linux/drivers/crypto/s5p-sss.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// Cryptographic API.
   4//
   5// Support for Samsung S5PV210 and Exynos HW acceleration.
   6//
   7// Copyright (C) 2011 NetUP Inc. All rights reserved.
   8// Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
   9//
  10// Hash part based on omap-sham.c driver.
  11
  12#include <linux/clk.h>
  13#include <linux/crypto.h>
  14#include <linux/dma-mapping.h>
  15#include <linux/err.h>
  16#include <linux/errno.h>
  17#include <linux/init.h>
  18#include <linux/interrupt.h>
  19#include <linux/io.h>
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/of.h>
  23#include <linux/of_device.h>
  24#include <linux/platform_device.h>
  25#include <linux/scatterlist.h>
  26
  27#include <crypto/ctr.h>
  28#include <crypto/aes.h>
  29#include <crypto/algapi.h>
  30#include <crypto/scatterwalk.h>
  31
  32#include <crypto/hash.h>
  33#include <crypto/md5.h>
  34#include <crypto/sha1.h>
  35#include <crypto/sha2.h>
  36#include <crypto/internal/hash.h>
  37
  38#define _SBF(s, v)                      ((v) << (s))
  39
  40/* Feed control registers */
  41#define SSS_REG_FCINTSTAT               0x0000
  42#define SSS_FCINTSTAT_HPARTINT          BIT(7)
  43#define SSS_FCINTSTAT_HDONEINT          BIT(5)
  44#define SSS_FCINTSTAT_BRDMAINT          BIT(3)
  45#define SSS_FCINTSTAT_BTDMAINT          BIT(2)
  46#define SSS_FCINTSTAT_HRDMAINT          BIT(1)
  47#define SSS_FCINTSTAT_PKDMAINT          BIT(0)
  48
  49#define SSS_REG_FCINTENSET              0x0004
  50#define SSS_FCINTENSET_HPARTINTENSET    BIT(7)
  51#define SSS_FCINTENSET_HDONEINTENSET    BIT(5)
  52#define SSS_FCINTENSET_BRDMAINTENSET    BIT(3)
  53#define SSS_FCINTENSET_BTDMAINTENSET    BIT(2)
  54#define SSS_FCINTENSET_HRDMAINTENSET    BIT(1)
  55#define SSS_FCINTENSET_PKDMAINTENSET    BIT(0)
  56
  57#define SSS_REG_FCINTENCLR              0x0008
  58#define SSS_FCINTENCLR_HPARTINTENCLR    BIT(7)
  59#define SSS_FCINTENCLR_HDONEINTENCLR    BIT(5)
  60#define SSS_FCINTENCLR_BRDMAINTENCLR    BIT(3)
  61#define SSS_FCINTENCLR_BTDMAINTENCLR    BIT(2)
  62#define SSS_FCINTENCLR_HRDMAINTENCLR    BIT(1)
  63#define SSS_FCINTENCLR_PKDMAINTENCLR    BIT(0)
  64
  65#define SSS_REG_FCINTPEND               0x000C
  66#define SSS_FCINTPEND_HPARTINTP         BIT(7)
  67#define SSS_FCINTPEND_HDONEINTP         BIT(5)
  68#define SSS_FCINTPEND_BRDMAINTP         BIT(3)
  69#define SSS_FCINTPEND_BTDMAINTP         BIT(2)
  70#define SSS_FCINTPEND_HRDMAINTP         BIT(1)
  71#define SSS_FCINTPEND_PKDMAINTP         BIT(0)
  72
  73#define SSS_REG_FCFIFOSTAT              0x0010
  74#define SSS_FCFIFOSTAT_BRFIFOFUL        BIT(7)
  75#define SSS_FCFIFOSTAT_BRFIFOEMP        BIT(6)
  76#define SSS_FCFIFOSTAT_BTFIFOFUL        BIT(5)
  77#define SSS_FCFIFOSTAT_BTFIFOEMP        BIT(4)
  78#define SSS_FCFIFOSTAT_HRFIFOFUL        BIT(3)
  79#define SSS_FCFIFOSTAT_HRFIFOEMP        BIT(2)
  80#define SSS_FCFIFOSTAT_PKFIFOFUL        BIT(1)
  81#define SSS_FCFIFOSTAT_PKFIFOEMP        BIT(0)
  82
  83#define SSS_REG_FCFIFOCTRL              0x0014
  84#define SSS_FCFIFOCTRL_DESSEL           BIT(2)
  85#define SSS_HASHIN_INDEPENDENT          _SBF(0, 0x00)
  86#define SSS_HASHIN_CIPHER_INPUT         _SBF(0, 0x01)
  87#define SSS_HASHIN_CIPHER_OUTPUT        _SBF(0, 0x02)
  88#define SSS_HASHIN_MASK                 _SBF(0, 0x03)
  89
  90#define SSS_REG_FCBRDMAS                0x0020
  91#define SSS_REG_FCBRDMAL                0x0024
  92#define SSS_REG_FCBRDMAC                0x0028
  93#define SSS_FCBRDMAC_BYTESWAP           BIT(1)
  94#define SSS_FCBRDMAC_FLUSH              BIT(0)
  95
  96#define SSS_REG_FCBTDMAS                0x0030
  97#define SSS_REG_FCBTDMAL                0x0034
  98#define SSS_REG_FCBTDMAC                0x0038
  99#define SSS_FCBTDMAC_BYTESWAP           BIT(1)
 100#define SSS_FCBTDMAC_FLUSH              BIT(0)
 101
 102#define SSS_REG_FCHRDMAS                0x0040
 103#define SSS_REG_FCHRDMAL                0x0044
 104#define SSS_REG_FCHRDMAC                0x0048
 105#define SSS_FCHRDMAC_BYTESWAP           BIT(1)
 106#define SSS_FCHRDMAC_FLUSH              BIT(0)
 107
 108#define SSS_REG_FCPKDMAS                0x0050
 109#define SSS_REG_FCPKDMAL                0x0054
 110#define SSS_REG_FCPKDMAC                0x0058
 111#define SSS_FCPKDMAC_BYTESWAP           BIT(3)
 112#define SSS_FCPKDMAC_DESCEND            BIT(2)
 113#define SSS_FCPKDMAC_TRANSMIT           BIT(1)
 114#define SSS_FCPKDMAC_FLUSH              BIT(0)
 115
 116#define SSS_REG_FCPKDMAO                0x005C
 117
 118/* AES registers */
 119#define SSS_REG_AES_CONTROL             0x00
 120#define SSS_AES_BYTESWAP_DI             BIT(11)
 121#define SSS_AES_BYTESWAP_DO             BIT(10)
 122#define SSS_AES_BYTESWAP_IV             BIT(9)
 123#define SSS_AES_BYTESWAP_CNT            BIT(8)
 124#define SSS_AES_BYTESWAP_KEY            BIT(7)
 125#define SSS_AES_KEY_CHANGE_MODE         BIT(6)
 126#define SSS_AES_KEY_SIZE_128            _SBF(4, 0x00)
 127#define SSS_AES_KEY_SIZE_192            _SBF(4, 0x01)
 128#define SSS_AES_KEY_SIZE_256            _SBF(4, 0x02)
 129#define SSS_AES_FIFO_MODE               BIT(3)
 130#define SSS_AES_CHAIN_MODE_ECB          _SBF(1, 0x00)
 131#define SSS_AES_CHAIN_MODE_CBC          _SBF(1, 0x01)
 132#define SSS_AES_CHAIN_MODE_CTR          _SBF(1, 0x02)
 133#define SSS_AES_MODE_DECRYPT            BIT(0)
 134
 135#define SSS_REG_AES_STATUS              0x04
 136#define SSS_AES_BUSY                    BIT(2)
 137#define SSS_AES_INPUT_READY             BIT(1)
 138#define SSS_AES_OUTPUT_READY            BIT(0)
 139
 140#define SSS_REG_AES_IN_DATA(s)          (0x10 + (s << 2))
 141#define SSS_REG_AES_OUT_DATA(s)         (0x20 + (s << 2))
 142#define SSS_REG_AES_IV_DATA(s)          (0x30 + (s << 2))
 143#define SSS_REG_AES_CNT_DATA(s)         (0x40 + (s << 2))
 144#define SSS_REG_AES_KEY_DATA(s)         (0x80 + (s << 2))
 145
 146#define SSS_REG(dev, reg)               ((dev)->ioaddr + (SSS_REG_##reg))
 147#define SSS_READ(dev, reg)              __raw_readl(SSS_REG(dev, reg))
 148#define SSS_WRITE(dev, reg, val)        __raw_writel((val), SSS_REG(dev, reg))
 149
 150#define SSS_AES_REG(dev, reg)           ((dev)->aes_ioaddr + SSS_REG_##reg)
 151#define SSS_AES_WRITE(dev, reg, val)    __raw_writel((val), \
 152                                                SSS_AES_REG(dev, reg))
 153
 154/* HW engine modes */
 155#define FLAGS_AES_DECRYPT               BIT(0)
 156#define FLAGS_AES_MODE_MASK             _SBF(1, 0x03)
 157#define FLAGS_AES_CBC                   _SBF(1, 0x01)
 158#define FLAGS_AES_CTR                   _SBF(1, 0x02)
 159
 160#define AES_KEY_LEN                     16
 161#define CRYPTO_QUEUE_LEN                1
 162
 163/* HASH registers */
 164#define SSS_REG_HASH_CTRL               0x00
 165
 166#define SSS_HASH_USER_IV_EN             BIT(5)
 167#define SSS_HASH_INIT_BIT               BIT(4)
 168#define SSS_HASH_ENGINE_SHA1            _SBF(1, 0x00)
 169#define SSS_HASH_ENGINE_MD5             _SBF(1, 0x01)
 170#define SSS_HASH_ENGINE_SHA256          _SBF(1, 0x02)
 171
 172#define SSS_HASH_ENGINE_MASK            _SBF(1, 0x03)
 173
 174#define SSS_REG_HASH_CTRL_PAUSE         0x04
 175
 176#define SSS_HASH_PAUSE                  BIT(0)
 177
 178#define SSS_REG_HASH_CTRL_FIFO          0x08
 179
 180#define SSS_HASH_FIFO_MODE_DMA          BIT(0)
 181#define SSS_HASH_FIFO_MODE_CPU          0
 182
 183#define SSS_REG_HASH_CTRL_SWAP          0x0C
 184
 185#define SSS_HASH_BYTESWAP_DI            BIT(3)
 186#define SSS_HASH_BYTESWAP_DO            BIT(2)
 187#define SSS_HASH_BYTESWAP_IV            BIT(1)
 188#define SSS_HASH_BYTESWAP_KEY           BIT(0)
 189
 190#define SSS_REG_HASH_STATUS             0x10
 191
 192#define SSS_HASH_STATUS_MSG_DONE        BIT(6)
 193#define SSS_HASH_STATUS_PARTIAL_DONE    BIT(4)
 194#define SSS_HASH_STATUS_BUFFER_READY    BIT(0)
 195
 196#define SSS_REG_HASH_MSG_SIZE_LOW       0x20
 197#define SSS_REG_HASH_MSG_SIZE_HIGH      0x24
 198
 199#define SSS_REG_HASH_PRE_MSG_SIZE_LOW   0x28
 200#define SSS_REG_HASH_PRE_MSG_SIZE_HIGH  0x2C
 201
 202#define SSS_REG_HASH_IV(s)              (0xB0 + ((s) << 2))
 203#define SSS_REG_HASH_OUT(s)             (0x100 + ((s) << 2))
 204
 205#define HASH_BLOCK_SIZE                 64
 206#define HASH_REG_SIZEOF                 4
 207#define HASH_MD5_MAX_REG                (MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
 208#define HASH_SHA1_MAX_REG               (SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
 209#define HASH_SHA256_MAX_REG             (SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
 210
 211/*
 212 * HASH bit numbers, used by device, setting in dev->hash_flags with
 213 * functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
 214 * to keep HASH state BUSY or FREE, or to signal state from irq_handler
 215 * to hash_tasklet. SGS keep track of allocated memory for scatterlist
 216 */
 217#define HASH_FLAGS_BUSY         0
 218#define HASH_FLAGS_FINAL        1
 219#define HASH_FLAGS_DMA_ACTIVE   2
 220#define HASH_FLAGS_OUTPUT_READY 3
 221#define HASH_FLAGS_DMA_READY    4
 222#define HASH_FLAGS_SGS_COPIED   5
 223#define HASH_FLAGS_SGS_ALLOCED  6
 224
 225/* HASH HW constants */
 226#define BUFLEN                  HASH_BLOCK_SIZE
 227
 228#define SSS_HASH_DMA_LEN_ALIGN  8
 229#define SSS_HASH_DMA_ALIGN_MASK (SSS_HASH_DMA_LEN_ALIGN - 1)
 230
 231#define SSS_HASH_QUEUE_LENGTH   10
 232
 233/**
 234 * struct samsung_aes_variant - platform specific SSS driver data
 235 * @aes_offset: AES register offset from SSS module's base.
