linux/drivers/dma/ep93xx_dma.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for the Cirrus Logic EP93xx DMA Controller
   4 *
   5 * Copyright (C) 2011 Mika Westerberg
   6 *
   7 * DMA M2P implementation is based on the original
   8 * arch/arm/mach-ep93xx/dma-m2p.c which has following copyrights:
   9 *
  10 *   Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
  11 *   Copyright (C) 2006 Applied Data Systems
  12 *   Copyright (C) 2009 Ryan Mallon <rmallon@gmail.com>
  13 *
  14 * This driver is based on dw_dmac and amba-pl08x drivers.
  15 */
  16
  17#include <linux/clk.h>
  18#include <linux/init.h>
  19#include <linux/interrupt.h>
  20#include <linux/dmaengine.h>
  21#include <linux/module.h>
  22#include <linux/mod_devicetable.h>
  23#include <linux/platform_device.h>
  24#include <linux/slab.h>
  25
  26#include <linux/platform_data/dma-ep93xx.h>
  27
  28#include "dmaengine.h"
  29
  30/* M2P registers */
  31#define M2P_CONTROL                     0x0000
  32#define M2P_CONTROL_STALLINT            BIT(0)
  33#define M2P_CONTROL_NFBINT              BIT(1)
  34#define M2P_CONTROL_CH_ERROR_INT        BIT(3)
  35#define M2P_CONTROL_ENABLE              BIT(4)
  36#define M2P_CONTROL_ICE                 BIT(6)
  37
  38#define M2P_INTERRUPT                   0x0004
  39#define M2P_INTERRUPT_STALL             BIT(0)
  40#define M2P_INTERRUPT_NFB               BIT(1)
  41#define M2P_INTERRUPT_ERROR             BIT(3)
  42
  43#define M2P_PPALLOC                     0x0008
  44#define M2P_STATUS                      0x000c
  45
  46#define M2P_MAXCNT0                     0x0020
  47#define M2P_BASE0                       0x0024
  48#define M2P_MAXCNT1                     0x0030
  49#define M2P_BASE1                       0x0034
  50
  51#define M2P_STATE_IDLE                  0
  52#define M2P_STATE_STALL                 1
  53#define M2P_STATE_ON                    2
  54#define M2P_STATE_NEXT                  3
  55
  56/* M2M registers */
  57#define M2M_CONTROL                     0x0000
  58#define M2M_CONTROL_DONEINT             BIT(2)
  59#define M2M_CONTROL_ENABLE              BIT(3)
  60#define M2M_CONTROL_START               BIT(4)
  61#define M2M_CONTROL_DAH                 BIT(11)
  62#define M2M_CONTROL_SAH                 BIT(12)
  63#define M2M_CONTROL_PW_SHIFT            9
  64#define M2M_CONTROL_PW_8                (0 << M2M_CONTROL_PW_SHIFT)
  65#define M2M_CONTROL_PW_16               (1 << M2M_CONTROL_PW_SHIFT)
  66#define M2M_CONTROL_PW_32               (2 << M2M_CONTROL_PW_SHIFT)
  67#define M2M_CONTROL_PW_MASK             (3 << M2M_CONTROL_PW_SHIFT)
  68#define M2M_CONTROL_TM_SHIFT            13
  69#define M2M_CONTROL_TM_TX               (1 << M2M_CONTROL_TM_SHIFT)
  70#define M2M_CONTROL_TM_RX               (2 << M2M_CONTROL_TM_SHIFT)
  71#define M2M_CONTROL_NFBINT              BIT(21)
  72#define M2M_CONTROL_RSS_SHIFT           22
  73#define M2M_CONTROL_RSS_SSPRX           (1 << M2M_CONTROL_RSS_SHIFT)
  74#define M2M_CONTROL_RSS_SSPTX           (2 << M2M_CONTROL_RSS_SHIFT)
  75#define M2M_CONTROL_RSS_IDE             (3 << M2M_CONTROL_RSS_SHIFT)
  76#define M2M_CONTROL_NO_HDSK             BIT(24)
  77#define M2M_CONTROL_PWSC_SHIFT          25
  78
  79#define M2M_INTERRUPT                   0x0004
  80#define M2M_INTERRUPT_MASK              6
  81
  82#define M2M_STATUS                      0x000c
  83#define M2M_STATUS_CTL_SHIFT            1
  84#define M2M_STATUS_CTL_IDLE             (0 << M2M_STATUS_CTL_SHIFT)
  85#define M2M_STATUS_CTL_STALL            (1 << M2M_STATUS_CTL_SHIFT)
  86#define M2M_STATUS_CTL_MEMRD            (2 << M2M_STATUS_CTL_SHIFT)
  87#define M2M_STATUS_CTL_MEMWR            (3 << M2M_STATUS_CTL_SHIFT)
  88#define M2M_STATUS_CTL_BWCWAIT          (4 << M2M_STATUS_CTL_SHIFT)
  89#define M2M_STATUS_CTL_MASK             (7 << M2M_STATUS_CTL_SHIFT)
  90#define M2M_STATUS_BUF_SHIFT            4
  91#define M2M_STATUS_BUF_NO               (0 << M2M_STATUS_BUF_SHIFT)
  92#define M2M_STATUS_BUF_ON               (1 << M2M_STATUS_BUF_SHIFT)
  93#define M2M_STATUS_BUF_NEXT             (2 << M2M_STATUS_BUF_SHIFT)
  94#define M2M_STATUS_BUF_MASK             (3 << M2M_STATUS_BUF_SHIFT)
  95#define M2M_STATUS_DONE                 BIT(6)
  96
  97#define M2M_BCR0                        0x0010
  98#define M2M_BCR1                        0x0014
  99#define M2M_SAR_BASE0                   0x0018
 100#define M2M_SAR_BASE1                   0x001c
 101#define M2M_DAR_BASE0                   0x002c
 102#define M2M_DAR_BASE1                   0x0030
 103
 104#define DMA_MAX_CHAN_BYTES              0xffff
 105#define DMA_MAX_CHAN_DESCRIPTORS        32
 106
 107struct ep93xx_dma_engine;
 108static int ep93xx_dma_slave_config_write(struct dma_chan *chan,
 109                                         enum dma_transfer_direction dir,
 110                                         struct dma_slave_config *config);
 111
 112/**
 113 * struct ep93xx_dma_desc - EP93xx specific transaction descriptor
 114 * @src_addr: source address of the transaction
 115 * @dst_addr: destination address of the transaction
 116 * @size: size of the transaction (in bytes)
 117 * @complete: this descriptor is completed
 118 * @txd: dmaengine API descriptor
 119 * @tx_list: list of linked descriptors
 120 * @node: link used for putting this into a channel queue
 121 */
 122struct ep93xx_dma_desc {
 123        u32                             src_addr;
 124        u32                             dst_addr;
 125        size_t                          size;
 126        bool                            complete;
 127        struct dma_async_tx_descriptor  txd;
 128        struct list_head                tx_list;
 129        struct list_head                node;
 130};
 131
 132/**
 133 * struct ep93xx_dma_chan - an EP93xx DMA M2P/M2M channel
 134 * @chan: dmaengine API channel
 135 * @edma: pointer to to the engine device
 136 * @regs: memory mapped registers
 137 * @irq: interrupt number of the channel
 138 * @clk: clock used by this channel
 139 * @tasklet: channel specific tasklet used for callbacks
 140 * @lock: lock protecting the fields following
 141 * @flags: flags for the channel
 142 * @buffer: which buffer to use next (0/1)
 143 * @active: flattened chain of descriptors currently being processed
 144 * @queue: pending descriptors which are handled next
 145 * @free_list: list of free descriptors which can be used
 146 * @runtime_addr: physical address currently used as dest/src (M2M only). This
 147 *                is set via .device_config before slave operation is
 148 *                prepared
 149 * @runtime_ctrl: M2M runtime values for the control register.
