linux/drivers/dma/nbpfaxi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2013-2014 Renesas Electronics Europe Ltd.
   4 * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
   5 */
   6
   7#include <linux/bitmap.h>
   8#include <linux/bitops.h>
   9#include <linux/clk.h>
  10#include <linux/dma-mapping.h>
  11#include <linux/dmaengine.h>
  12#include <linux/err.h>
  13#include <linux/interrupt.h>
  14#include <linux/io.h>
  15#include <linux/log2.h>
  16#include <linux/module.h>
  17#include <linux/of.h>
  18#include <linux/of_device.h>
  19#include <linux/of_dma.h>
  20#include <linux/platform_device.h>
  21#include <linux/slab.h>
  22
  23#include <dt-bindings/dma/nbpfaxi.h>
  24
  25#include "dmaengine.h"
  26
  27#define NBPF_REG_CHAN_OFFSET    0
  28#define NBPF_REG_CHAN_SIZE      0x40
  29
  30/* Channel Current Transaction Byte register */
  31#define NBPF_CHAN_CUR_TR_BYTE   0x20
  32
  33/* Channel Status register */
  34#define NBPF_CHAN_STAT  0x24
  35#define NBPF_CHAN_STAT_EN       1
  36#define NBPF_CHAN_STAT_TACT     4
  37#define NBPF_CHAN_STAT_ERR      0x10
  38#define NBPF_CHAN_STAT_END      0x20
  39#define NBPF_CHAN_STAT_TC       0x40
  40#define NBPF_CHAN_STAT_DER      0x400
  41
  42/* Channel Control register */
  43#define NBPF_CHAN_CTRL  0x28
  44#define NBPF_CHAN_CTRL_SETEN    1
  45#define NBPF_CHAN_CTRL_CLREN    2
  46#define NBPF_CHAN_CTRL_STG      4
  47#define NBPF_CHAN_CTRL_SWRST    8
  48#define NBPF_CHAN_CTRL_CLRRQ    0x10
  49#define NBPF_CHAN_CTRL_CLREND   0x20
  50#define NBPF_CHAN_CTRL_CLRTC    0x40
  51#define NBPF_CHAN_CTRL_SETSUS   0x100
  52#define NBPF_CHAN_CTRL_CLRSUS   0x200
  53
  54/* Channel Configuration register */
  55#define NBPF_CHAN_CFG   0x2c
  56#define NBPF_CHAN_CFG_SEL       7               /* terminal SELect: 0..7 */
  57#define NBPF_CHAN_CFG_REQD      8               /* REQuest Direction: DMAREQ is 0: input, 1: output */
  58#define NBPF_CHAN_CFG_LOEN      0x10            /* LOw ENable: low DMA request line is: 0: inactive, 1: active */
  59#define NBPF_CHAN_CFG_HIEN      0x20            /* HIgh ENable: high DMA request line is: 0: inactive, 1: active */
  60#define NBPF_CHAN_CFG_LVL       0x40            /* LeVeL: DMA request line is sensed as 0: edge, 1: level */
  61#define NBPF_CHAN_CFG_AM        0x700           /* ACK Mode: 0: Pulse mode, 1: Level mode, b'1x: Bus Cycle */
  62#define NBPF_CHAN_CFG_SDS       0xf000          /* Source Data Size: 0: 8 bits,... , 7: 1024 bits */
  63#define NBPF_CHAN_CFG_DDS       0xf0000         /* Destination Data Size: as above */
  64#define NBPF_CHAN_CFG_SAD       0x100000        /* Source ADdress counting: 0: increment, 1: fixed */
  65#define NBPF_CHAN_CFG_DAD       0x200000        /* Destination ADdress counting: 0: increment, 1: fixed */
  66#define NBPF_CHAN_CFG_TM        0x400000        /* Transfer Mode: 0: single, 1: block TM */
  67#define NBPF_CHAN_CFG_DEM       0x1000000       /* DMAEND interrupt Mask */
  68#define NBPF_CHAN_CFG_TCM       0x2000000       /* DMATCO interrupt Mask */
  69#define NBPF_CHAN_CFG_SBE       0x8000000       /* Sweep Buffer Enable */
  70#define NBPF_CHAN_CFG_RSEL      0x10000000      /* RM: Register Set sELect */
  71#define NBPF_CHAN_CFG_RSW       0x20000000      /* RM: Register Select sWitch */
  72#define NBPF_CHAN_CFG_REN       0x40000000      /* RM: Register Set Enable */
  73#define NBPF_CHAN_CFG_DMS       0x80000000      /* 0: register mode (RM), 1: link mode (LM) */
  74
  75#define NBPF_CHAN_NXLA  0x38
  76#define NBPF_CHAN_CRLA  0x3c
  77
  78/* Link Header field */
  79#define NBPF_HEADER_LV  1
  80#define NBPF_HEADER_LE  2
  81#define NBPF_HEADER_WBD 4
  82#define NBPF_HEADER_DIM 8
  83
  84#define NBPF_CTRL       0x300
  85#define NBPF_CTRL_PR    1               /* 0: fixed priority, 1: round robin */
  86#define NBPF_CTRL_LVINT 2               /* DMAEND and DMAERR signalling: 0: pulse, 1: level */
  87
  88#define NBPF_DSTAT_ER   0x314
  89#define NBPF_DSTAT_END  0x318
  90
  91#define NBPF_DMA_BUSWIDTHS \