 236 * @hash_offset: HASH register offset from SSS module's base.
 237 * @clk_names: names of clocks needed to run SSS IP
 238 *
 239 * Specifies platform specific configuration of SSS module.
 240 * Note: A structure for driver specific platform data is used for future
 241 * expansion of its usage.
 242 */
 243struct samsung_aes_variant {
 244        unsigned int                    aes_offset;
 245        unsigned int                    hash_offset;
 246        const char                      *clk_names[2];
 247};
 248
 249struct s5p_aes_reqctx {
 250        unsigned long                   mode;
 251};
 252
 253struct s5p_aes_ctx {
 254        struct s5p_aes_dev              *dev;
 255
 256        u8                              aes_key[AES_MAX_KEY_SIZE];
 257        u8                              nonce[CTR_RFC3686_NONCE_SIZE];
 258        int                             keylen;
 259};
 260
 261/**
 262 * struct s5p_aes_dev - Crypto device state container
 263 * @dev:        Associated device
 264 * @clk:        Clock for accessing hardware
 265 * @pclk:       APB bus clock necessary to access the hardware
 266 * @ioaddr:     Mapped IO memory region
 267 * @aes_ioaddr: Per-varian offset for AES block IO memory
 268 * @irq_fc:     Feed control interrupt line
 269 * @req:        Crypto request currently handled by the device
 270 * @ctx:        Configuration for currently handled crypto request
 271 * @sg_src:     Scatter list with source data for currently handled block
 272 *              in device.  This is DMA-mapped into device.
 273 * @sg_dst:     Scatter list with destination data for currently handled block
 274 *              in device. This is DMA-mapped into device.
 275 * @sg_src_cpy: In case of unaligned access, copied scatter list
 276 *              with source data.
 277 * @sg_dst_cpy: In case of unaligned access, copied scatter list
 278 *              with destination data.
 279 * @tasklet:    New request scheduling jib
 280 * @queue:      Crypto queue
 281 * @busy:       Indicates whether the device is currently handling some request
 282 *              thus it uses some of the fields from this state, like:
 283 *              req, ctx, sg_src/dst (and copies).  This essentially
 284 *              protects against concurrent access to these fields.
 285 * @lock:       Lock for protecting both access to device hardware registers
 286 *              and fields related to current request (including the busy field).
 287 * @res:        Resources for hash.
 288 * @io_hash_base: Per-variant offset for HASH block IO memory.
 289 * @hash_lock:  Lock for protecting hash_req, hash_queue and hash_flags
 290 *              variable.
 291 * @hash_flags: Flags for current HASH op.
 292 * @hash_queue: Async hash queue.
 293 * @hash_tasklet: New HASH request scheduling job.
 294 * @xmit_buf:   Buffer for current HASH request transfer into SSS block.
 295 * @hash_req:   Current request sending to SSS HASH block.
 296 * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
 297 * @hash_sg_cnt: Counter for hash_sg_iter.
 298 *
 299 * @use_hash:   true if HASH algs enabled
 300 */
 301struct s5p_aes_dev {
 302        struct device                   *dev;
 303        struct clk                      *clk;
 304        struct clk                      *pclk;
 305        void __iomem                    *ioaddr;
 306        void __iomem                    *aes_ioaddr;
 307        int                             irq_fc;
 308
 309        struct skcipher_request         *req;
 310        struct s5p_aes_ctx              *ctx;
 311        struct scatterlist              *sg_src;
 312        struct scatterlist              *sg_dst;
 313
 314        struct scatterlist              *sg_src_cpy;
 315        struct scatterlist              *sg_dst_cpy;
 316
 317        struct tasklet_struct           tasklet;
 318        struct crypto_queue             queue;
 319        bool                            busy;
 320        spinlock_t                      lock;
 321
 322        struct resource                 *res;
 323        void __iomem                    *io_hash_base;
 324
 325        spinlock_t                      hash_lock; /* protect hash_ vars */
 326        unsigned long                   hash_flags;
 327        struct crypto_queue             hash_queue;
 328        struct tasklet_struct           hash_tasklet;
 329
 330        u8                              xmit_buf[BUFLEN];
 331        struct ahash_request            *hash_req;
 332        struct scatterlist              *hash_sg_iter;
 333        unsigned int                    hash_sg_cnt;
 334
 335        bool                            use_hash;
 336};
 337
 338/**
 339 * struct s5p_hash_reqctx - HASH request context
 340 * @dd:         Associated device
 341 * @op_update:  Current request operation (OP_UPDATE or OP_FINAL)
 342 * @digcnt:     Number of bytes processed by HW (without buffer[] ones)
 343 * @digest:     Digest message or IV for partial result
 344 * @nregs:      Number of HW registers for digest or IV read/write
 345 * @engine:     Bits for selecting type of HASH in SSS block
 346 * @sg:         sg for DMA transfer
 347 * @sg_len:     Length of sg for DMA transfer
 348 * @sgl:        sg for joining buffer and req->src scatterlist
 349 * @skip:       Skip offset in req->src for current op
 350 * @total:      Total number of bytes for current request
 351 * @finup:      Keep state for finup or final.
 352 * @error:      Keep track of error.
 353 * @bufcnt:     Number of bytes holded in buffer[]
 354 * @buffer:     For byte(s) from end of req->src in UPDATE op
 355 */
 356struct s5p_hash_reqctx {
 357        struct s5p_aes_dev      *dd;
 358        bool                    op_update;
 359
 360        u64                     digcnt;
 361        u8                      digest[SHA256_DIGEST_SIZE];
 362
 363        unsigned int            nregs; /* digest_size / sizeof(reg) */
 364        u32                     engine;
 365
 366        struct scatterlist      *sg;
 367        unsigned int            sg_len;
 368        struct scatterlist      sgl[2];
 369        unsigned int            skip;
 370        unsigned int            total;
 371        bool                    finup;
 372        bool                    error;
 373
 374        u32                     bufcnt;
 375        u8                      buffer[];
 376};
 377
 378/**
 379 * struct s5p_hash_ctx - HASH transformation context
 380 * @dd:         Associated device
 381 * @flags:      Bits for algorithm HASH.
 382 * @fallback:   Software transformation for zero message or size < BUFLEN.