 150 * @slave_config: slave configuration
 151 *
 152 * As EP93xx DMA controller doesn't support real chained DMA descriptors we
 153 * will have slightly different scheme here: @active points to a head of
 154 * flattened DMA descriptor chain.
 155 *
 156 * @queue holds pending transactions. These are linked through the first
 157 * descriptor in the chain. When a descriptor is moved to the @active queue,
 158 * the first and chained descriptors are flattened into a single list.
 159 *
 160 * @chan.private holds pointer to &struct ep93xx_dma_data which contains
 161 * necessary channel configuration information. For memcpy channels this must
 162 * be %NULL.
 163 */
 164struct ep93xx_dma_chan {
 165        struct dma_chan                 chan;
 166        const struct ep93xx_dma_engine  *edma;
 167        void __iomem                    *regs;
 168        int                             irq;
 169        struct clk                      *clk;
 170        struct tasklet_struct           tasklet;
 171        /* protects the fields following */
 172        spinlock_t                      lock;
 173        unsigned long                   flags;
 174/* Channel is configured for cyclic transfers */
 175#define EP93XX_DMA_IS_CYCLIC            0
 176
 177        int                             buffer;
 178        struct list_head                active;
 179        struct list_head                queue;
 180        struct list_head                free_list;
 181        u32                             runtime_addr;
 182        u32                             runtime_ctrl;
 183        struct dma_slave_config         slave_config;
 184};
 185
 186/**
 187 * struct ep93xx_dma_engine - the EP93xx DMA engine instance
 188 * @dma_dev: holds the dmaengine device
 189 * @m2m: is this an M2M or M2P device
 190 * @hw_setup: method which sets the channel up for operation
 191 * @hw_synchronize: synchronizes DMA channel termination to current context
 192 * @hw_shutdown: shuts the channel down and flushes whatever is left
 193 * @hw_submit: pushes active descriptor(s) to the hardware
 194 * @hw_interrupt: handle the interrupt
 195 * @num_channels: number of channels for this instance
 196 * @channels: array of channels
 197 *
 198 * There is one instance of this struct for the M2P channels and one for the
 199 * M2M channels. hw_xxx() methods are used to perform operations which are
 200 * different on M2M and M2P channels. These methods are called with channel
 201 * lock held and interrupts disabled so they cannot sleep.
 202 */
 203struct ep93xx_dma_engine {
 204        struct dma_device       dma_dev;
 205        bool                    m2m;
 206        int                     (*hw_setup)(struct ep93xx_dma_chan *);
 207        void                    (*hw_synchronize)(struct ep93xx_dma_chan *);
 208        void                    (*hw_shutdown)(struct ep93xx_dma_chan *);
 209        void                    (*hw_submit)(struct ep93xx_dma_chan *);
 210        int                     (*hw_interrupt)(struct ep93xx_dma_chan *);
 211#define INTERRUPT_UNKNOWN       0
 212#define INTERRUPT_DONE          1
 213#define INTERRUPT_NEXT_BUFFER   2
 214
 215        size_t                  num_channels;
 216        struct ep93xx_dma_chan  channels[];
 217};
 218
 219static inline struct device *chan2dev(struct ep93xx_dma_chan *edmac)
 220{
 221        return &edmac->chan.dev->device;
 222}
 223
 224static struct ep93xx_dma_chan *to_ep93xx_dma_chan(struct dma_chan *chan)
 225{
 226        return container_of(chan, struct ep93xx_dma_chan, chan);
 227}
 228
 229/**
 230 * ep93xx_dma_set_active - set new active descriptor chain
 231 * @edmac: channel
 232 * @desc: head of the new active descriptor chain
 233 *
 234 * Sets @desc to be the head of the new active descriptor chain. This is the
 235 * chain which is processed next. The active list must be empty before calling
 236 * this function.
 237 *
 238 * Called with @edmac->lock held and interrupts disabled.
 239 */
 240static void ep93xx_dma_set_active(struct ep93xx_dma_chan *edmac,
 241                                  struct ep93xx_dma_desc *desc)
 242{
 243        BUG_ON(!list_empty(&edmac->active));
 244
 245        list_add_tail(&desc->node, &edmac->active);
 246
 247        /* Flatten the @desc->tx_list chain into @edmac->active list */
 248        while (!list_empty(&desc->tx_list)) {
 249                struct ep93xx_dma_desc *d = list_first_entry(&desc->tx_list,
 250                        struct ep93xx_dma_desc, node);
 251
 252                /*
 253                 * We copy the callback parameters from the first descriptor
 254                 * to all the chained descriptors. This way we can call the
 255                 * callback without having to find out the first descriptor in
 256                 * the chain. Useful for cyclic transfers.
 257                 */
 258                d->txd.callback = desc->txd.callback;
 259                d->txd.callback_param = desc->txd.callback_param;
 260
 261                list_move_tail(&d->node, &edmac->active);
 262        }
 263}
 264
 265/* Called with @edmac->lock held and interrupts disabled */
 266static struct ep93xx_dma_desc *
 267ep93xx_dma_get_active(struct ep93xx_dma_chan *edmac)
 268{
 269        return list_first_entry_or_null(&edmac->active,
 270                                        struct ep93xx_dma_desc, node);
 271}
 272
 273/**
 274 * ep93xx_dma_advance_active - advances to the next active descriptor
 275 * @edmac: channel
 276 *
 277 * Function advances active descriptor to the next in the @edmac->active and
 278 * returns %true if we still have descriptors in the chain to process.
 279 * Otherwise returns %false.
 280 *
 281 * When the channel is in cyclic mode always returns %true.
 282 *
 283 * Called with @edmac->lock held and interrupts disabled.
 284 */
 285static bool ep93xx_dma_advance_active(struct ep93xx_dma_chan *edmac)
 286{
 287        struct ep93xx_dma_desc *desc;
 288
 289        list_rotate_left(&edmac->active);
 290
 291        if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
 292                return true;
 293
 294        desc = ep93xx_dma_get_active(edmac);
 295        if (!desc)
 296                return false;
 297
 298        /*
 299         * If txd.cookie is set it means that we are back in the first
 300         * descriptor in the chain and hence done with it.