  92        (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
  93         BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
  94         BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
  95         BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
  96         BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
  97
  98struct nbpf_config {
  99        int num_channels;
 100        int buffer_size;
 101};
 102
 103/*
 104 * We've got 3 types of objects, used to describe DMA transfers:
 105 * 1. high-level descriptor, containing a struct dma_async_tx_descriptor object
 106 *      in it, used to communicate with the user
 107 * 2. hardware DMA link descriptors, that we pass to DMAC for DMA transfer
 108 *      queuing, these must be DMAable, using either the streaming DMA API or
 109 *      allocated from coherent memory - one per SG segment
 110 * 3. one per SG segment descriptors, used to manage HW link descriptors from
 111 *      (2). They do not have to be DMAable. They can either be (a) allocated
 112 *      together with link descriptors as mixed (DMA / CPU) objects, or (b)
 113 *      separately. Even if allocated separately it would be best to link them
 114 *      to link descriptors once during channel resource allocation and always
 115 *      use them as a single object.
 116 * Therefore for both cases (a) and (b) at run-time objects (2) and (3) shall be
 117 * treated as a single SG segment descriptor.
 118 */
 119
 120struct nbpf_link_reg {
 121        u32     header;
 122        u32     src_addr;
 123        u32     dst_addr;
 124        u32     transaction_size;
 125        u32     config;
 126        u32     interval;
 127        u32     extension;
 128        u32     next;
 129} __packed;
 130
 131struct nbpf_device;
 132struct nbpf_channel;
 133struct nbpf_desc;
 134
 135struct nbpf_link_desc {
 136        struct nbpf_link_reg *hwdesc;
 137        dma_addr_t hwdesc_dma_addr;
 138        struct nbpf_desc *desc;
 139        struct list_head node;
 140};
 141
 142/**
 143 * struct nbpf_desc - DMA transfer descriptor
 144 * @async_tx:   dmaengine object
 145 * @user_wait:  waiting for a user ack
 146 * @length:     total transfer length
 147 * @chan:       associated DMAC channel
 148 * @sg:         list of hardware descriptors, represented by struct nbpf_link_desc
 149 * @node:       member in channel descriptor lists
 150 */
 151struct nbpf_desc {
 152        struct dma_async_tx_descriptor async_tx;
 153        bool user_wait;
 154        size_t length;
 155        struct nbpf_channel *chan;
 156        struct list_head sg;
 157        struct list_head node;
 158};
 159
 160/* Take a wild guess: allocate 4 segments per descriptor */
 161#define NBPF_SEGMENTS_PER_DESC 4
 162#define NBPF_DESCS_PER_PAGE ((PAGE_SIZE - sizeof(struct list_head)) /   \
 163        (sizeof(struct nbpf_desc) +                                     \
 164         NBPF_SEGMENTS_PER_DESC *                                       \
 165         (sizeof(struct nbpf_link_desc) + sizeof(struct nbpf_link_reg))))
 166#define NBPF_SEGMENTS_PER_PAGE (NBPF_SEGMENTS_PER_DESC * NBPF_DESCS_PER_PAGE)
 167
 168struct nbpf_desc_page {
 169        struct list_head node;
 170        struct nbpf_desc desc[NBPF_DESCS_PER_PAGE];
 171        struct nbpf_link_desc ldesc[NBPF_SEGMENTS_PER_PAGE];
 172        struct nbpf_link_reg hwdesc[NBPF_SEGMENTS_PER_PAGE];
 173};
 174
 175/**
 176 * struct nbpf_channel - one DMAC channel
 177 * @dma_chan:   standard dmaengine channel object
 178 * @tasklet:    channel specific tasklet used for callbacks
 179 * @base:       register address base
 180 * @nbpf:       DMAC
 181 * @name:       IRQ name
 182 * @irq:        IRQ number
 183 * @slave_src_addr:     source address for slave DMA
 184 * @slave_src_width:    source slave data size in bytes
 185 * @slave_src_burst:    maximum source slave burst size in bytes
 186 * @slave_dst_addr:     destination address for slave DMA
 187 * @slave_dst_width:    destination slave data size in bytes