 383 */
 384struct s5p_hash_ctx {
 385        struct s5p_aes_dev      *dd;
 386        unsigned long           flags;
 387        struct crypto_shash     *fallback;
 388};
 389
 390static const struct samsung_aes_variant s5p_aes_data = {
 391        .aes_offset     = 0x4000,
 392        .hash_offset    = 0x6000,
 393        .clk_names      = { "secss", },
 394};
 395
 396static const struct samsung_aes_variant exynos_aes_data = {
 397        .aes_offset     = 0x200,
 398        .hash_offset    = 0x400,
 399        .clk_names      = { "secss", },
 400};
 401
 402static const struct samsung_aes_variant exynos5433_slim_aes_data = {
 403        .aes_offset     = 0x400,
 404        .hash_offset    = 0x800,
 405        .clk_names      = { "aclk", "pclk", },
 406};
 407
 408static const struct of_device_id s5p_sss_dt_match[] = {
 409        {
 410                .compatible = "samsung,s5pv210-secss",
 411                .data = &s5p_aes_data,
 412        },
 413        {
 414                .compatible = "samsung,exynos4210-secss",
 415                .data = &exynos_aes_data,
 416        },
 417        {
 418                .compatible = "samsung,exynos5433-slim-sss",
 419                .data = &exynos5433_slim_aes_data,
 420        },
 421        { },
 422};
 423MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
 424
 425static inline const struct samsung_aes_variant *find_s5p_sss_version
 426                                   (const struct platform_device *pdev)
 427{
 428        if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node))
 429                return of_device_get_match_data(&pdev->dev);
 430
 431        return (const struct samsung_aes_variant *)
 432                        platform_get_device_id(pdev)->driver_data;
 433}
 434
 435static struct s5p_aes_dev *s5p_dev;
 436
 437static void s5p_set_dma_indata(struct s5p_aes_dev *dev,
 438                               const struct scatterlist *sg)
 439{
 440        SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
 441        SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
 442}
 443
 444static void s5p_set_dma_outdata(struct s5p_aes_dev *dev,
 445                                const struct scatterlist *sg)
 446{
 447        SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
 448        SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
 449}
 450
 451static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
 452{
 453        int len;
 454
 455        if (!*sg)
 456                return;
 457
 458        len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
 459        free_pages((unsigned long)sg_virt(*sg), get_order(len));
 460
 461        kfree(*sg);
 462        *sg = NULL;
 463}
 464
 465static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg,
 466                            unsigned int nbytes, int out)
 467{
 468        struct scatter_walk walk;
 469
 470        if (!nbytes)
 471                return;
 472
 473        scatterwalk_start(&walk, sg);
 474        scatterwalk_copychunks(buf, &walk, nbytes, out);
 475        scatterwalk_done(&walk, out, 0);
 476}
 477
 478static void s5p_sg_done(struct s5p_aes_dev *dev)
 479{
 480        struct skcipher_request *req = dev->req;
 481        struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
 482
 483        if (dev->sg_dst_cpy) {
 484                dev_dbg(dev->dev,
 485                        "Copying %d bytes of output data back to original place\n",
 486                        dev->req->cryptlen);
 487                s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst,
 488                                dev->req->cryptlen, 1);
 489        }
 490        s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
 491        s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
 492        if (reqctx->mode & FLAGS_AES_CBC)
 493                memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), AES_BLOCK_SIZE);
 494
 495        else if (reqctx->mode & FLAGS_AES_CTR)
 496                memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), AES_BLOCK_SIZE);
 497}
 498
 499/* Calls the completion. Cannot be called with dev->lock hold. */
 500static void s5p_aes_complete(struct skcipher_request *req, int err)
 501{
 502        req->base.complete(&req->base, err);
 503}
 504
 505static void s5p_unset_outdata(struct s5p_aes_dev *dev)
 506{
 507        dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
 508}
 509
 510static void s5p_unset_indata(struct s5p_aes_dev *dev)
 511{
 512        dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
 513}
 514
 515static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
 516                           struct scatterlist **dst)
 517{
 518        void *pages;
 519        int len;
 520
 521        *dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
 522        if (!*dst)
 523                return -ENOMEM;
 524
 525        len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
 526        pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
 527        if (!pages) {
 528                kfree(*dst);
 529                *dst = NULL;
 530                return -ENOMEM;
 531        }
 532
 533        s5p_sg_copy_buf(pages, src, dev->req->cryptlen, 0);
 534
 535        sg_init_table(*dst, 1);
 536        sg_set_buf(*dst, pages, len);
 537
 538        return 0;
 539}
 540
 541static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
 542{
 543        if (!sg->length)
 544                return -EINVAL;
 545
 546        if (!dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE))
 547                return -ENOMEM;
 548
 549        dev->sg_dst = sg;
 550
 551        return 0;
 552}
 553
 554static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
 555{
 556        if (!sg->length)
 557                return -EINVAL;
 558
 559        if (!dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE))
 560                return -ENOMEM;
 561
 562        dev->sg_src = sg;
 563
 564        return 0;
 565}
 566
 567/*
 568 * Returns -ERRNO on error (mapping of new data failed).
 569 * On success returns:
 570 *  - 0 if there is no more data,
 571 *  - 1 if new transmitting (output) data is ready and its address+length
 572 *     have to be written to device (by calling s5p_set_dma_outdata()).
 573 */
 574static int s5p_aes_tx(struct s5p_aes_dev *dev)
 575{
 576        int ret = 0;
 577
 578        s5p_unset_outdata(dev);
 579
 580        if (!sg_is_last(dev->sg_dst)) {
 581                ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
 582                if (!ret)
 583                        ret = 1;
 584        }
 585
 586        return ret;
 587}
 588
 589/*
 590 * Returns -ERRNO on error (mapping of new data failed).
 591 * On success returns:
 592 *  - 0 if there is no more data,
 593 *  - 1 if new receiving (input) data is ready and its address+length
 594 *     have to be written to device (by calling s5p_set_dma_indata()).
 595 */
 596static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
 597{
 598        int ret = 0;
 599
 600        s5p_unset_indata(dev);
 601
 602        if (!sg_is_last(dev->sg_src)) {
 603                ret = s5p_set_indata(dev, sg_next(dev->sg_src));
 604                if (!ret)
 605                        ret = 1;
 606        }
 607
 608        return ret;
 609}
 610
 611static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset)
 612{
 613        return __raw_readl(dd->io_hash_base + offset);
 614}
 615
 616static inline void s5p_hash_write(struct s5p_aes_dev *dd,
 617                                  u32 offset, u32 value)
 618{
 619        __raw_writel(value, dd->io_hash_base + offset);
 620}
 621
 622/**
 623 * s5p_set_dma_hashdata() - start DMA with sg
 624 * @dev:        device
 625 * @sg:         scatterlist ready to DMA transmit
 626 */
 627static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev,
 628                                 const struct scatterlist *sg)
 629{
 630        dev->hash_sg_cnt--;
 631        SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg));
 632        SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */
 633}
 634
 635/**
 636 * s5p_hash_rx() - get next hash_sg_iter
 637 * @dev:        device
 638 *
 639 * Return:
 640 * 2    if there is no more data and it is UPDATE op
 641 * 1    if new receiving (input) data is ready and can be written to device
 642 * 0    if there is no more data and it is FINAL op
 643 */
 644static int s5p_hash_rx(struct s5p_aes_dev *dev)
 645{
 646        if (dev->hash_sg_cnt > 0) {
 647                dev->hash_sg_iter = sg_next(dev->hash_sg_iter);
 648                return 1;
 649        }
 650
 651        set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags);
 652        if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags))
 653                return 0;
 654
 655        return 2;
 656}
 657
 658static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
 659{
 660        struct platform_device *pdev = dev_id;
 661        struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
 662        struct skcipher_request *req;
 663        int err_dma_tx = 0;
 664        int err_dma_rx = 0;
 665        int err_dma_hx = 0;
 666        bool tx_end = false;
 667        bool hx_end = false;
 668        unsigned long flags;
 669        u32 status, st_bits;
 670        int err;
 671
 672        spin_lock_irqsave(&dev->lock, flags);
 673
 674        /*
 675         * Handle rx or tx interrupt. If there is still data (scatterlist did not
 676         * reach end), then map next scatterlist entry.
 677         * In case of such mapping error, s5p_aes_complete() should be called.
 678         *
 679         * If there is no more data in tx scatter list, call s5p_aes_complete()
 680         * and schedule new tasklet.
 681         *
 682         * Handle hx interrupt. If there is still data map next entry.
 683         */
 684        status = SSS_READ(dev, FCINTSTAT);
 685        if (status & SSS_FCINTSTAT_BRDMAINT)
 686                err_dma_rx = s5p_aes_rx(dev);
 687
 688        if (status & SSS_FCINTSTAT_BTDMAINT) {
 689                if (sg_is_last(dev->sg_dst))
 690                        tx_end = true;
 691                err_dma_tx = s5p_aes_tx(dev);
 692        }
 693
 694        if (status & SSS_FCINTSTAT_HRDMAINT)
 695                err_dma_hx = s5p_hash_rx(dev);
 696
 697        st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT |
 698                                SSS_FCINTSTAT_HRDMAINT);
 699        /* clear DMA bits */
 700        SSS_WRITE(dev, FCINTPEND, st_bits);
 701
 702        /* clear HASH irq bits */
 703        if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) {
 704                /* cannot have both HPART and HDONE */
 705                if (status & SSS_FCINTSTAT_HPARTINT)
 706                        st_bits = SSS_HASH_STATUS_PARTIAL_DONE;
 707
 708                if (status & SSS_FCINTSTAT_HDONEINT)
 709                        st_bits = SSS_HASH_STATUS_MSG_DONE;
 710
 711                set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags);
 712                s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits);
 713                hx_end = true;
 714                /* when DONE or PART, do not handle HASH DMA */
 715                err_dma_hx = 0;
 716        }
 717
 718        if (err_dma_rx < 0) {
 719                err = err_dma_rx;
 720                goto error;
 721        }
 722        if (err_dma_tx < 0) {
 723                err = err_dma_tx;
 724                goto error;
 725        }
 726
 727        if (tx_end) {
 728                s5p_sg_done(dev);
 729                if (err_dma_hx == 1)
 730                        s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
 731
 732                spin_unlock_irqrestore(&dev->lock, flags);
 733
 734                s5p_aes_complete(dev->req, 0);
 735                /* Device is still busy */
 736                tasklet_schedule(&dev->tasklet);
 737        } else {
 738                /*
 739                 * Writing length of DMA block (either receiving or
 740                 * transmitting) will start the operation immediately, so this
 741                 * should be done at the end (even after clearing pending
 742                 * interrupts to not miss the interrupt).