 301         */
 302        return !desc->txd.cookie;
 303}
 304
 305/*
 306 * M2P DMA implementation
 307 */
 308
 309static void m2p_set_control(struct ep93xx_dma_chan *edmac, u32 control)
 310{
 311        writel(control, edmac->regs + M2P_CONTROL);
 312        /*
 313         * EP93xx User's Guide states that we must perform a dummy read after
 314         * write to the control register.
 315         */
 316        readl(edmac->regs + M2P_CONTROL);
 317}
 318
 319static int m2p_hw_setup(struct ep93xx_dma_chan *edmac)
 320{
 321        struct ep93xx_dma_data *data = edmac->chan.private;
 322        u32 control;
 323
 324        writel(data->port & 0xf, edmac->regs + M2P_PPALLOC);
 325
 326        control = M2P_CONTROL_CH_ERROR_INT | M2P_CONTROL_ICE
 327                | M2P_CONTROL_ENABLE;
 328        m2p_set_control(edmac, control);
 329
 330        edmac->buffer = 0;
 331
 332        return 0;
 333}
 334
 335static inline u32 m2p_channel_state(struct ep93xx_dma_chan *edmac)
 336{
 337        return (readl(edmac->regs + M2P_STATUS) >> 4) & 0x3;
 338}
 339
 340static void m2p_hw_synchronize(struct ep93xx_dma_chan *edmac)
 341{
 342        unsigned long flags;
 343        u32 control;
 344
 345        spin_lock_irqsave(&edmac->lock, flags);
 346        control = readl(edmac->regs + M2P_CONTROL);
 347        control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
 348        m2p_set_control(edmac, control);
 349        spin_unlock_irqrestore(&edmac->lock, flags);
 350
 351        while (m2p_channel_state(edmac) >= M2P_STATE_ON)
 352                schedule();
 353}
 354
 355static void m2p_hw_shutdown(struct ep93xx_dma_chan *edmac)
 356{
 357        m2p_set_control(edmac, 0);
 358
 359        while (m2p_channel_state(edmac) != M2P_STATE_IDLE)
 360                dev_warn(chan2dev(edmac), "M2P: Not yet IDLE\n");
 361}
 362
 363static void m2p_fill_desc(struct ep93xx_dma_chan *edmac)
 364{
 365        struct ep93xx_dma_desc *desc;
 366        u32 bus_addr;
 367
 368        desc = ep93xx_dma_get_active(edmac);
 369        if (!desc) {
 370                dev_warn(chan2dev(edmac), "M2P: empty descriptor list\n");
 371                return;
 372        }
 373
 374        if (ep93xx_dma_chan_direction(&edmac->chan) == DMA_MEM_TO_DEV)
 375                bus_addr = desc->src_addr;
 376        else
 377                bus_addr = desc->dst_addr;
 378
 379        if (edmac->buffer == 0) {
 380                writel(desc->size, edmac->regs + M2P_MAXCNT0);
 381                writel(bus_addr, edmac->regs + M2P_BASE0);
 382        } else {
 383                writel(desc->size, edmac->regs + M2P_MAXCNT1);
 384                writel(bus_addr, edmac->regs + M2P_BASE1);
 385        }
 386
 387        edmac->buffer ^= 1;
 388}
 389
 390static void m2p_hw_submit(struct ep93xx_dma_chan *edmac)
 391{
 392        u32 control = readl(edmac->regs + M2P_CONTROL);
 393
 394        m2p_fill_desc(edmac);
 395        control |= M2P_CONTROL_STALLINT;
 396
 397        if (ep93xx_dma_advance_active(edmac)) {
 398                m2p_fill_desc(edmac);
 399                control |= M2P_CONTROL_NFBINT;
 400        }
 401
 402        m2p_set_control(edmac, control);
 403}
 404
 405static int m2p_hw_interrupt(struct ep93xx_dma_chan *edmac)
 406{
 407        u32 irq_status = readl(edmac->regs + M2P_INTERRUPT);
 408        u32 control;
 409
 410        if (irq_status & M2P_INTERRUPT_ERROR) {
 411                struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac);
 412
 413                /* Clear the error interrupt */
 414                writel(1, edmac->regs + M2P_INTERRUPT);
 415
 416                /*
 417                 * It seems that there is no easy way of reporting errors back
 418                 * to client so we just report the error here and continue as
 419                 * usual.
 420                 *
 421                 * Revisit this when there is a mechanism to report back the
 422                 * errors.
 423                 */
 424                dev_err(chan2dev(edmac),
 425                        "DMA transfer failed! Details:\n"
 426                        "\tcookie       : %d\n"
 427                        "\tsrc_addr     : 0x%08x\n"
 428                        "\tdst_addr     : 0x%08x\n"
 429                        "\tsize         : %zu\n",
 430                        desc->txd.cookie, desc->src_addr, desc->dst_addr,
 431                        desc->size);
 432        }
 433
 434        /*
 435         * Even latest E2 silicon revision sometimes assert STALL interrupt
 436         * instead of NFB. Therefore we treat them equally, basing on the
 437         * amount of data we still have to transfer.
 438         */
 439        if (!(irq_status & (M2P_INTERRUPT_STALL | M2P_INTERRUPT_NFB)))
 440                return INTERRUPT_UNKNOWN;
 441
 442        if (ep93xx_dma_advance_active(edmac)) {
 443                m2p_fill_desc(edmac);
 444                return INTERRUPT_NEXT_BUFFER;
 445        }
 446
 447        /* Disable interrupts */
 448        control = readl(edmac->regs + M2P_CONTROL);
 449        control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
 450        m2p_set_control(edmac, control);
 451
 452        return INTERRUPT_DONE;
 453}
 454
 455/*
 456 * M2M DMA implementation
 457 */
 458
 459static int m2m_hw_setup(struct ep93xx_dma_chan *edmac)
 460{
 461        const struct ep93xx_dma_data *data = edmac->chan.private;
 462        u32 control = 0;
 463
 464        if (!data) {
 465                /* This is memcpy channel, nothing to configure */
 466                writel(control, edmac->regs + M2M_CONTROL);
 467                return 0;
 468        }
 469
 470        switch (data->port) {
 471        case EP93XX_DMA_SSP:
 472                /*
 473                 * This was found via experimenting - anything less than 5
 474                 * causes the channel to perform only a partial transfer which
 475                 * leads to problems since we don't get DONE interrupt then.
 476                 */
 477                control = (5 << M2M_CONTROL_PWSC_SHIFT);
 478                control |= M2M_CONTROL_NO_HDSK;
 479
 480                if (data->direction == DMA_MEM_TO_DEV) {
 481                        control |= M2M_CONTROL_DAH;
 482                        control |= M2M_CONTROL_TM_TX;
 483                        control |= M2M_CONTROL_RSS_SSPTX;
 484                } else {
 485                        control |= M2M_CONTROL_SAH;
 486                        control |= M2M_CONTROL_TM_RX;
 487                        control |= M2M_CONTROL_RSS_SSPRX;
 488                }
 489                break;
 490
 491        case EP93XX_DMA_IDE:
 492                /*
 493                 * This IDE part is totally untested. Values below are taken
 494                 * from the EP93xx Users's Guide and might not be correct.