 188 * @slave_dst_burst:    maximum destination slave burst size in bytes
 189 * @terminal:   DMA terminal, assigned to this channel
 190 * @dmarq_cfg:  DMA request line configuration - high / low, edge / level for NBPF_CHAN_CFG
 191 * @flags:      configuration flags from DT
 192 * @lock:       protect descriptor lists
 193 * @free_links: list of free link descriptors
 194 * @free:       list of free descriptors
 195 * @queued:     list of queued descriptors
 196 * @active:     list of descriptors, scheduled for processing
 197 * @done:       list of completed descriptors, waiting post-processing
 198 * @desc_page:  list of additionally allocated descriptor pages - if any
 199 * @running:    linked descriptor of running transaction
 200 * @paused:     are translations on this channel paused?
 201 */
 202struct nbpf_channel {
 203        struct dma_chan dma_chan;
 204        struct tasklet_struct tasklet;
 205        void __iomem *base;
 206        struct nbpf_device *nbpf;
 207        char name[16];
 208        int irq;
 209        dma_addr_t slave_src_addr;
 210        size_t slave_src_width;
 211        size_t slave_src_burst;
 212        dma_addr_t slave_dst_addr;
 213        size_t slave_dst_width;
 214        size_t slave_dst_burst;
 215        unsigned int terminal;
 216        u32 dmarq_cfg;
 217        unsigned long flags;
 218        spinlock_t lock;
 219        struct list_head free_links;
 220        struct list_head free;
 221        struct list_head queued;
 222        struct list_head active;
 223        struct list_head done;
 224        struct list_head desc_page;
 225        struct nbpf_desc *running;
 226        bool paused;
 227};
 228
 229struct nbpf_device {
 230        struct dma_device dma_dev;
 231        void __iomem *base;
 232        u32 max_burst_mem_read;
 233        u32 max_burst_mem_write;
 234        struct clk *clk;
 235        const struct nbpf_config *config;
 236        unsigned int eirq;
 237        struct nbpf_channel chan[];
 238};
 239
 240enum nbpf_model {
 241        NBPF1B4,
 242        NBPF1B8,
 243        NBPF1B16,
 244        NBPF4B4,
 245        NBPF4B8,
 246        NBPF4B16,
 247        NBPF8B4,
 248        NBPF8B8,
 249        NBPF8B16,
 250};
 251
 252static struct nbpf_config nbpf_cfg[] = {
 253        [NBPF1B4] = {
 254                .num_channels = 1,
 255                .buffer_size = 4,
 256        },
 257        [NBPF1B8] = {
 258                .num_channels = 1,
 259                .buffer_size = 8,
 260        },
 261        [NBPF1B16] = {
 262                .num_channels = 1,
 263                .buffer_size = 16,
 264        },
 265        [NBPF4B4] = {
 266                .num_channels = 4,
 267                .buffer_size = 4,
 268        },
 269        [NBPF4B8] = {
 270                .num_channels = 4,
 271                .buffer_size = 8,
 272        },
 273        [NBPF4B16] = {
 274                .num_channels = 4,
 275                .buffer_size = 16,
 276        },
 277        [NBPF8B4] = {
 278                .num_channels = 8,
 279                .buffer_size = 4,
 280        },
 281        [NBPF8B8] = {
 282                .num_channels = 8,
 283                .buffer_size = 8,
 284        },
 285        [NBPF8B16] = {
 286                .num_channels = 8,
 287                .buffer_size = 16,
 288        },
 289};
 290
 291#define nbpf_to_chan(d) container_of(d, struct nbpf_channel, dma_chan)
 292
 293/*
 294 * dmaengine drivers seem to have a lot in common and instead of sharing more
 295 * code, they reimplement those common algorithms independently. In this driver
 296 * we try to separate the hardware-specific part from the (largely) generic
 297 * part. This improves code readability and makes it possible in the future to
 298 * reuse the generic code in form of a helper library. That generic code should
 299 * be suitable for various DMA controllers, using transfer descriptors in RAM
 300 * and pushing one SG list at a time to the DMA controller.