 743                 */
 744                if (err_dma_tx == 1)
 745                        s5p_set_dma_outdata(dev, dev->sg_dst);
 746                if (err_dma_rx == 1)
 747                        s5p_set_dma_indata(dev, dev->sg_src);
 748                if (err_dma_hx == 1)
 749                        s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
 750
 751                spin_unlock_irqrestore(&dev->lock, flags);
 752        }
 753
 754        goto hash_irq_end;
 755
 756error:
 757        s5p_sg_done(dev);
 758        dev->busy = false;
 759        req = dev->req;
 760        if (err_dma_hx == 1)
 761                s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
 762
 763        spin_unlock_irqrestore(&dev->lock, flags);
 764        s5p_aes_complete(req, err);
 765
 766hash_irq_end:
 767        /*
 768         * Note about else if:
 769         *   when hash_sg_iter reaches end and its UPDATE op,
 770         *   issue SSS_HASH_PAUSE and wait for HPART irq
 771         */
 772        if (hx_end)
 773                tasklet_schedule(&dev->hash_tasklet);
 774        else if (err_dma_hx == 2)
 775                s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE,
 776                               SSS_HASH_PAUSE);
 777
 778        return IRQ_HANDLED;
 779}
 780
 781/**
 782 * s5p_hash_read_msg() - read message or IV from HW
 783 * @req:        AHASH request
 784 */
 785static void s5p_hash_read_msg(struct ahash_request *req)
 786{
 787        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
 788        struct s5p_aes_dev *dd = ctx->dd;
 789        u32 *hash = (u32 *)ctx->digest;
 790        unsigned int i;
 791
 792        for (i = 0; i < ctx->nregs; i++)
 793                hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i));
 794}
 795
 796/**
 797 * s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
 798 * @dd:         device
 799 * @ctx:        request context
 800 */
 801static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd,
 802                                  const struct s5p_hash_reqctx *ctx)
 803{
 804        const u32 *hash = (const u32 *)ctx->digest;
 805        unsigned int i;
 806
 807        for (i = 0; i < ctx->nregs; i++)
 808                s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]);
 809}
 810
 811/**
 812 * s5p_hash_write_iv() - write IV for next partial/finup op.
 813 * @req:        AHASH request
 814 */
 815static void s5p_hash_write_iv(struct ahash_request *req)
 816{
 817        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
 818
 819        s5p_hash_write_ctx_iv(ctx->dd, ctx);
 820}
 821
 822/**
 823 * s5p_hash_copy_result() - copy digest into req->result
 824 * @req:        AHASH request
 825 */
 826static void s5p_hash_copy_result(struct ahash_request *req)
 827{
 828        const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
 829
 830        if (!req->result)
 831                return;
 832
 833        memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF);
 834}
 835
 836/**
 837 * s5p_hash_dma_flush() - flush HASH DMA
 838 * @dev:        secss device
 839 */
 840static void s5p_hash_dma_flush(struct s5p_aes_dev *dev)
 841{
 842        SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH);
 843}
 844
 845/**
 846 * s5p_hash_dma_enable() - enable DMA mode for HASH
 847 * @dev:        secss device
 848 *
 849 * enable DMA mode for HASH
 850 */
 851static void s5p_hash_dma_enable(struct s5p_aes_dev *dev)
 852{
 853        s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA);
 854}
 855
 856/**
 857 * s5p_hash_irq_disable() - disable irq HASH signals
 858 * @dev:        secss device
 859 * @flags:      bitfield with irq's to be disabled
 860 */
 861static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags)
 862{
 863        SSS_WRITE(dev, FCINTENCLR, flags);
 864}
 865
 866/**
 867 * s5p_hash_irq_enable() - enable irq signals
 868 * @dev:        secss device
 869 * @flags:      bitfield with irq's to be enabled
 870 */
 871static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags)
 872{
 873        SSS_WRITE(dev, FCINTENSET, flags);
 874}
 875
 876/**
 877 * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
 878 * @dev:        secss device
 879 * @hashflow:   HASH stream flow with/without crypto AES/DES
 880 */
 881static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow)
 882{
 883        unsigned long flags;
 884        u32 flow;
 885
 886        spin_lock_irqsave(&dev->lock, flags);
 887
 888        flow = SSS_READ(dev, FCFIFOCTRL);
 889        flow &= ~SSS_HASHIN_MASK;
 890        flow |= hashflow;
 891        SSS_WRITE(dev, FCFIFOCTRL, flow);
 892
 893        spin_unlock_irqrestore(&dev->lock, flags);
 894}
 895
 896/**
 897 * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
 898 * @dev:        secss device
 899 * @hashflow:   HASH stream flow with/without AES/DES
 900 *
 901 * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
 902 * enable HASH irq's HRDMA, HDONE, HPART
 903 */
 904static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow)
 905{
 906        s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR |
 907                             SSS_FCINTENCLR_HDONEINTENCLR |
 908                             SSS_FCINTENCLR_HPARTINTENCLR);
 909        s5p_hash_dma_flush(dev);
 910
 911        s5p_hash_dma_enable(dev);
 912        s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK);
 913        s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET |
 914                            SSS_FCINTENSET_HDONEINTENSET |
 915                            SSS_FCINTENSET_HPARTINTENSET);
 916}
 917
 918/**
 919 * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
 920 * @dd:         secss device
 921 * @length:     length for request
 922 * @final:      true if final op
 923 *
 924 * Prepare SSS HASH block for processing bytes in DMA mode. If it is called
 925 * after previous updates, fill up IV words. For final, calculate and set
 926 * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
 927 * length as 2^63 so it will be never reached and set to zero prelow and
 928 * prehigh.
 929 *
 930 * This function does not start DMA transfer.
 931 */
 932static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length,
 933                                bool final)
 934{
 935        struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
 936        u32 prelow, prehigh, low, high;
 937        u32 configflags, swapflags;
 938        u64 tmplen;
 939
 940        configflags = ctx->engine | SSS_HASH_INIT_BIT;
 941
 942        if (likely(ctx->digcnt)) {
 943                s5p_hash_write_ctx_iv(dd, ctx);
 944                configflags |= SSS_HASH_USER_IV_EN;
 945        }
 946
 947        if (final) {
 948                /* number of bytes for last part */
 949                low = length;
 950                high = 0;
 951                /* total number of bits prev hashed */
 952                tmplen = ctx->digcnt * 8;
 953                prelow = (u32)tmplen;
 954                prehigh = (u32)(tmplen >> 32);
 955        } else {
 956                prelow = 0;
 957                prehigh = 0;
 958                low = 0;
 959                high = BIT(31);
 960        }
 961
 962        swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO |
 963                    SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY;
 964
 965        s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low);
 966        s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high);
 967        s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow);
 968        s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh);
 969
 970        s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags);
 971        s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags);
 972}
 973
 974/**
 975 * s5p_hash_xmit_dma() - start DMA hash processing
 976 * @dd:         secss device
 977 * @length:     length for request
 978 * @final:      true if final op
 979 *
 980 * Update digcnt here, as it is needed for finup/final op.
 981 */
 982static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length,
 983                             bool final)
 984{
 985        struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
 986        unsigned int cnt;
 987
 988        cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
 989        if (!cnt) {
 990                dev_err(dd->dev, "dma_map_sg error\n");
 991                ctx->error = true;
 992                return -EINVAL;
 993        }
 994
 995        set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
 996        dd->hash_sg_iter = ctx->sg;
 997        dd->hash_sg_cnt = cnt;
 998        s5p_hash_write_ctrl(dd, length, final);
 999        ctx->digcnt += length;
1000        ctx->total -= length;
1001
1002        /* catch last interrupt */
1003        if (final)
1004                set_bit(HASH_FLAGS_FINAL, &dd->hash_flags);
1005
1006        s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */
1007
1008        return -EINPROGRESS;
1009}
1010
1011/**
1012 * s5p_hash_copy_sgs() - copy request's bytes into new buffer
1013 * @ctx:        request context
1014 * @sg:         source scatterlist request
1015 * @new_len:    number of bytes to process from sg
1016 *
1017 * Allocate new buffer, copy data for HASH into it. If there was xmit_buf
1018 * filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
1019 * with allocated buffer.
1020 *
1021 * Set bit in dd->hash_flag so we can free it after irq ends processing.
1022 */
1023static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx,
1024                             struct scatterlist *sg, unsigned int new_len)
1025{
1026        unsigned int pages, len;
1027        void *buf;
1028
1029        len = new_len + ctx->bufcnt;
1030        pages = get_order(len);
1031
1032        buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1033        if (!buf) {
1034                dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n");
1035                ctx->error = true;
1036                return -ENOMEM;
1037        }
1038
1039        if (ctx->bufcnt)
1040                memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
1041
1042        scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip,
1043                                 new_len, 0);
1044        sg_init_table(ctx->sgl, 1);
1045        sg_set_buf(ctx->sgl, buf, len);
1046        ctx->sg = ctx->sgl;
1047        ctx->sg_len = 1;
1048        ctx->bufcnt = 0;
1049        ctx->skip = 0;
1050        set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags);
1051
1052        return 0;
1053}
1054
1055/**
1056 * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1057 * @ctx:        request context
1058 * @sg:         source scatterlist request
1059 * @new_len:    number of bytes to process from sg
1060 *
1061 * Allocate new scatterlist table, copy data for HASH into it. If there was
1062 * xmit_buf filled, prepare it first, then copy page, length and offset from
1063 * source sg into it, adjusting begin and/or end for skip offset and
1064 * hash_later value.
1065 *
1066 * Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1067 * it after irq ends processing.
1068 */
1069static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx,
1070                                  struct scatterlist *sg, unsigned int new_len)
1071{
1072        unsigned int skip = ctx->skip, n = sg_nents(sg);
1073        struct scatterlist *tmp;
1074        unsigned int len;
1075
1076        if (ctx->bufcnt)
1077                n++;
1078
1079        ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
1080        if (!ctx->sg) {
1081                ctx->error = true;
1082                return -ENOMEM;
1083        }
1084
1085        sg_init_table(ctx->sg, n);
1086
1087        tmp = ctx->sg;
1088
1089        ctx->sg_len = 0;
1090
1091        if (ctx->bufcnt) {
1092                sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
1093                tmp = sg_next(tmp);
1094                ctx->sg_len++;
1095        }
1096
1097        while (sg && skip >= sg->length) {
1098                skip -= sg->length;
1099                sg = sg_next(sg);
1100        }
1101
1102        while (sg && new_len) {
1103                len = sg->length - skip;
1104                if (new_len < len)
1105                        len = new_len;
1106
1107                new_len -= len;
1108                sg_set_page(tmp, sg_page(sg), len, sg->offset + skip);
1109                skip = 0;
1110                if (new_len <= 0)
1111                        sg_mark_end(tmp);
1112
1113                tmp = sg_next(tmp);
1114                ctx->sg_len++;
1115                sg = sg_next(sg);
1116        }
1117
1118        set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags);
1119
1120        return 0;
1121}
1122
1123/**
1124 * s5p_hash_prepare_sgs() - prepare sg for processing
1125 * @ctx:        request context
1126 * @sg:         source scatterlist request
1127 * @new_len:    number of bytes to process from sg
1128 * @final:      final flag
1129 *
1130 * Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1131 * sg table have good aligned elements (list_ok). If one of this checks fails,
1132 * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1133 * data into this buffer and prepare request in sgl, or (2) allocates new sg
1134 * table and prepare sg elements.