 495                 */
 496                if (data->direction == DMA_MEM_TO_DEV) {
 497                        /* Worst case from the UG */
 498                        control = (3 << M2M_CONTROL_PWSC_SHIFT);
 499                        control |= M2M_CONTROL_DAH;
 500                        control |= M2M_CONTROL_TM_TX;
 501                } else {
 502                        control = (2 << M2M_CONTROL_PWSC_SHIFT);
 503                        control |= M2M_CONTROL_SAH;
 504                        control |= M2M_CONTROL_TM_RX;
 505                }
 506
 507                control |= M2M_CONTROL_NO_HDSK;
 508                control |= M2M_CONTROL_RSS_IDE;
 509                control |= M2M_CONTROL_PW_16;
 510                break;
 511
 512        default:
 513                return -EINVAL;
 514        }
 515
 516        writel(control, edmac->regs + M2M_CONTROL);
 517        return 0;
 518}
 519
 520static void m2m_hw_shutdown(struct ep93xx_dma_chan *edmac)
 521{
 522        /* Just disable the channel */
 523        writel(0, edmac->regs + M2M_CONTROL);
 524}
 525
 526static void m2m_fill_desc(struct ep93xx_dma_chan *edmac)
 527{
 528        struct ep93xx_dma_desc *desc;
 529
 530        desc = ep93xx_dma_get_active(edmac);
 531        if (!desc) {
 532                dev_warn(chan2dev(edmac), "M2M: empty descriptor list\n");
 533                return;
 534        }
 535
 536        if (edmac->buffer == 0) {
 537                writel(desc->src_addr, edmac->regs + M2M_SAR_BASE0);
 538                writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE0);
 539                writel(desc->size, edmac->regs + M2M_BCR0);
 540        } else {
 541                writel(desc->src_addr, edmac->regs + M2M_SAR_BASE1);
 542                writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE1);
 543                writel(desc->size, edmac->regs + M2M_BCR1);
 544        }
 545
 546        edmac->buffer ^= 1;
 547}
 548
 549static void m2m_hw_submit(struct ep93xx_dma_chan *edmac)
 550{
 551        struct ep93xx_dma_data *data = edmac->chan.private;
 552        u32 control = readl(edmac->regs + M2M_CONTROL);
 553
 554        /*
 555         * Since we allow clients to configure PW (peripheral width) we always
 556         * clear PW bits here and then set them according what is given in
 557         * the runtime configuration.
 558         */
 559        control &= ~M2M_CONTROL_PW_MASK;
 560        control |= edmac->runtime_ctrl;
 561
 562        m2m_fill_desc(edmac);
 563        control |= M2M_CONTROL_DONEINT;
 564
 565        if (ep93xx_dma_advance_active(edmac)) {
 566                m2m_fill_desc(edmac);
 567                control |= M2M_CONTROL_NFBINT;
 568        }
 569
 570        /*
 571         * Now we can finally enable the channel. For M2M channel this must be
 572         * done _after_ the BCRx registers are programmed.
 573         */
 574        control |= M2M_CONTROL_ENABLE;
 575        writel(control, edmac->regs + M2M_CONTROL);
 576
 577        if (!data) {
 578                /*
 579                 * For memcpy channels the software trigger must be asserted
 580                 * in order to start the memcpy operation.
 581                 */
 582                control |= M2M_CONTROL_START;
 583                writel(control, edmac->regs + M2M_CONTROL);
 584        }
 585}
 586
 587/*
 588 * According to EP93xx User's Guide, we should receive DONE interrupt when all
 589 * M2M DMA controller transactions complete normally. This is not always the
 590 * case - sometimes EP93xx M2M DMA asserts DONE interrupt when the DMA channel
 591 * is still running (channel Buffer FSM in DMA_BUF_ON state, and channel
 592 * Control FSM in DMA_MEM_RD state, observed at least in IDE-DMA operation).
 593 * In effect, disabling the channel when only DONE bit is set could stop
 594 * currently running DMA transfer. To avoid this, we use Buffer FSM and
 595 * Control FSM to check current state of DMA channel.
 596 */
 597static int m2m_hw_interrupt(struct ep93xx_dma_chan *edmac)
 598{
 599        u32 status = readl(edmac->regs + M2M_STATUS);
 600        u32 ctl_fsm = status & M2M_STATUS_CTL_MASK;
 601        u32 buf_fsm = status & M2M_STATUS_BUF_MASK;
 602        bool done = status & M2M_STATUS_DONE;
 603        bool last_done;
 604        u32 control;
 605        struct ep93xx_dma_desc *desc;
 606
 607        /* Accept only DONE and NFB interrupts */
 608        if (!(readl(edmac->regs + M2M_INTERRUPT) & M2M_INTERRUPT_MASK))
 609                return INTERRUPT_UNKNOWN;
 610
 611        if (done) {
 612                /* Clear the DONE bit */
 613                writel(0, edmac->regs + M2M_INTERRUPT);
 614        }
 615
 616        /*
 617         * Check whether we are done with descriptors or not. This, together
 618         * with DMA channel state, determines action to take in interrupt.
 619         */
 620        desc = ep93xx_dma_get_active(edmac);
 621        last_done = !desc || desc->txd.cookie;
 622
 623        /*
 624         * Use M2M DMA Buffer FSM and Control FSM to check current state of
 625         * DMA channel. Using DONE and NFB bits from channel status register
 626         * or bits from channel interrupt register is not reliable.
 627         */
 628        if (!last_done &&
 629            (buf_fsm == M2M_STATUS_BUF_NO ||
 630             buf_fsm == M2M_STATUS_BUF_ON)) {
 631                /*
 632                 * Two buffers are ready for update when Buffer FSM is in
 633                 * DMA_NO_BUF state. Only one buffer can be prepared without
 634                 * disabling the channel or polling the DONE bit.
 635                 * To simplify things, always prepare only one buffer.
 636                 */
 637                if (ep93xx_dma_advance_active(edmac)) {
 638                        m2m_fill_desc(edmac);
 639                        if (done && !edmac->chan.private) {
 640                                /* Software trigger for memcpy channel */
 641                                control = readl(edmac->regs + M2M_CONTROL);
 642                                control |= M2M_CONTROL_START;
 643                                writel(control, edmac->regs + M2M_CONTROL);
 644                        }
 645                        return INTERRUPT_NEXT_BUFFER;
 646                } else {
 647                        last_done = true;
 648                }
 649        }
 650
 651        /*
 652         * Disable the channel only when Buffer FSM is in DMA_NO_BUF state
 653         * and Control FSM is in DMA_STALL state.
 654         */
 655        if (last_done &&
 656            buf_fsm == M2M_STATUS_BUF_NO &&
 657            ctl_fsm == M2M_STATUS_CTL_STALL) {
 658                /* Disable interrupts and the channel */
 659                control = readl(edmac->regs + M2M_CONTROL);
 660                control &= ~(M2M_CONTROL_DONEINT | M2M_CONTROL_NFBINT
 661                            | M2M_CONTROL_ENABLE);
 662                writel(control, edmac->regs + M2M_CONTROL);
 663                return INTERRUPT_DONE;
 664        }
 665
 666        /*
 667         * Nothing to do this time.