 301 */
 302
 303/*              Hardware-specific part          */
 304
 305static inline u32 nbpf_chan_read(struct nbpf_channel *chan,
 306                                 unsigned int offset)
 307{
 308        u32 data = ioread32(chan->base + offset);
 309        dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
 310                __func__, chan->base, offset, data);
 311        return data;
 312}
 313
 314static inline void nbpf_chan_write(struct nbpf_channel *chan,
 315                                   unsigned int offset, u32 data)
 316{
 317        iowrite32(data, chan->base + offset);
 318        dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
 319                __func__, chan->base, offset, data);
 320}
 321
 322static inline u32 nbpf_read(struct nbpf_device *nbpf,
 323                            unsigned int offset)
 324{
 325        u32 data = ioread32(nbpf->base + offset);
 326        dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
 327                __func__, nbpf->base, offset, data);
 328        return data;
 329}
 330
 331static inline void nbpf_write(struct nbpf_device *nbpf,
 332                              unsigned int offset, u32 data)
 333{
 334        iowrite32(data, nbpf->base + offset);
 335        dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
 336                __func__, nbpf->base, offset, data);
 337}
 338
 339static void nbpf_chan_halt(struct nbpf_channel *chan)
 340{
 341        nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
 342}
 343
 344static bool nbpf_status_get(struct nbpf_channel *chan)
 345{
 346        u32 status = nbpf_read(chan->nbpf, NBPF_DSTAT_END);
 347
 348        return status & BIT(chan - chan->nbpf->chan);
 349}
 350
 351static void nbpf_status_ack(struct nbpf_channel *chan)
 352{
 353        nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREND);
 354}
 355
 356static u32 nbpf_error_get(struct nbpf_device *nbpf)
 357{
 358        return nbpf_read(nbpf, NBPF_DSTAT_ER);
 359}
 360
 361static struct nbpf_channel *nbpf_error_get_channel(struct nbpf_device *nbpf, u32 error)
 362{
 363        return nbpf->chan + __ffs(error);
 364}
 365
 366static void nbpf_error_clear(struct nbpf_channel *chan)
 367{
 368        u32 status;
 369        int i;
 370
 371        /* Stop the channel, make sure DMA has been aborted */
 372        nbpf_chan_halt(chan);
 373
 374        for (i = 1000; i; i--) {
 375                status = nbpf_chan_read(chan, NBPF_CHAN_STAT);
 376                if (!(status & NBPF_CHAN_STAT_TACT))
 377                        break;
 378                cpu_relax();
 379        }
 380
 381        if (!i)
 382                dev_err(chan->dma_chan.device->dev,
 383                        "%s(): abort timeout, channel status 0x%x\n", __func__, status);
 384
 385        nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SWRST);
 386}
 387
 388static int nbpf_start(struct nbpf_desc *desc)
 389{
 390        struct nbpf_channel *chan = desc->chan;
 391        struct nbpf_link_desc *ldesc = list_first_entry(&desc->sg, struct nbpf_link_desc, node);
 392
 393        nbpf_chan_write(chan, NBPF_CHAN_NXLA, (u32)ldesc->hwdesc_dma_addr);
 394        nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETEN | NBPF_CHAN_CTRL_CLRSUS);
 395        chan->paused = false;
 396
 397        /* Software trigger MEMCPY - only MEMCPY uses the block mode */
 398        if (ldesc->hwdesc->config & NBPF_CHAN_CFG_TM)
 399                nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_STG);
 400
 401        dev_dbg(chan->nbpf->dma_dev.dev, "%s(): next 0x%x, cur 0x%x\n", __func__,
 402                nbpf_chan_read(chan, NBPF_CHAN_NXLA), nbpf_chan_read(chan, NBPF_CHAN_CRLA));
 403
 404        return 0;
 405}
 406
 407static void nbpf_chan_prepare(struct nbpf_channel *chan)
 408{
 409        chan->dmarq_cfg = (chan->flags & NBPF_SLAVE_RQ_HIGH ? NBPF_CHAN_CFG_HIEN : 0) |
 410                (chan->flags & NBPF_SLAVE_RQ_LOW ? NBPF_CHAN_CFG_LOEN : 0) |
 411                (chan->flags & NBPF_SLAVE_RQ_LEVEL ?