1135 *
1136 * For digest or finup all conditions can be good, and we may not need any
1137 * fixes.
1138 */
1139static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx,
1140                                struct scatterlist *sg,
1141                                unsigned int new_len, bool final)
1142{
1143        unsigned int skip = ctx->skip, nbytes = new_len, n = 0;
1144        bool aligned = true, list_ok = true;
1145        struct scatterlist *sg_tmp = sg;
1146
1147        if (!sg || !sg->length || !new_len)
1148                return 0;
1149
1150        if (skip || !final)
1151                list_ok = false;
1152
1153        while (nbytes > 0 && sg_tmp) {
1154                n++;
1155                if (skip >= sg_tmp->length) {
1156                        skip -= sg_tmp->length;
1157                        if (!sg_tmp->length) {
1158                                aligned = false;
1159                                break;
1160                        }
1161                } else {
1162                        if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) {
1163                                aligned = false;
1164                                break;
1165                        }
1166
1167                        if (nbytes < sg_tmp->length - skip) {
1168                                list_ok = false;
1169                                break;
1170                        }
1171
1172                        nbytes -= sg_tmp->length - skip;
1173                        skip = 0;
1174                }
1175
1176                sg_tmp = sg_next(sg_tmp);
1177        }
1178
1179        if (!aligned)
1180                return s5p_hash_copy_sgs(ctx, sg, new_len);
1181        else if (!list_ok)
1182                return s5p_hash_copy_sg_lists(ctx, sg, new_len);
1183
1184        /*
1185         * Have aligned data from previous operation and/or current
1186         * Note: will enter here only if (digest or finup) and aligned
1187         */
1188        if (ctx->bufcnt) {
1189                ctx->sg_len = n;
1190                sg_init_table(ctx->sgl, 2);
1191                sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt);
1192                sg_chain(ctx->sgl, 2, sg);
1193                ctx->sg = ctx->sgl;
1194                ctx->sg_len++;
1195        } else {
1196                ctx->sg = sg;
1197                ctx->sg_len = n;
1198        }
1199
1200        return 0;
1201}
1202
1203/**
1204 * s5p_hash_prepare_request() - prepare request for processing
1205 * @req:        AHASH request
1206 * @update:     true if UPDATE op
1207 *
1208 * Note 1: we can have update flag _and_ final flag at the same time.
1209 * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1210 *         either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1211 *         we have final op
1212 */
1213static int s5p_hash_prepare_request(struct ahash_request *req, bool update)
1214{
1215        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1216        bool final = ctx->finup;
1217        int xmit_len, hash_later, nbytes;
1218        int ret;
1219
1220        if (update)
1221                nbytes = req->nbytes;
1222        else
1223                nbytes = 0;
1224
1225        ctx->total = nbytes + ctx->bufcnt;
1226        if (!ctx->total)
1227                return 0;
1228
1229        if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) {
1230                /* bytes left from previous request, so fill up to BUFLEN */
1231                int len = BUFLEN - ctx->bufcnt % BUFLEN;
1232
1233                if (len > nbytes)
1234                        len = nbytes;
1235
1236                scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1237                                         0, len, 0);
1238                ctx->bufcnt += len;
1239                nbytes -= len;
1240                ctx->skip = len;
1241        } else {
1242                ctx->skip = 0;
1243        }
1244
1245        if (ctx->bufcnt)
1246                memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt);
1247
1248        xmit_len = ctx->total;
1249        if (final) {
1250                hash_later = 0;
1251        } else {
1252                if (IS_ALIGNED(xmit_len, BUFLEN))
1253                        xmit_len -= BUFLEN;
1254                else
1255                        xmit_len -= xmit_len & (BUFLEN - 1);
1256
1257                hash_later = ctx->total - xmit_len;
1258                /* copy hash_later bytes from end of req->src */
1259                /* previous bytes are in xmit_buf, so no overwrite */
1260                scatterwalk_map_and_copy(ctx->buffer, req->src,
1261                                         req->nbytes - hash_later,
1262                                         hash_later, 0);
1263        }
1264
1265        if (xmit_len > BUFLEN) {
1266                ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later,
1267                                           final);
1268                if (ret)
1269                        return ret;
1270        } else {
1271                /* have buffered data only */
1272                if (unlikely(!ctx->bufcnt)) {
1273                        /* first update didn't fill up buffer */
1274                        scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src,
1275                                                 0, xmit_len, 0);
1276                }
1277
1278                sg_init_table(ctx->sgl, 1);
1279                sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len);
1280
1281                ctx->sg = ctx->sgl;
1282                ctx->sg_len = 1;
1283        }
1284
1285        ctx->bufcnt = hash_later;
1286        if (!final)
1287                ctx->total = xmit_len;
1288
1289        return 0;
1290}
1291
1292/**
1293 * s5p_hash_update_dma_stop() - unmap DMA
1294 * @dd:         secss device
1295 *
1296 * Unmap scatterlist ctx->sg.
1297 */
1298static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd)
1299{
1300        const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
1301
1302        dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
1303        clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
1304}
1305
1306/**
1307 * s5p_hash_finish() - copy calculated digest to crypto layer
1308 * @req:        AHASH request
1309 */
1310static void s5p_hash_finish(struct ahash_request *req)
1311{
1312        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1313        struct s5p_aes_dev *dd = ctx->dd;
1314
1315        if (ctx->digcnt)
1316                s5p_hash_copy_result(req);
1317
1318        dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt);
1319}
1320
1321/**
1322 * s5p_hash_finish_req() - finish request
1323 * @req:        AHASH request
1324 * @err:        error
1325 */
1326static void s5p_hash_finish_req(struct ahash_request *req, int err)
1327{
1328        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1329        struct s5p_aes_dev *dd = ctx->dd;
1330        unsigned long flags;
1331
1332        if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags))
1333                free_pages((unsigned long)sg_virt(ctx->sg),
1334                           get_order(ctx->sg->length));
1335
1336        if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags))
1337                kfree(ctx->sg);
1338
1339        ctx->sg = NULL;
1340        dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) |
1341                            BIT(HASH_FLAGS_SGS_COPIED));
1342
1343        if (!err && !ctx->error) {
1344                s5p_hash_read_msg(req);
1345                if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags))
1346                        s5p_hash_finish(req);
1347        } else {
1348                ctx->error = true;
1349        }
1350
1351        spin_lock_irqsave(&dd->hash_lock, flags);
1352        dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) |
1353                            BIT(HASH_FLAGS_DMA_READY) |
1354                            BIT(HASH_FLAGS_OUTPUT_READY));
1355        spin_unlock_irqrestore(&dd->hash_lock, flags);
1356
1357        if (req->base.complete)
1358                req->base.complete(&req->base, err);
1359}
1360
1361/**
1362 * s5p_hash_handle_queue() - handle hash queue
1363 * @dd:         device s5p_aes_dev
1364 * @req:        AHASH request
1365 *
1366 * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1367 * device then processes the first request from the dd->queue
1368 *
1369 * Returns: see s5p_hash_final below.
1370 */
1371static int s5p_hash_handle_queue(struct s5p_aes_dev *dd,
1372                                 struct ahash_request *req)
1373{
1374        struct crypto_async_request *async_req, *backlog;
1375        struct s5p_hash_reqctx *ctx;
1376        unsigned long flags;
1377        int err = 0, ret = 0;
1378
1379retry:
1380        spin_lock_irqsave(&dd->hash_lock, flags);
1381        if (req)
1382                ret = ahash_enqueue_request(&dd->hash_queue, req);
1383
1384        if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1385                spin_unlock_irqrestore(&dd->hash_lock, flags);
1386                return ret;
1387        }
1388
1389        backlog = crypto_get_backlog(&dd->hash_queue);
1390        async_req = crypto_dequeue_request(&dd->hash_queue);
1391        if (async_req)
1392                set_bit(HASH_FLAGS_BUSY, &dd->hash_flags);
1393
1394        spin_unlock_irqrestore(&dd->hash_lock, flags);
1395
1396        if (!async_req)
1397                return ret;
1398
1399        if (backlog)
1400                backlog->complete(backlog, -EINPROGRESS);
1401
1402        req = ahash_request_cast(async_req);
1403        dd->hash_req = req;
1404        ctx = ahash_request_ctx(req);
1405
1406        err = s5p_hash_prepare_request(req, ctx->op_update);
1407        if (err || !ctx->total)
1408                goto out;
1409
1410        dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n",
1411                ctx->op_update, req->nbytes);
1412
1413        s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT);
1414        if (ctx->digcnt)
1415                s5p_hash_write_iv(req); /* restore hash IV */
1416
1417        if (ctx->op_update) { /* HASH_OP_UPDATE */
1418                err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup);
1419                if (err != -EINPROGRESS && ctx->finup && !ctx->error)
1420                        /* no final() after finup() */
1421                        err = s5p_hash_xmit_dma(dd, ctx->total, true);
1422        } else { /* HASH_OP_FINAL */
1423                err = s5p_hash_xmit_dma(dd, ctx->total, true);
1424        }
1425out:
1426        if (err != -EINPROGRESS) {
1427                /* hash_tasklet_cb will not finish it, so do it here */
1428                s5p_hash_finish_req(req, err);
1429                req = NULL;
1430
1431                /*
1432                 * Execute next request immediately if there is anything
1433                 * in queue.
1434                 */
1435                goto retry;
1436        }
1437
1438        return ret;
1439}
1440
1441/**
1442 * s5p_hash_tasklet_cb() - hash tasklet
1443 * @data:       ptr to s5p_aes_dev
1444 */
1445static void s5p_hash_tasklet_cb(unsigned long data)
1446{
1447        struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data;
1448
1449        if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1450                s5p_hash_handle_queue(dd, NULL);
1451                return;
1452        }
1453
1454        if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) {
1455                if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE,
1456                                       &dd->hash_flags)) {
1457                        s5p_hash_update_dma_stop(dd);
1458                }
1459
1460                if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY,
1461                                       &dd->hash_flags)) {
1462                        /* hash or semi-hash ready */
1463                        clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags);
1464                        goto finish;
1465                }
1466        }
1467
1468        return;
1469
1470finish:
1471        /* finish curent request */
1472        s5p_hash_finish_req(dd->hash_req, 0);
1473
1474        /* If we are not busy, process next req */
1475        if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags))
1476                s5p_hash_handle_queue(dd, NULL);
1477}
1478
1479/**
1480 * s5p_hash_enqueue() - enqueue request
1481 * @req:        AHASH request
1482 * @op:         operation UPDATE (true) or FINAL (false)
1483 *
1484 * Returns: see s5p_hash_final below.