 668         */
 669        return INTERRUPT_NEXT_BUFFER;
 670}
 671
 672/*
 673 * DMA engine API implementation
 674 */
 675
 676static struct ep93xx_dma_desc *
 677ep93xx_dma_desc_get(struct ep93xx_dma_chan *edmac)
 678{
 679        struct ep93xx_dma_desc *desc, *_desc;
 680        struct ep93xx_dma_desc *ret = NULL;
 681        unsigned long flags;
 682
 683        spin_lock_irqsave(&edmac->lock, flags);
 684        list_for_each_entry_safe(desc, _desc, &edmac->free_list, node) {
 685                if (async_tx_test_ack(&desc->txd)) {
 686                        list_del_init(&desc->node);
 687
 688                        /* Re-initialize the descriptor */
 689                        desc->src_addr = 0;
 690                        desc->dst_addr = 0;
 691                        desc->size = 0;
 692                        desc->complete = false;
 693                        desc->txd.cookie = 0;
 694                        desc->txd.callback = NULL;
 695                        desc->txd.callback_param = NULL;
 696
 697                        ret = desc;
 698                        break;
 699                }
 700        }
 701        spin_unlock_irqrestore(&edmac->lock, flags);
 702        return ret;
 703}
 704
 705static void ep93xx_dma_desc_put(struct ep93xx_dma_chan *edmac,
 706                                struct ep93xx_dma_desc *desc)
 707{
 708        if (desc) {
 709                unsigned long flags;
 710
 711                spin_lock_irqsave(&edmac->lock, flags);
 712                list_splice_init(&desc->tx_list, &edmac->free_list);
 713                list_add(&desc->node, &edmac->free_list);
 714                spin_unlock_irqrestore(&edmac->lock, flags);
 715        }
 716}
 717
 718/**
 719 * ep93xx_dma_advance_work - start processing the next pending transaction
 720 * @edmac: channel
 721 *
 722 * If we have pending transactions queued and we are currently idling, this
 723 * function takes the next queued transaction from the @edmac->queue and
 724 * pushes it to the hardware for execution.
 725 */
 726static void ep93xx_dma_advance_work(struct ep93xx_dma_chan *edmac)
 727{
 728        struct ep93xx_dma_desc *new;
 729        unsigned long flags;
 730
 731        spin_lock_irqsave(&edmac->lock, flags);
 732        if (!list_empty(&edmac->active) || list_empty(&edmac->queue)) {
 733                spin_unlock_irqrestore(&edmac->lock, flags);
 734                return;
 735        }
 736
 737        /* Take the next descriptor from the pending queue */
 738        new = list_first_entry(&edmac->queue, struct ep93xx_dma_desc, node);
 739        list_del_init(&new->node);
 740
 741        ep93xx_dma_set_active(edmac, new);
 742
 743        /* Push it to the hardware */
 744        edmac->edma->hw_submit(edmac);
 745        spin_unlock_irqrestore(&edmac->lock, flags);
 746}
 747
 748static void ep93xx_dma_tasklet(struct tasklet_struct *t)
 749{
 750        struct ep93xx_dma_chan *edmac = from_tasklet(edmac, t, tasklet);
 751        struct ep93xx_dma_desc *desc, *d;
 752        struct dmaengine_desc_callback cb;
 753        LIST_HEAD(list);
 754
 755        memset(&cb, 0, sizeof(cb));
 756        spin_lock_irq(&edmac->lock);
 757        /*
 758         * If dma_terminate_all() was called before we get to run, the active
 759         * list has become empty. If that happens we aren't supposed to do
 760         * anything more than call ep93xx_dma_advance_work().
 761         */
 762        desc = ep93xx_dma_get_active(edmac);
 763        if (desc) {
 764                if (desc->complete) {
 765                        /* mark descriptor complete for non cyclic case only */
 766                        if (!test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
 767                                dma_cookie_complete(&desc->txd);
 768                        list_splice_init(&edmac->active, &list);
 769                }
 770                dmaengine_desc_get_callback(&desc->txd, &cb);
 771        }
 772        spin_unlock_irq(&edmac->lock);
 773
 774        /* Pick up the next descriptor from the queue */
 775        ep93xx_dma_advance_work(edmac);
 776
 777        /* Now we can release all the chained descriptors */
 778        list_for_each_entry_safe(desc, d, &list, node) {
 779                dma_descriptor_unmap(&desc->txd);
 780                ep93xx_dma_desc_put(edmac, desc);
 781        }
 782
 783        dmaengine_desc_callback_invoke(&cb, NULL);
 784}
 785
 786static irqreturn_t ep93xx_dma_interrupt(int irq, void *dev_id)
 787{
 788        struct ep93xx_dma_chan *edmac = dev_id;
 789        struct ep93xx_dma_desc *desc;
 790        irqreturn_t ret = IRQ_HANDLED;
 791
 792        spin_lock(&edmac->lock);
 793
 794        desc = ep93xx_dma_get_active(edmac);
 795        if (!desc) {
 796                dev_warn(chan2dev(edmac),
 797                         "got interrupt while active list is empty\n");
 798                spin_unlock(&edmac->lock);
 799                return IRQ_NONE;
 800        }
 801
 802        switch (edmac->edma->hw_interrupt(edmac)) {
 803        case INTERRUPT_DONE:
 804                desc->complete = true;
 805                tasklet_schedule(&edmac->tasklet);
 806                break;
 807
 808        case INTERRUPT_NEXT_BUFFER:
 809                if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
 810                        tasklet_schedule(&edmac->tasklet);
 811                break;
 812
 813        default:
 814                dev_warn(chan2dev(edmac), "unknown interrupt!\n");
 815                ret = IRQ_NONE;
 816                break;
 817        }
 818
 819        spin_unlock(&edmac->lock);
 820        return ret;
 821}
 822
 823/**
 824 * ep93xx_dma_tx_submit - set the prepared descriptor(s) to be executed
 825 * @tx: descriptor to be executed
 826 *
 827 * Function will execute given descriptor on the hardware or if the hardware
 828 * is busy, queue the descriptor to be executed later on. Returns cookie which
 829 * can be used to poll the status of the descriptor.
 830 */
 831static dma_cookie_t ep93xx_dma_tx_submit(struct dma_async_tx_descriptor *tx)
 832{
 833        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(tx->chan);
 834        struct ep93xx_dma_desc *desc;
 835        dma_cookie_t cookie;
 836        unsigned long flags;
 837
 838        spin_lock_irqsave(&edmac->lock, flags);
 839        cookie = dma_cookie_assign(tx);
 840
 841        desc = container_of(tx, struct ep93xx_dma_desc, txd);
 842
 843        /*
 844         * If nothing is currently prosessed, we push this descriptor
 845         * directly to the hardware. Otherwise we put the descriptor
 846         * to the pending queue.