 412                 NBPF_CHAN_CFG_LVL | (NBPF_CHAN_CFG_AM & 0x200) : 0) |
 413                chan->terminal;
 414}
 415
 416static void nbpf_chan_prepare_default(struct nbpf_channel *chan)
 417{
 418        /* Don't output DMAACK */
 419        chan->dmarq_cfg = NBPF_CHAN_CFG_AM & 0x400;
 420        chan->terminal = 0;
 421        chan->flags = 0;
 422}
 423
 424static void nbpf_chan_configure(struct nbpf_channel *chan)
 425{
 426        /*
 427         * We assume, that only the link mode and DMA request line configuration
 428         * have to be set in the configuration register manually. Dynamic
 429         * per-transfer configuration will be loaded from transfer descriptors.
 430         */
 431        nbpf_chan_write(chan, NBPF_CHAN_CFG, NBPF_CHAN_CFG_DMS | chan->dmarq_cfg);
 432}
 433
 434static u32 nbpf_xfer_ds(struct nbpf_device *nbpf, size_t size,
 435                        enum dma_transfer_direction direction)
 436{
 437        int max_burst = nbpf->config->buffer_size * 8;
 438
 439        if (nbpf->max_burst_mem_read || nbpf->max_burst_mem_write) {
 440                switch (direction) {
 441                case DMA_MEM_TO_MEM:
 442                        max_burst = min_not_zero(nbpf->max_burst_mem_read,
 443                                                 nbpf->max_burst_mem_write);
 444                        break;
 445                case DMA_MEM_TO_DEV:
 446                        if (nbpf->max_burst_mem_read)
 447                                max_burst = nbpf->max_burst_mem_read;
 448                        break;
 449                case DMA_DEV_TO_MEM:
 450                        if (nbpf->max_burst_mem_write)
 451                                max_burst = nbpf->max_burst_mem_write;
 452                        break;
 453                case DMA_DEV_TO_DEV:
 454                default:
 455                        break;
 456                }
 457        }
 458
 459        /* Maximum supported bursts depend on the buffer size */
 460        return min_t(int, __ffs(size), ilog2(max_burst));
 461}
 462
 463static size_t nbpf_xfer_size(struct nbpf_device *nbpf,
 464                             enum dma_slave_buswidth width, u32 burst)
 465{
 466        size_t size;
 467
 468        if (!burst)
 469                burst = 1;
 470
 471        switch (width) {
 472        case DMA_SLAVE_BUSWIDTH_8_BYTES:
 473                size = 8 * burst;
 474                break;
 475
 476        case DMA_SLAVE_BUSWIDTH_4_BYTES:
 477                size = 4 * burst;
 478                break;
 479
 480        case DMA_SLAVE_BUSWIDTH_2_BYTES:
 481                size = 2 * burst;
 482                break;
 483
 484        default:
 485                pr_warn("%s(): invalid bus width %u\n", __func__, width);
 486                fallthrough;
 487        case DMA_SLAVE_BUSWIDTH_1_BYTE:
 488                size = burst;
 489        }
 490
 491        return nbpf_xfer_ds(nbpf, size, DMA_TRANS_NONE);
 492}
 493
 494/*
 495 * We need a way to recognise slaves, whose data is sent "raw" over the bus,
 496 * i.e. it isn't known in advance how many bytes will be received. Therefore
 497 * the slave driver has to provide a "large enough" buffer and either read the
 498 * buffer, when it is full, or detect, that some data has arrived, then wait for
 499 * a timeout, if no more data arrives - receive what's already there. We want to
 500 * handle such slaves in a special way to allow an optimised mode for other
 501 * users, for whom the amount of data is known in advance. So far there's no way
 502 * to recognise such slaves. We use a data-width check to distinguish between
 503 * the SD host and the PL011 UART.
