 381         * read it.
 382         */
 383        ndelay(1);
 384
 385        for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
 386                op->hash[i] = readl(ss->base + SS_MD0 + i * 4);
 387
 388        goto release_ss;
 389
 390/*
 391 * hash_final: finalize hashing operation
 392 *
 393 * If we have some remaining bytes, we write them.
 394 * Then ask the SS for finalizing the hashing operation
 395 *
 396 * I do not check RX FIFO size in this function since the size is 32
 397 * after each enabling and this function neither write more than 32 words.
 398 * If we come from the update part, we cannot have more than
 399 * 3 remaining bytes to write and SS is fast enough to not care about it.
 400 */
 401
 402hash_final:
 403        if (IS_ENABLED(CONFIG_CRYPTO_DEV_SUN4I_SS_DEBUG)) {
 404                algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
 405                algt->stat_req++;
 406        }
 407
 408        /* write the remaining words of the wait buffer */
 409        if (op->len) {
 410                nwait = op->len / 4;
 411                if (nwait) {
 412                        writesl(ss->base + SS_RXFIFO, op->buf, nwait);
 413                        op->byte_count += 4 * nwait;
 414                }
 415
 416                nbw = op->len - 4 * nwait;
 417                if (nbw) {
 418                        wb = le32_to_cpup((__le32 *)(op->buf + nwait * 4));
 419                        wb &= GENMASK((nbw * 8) - 1, 0);
 420
 421                        op->byte_count += nbw;
 422                }
 423        }
 424
 425        /* write the remaining bytes of the nbw buffer */
 426        wb |= ((1 << 7) << (nbw * 8));
 427        ((__le32 *)bf)[j++] = cpu_to_le32(wb);
 428
 429        /*
 430         * number of space to pad to obtain 64o minus 8(size) minus 4 (final 1)
 431         * I take the operations from other MD5/SHA1 implementations
 432         */
 433
 434        /* last block size */
 435        fill = 64 - (op->byte_count % 64);
 436        min_fill = 2 * sizeof(u32) + (nbw ? 0 : sizeof(u32));
 437
 438        /* if we can't fill all data, jump to the next 64 block */
 439        if (fill < min_fill)
 440                fill += 64;
 441
 442        j += (fill - min_fill) / sizeof(u32);
 443
 444        /* write the length of data */
 445        if (op->mode == SS_OP_SHA1) {
 446                __be64 *bits = (__be64 *)&bf[j];
 447                *bits = cpu_to_be64(op->byte_count << 3);
 448                j += 2;
 449        } else {
 450                __le64 *bits = (__le64 *)&bf[j];
 451                *bits = cpu_to_le64(op->byte_count << 3);
 452                j += 2;
 453        }
 454        writesl(ss->base + SS_RXFIFO, bf, j);
 455
 456        /* Tell the SS to stop the hashing */
 457        writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
 458
 459        /*
 460         * Wait for SS to finish the hash.
 461         * The timeout could happen only in case of bad overclocking
 462         * or driver bug.
 463         */
 464        i = 0;
 465        do {
 466                v = readl(ss->base + SS_CTL);
 467                i++;
 468        } while (i < SS_TIMEOUT && (v & SS_DATA_END));
 469        if (unlikely(i >= SS_TIMEOUT)) {
 470                dev_err_ratelimited(ss->dev,
 471                                    "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
 472                                    i, SS_TIMEOUT, v, areq->nbytes);
 473                err = -EIO;
 474                goto release_ss;
 475        }
 476
 477        /*
 478         * The datasheet isn't very clear about when to retrieve the digest. The
 479         * bit SS_DATA_END is cleared when the engine has processed the data and
 480         * when the digest is computed *but* it doesn't mean the digest is
 481         * available in the digest registers. Hence the delay to be sure we can
 482         * read it.
 483         */
 484        ndelay(1);
 485
 486        /* Get the hash from the device */
 487        if (op->mode == SS_OP_SHA1) {
 488                for (i = 0; i < 5; i++) {
 489                        v = readl(ss->base + SS_MD0 + i * 4);
 490                        if (ss->variant->sha1_in_be)
 491                                put_unaligned_le32(v, areq->result + i * 4);
 492                        else
 493                                put_unaligned_be32(v, areq->result + i * 4);
 494                }
 495        } else {
 496                for (i = 0; i < 4; i++) {
 497                        v = readl(ss->base + SS_MD0 + i * 4);
 498                        put_unaligned_le32(v, areq->result + i * 4);
 499                }
 500        }
 501
 502release_ss:
 503        writel(0, ss->base + SS_CTL);
 504        spin_unlock_bh(&ss->slock);
 505        return err;
 506}
 507
 508int sun4i_hash_final(struct ahash_request *areq)
 509{
 510        struct sun4i_req_ctx *op = ahash_request_ctx(areq);
 511
 512        op->flags = SS_HASH_FINAL;
 513        return sun4i_hash(areq);
 514}
 515
 516int sun4i_hash_update(struct ahash_request *areq)
 517{
 518        struct sun4i_req_ctx *op = ahash_request_ctx(areq);
 519
 520        op->flags = SS_HASH_UPDATE;
 521        return sun4i_hash(areq);
 522}
 523
 524/* sun4i_hash_finup: finalize hashing operation after an update */
 525int sun4i_hash_finup(struct ahash_request *areq)
 526{
 527        struct sun4i_req_ctx *op = ahash_request_ctx(areq);
 528
 529        op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
 530        return sun4i_hash(areq);
 531}
 532
 533/* combo of init/update/final functions */
 534int sun4i_hash_digest(struct ahash_request *areq)
 535{
 536        int err;
 537        struct sun4i_req_ctx *op = ahash_request_ctx(areq);
 538
 539        err = sun4i_hash_init(areq);
 540        if (err)
 541                return err;
 542
 543        op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
 544        return sun4i_hash(areq);
 545}
 546