1485 */
1486static int s5p_hash_enqueue(struct ahash_request *req, bool op)
1487{
1488        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1489        struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1490
1491        ctx->op_update = op;
1492
1493        return s5p_hash_handle_queue(tctx->dd, req);
1494}
1495
1496/**
1497 * s5p_hash_update() - process the hash input data
1498 * @req:        AHASH request
1499 *
1500 * If request will fit in buffer, copy it and return immediately
1501 * else enqueue it with OP_UPDATE.
1502 *
1503 * Returns: see s5p_hash_final below.
1504 */
1505static int s5p_hash_update(struct ahash_request *req)
1506{
1507        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1508
1509        if (!req->nbytes)
1510                return 0;
1511
1512        if (ctx->bufcnt + req->nbytes <= BUFLEN) {
1513                scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1514                                         0, req->nbytes, 0);
1515                ctx->bufcnt += req->nbytes;
1516                return 0;
1517        }
1518
1519        return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */
1520}
1521
1522/**
1523 * s5p_hash_final() - close up hash and calculate digest
1524 * @req:        AHASH request
1525 *
1526 * Note: in final req->src do not have any data, and req->nbytes can be
1527 * non-zero.
1528 *
1529 * If there were no input data processed yet and the buffered hash data is
1530 * less than BUFLEN (64) then calculate the final hash immediately by using
1531 * SW algorithm fallback.
1532 *
1533 * Otherwise enqueues the current AHASH request with OP_FINAL operation op
1534 * and finalize hash message in HW. Note that if digcnt!=0 then there were
1535 * previous update op, so there are always some buffered bytes in ctx->buffer,
1536 * which means that ctx->bufcnt!=0
1537 *
1538 * Returns:
1539 * 0 if the request has been processed immediately,
1540 * -EINPROGRESS if the operation has been queued for later execution or is set
1541 *              to processing by HW,
1542 * -EBUSY if queue is full and request should be resubmitted later,
1543 * other negative values denotes an error.
1544 */
1545static int s5p_hash_final(struct ahash_request *req)
1546{
1547        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1548
1549        ctx->finup = true;
1550        if (ctx->error)
1551                return -EINVAL; /* uncompleted hash is not needed */
1552
1553        if (!ctx->digcnt && ctx->bufcnt < BUFLEN) {
1554                struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1555
1556                return crypto_shash_tfm_digest(tctx->fallback, ctx->buffer,
1557                                               ctx->bufcnt, req->result);
1558        }
1559
1560        return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */
1561}
1562
1563/**
1564 * s5p_hash_finup() - process last req->src and calculate digest
1565 * @req:        AHASH request containing the last update data
1566 *
1567 * Return values: see s5p_hash_final above.
1568 */
1569static int s5p_hash_finup(struct ahash_request *req)
1570{
1571        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1572        int err1, err2;
1573
1574        ctx->finup = true;
1575
1576        err1 = s5p_hash_update(req);
1577        if (err1 == -EINPROGRESS || err1 == -EBUSY)
1578                return err1;
1579
1580        /*
1581         * final() has to be always called to cleanup resources even if
1582         * update() failed, except EINPROGRESS or calculate digest for small
1583         * size
1584         */
1585        err2 = s5p_hash_final(req);
1586
1587        return err1 ?: err2;
1588}
1589
1590/**
1591 * s5p_hash_init() - initialize AHASH request contex
1592 * @req:        AHASH request
1593 *
1594 * Init async hash request context.
1595 */
1596static int s5p_hash_init(struct ahash_request *req)
1597{
1598        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1599        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1600        struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1601
1602        ctx->dd = tctx->dd;
1603        ctx->error = false;
1604        ctx->finup = false;
1605        ctx->bufcnt = 0;
1606        ctx->digcnt = 0;
1607        ctx->total = 0;
1608        ctx->skip = 0;
1609
1610        dev_dbg(tctx->dd->dev, "init: digest size: %d\n",
1611                crypto_ahash_digestsize(tfm));
1612
1613        switch (crypto_ahash_digestsize(tfm)) {
1614        case MD5_DIGEST_SIZE:
1615                ctx->engine = SSS_HASH_ENGINE_MD5;
1616                ctx->nregs = HASH_MD5_MAX_REG;
1617                break;
1618        case SHA1_DIGEST_SIZE:
1619                ctx->engine = SSS_HASH_ENGINE_SHA1;
1620                ctx->nregs = HASH_SHA1_MAX_REG;
1621                break;
1622        case SHA256_DIGEST_SIZE:
1623                ctx->engine = SSS_HASH_ENGINE_SHA256;
1624                ctx->nregs = HASH_SHA256_MAX_REG;
1625                break;
1626        default:
1627                ctx->error = true;
1628                return -EINVAL;
1629        }
1630
1631        return 0;
1632}
1633
1634/**
1635 * s5p_hash_digest - calculate digest from req->src
1636 * @req:        AHASH request
1637 *
1638 * Return values: see s5p_hash_final above.
1639 */
1640static int s5p_hash_digest(struct ahash_request *req)
1641{
1642        return s5p_hash_init(req) ?: s5p_hash_finup(req);
1643}
1644
1645/**
1646 * s5p_hash_cra_init_alg - init crypto alg transformation
1647 * @tfm:        crypto transformation
1648 */
1649static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm)
1650{
1651        struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1652        const char *alg_name = crypto_tfm_alg_name(tfm);
1653
1654        tctx->dd = s5p_dev;
1655        /* Allocate a fallback and abort if it failed. */
1656        tctx->fallback = crypto_alloc_shash(alg_name, 0,
1657                                            CRYPTO_ALG_NEED_FALLBACK);
1658        if (IS_ERR(tctx->fallback)) {
1659                pr_err("fallback alloc fails for '%s'\n", alg_name);
1660                return PTR_ERR(tctx->fallback);
1661        }
1662
1663        crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1664                                 sizeof(struct s5p_hash_reqctx) + BUFLEN);
1665
1666        return 0;
1667}
1668
1669/**
1670 * s5p_hash_cra_init - init crypto tfm
1671 * @tfm:        crypto transformation
1672 */
1673static int s5p_hash_cra_init(struct crypto_tfm *tfm)
1674{
1675        return s5p_hash_cra_init_alg(tfm);
1676}
1677
1678/**
1679 * s5p_hash_cra_exit - exit crypto tfm
1680 * @tfm:        crypto transformation
1681 *
1682 * free allocated fallback
1683 */
1684static void s5p_hash_cra_exit(struct crypto_tfm *tfm)
1685{
1686        struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1687
1688        crypto_free_shash(tctx->fallback);
1689        tctx->fallback = NULL;
1690}
1691
1692/**
1693 * s5p_hash_export - export hash state
1694 * @req:        AHASH request
1695 * @out:        buffer for exported state
1696 */
1697static int s5p_hash_export(struct ahash_request *req, void *out)
1698{
1699        const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1700
1701        memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt);
1702
1703        return 0;
1704}
1705
1706/**
1707 * s5p_hash_import - import hash state
1708 * @req:        AHASH request
1709 * @in:         buffer with state to be imported from
1710 */
1711static int s5p_hash_import(struct ahash_request *req, const void *in)
1712{
1713        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1714        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1715        struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1716        const struct s5p_hash_reqctx *ctx_in = in;
1717
1718        memcpy(ctx, in, sizeof(*ctx) + BUFLEN);
1719        if (ctx_in->bufcnt > BUFLEN) {
1720                ctx->error = true;
1721                return -EINVAL;
1722        }
1723
1724        ctx->dd = tctx->dd;
1725        ctx->error = false;
1726
1727        return 0;
1728}
1729
1730static struct ahash_alg algs_sha1_md5_sha256[] = {
1731{
1732        .init           = s5p_hash_init,
1733        .update         = s5p_hash_update,
1734        .final          = s5p_hash_final,
1735        .finup          = s5p_hash_finup,
1736        .digest         = s5p_hash_digest,
1737        .export         = s5p_hash_export,
1738        .import         = s5p_hash_import,
1739        .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1740        .halg.digestsize        = SHA1_DIGEST_SIZE,
1741        .halg.base      = {
1742                .cra_name               = "sha1",
1743                .cra_driver_name        = "exynos-sha1",
1744                .cra_priority           = 100,
1745                .cra_flags              = CRYPTO_ALG_KERN_DRIVER_ONLY |
1746                                          CRYPTO_ALG_ASYNC |
1747                                          CRYPTO_ALG_NEED_FALLBACK,
1748                .cra_blocksize          = HASH_BLOCK_SIZE,
1749                .cra_ctxsize            = sizeof(struct s5p_hash_ctx),
1750                .cra_alignmask          = SSS_HASH_DMA_ALIGN_MASK,
1751                .cra_module             = THIS_MODULE,
1752                .cra_init               = s5p_hash_cra_init,
1753                .cra_exit               = s5p_hash_cra_exit,
1754        }
1755},
1756{
1757        .init           = s5p_hash_init,
1758        .update         = s5p_hash_update,
1759        .final          = s5p_hash_final,
1760        .finup          = s5p_hash_finup,
1761        .digest         = s5p_hash_digest,
1762        .export         = s5p_hash_export,
1763        .import         = s5p_hash_import,
1764        .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1765        .halg.digestsize        = MD5_DIGEST_SIZE,
1766        .halg.base      = {
1767                .cra_name               = "md5",
1768                .cra_driver_name        = "exynos-md5",
1769                .cra_priority           = 100,
1770                .cra_flags              = CRYPTO_ALG_KERN_DRIVER_ONLY |
1771                                          CRYPTO_ALG_ASYNC |
1772                                          CRYPTO_ALG_NEED_FALLBACK,
1773                .cra_blocksize          = HASH_BLOCK_SIZE,
1774                .cra_ctxsize            = sizeof(struct s5p_hash_ctx),
1775                .cra_alignmask          = SSS_HASH_DMA_ALIGN_MASK,
1776                .cra_module             = THIS_MODULE,
1777                .cra_init               = s5p_hash_cra_init,
1778                .cra_exit               = s5p_hash_cra_exit,
1779        }
1780},
1781{
1782        .init           = s5p_hash_init,
1783        .update         = s5p_hash_update,