 504 */
 505
 506static int nbpf_prep_one(struct nbpf_link_desc *ldesc,
 507                         enum dma_transfer_direction direction,
 508                         dma_addr_t src, dma_addr_t dst, size_t size, bool last)
 509{
 510        struct nbpf_link_reg *hwdesc = ldesc->hwdesc;
 511        struct nbpf_desc *desc = ldesc->desc;
 512        struct nbpf_channel *chan = desc->chan;
 513        struct device *dev = chan->dma_chan.device->dev;
 514        size_t mem_xfer, slave_xfer;
 515        bool can_burst;
 516
 517        hwdesc->header = NBPF_HEADER_WBD | NBPF_HEADER_LV |
 518                (last ? NBPF_HEADER_LE : 0);
 519
 520        hwdesc->src_addr = src;
 521        hwdesc->dst_addr = dst;
 522        hwdesc->transaction_size = size;
 523
 524        /*
 525         * set config: SAD, DAD, DDS, SDS, etc.
 526         * Note on transfer sizes: the DMAC can perform unaligned DMA transfers,
 527         * but it is important to have transaction size a multiple of both
 528         * receiver and transmitter transfer sizes. It is also possible to use
 529         * different RAM and device transfer sizes, and it does work well with
 530         * some devices, e.g. with V08R07S01E SD host controllers, which can use
 531         * 128 byte transfers. But this doesn't work with other devices,
 532         * especially when the transaction size is unknown. This is the case,
 533         * e.g. with serial drivers like amba-pl011.c. For reception it sets up
 534         * the transaction size of 4K and if fewer bytes are received, it
 535         * pauses DMA and reads out data received via DMA as well as those left
 536         * in the Rx FIFO. For this to work with the RAM side using burst
 537         * transfers we enable the SBE bit and terminate the transfer in our
 538         * .device_pause handler.
 539         */
 540        mem_xfer = nbpf_xfer_ds(chan->nbpf, size, direction);
 541
 542        switch (direction) {
 543        case DMA_DEV_TO_MEM:
 544                can_burst = chan->slave_src_width >= 3;
 545                slave_xfer = min(mem_xfer, can_burst ?
 546                                 chan->slave_src_burst : chan->slave_src_width);
 547                /*
 548                 * Is the slave narrower than 64 bits, i.e. isn't using the full
 549                 * bus width and cannot use bursts?
 550                 */
 551                if (mem_xfer > chan->slave_src_burst && !can_burst)
 552                        mem_xfer = chan->slave_src_burst;
 553                /* Device-to-RAM DMA is unreliable without REQD set */
 554                hwdesc->config = NBPF_CHAN_CFG_SAD | (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)) |
 555                        (NBPF_CHAN_CFG_SDS & (slave_xfer << 12)) | NBPF_CHAN_CFG_REQD |
 556                        NBPF_CHAN_CFG_SBE;
 557                break;
 558
 559        case DMA_MEM_TO_DEV:
 560                slave_xfer = min(mem_xfer, chan->slave_dst_width >= 3 ?