 847         */
 848        if (list_empty(&edmac->active)) {
 849                ep93xx_dma_set_active(edmac, desc);
 850                edmac->edma->hw_submit(edmac);
 851        } else {
 852                list_add_tail(&desc->node, &edmac->queue);
 853        }
 854
 855        spin_unlock_irqrestore(&edmac->lock, flags);
 856        return cookie;
 857}
 858
 859/**
 860 * ep93xx_dma_alloc_chan_resources - allocate resources for the channel
 861 * @chan: channel to allocate resources
 862 *
 863 * Function allocates necessary resources for the given DMA channel and
 864 * returns number of allocated descriptors for the channel. Negative errno
 865 * is returned in case of failure.
 866 */
 867static int ep93xx_dma_alloc_chan_resources(struct dma_chan *chan)
 868{
 869        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
 870        struct ep93xx_dma_data *data = chan->private;
 871        const char *name = dma_chan_name(chan);
 872        int ret, i;
 873
 874        /* Sanity check the channel parameters */
 875        if (!edmac->edma->m2m) {
 876                if (!data)
 877                        return -EINVAL;
 878                if (data->port < EP93XX_DMA_I2S1 ||
 879                    data->port > EP93XX_DMA_IRDA)
 880                        return -EINVAL;
 881                if (data->direction != ep93xx_dma_chan_direction(chan))
 882                        return -EINVAL;
 883        } else {
 884                if (data) {
 885                        switch (data->port) {
 886                        case EP93XX_DMA_SSP:
 887                        case EP93XX_DMA_IDE:
 888                                if (!is_slave_direction(data->direction))
 889                                        return -EINVAL;
 890                                break;
 891                        default:
 892                                return -EINVAL;
 893                        }
 894                }
 895        }
 896
 897        if (data && data->name)
 898                name = data->name;
 899
 900        ret = clk_prepare_enable(edmac->clk);
 901        if (ret)
 902                return ret;
 903
 904        ret = request_irq(edmac->irq, ep93xx_dma_interrupt, 0, name, edmac);
 905        if (ret)
 906                goto fail_clk_disable;
 907
 908        spin_lock_irq(&edmac->lock);
 909        dma_cookie_init(&edmac->chan);
 910        ret = edmac->edma->hw_setup(edmac);
 911        spin_unlock_irq(&edmac->lock);
 912
 913        if (ret)
 914                goto fail_free_irq;
 915
 916        for (i = 0; i < DMA_MAX_CHAN_DESCRIPTORS; i++) {
 917                struct ep93xx_dma_desc *desc;
 918
 919                desc = kzalloc(sizeof(*desc), GFP_KERNEL);
 920                if (!desc) {
 921                        dev_warn(chan2dev(edmac), "not enough descriptors\n");
 922                        break;
 923                }
 924
 925                INIT_LIST_HEAD(&desc->tx_list);
 926
 927                dma_async_tx_descriptor_init(&desc->txd, chan);
 928                desc->txd.flags = DMA_CTRL_ACK;
 929                desc->txd.tx_submit = ep93xx_dma_tx_submit;
 930
 931                ep93xx_dma_desc_put(edmac, desc);
 932        }
 933
 934        return i;
 935
 936fail_free_irq:
 937        free_irq(edmac->irq, edmac);
 938fail_clk_disable:
 939        clk_disable_unprepare(edmac->clk);
 940
 941        return ret;
 942}
 943
 944/**
 945 * ep93xx_dma_free_chan_resources - release resources for the channel
 946 * @chan: channel
 947 *
 948 * Function releases all the resources allocated for the given channel.
 949 * The channel must be idle when this is called.
 950 */
 951static void ep93xx_dma_free_chan_resources(struct dma_chan *chan)
 952{
 953        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
 954        struct ep93xx_dma_desc *desc, *d;
 955        unsigned long flags;
 956        LIST_HEAD(list);
 957
 958        BUG_ON(!list_empty(&edmac->active));
 959        BUG_ON(!list_empty(&edmac->queue));
 960
 961        spin_lock_irqsave(&edmac->lock, flags);
 962        edmac->edma->hw_shutdown(edmac);
 963        edmac->runtime_addr = 0;
 964        edmac->runtime_ctrl = 0;
 965        edmac->buffer = 0;
 966        list_splice_init(&edmac->free_list, &list);
 967        spin_unlock_irqrestore(&edmac->lock, flags);
 968
 969        list_for_each_entry_safe(desc, d, &list, node)
 970                kfree(desc);
 971
 972        clk_disable_unprepare(edmac->clk);
 973        free_irq(edmac->irq, edmac);
 974}
 975
 976/**
 977 * ep93xx_dma_prep_dma_memcpy - prepare a memcpy DMA operation
 978 * @chan: channel
 979 * @dest: destination bus address
 980 * @src: source bus address
 981 * @len: size of the transaction
 982 * @flags: flags for the descriptor
 983 *
 984 * Returns a valid DMA descriptor or %NULL in case of failure.
 985 */
 986static struct dma_async_tx_descriptor *
 987ep93xx_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
 988                           dma_addr_t src, size_t len, unsigned long flags)
 989{
 990        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
 991        struct ep93xx_dma_desc *desc, *first;
 992        size_t bytes, offset;
 993
 994        first = NULL;
 995        for (offset = 0; offset < len; offset += bytes) {
 996                desc = ep93xx_dma_desc_get(edmac);
 997                if (!desc) {
 998                        dev_warn(chan2dev(edmac), "couldn't get descriptor\n");
 999                        goto fail;
1000                }
1001
1002                bytes = min_t(size_t, len - offset, DMA_MAX_CHAN_BYTES);
1003
1004                desc->src_addr = src + offset;
1005                desc->dst_addr = dest + offset;
1006                desc->size = bytes;
1007
1008                if (!first)
1009                        first = desc;
1010                else
1011                        list_add_tail(&desc->node, &first->tx_list);
1012        }
1013
1014        first->txd.cookie = -EBUSY;
1015        first->txd.flags = flags;
1016
1017        return &first->txd;
1018fail:
1019        ep93xx_dma_desc_put(edmac, first);
1020        return NULL;
1021}
1022
1023/**
1024 * ep93xx_dma_prep_slave_sg - prepare a slave DMA operation
1025 * @chan: channel
1026 * @sgl: list of buffers to transfer
1027 * @sg_len: number of entries in @sgl
1028 * @dir: direction of tha DMA transfer
1029 * @flags: flags for the descriptor
1030 * @context: operation context (ignored)
1031 *
1032 * Returns a valid DMA descriptor or %NULL in case of failure.