1784        .final          = s5p_hash_final,
1785        .finup          = s5p_hash_finup,
1786        .digest         = s5p_hash_digest,
1787        .export         = s5p_hash_export,
1788        .import         = s5p_hash_import,
1789        .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1790        .halg.digestsize        = SHA256_DIGEST_SIZE,
1791        .halg.base      = {
1792                .cra_name               = "sha256",
1793                .cra_driver_name        = "exynos-sha256",
1794                .cra_priority           = 100,
1795                .cra_flags              = CRYPTO_ALG_KERN_DRIVER_ONLY |
1796                                          CRYPTO_ALG_ASYNC |
1797                                          CRYPTO_ALG_NEED_FALLBACK,
1798                .cra_blocksize          = HASH_BLOCK_SIZE,
1799                .cra_ctxsize            = sizeof(struct s5p_hash_ctx),
1800                .cra_alignmask          = SSS_HASH_DMA_ALIGN_MASK,
1801                .cra_module             = THIS_MODULE,
1802                .cra_init               = s5p_hash_cra_init,
1803                .cra_exit               = s5p_hash_cra_exit,
1804        }
1805}
1806
1807};
1808
1809static void s5p_set_aes(struct s5p_aes_dev *dev,
1810                        const u8 *key, const u8 *iv, const u8 *ctr,
1811                        unsigned int keylen)
1812{
1813        void __iomem *keystart;
1814
1815        if (iv)
1816                memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv,
1817                            AES_BLOCK_SIZE);
1818
1819        if (ctr)
1820                memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), ctr,
1821                            AES_BLOCK_SIZE);
1822
1823        if (keylen == AES_KEYSIZE_256)
1824                keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
1825        else if (keylen == AES_KEYSIZE_192)
1826                keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
1827        else
1828                keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
1829
1830        memcpy_toio(keystart, key, keylen);
1831}
1832
1833static bool s5p_is_sg_aligned(struct scatterlist *sg)
1834{
1835        while (sg) {
1836                if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
1837                        return false;
1838                sg = sg_next(sg);
1839        }
1840
1841        return true;
1842}
1843
1844static int s5p_set_indata_start(struct s5p_aes_dev *dev,
1845                                struct skcipher_request *req)
1846{
1847        struct scatterlist *sg;
1848        int err;
1849
1850        dev->sg_src_cpy = NULL;
1851        sg = req->src;
1852        if (!s5p_is_sg_aligned(sg)) {
1853                dev_dbg(dev->dev,
1854                        "At least one unaligned source scatter list, making a copy\n");
1855                err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
1856                if (err)
1857                        return err;
1858
1859                sg = dev->sg_src_cpy;
1860        }
1861
1862        err = s5p_set_indata(dev, sg);
1863        if (err) {
1864                s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
1865                return err;
1866        }
1867
1868        return 0;
1869}
1870
1871static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
1872                                 struct skcipher_request *req)
1873{
1874        struct scatterlist *sg;
1875        int err;
1876
1877        dev->sg_dst_cpy = NULL;
1878        sg = req->dst;
1879        if (!s5p_is_sg_aligned(sg)) {
1880                dev_dbg(dev->dev,
1881                        "At least one unaligned dest scatter list, making a copy\n");
1882                err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
1883                if (err)
1884                        return err;
1885
1886                sg = dev->sg_dst_cpy;
1887        }
1888
1889        err = s5p_set_outdata(dev, sg);
1890        if (err) {
1891                s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
1892                return err;
1893        }
1894
1895        return 0;
1896}
1897
1898static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
1899{
1900        struct skcipher_request *req = dev->req;
1901        u32 aes_control;
1902        unsigned long flags;
1903        int err;
1904        u8 *iv, *ctr;
1905
1906        /* This sets bit [13:12] to 00, which selects 128-bit counter */
1907        aes_control = SSS_AES_KEY_CHANGE_MODE;
1908        if (mode & FLAGS_AES_DECRYPT)
1909                aes_control |= SSS_AES_MODE_DECRYPT;
1910
1911        if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) {
1912                aes_control |= SSS_AES_CHAIN_MODE_CBC;
1913                iv = req->iv;
1914                ctr = NULL;
1915        } else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) {
1916                aes_control |= SSS_AES_CHAIN_MODE_CTR;
1917                iv = NULL;
1918                ctr = req->iv;
1919        } else {
1920                iv = NULL; /* AES_ECB */
1921                ctr = NULL;
1922        }
1923
1924        if (dev->ctx->keylen == AES_KEYSIZE_192)
1925                aes_control |= SSS_AES_KEY_SIZE_192;
1926        else if (dev->ctx->keylen == AES_KEYSIZE_256)
1927                aes_control |= SSS_AES_KEY_SIZE_256;
1928
1929        aes_control |= SSS_AES_FIFO_MODE;
1930
1931        /* as a variant it is possible to use byte swapping on DMA side */
1932        aes_control |= SSS_AES_BYTESWAP_DI
1933                    |  SSS_AES_BYTESWAP_DO
1934                    |  SSS_AES_BYTESWAP_IV
1935                    |  SSS_AES_BYTESWAP_KEY
1936                    |  SSS_AES_BYTESWAP_CNT;
1937
1938        spin_lock_irqsave(&dev->lock, flags);
1939
1940        SSS_WRITE(dev, FCINTENCLR,
1941                  SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
1942        SSS_WRITE(dev, FCFIFOCTRL, 0x00);
1943
1944        err = s5p_set_indata_start(dev, req);
1945        if (err)
1946                goto indata_error;
1947
1948        err = s5p_set_outdata_start(dev, req);
1949        if (err)
1950                goto outdata_error;
1951
1952        SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
1953        s5p_set_aes(dev, dev->ctx->aes_key, iv, ctr, dev->ctx->keylen);
1954
1955        s5p_set_dma_indata(dev,  dev->sg_src);
1956        s5p_set_dma_outdata(dev, dev->sg_dst);
1957
1958        SSS_WRITE(dev, FCINTENSET,
1959                  SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
1960
1961        spin_unlock_irqrestore(&dev->lock, flags);
1962
1963        return;
1964
1965outdata_error:
1966        s5p_unset_indata(dev);
1967
1968indata_error:
1969        s5p_sg_done(dev);
1970        dev->busy = false;
1971        spin_unlock_irqrestore(&dev->lock, flags);
1972        s5p_aes_complete(req, err);
1973}
1974
1975static void s5p_tasklet_cb(unsigned long data)
1976{
1977        struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
1978        struct crypto_async_request *async_req, *backlog;
1979        struct s5p_aes_reqctx *reqctx;
1980        unsigned long flags;
1981
1982        spin_lock_irqsave(&dev->lock, flags);
1983        backlog   = crypto_get_backlog(&dev->queue);
1984        async_req = crypto_dequeue_request(&dev->queue);
1985
1986        if (!async_req) {
1987                dev->busy = false;
1988                spin_unlock_irqrestore(&dev->lock, flags);
1989                return;
1990        }
1991        spin_unlock_irqrestore(&dev->lock, flags);
1992
1993        if (backlog)
1994                backlog->complete(backlog, -EINPROGRESS);
1995
1996        dev->req = skcipher_request_cast(async_req);
1997        dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
1998        reqctx   = skcipher_request_ctx(dev->req);
1999
2000        s5p_aes_crypt_start(dev, reqctx->mode);
2001}
2002
2003static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
2004                              struct skcipher_request *req)
2005{
2006        unsigned long flags;
2007        int err;
2008
2009        spin_lock_irqsave(&dev->lock, flags);
2010        err = crypto_enqueue_request(&dev->queue, &req->base);
2011        if (dev->busy) {
2012                spin_unlock_irqrestore(&dev->lock, flags);
2013                return err;
2014        }
2015        dev->busy = true;
2016
2017        spin_unlock_irqrestore(&dev->lock, flags);
2018
2019        tasklet_schedule(&dev->tasklet);
2020
2021        return err;
2022}
2023
2024static int s5p_aes_crypt(struct skcipher_request *req, unsigned long mode)
2025{
2026        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
2027        struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
2028        struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2029        struct s5p_aes_dev *dev = ctx->dev;
2030
2031        if (!req->cryptlen)
2032                return 0;
2033
2034        if (!IS_ALIGNED(req->cryptlen, AES_BLOCK_SIZE) &&
2035                        ((mode & FLAGS_AES_MODE_MASK) != FLAGS_AES_CTR)) {
2036                dev_dbg(dev->dev, "request size is not exact amount of AES blocks\n");
2037                return -EINVAL;
2038        }
2039
2040        reqctx->mode = mode;
2041
2042        return s5p_aes_handle_req(dev, req);
2043}
2044
2045static int s5p_aes_setkey(struct crypto_skcipher *cipher,
2046                          const u8 *key, unsigned int keylen)
2047{
2048        struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher);
2049        struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2050
2051        if (keylen != AES_KEYSIZE_128 &&
2052            keylen != AES_KEYSIZE_192 &&
2053            keylen != AES_KEYSIZE_256)
2054                return -EINVAL;
2055
2056        memcpy(ctx->aes_key, key, keylen);
2057        ctx->keylen = keylen;
2058
2059        return 0;
2060}
2061
2062static int s5p_aes_ecb_encrypt(struct skcipher_request *req)
2063{
2064        return s5p_aes_crypt(req, 0);
2065}
2066
2067static int s5p_aes_ecb_decrypt(struct skcipher_request *req)
2068{
2069        return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
2070}
2071
2072static int s5p_aes_cbc_encrypt(struct skcipher_request *req)
2073{
2074        return s5p_aes_crypt(req, FLAGS_AES_CBC);
2075}
2076
2077static int s5p_aes_cbc_decrypt(struct skcipher_request *req)
2078{
2079        return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
2080}
2081
2082static int s5p_aes_ctr_crypt(struct skcipher_request *req)
2083{
2084        return s5p_aes_crypt(req, FLAGS_AES_CTR);
2085}
2086
2087static int s5p_aes_init_tfm(struct crypto_skcipher *tfm)
2088{
2089        struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2090
2091        ctx->dev = s5p_dev;