 561                                 chan->slave_dst_burst : chan->slave_dst_width);
 562                hwdesc->config = NBPF_CHAN_CFG_DAD | (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
 563                        (NBPF_CHAN_CFG_DDS & (slave_xfer << 16)) | NBPF_CHAN_CFG_REQD;
 564                break;
 565
 566        case DMA_MEM_TO_MEM:
 567                hwdesc->config = NBPF_CHAN_CFG_TCM | NBPF_CHAN_CFG_TM |
 568                        (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
 569                        (NBPF_CHAN_CFG_DDS & (mem_xfer << 16));
 570                break;
 571
 572        default:
 573                return -EINVAL;
 574        }
 575
 576        hwdesc->config |= chan->dmarq_cfg | (last ? 0 : NBPF_CHAN_CFG_DEM) |
 577                NBPF_CHAN_CFG_DMS;
 578
 579        dev_dbg(dev, "%s(): desc @ %pad: hdr 0x%x, cfg 0x%x, %zu @ %pad -> %pad\n",
 580                __func__, &ldesc->hwdesc_dma_addr, hwdesc->header,
 581                hwdesc->config, size, &src, &dst);
 582
 583        dma_sync_single_for_device(dev, ldesc->hwdesc_dma_addr, sizeof(*hwdesc),
 584                                   DMA_TO_DEVICE);
 585
 586        return 0;
 587}
 588
 589static size_t nbpf_bytes_left(struct nbpf_channel *chan)
 590{
 591        return nbpf_chan_read(chan, NBPF_CHAN_CUR_TR_BYTE);
 592}
 593
 594static void nbpf_configure(struct nbpf_device *nbpf)
 595{
 596        nbpf_write(nbpf, NBPF_CTRL, NBPF_CTRL_LVINT);
 597}
 598
 599/*              Generic part                    */
 600
 601/* DMA ENGINE functions */
 602static void nbpf_issue_pending(struct dma_chan *dchan)
 603{
 604        struct nbpf_channel *chan = nbpf_to_chan(dchan);
 605        unsigned long flags;
 606
 607        dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
 608
 609        spin_lock_irqsave(&chan->lock, flags);
 610        if (list_empty(&chan->queued))
 611                goto unlock;
 612
 613        list_splice_tail_init(&chan->queued, &chan->active);
 614
 615        if (!chan->running) {
 616                struct nbpf_desc *desc = list_first_entry(&chan->active,
 617                                                struct nbpf_desc, node);
 618                if (!nbpf_start(desc))
 619                        chan->running = desc;
 620        }
 621
 622unlock:
 623        spin_unlock_irqrestore(&chan->lock, flags);
 624}
 625
 626static enum dma_status nbpf_tx_status(struct dma_chan *dchan,
 627                dma_cookie_t cookie, struct dma_tx_state *state)
 628{
 629        struct nbpf_channel *chan = nbpf_to_chan(dchan);
 630        enum dma_status status = dma_cookie_status(dchan, cookie, state);
 631
 632        if (state) {
 633                dma_cookie_t running;
 634                unsigned long flags;
 635
 636                spin_lock_irqsave(&chan->lock, flags);
 637                running = chan->running ? chan->running->async_tx.cookie : -EINVAL;
 638
 639                if (cookie == running) {
 640                        state->residue = nbpf_bytes_left(chan);
 641                        dev_dbg(dchan->device->dev, "%s(): residue %u\n", __func__,
 642                                state->residue);
 643                } else if (status == DMA_IN_PROGRESS) {
 644                        struct nbpf_desc *desc;
 645                        bool found = false;
 646
 647                        list_for_each_entry(desc, &chan->active, node)
 648                                if (desc->async_tx.cookie == cookie) {
 649                                        found = true;
 650                                        break;
 651                                }
 652
 653                        if (!found)
 654                                list_for_each_entry(desc, &chan->queued, node)
 655                                        if (desc->async_tx.cookie == cookie) {
 656                                                found = true;
 657                                                break;
 658
 659                                        }
 660
 661                        state->residue = found ? desc->length : 0;
 662                }
 663
 664                spin_unlock_irqrestore(&chan->lock, flags);
 665        }
 666
 667        if (chan->paused)
 668                status = DMA_PAUSED;
 669
 670        return status;