1033 */
1034static struct dma_async_tx_descriptor *
1035ep93xx_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1036                         unsigned int sg_len, enum dma_transfer_direction dir,
1037                         unsigned long flags, void *context)
1038{
1039        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1040        struct ep93xx_dma_desc *desc, *first;
1041        struct scatterlist *sg;
1042        int i;
1043
1044        if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1045                dev_warn(chan2dev(edmac),
1046                         "channel was configured with different direction\n");
1047                return NULL;
1048        }
1049
1050        if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1051                dev_warn(chan2dev(edmac),
1052                         "channel is already used for cyclic transfers\n");
1053                return NULL;
1054        }
1055
1056        ep93xx_dma_slave_config_write(chan, dir, &edmac->slave_config);
1057
1058        first = NULL;
1059        for_each_sg(sgl, sg, sg_len, i) {
1060                size_t len = sg_dma_len(sg);
1061
1062                if (len > DMA_MAX_CHAN_BYTES) {
1063                        dev_warn(chan2dev(edmac), "too big transfer size %zu\n",
1064                                 len);
1065                        goto fail;
1066                }
1067
1068                desc = ep93xx_dma_desc_get(edmac);
1069                if (!desc) {
1070                        dev_warn(chan2dev(edmac), "couldn't get descriptor\n");
1071                        goto fail;
1072                }
1073
1074                if (dir == DMA_MEM_TO_DEV) {
1075                        desc->src_addr = sg_dma_address(sg);
1076                        desc->dst_addr = edmac->runtime_addr;
1077                } else {
1078                        desc->src_addr = edmac->runtime_addr;
1079                        desc->dst_addr = sg_dma_address(sg);
1080                }
1081                desc->size = len;
1082
1083                if (!first)
1084                        first = desc;
1085                else
1086                        list_add_tail(&desc->node, &first->tx_list);
1087        }
1088
1089        first->txd.cookie = -EBUSY;
1090        first->txd.flags = flags;
1091
1092        return &first->txd;
1093
1094fail:
1095        ep93xx_dma_desc_put(edmac, first);
1096        return NULL;
1097}
1098
1099/**
1100 * ep93xx_dma_prep_dma_cyclic - prepare a cyclic DMA operation
1101 * @chan: channel
1102 * @dma_addr: DMA mapped address of the buffer
1103 * @buf_len: length of the buffer (in bytes)
1104 * @period_len: length of a single period
1105 * @dir: direction of the operation
1106 * @flags: tx descriptor status flags
1107 *
1108 * Prepares a descriptor for cyclic DMA operation. This means that once the
1109 * descriptor is submitted, we will be submitting in a @period_len sized
1110 * buffers and calling callback once the period has been elapsed. Transfer
1111 * terminates only when client calls dmaengine_terminate_all() for this
1112 * channel.
1113 *
1114 * Returns a valid DMA descriptor or %NULL in case of failure.
1115 */
1116static struct dma_async_tx_descriptor *
1117ep93xx_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
1118                           size_t buf_len, size_t period_len,
1119                           enum dma_transfer_direction dir, unsigned long flags)
1120{
1121        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1122        struct ep93xx_dma_desc *desc, *first;
1123        size_t offset = 0;
1124
1125        if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1126                dev_warn(chan2dev(edmac),
1127                         "channel was configured with different direction\n");
1128                return NULL;
1129        }
1130
1131        if (test_and_set_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1132                dev_warn(chan2dev(edmac),
1133                         "channel is already used for cyclic transfers\n");
1134                return NULL;
1135        }
1136
1137        if (period_len > DMA_MAX_CHAN_BYTES) {
1138                dev_warn(chan2dev(edmac), "too big period length %zu\n",
1139                         period_len);
1140                return NULL;
1141        }
1142
1143        ep93xx_dma_slave_config_write(chan, dir, &edmac->slave_config);
1144
1145        /* Split the buffer into period size chunks */
1146        first = NULL;
1147        for (offset = 0; offset < buf_len; offset += period_len) {
1148                desc = ep93xx_dma_desc_get(edmac);
1149                if (!desc) {
1150                        dev_warn(chan2dev(edmac), "couldn't get descriptor\n");
1151                        goto fail;
1152                }
1153
1154                if (dir == DMA_MEM_TO_DEV) {
1155                        desc->src_addr = dma_addr + offset;
1156                        desc->dst_addr = edmac->runtime_addr;
1157                } else {
1158                        desc->src_addr = edmac->runtime_addr;
1159                        desc->dst_addr = dma_addr + offset;
1160                }
1161
1162                desc->size = period_len;
1163
1164                if (!first)
1165                        first = desc;
1166                else
1167                        list_add_tail(&desc->node, &first->tx_list);
1168        }
1169
1170        first->txd.cookie = -EBUSY;
1171
1172        return &first->txd;
1173
1174fail:
1175        ep93xx_dma_desc_put(edmac, first);
1176        return NULL;
1177}
1178
1179/**
1180 * ep93xx_dma_synchronize - Synchronizes the termination of transfers to the
1181 * current context.
1182 * @chan: channel
1183 *
1184 * Synchronizes the DMA channel termination to the current context. When this
1185 * function returns it is guaranteed that all transfers for previously issued
1186 * descriptors have stopped and and it is safe to free the memory associated
1187 * with them. Furthermore it is guaranteed that all complete callback functions
1188 * for a previously submitted descriptor have finished running and it is safe to
1189 * free resources accessed from within the complete callbacks.
1190 */
1191static void ep93xx_dma_synchronize(struct dma_chan *chan)
1192{
1193        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1194
1195        if (edmac->edma->hw_synchronize)
1196                edmac->edma->hw_synchronize(edmac);
1197}
1198
1199/**
1200 * ep93xx_dma_terminate_all - terminate all transactions
1201 * @chan: channel
1202 *
1203 * Stops all DMA transactions. All descriptors are put back to the
1204 * @edmac->free_list and callbacks are _not_ called.
1205 */
1206static int ep93xx_dma_terminate_all(struct dma_chan *chan)
1207{
1208        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1209        struct ep93xx_dma_desc *desc, *_d;
1210        unsigned long flags;
1211        LIST_HEAD(list);
1212
1213        spin_lock_irqsave(&edmac->lock, flags);
1214        /* First we disable and flush the DMA channel */
1215        edmac->edma->hw_shutdown(edmac);
1216        clear_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags);
1217        list_splice_init(&edmac->active, &list);
1218        list_splice_init(&edmac->queue, &list);
1219        /*
1220         * We then re-enable the channel. This way we can continue submitting
1221         * the descriptors by just calling ->hw_submit() again.