2092        crypto_skcipher_set_reqsize(tfm, sizeof(struct s5p_aes_reqctx));
2093
2094        return 0;
2095}
2096
2097static struct skcipher_alg algs[] = {
2098        {
2099                .base.cra_name          = "ecb(aes)",
2100                .base.cra_driver_name   = "ecb-aes-s5p",
2101                .base.cra_priority      = 100,
2102                .base.cra_flags         = CRYPTO_ALG_ASYNC |
2103                                          CRYPTO_ALG_KERN_DRIVER_ONLY,
2104                .base.cra_blocksize     = AES_BLOCK_SIZE,
2105                .base.cra_ctxsize       = sizeof(struct s5p_aes_ctx),
2106                .base.cra_alignmask     = 0x0f,
2107                .base.cra_module        = THIS_MODULE,
2108
2109                .min_keysize            = AES_MIN_KEY_SIZE,
2110                .max_keysize            = AES_MAX_KEY_SIZE,
2111                .setkey                 = s5p_aes_setkey,
2112                .encrypt                = s5p_aes_ecb_encrypt,
2113                .decrypt                = s5p_aes_ecb_decrypt,
2114                .init                   = s5p_aes_init_tfm,
2115        },
2116        {
2117                .base.cra_name          = "cbc(aes)",
2118                .base.cra_driver_name   = "cbc-aes-s5p",
2119                .base.cra_priority      = 100,
2120                .base.cra_flags         = CRYPTO_ALG_ASYNC |
2121                                          CRYPTO_ALG_KERN_DRIVER_ONLY,
2122                .base.cra_blocksize     = AES_BLOCK_SIZE,
2123                .base.cra_ctxsize       = sizeof(struct s5p_aes_ctx),
2124                .base.cra_alignmask     = 0x0f,
2125                .base.cra_module        = THIS_MODULE,
2126
2127                .min_keysize            = AES_MIN_KEY_SIZE,
2128                .max_keysize            = AES_MAX_KEY_SIZE,
2129                .ivsize                 = AES_BLOCK_SIZE,
2130                .setkey                 = s5p_aes_setkey,
2131                .encrypt                = s5p_aes_cbc_encrypt,
2132                .decrypt                = s5p_aes_cbc_decrypt,
2133                .init                   = s5p_aes_init_tfm,
2134        },
2135        {
2136                .base.cra_name          = "ctr(aes)",
2137                .base.cra_driver_name   = "ctr-aes-s5p",
2138                .base.cra_priority      = 100,
2139                .base.cra_flags         = CRYPTO_ALG_ASYNC |
2140                                          CRYPTO_ALG_KERN_DRIVER_ONLY,
2141                .base.cra_blocksize     = 1,
2142                .base.cra_ctxsize       = sizeof(struct s5p_aes_ctx),
2143                .base.cra_alignmask     = 0x0f,
2144                .base.cra_module        = THIS_MODULE,
2145
2146                .min_keysize            = AES_MIN_KEY_SIZE,
2147                .max_keysize            = AES_MAX_KEY_SIZE,
2148                .ivsize                 = AES_BLOCK_SIZE,
2149                .setkey                 = s5p_aes_setkey,
2150                .encrypt                = s5p_aes_ctr_crypt,
2151                .decrypt                = s5p_aes_ctr_crypt,
2152                .init                   = s5p_aes_init_tfm,
2153        },
2154};
2155
2156static int s5p_aes_probe(struct platform_device *pdev)
2157{
2158        struct device *dev = &pdev->dev;
2159        int i, j, err;
2160        const struct samsung_aes_variant *variant;
2161        struct s5p_aes_dev *pdata;
2162        struct resource *res;
2163        unsigned int hash_i;
2164
2165        if (s5p_dev)
2166                return -EEXIST;
2167
2168        pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2169        if (!pdata)
2170                return -ENOMEM;
2171
2172        variant = find_s5p_sss_version(pdev);
2173        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2174
2175        /*
2176         * Note: HASH and PRNG uses the same registers in secss, avoid
2177         * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2178         * is enabled in config. We need larger size for HASH registers in
2179         * secss, current describe only AES/DES
2180         */
2181        if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) {
2182                if (variant == &exynos_aes_data) {
2183                        res->end += 0x300;
2184                        pdata->use_hash = true;
2185                }
2186        }
2187
2188        pdata->res = res;
2189        pdata->ioaddr = devm_ioremap_resource(dev, res);
2190        if (IS_ERR(pdata->ioaddr)) {
2191                if (!pdata->use_hash)
2192                        return PTR_ERR(pdata->ioaddr);
2193                /* try AES without HASH */
2194                res->end -= 0x300;
2195                pdata->use_hash = false;
2196                pdata->ioaddr = devm_ioremap_resource(dev, res);
2197                if (IS_ERR(pdata->ioaddr))
2198                        return PTR_ERR(pdata->ioaddr);
2199        }
2200
2201        pdata->clk = devm_clk_get(dev, variant->clk_names[0]);
2202        if (IS_ERR(pdata->clk))
2203                return dev_err_probe(dev, PTR_ERR(pdata->clk),
2204                                     "failed to find secss clock %s\n",
2205                                     variant->clk_names[0]);
2206
2207        err = clk_prepare_enable(pdata->clk);
2208        if (err < 0) {
2209                dev_err(dev, "Enabling clock %s failed, err %d\n",
2210                        variant->clk_names[0], err);
2211                return err;
2212        }
2213
2214        if (variant->clk_names[1]) {
2215                pdata->pclk = devm_clk_get(dev, variant->clk_names[1]);
2216                if (IS_ERR(pdata->pclk)) {
2217                        err = dev_err_probe(dev, PTR_ERR(pdata->pclk),
2218                                            "failed to find clock %s\n",
2219                                            variant->clk_names[1]);
2220                        goto err_clk;
2221                }
2222
2223                err = clk_prepare_enable(pdata->pclk);
2224                if (err < 0) {
2225                        dev_err(dev, "Enabling clock %s failed, err %d\n",
2226                                variant->clk_names[0], err);
2227                        goto err_clk;
2228                }
2229        } else {
2230                pdata->pclk = NULL;
2231        }
2232
2233        spin_lock_init(&pdata->lock);
2234        spin_lock_init(&pdata->hash_lock);
2235
2236        pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
2237        pdata->io_hash_base = pdata->ioaddr + variant->hash_offset;
2238
2239        pdata->irq_fc = platform_get_irq(pdev, 0);
2240        if (pdata->irq_fc < 0) {
2241                err = pdata->irq_fc;
2242                dev_warn(dev, "feed control interrupt is not available.\n");
2243                goto err_irq;
2244        }
2245        err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
2246                                        s5p_aes_interrupt, IRQF_ONESHOT,
2247                                        pdev->name, pdev);
2248        if (err < 0) {
2249                dev_warn(dev, "feed control interrupt is not available.\n");
2250                goto err_irq;
2251        }
2252
2253        pdata->busy = false;
2254        pdata->dev = dev;
2255        platform_set_drvdata(pdev, pdata);
2256        s5p_dev = pdata;
2257
2258        tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
2259        crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
2260
2261        for (i = 0; i < ARRAY_SIZE(algs); i++) {
2262                err = crypto_register_skcipher(&algs[i]);
2263                if (err)
2264                        goto err_algs;
2265        }
2266
2267        if (pdata->use_hash) {
2268                tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb,
2269                             (unsigned long)pdata);
2270                crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH);
2271
2272                for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256);
2273                     hash_i++) {
2274                        struct ahash_alg *alg;
2275
2276                        alg = &algs_sha1_md5_sha256[hash_i];
2277                        err = crypto_register_ahash(alg);
2278                        if (err) {
2279                                dev_err(dev, "can't register '%s': %d\n",
2280                                        alg->halg.base.cra_driver_name, err);
2281                                goto err_hash;
2282                        }
2283                }
2284        }
2285
2286        dev_info(dev, "s5p-sss driver registered\n");
2287
2288        return 0;
2289
2290err_hash:
2291        for (j = hash_i - 1; j >= 0; j--)
2292                crypto_unregister_ahash(&algs_sha1_md5_sha256[j]);
2293
2294        tasklet_kill(&pdata->hash_tasklet);
2295        res->end -= 0x300;
2296
2297err_algs:
2298        if (i < ARRAY_SIZE(algs))
2299                dev_err(dev, "can't register '%s': %d\n", algs[i].base.cra_name,
2300                        err);
2301
2302        for (j = 0; j < i; j++)
2303                crypto_unregister_skcipher(&algs[j]);
2304
2305        tasklet_kill(&pdata->tasklet);
2306
2307err_irq:
2308        clk_disable_unprepare(pdata->pclk);
2309
2310err_clk:
2311        clk_disable_unprepare(pdata->clk);
2312        s5p_dev = NULL;
2313
2314        return err;
2315}
2316
2317static int s5p_aes_remove(struct platform_device *pdev)
2318{
2319        struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
2320        int i;
2321
2322        if (!pdata)
2323                return -ENODEV;
2324
2325        for (i = 0; i < ARRAY_SIZE(algs); i++)
2326                crypto_unregister_skcipher(&algs[i]);
2327
2328        tasklet_kill(&pdata->tasklet);
2329        if (pdata->use_hash) {
2330                for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--)
2331                        crypto_unregister_ahash(&algs_sha1_md5_sha256[i]);
2332
2333                pdata->res->end -= 0x300;
2334                tasklet_kill(&pdata->hash_tasklet);
2335                pdata->use_hash = false;
2336        }
2337
2338        clk_disable_unprepare(pdata->pclk);
2339
2340        clk_disable_unprepare(pdata->clk);
2341        s5p_dev = NULL;
2342
2343        return 0;
2344}
2345
2346static struct platform_driver s5p_aes_crypto = {
2347        .probe  = s5p_aes_probe,
2348        .remove = s5p_aes_remove,
2349        .driver = {
2350                .name   = "s5p-secss",
2351                .of_match_table = s5p_sss_dt_match,
2352        },
2353};
2354
2355module_platform_driver(s5p_aes_crypto);
2356
2357MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2358MODULE_LICENSE("GPL v2");
2359MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
2360MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");
2361