1222         */
1223        edmac->edma->hw_setup(edmac);
1224        spin_unlock_irqrestore(&edmac->lock, flags);
1225
1226        list_for_each_entry_safe(desc, _d, &list, node)
1227                ep93xx_dma_desc_put(edmac, desc);
1228
1229        return 0;
1230}
1231
1232static int ep93xx_dma_slave_config(struct dma_chan *chan,
1233                                   struct dma_slave_config *config)
1234{
1235        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1236
1237        memcpy(&edmac->slave_config, config, sizeof(*config));
1238
1239        return 0;
1240}
1241
1242static int ep93xx_dma_slave_config_write(struct dma_chan *chan,
1243                                         enum dma_transfer_direction dir,
1244                                         struct dma_slave_config *config)
1245{
1246        struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1247        enum dma_slave_buswidth width;
1248        unsigned long flags;
1249        u32 addr, ctrl;
1250
1251        if (!edmac->edma->m2m)
1252                return -EINVAL;
1253
1254        switch (dir) {
1255        case DMA_DEV_TO_MEM:
1256                width = config->src_addr_width;
1257                addr = config->src_addr;
1258                break;
1259
1260        case DMA_MEM_TO_DEV:
1261                width = config->dst_addr_width;
1262                addr = config->dst_addr;
1263                break;
1264
1265        default:
1266                return -EINVAL;
1267        }
1268
1269        switch (width) {
1270        case DMA_SLAVE_BUSWIDTH_1_BYTE:
1271                ctrl = 0;
1272                break;
1273        case DMA_SLAVE_BUSWIDTH_2_BYTES:
1274                ctrl = M2M_CONTROL_PW_16;
1275                break;
1276        case DMA_SLAVE_BUSWIDTH_4_BYTES:
1277                ctrl = M2M_CONTROL_PW_32;
1278                break;
1279        default:
1280                return -EINVAL;
1281        }
1282
1283        spin_lock_irqsave(&edmac->lock, flags);
1284        edmac->runtime_addr = addr;
1285        edmac->runtime_ctrl = ctrl;
1286        spin_unlock_irqrestore(&edmac->lock, flags);
1287
1288        return 0;
1289}
1290
1291/**
1292 * ep93xx_dma_tx_status - check if a transaction is completed
1293 * @chan: channel
1294 * @cookie: transaction specific cookie
1295 * @state: state of the transaction is stored here if given
1296 *
1297 * This function can be used to query state of a given transaction.
1298 */
1299static enum dma_status ep93xx_dma_tx_status(struct dma_chan *chan,
1300                                            dma_cookie_t cookie,
1301                                            struct dma_tx_state *state)
1302{
1303        return dma_cookie_status(chan, cookie, state);
1304}
1305
1306/**
1307 * ep93xx_dma_issue_pending - push pending transactions to the hardware
1308 * @chan: channel
1309 *
1310 * When this function is called, all pending transactions are pushed to the
1311 * hardware and executed.
1312 */
1313static void ep93xx_dma_issue_pending(struct dma_chan *chan)
1314{
1315        ep93xx_dma_advance_work(to_ep93xx_dma_chan(chan));
1316}
1317
1318static int __init ep93xx_dma_probe(struct platform_device *pdev)
1319{
1320        struct ep93xx_dma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1321        struct ep93xx_dma_engine *edma;
1322        struct dma_device *dma_dev;
1323        size_t edma_size;
1324        int ret, i;
1325
1326        edma_size = pdata->num_channels * sizeof(struct ep93xx_dma_chan);
1327        edma = kzalloc(sizeof(*edma) + edma_size, GFP_KERNEL);
1328        if (!edma)
1329                return -ENOMEM;
1330
1331        dma_dev = &edma->dma_dev;
1332        edma->m2m = platform_get_device_id(pdev)->driver_data;
1333        edma->num_channels = pdata->num_channels;
1334
1335        INIT_LIST_HEAD(&dma_dev->channels);
1336        for (i = 0; i < pdata->num_channels; i++) {
1337                const struct ep93xx_dma_chan_data *cdata = &pdata->channels[i];
1338                struct ep93xx_dma_chan *edmac = &edma->channels[i];
1339
1340                edmac->chan.device = dma_dev;
1341                edmac->regs = cdata->base;
1342                edmac->irq = cdata->irq;
1343                edmac->edma = edma;
1344
1345                edmac->clk = clk_get(NULL, cdata->name);
1346                if (IS_ERR(edmac->clk)) {
1347                        dev_warn(&pdev->dev, "failed to get clock for %s\n",
1348                                 cdata->name);
1349                        continue;
1350                }
1351
1352                spin_lock_init(&edmac->lock);
1353                INIT_LIST_HEAD(&edmac->active);
1354                INIT_LIST_HEAD(&edmac->queue);
1355                INIT_LIST_HEAD(&edmac->free_list);
1356                tasklet_setup(&edmac->tasklet, ep93xx_dma_tasklet);
1357
1358                list_add_tail(&edmac->chan.device_node,
1359                              &dma_dev->channels);
1360        }
1361
1362        dma_cap_zero(dma_dev->cap_mask);
1363        dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1364        dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
1365
1366        dma_dev->dev = &pdev->dev;
1367        dma_dev->device_alloc_chan_resources = ep93xx_dma_alloc_chan_resources;
1368        dma_dev->device_free_chan_resources = ep93xx_dma_free_chan_resources;
1369        dma_dev->device_prep_slave_sg = ep93xx_dma_prep_slave_sg;
1370        dma_dev->device_prep_dma_cyclic = ep93xx_dma_prep_dma_cyclic;
1371        dma_dev->device_config = ep93xx_dma_slave_config;
1372        dma_dev->device_synchronize = ep93xx_dma_synchronize;
1373        dma_dev->device_terminate_all = ep93xx_dma_terminate_all;
1374        dma_dev->device_issue_pending = ep93xx_dma_issue_pending;
1375        dma_dev->device_tx_status = ep93xx_dma_tx_status;
1376
1377        dma_set_max_seg_size(dma_dev->dev, DMA_MAX_CHAN_BYTES);
1378
1379        if (edma->m2m) {
1380                dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1381                dma_dev->device_prep_dma_memcpy = ep93xx_dma_prep_dma_memcpy;
1382
1383                edma->hw_setup = m2m_hw_setup;
1384                edma->hw_shutdown = m2m_hw_shutdown;
1385                edma->hw_submit = m2m_hw_submit;
1386                edma->hw_interrupt = m2m_hw_interrupt;
1387        } else {
1388                dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1389
1390                edma->hw_synchronize = m2p_hw_synchronize;
1391                edma->hw_setup = m2p_hw_setup;
1392                edma->hw_shutdown = m2p_hw_shutdown;
1393                edma->hw_submit = m2p_hw_submit;
1394                edma->hw_interrupt = m2p_hw_interrupt;
1395        }
1396
1397        ret = dma_async_device_register(dma_dev);
1398        if (unlikely(ret)) {
1399                for (i = 0; i < edma->num_channels; i++) {
1400                        struct ep93xx_dma_chan *edmac = &edma->channels[i];
1401                        if (!IS_ERR_OR_NULL(edmac->clk))
1402                                clk_put(edmac->clk);
1403                }
1404                kfree(edma);
1405        } else {
1406                dev_info(dma_dev->dev, "EP93xx M2%s DMA ready\n",
1407                         edma->m2m ? "M" : "P");
1408        }
1409
1410        return ret;
1411}
1412
1413static const struct platform_device_id ep93xx_dma_driver_ids[] = {
1414        { "ep93xx-dma-m2p", 0 },
1415        { "ep93xx-dma-m2m", 1 },
1416        { },
1417};
1418
1419static struct platform_driver ep93xx_dma_driver = {
1420        .driver         = {
1421                .name   = "ep93xx-dma",
1422        },
1423        .id_table       = ep93xx_dma_driver_ids,
1424};
1425
1426static int __init ep93xx_dma_module_init(void)
1427{
1428        return platform_driver_probe(&ep93xx_dma_driver, ep93xx_dma_probe);
1429}
1430subsys_initcall(ep93xx_dma_module_init);
1431
1432MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1433MODULE_DESCRIPTION("EP93xx DMA driver");
1434MODULE_LICENSE("GPL");
1435