 671}
 672
 673static dma_cookie_t nbpf_tx_submit(struct dma_async_tx_descriptor *tx)
 674{
 675        struct nbpf_desc *desc = container_of(tx, struct nbpf_desc, async_tx);
 676        struct nbpf_channel *chan = desc->chan;
 677        unsigned long flags;
 678        dma_cookie_t cookie;
 679
 680        spin_lock_irqsave(&chan->lock, flags);
 681        cookie = dma_cookie_assign(tx);
 682        list_add_tail(&desc->node, &chan->queued);
 683        spin_unlock_irqrestore(&chan->lock, flags);
 684
 685        dev_dbg(chan->dma_chan.device->dev, "Entry %s(%d)\n", __func__, cookie);
 686
 687        return cookie;
 688}
 689
 690static int nbpf_desc_page_alloc(struct nbpf_channel *chan)
 691{
 692        struct dma_chan *dchan = &chan->dma_chan;
 693        struct nbpf_desc_page *dpage = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
 694        struct nbpf_link_desc *ldesc;
 695        struct nbpf_link_reg *hwdesc;
 696        struct nbpf_desc *desc;
 697        LIST_HEAD(head);
 698        LIST_HEAD(lhead);
 699        int i;
 700        struct device *dev = dchan->device->dev;
 701
 702        if (!dpage)
 703                return -ENOMEM;
 704
 705        dev_dbg(dev, "%s(): alloc %lu descriptors, %lu segments, total alloc %zu\n",
 706                __func__, NBPF_DESCS_PER_PAGE, NBPF_SEGMENTS_PER_PAGE, sizeof(*dpage));
 707
 708        for (i = 0, ldesc = dpage->ldesc, hwdesc = dpage->hwdesc;
 709             i < ARRAY_SIZE(dpage->ldesc);
 710             i++, ldesc++, hwdesc++) {
 711                ldesc->hwdesc = hwdesc;
 712                list_add_tail(&ldesc->node, &lhead);
 713                ldesc->hwdesc_dma_addr = dma_map_single(dchan->device->dev,
 714                                        hwdesc, sizeof(*hwdesc), DMA_TO_DEVICE);
 715
 716                dev_dbg(dev, "%s(): mapped 0x%p to %pad\n", __func__,
 717                        hwdesc, &ldesc->hwdesc_dma_addr);
 718        }
 719
 720        for (i = 0, desc = dpage->desc;
 721             i < ARRAY_SIZE(dpage->desc);
 722             i++, desc++) {
 723                dma_async_tx_descriptor_init(&desc->async_tx, dchan);
 724                desc->async_tx.tx_submit = nbpf_tx_submit;
 725                desc->chan = chan;
 726                INIT_LIST_HEAD(&desc->sg);
 727                list_add_tail(&desc->node, &head);
 728        }
 729
 730        /*
 731         * This function cannot be called from interrupt context, so, no need to
 732         * save flags
 733         */
 734        spin_lock_irq(&chan->lock);
 735        list_splice_tail(&lhead, &chan->free_links);
 736        list_splice_tail(&head, &chan->free);
 737        list_add(&dpage->node, &chan->desc_page);
 738        spin_unlock_irq(&chan->lock);
 739
 740        return ARRAY_SIZE(dpage->desc);
 741}
 742
 743static void nbpf_desc_put(struct nbpf_desc *desc)
 744{
 745        struct nbpf_channel *chan = desc->chan;
 746        struct nbpf_link_desc *ldesc, *tmp;
 747        unsigned long flags;
 748
 749        spin_lock_irqsave(&chan->lock, flags);
 750        list_for_each_entry_safe(ldesc, tmp, &desc->sg, node)
 751                list_move(&ldesc->node, &chan->free_links);
 752
 753        list_add(&desc->node, &chan->free);
 754        spin_unlock_irqrestore(&chan->lock, flags);
 755}
 756
 757static void nbpf_scan_acked(struct nbpf_channel *chan)
 758{
 759        struct nbpf_desc *desc, *tmp;
 760        unsigned long flags;
 761        LIST_HEAD(head);
 762
 763        spin_lock_irqsave(&chan->lock, flags);
 764        list_for_each_entry_safe(desc, tmp, &chan->done, node)
 765                if (async_tx_test_ack(&desc->async_tx) && desc->user_wait) {
 766                        list_move(&desc->node, &head);
 767                        desc->user_wait = false;
 768                }
 769        spin_unlock_irqrestore(&chan->lock, flags);
 770
 771        list_for_each_entry_safe(desc, tmp, &head, node) {
 772                list_del(&desc->node);
 773                nbpf_desc_put(desc);
 774        }
 775}
 776
 777/*
 778 * We have to allocate descriptors with the channel lock dropped. This means,
 779 * before we re-acquire the lock buffers can be taken already, so we have to
 780 * re-check after re-acquiring the lock and possibly retry, if buffers are gone
 781 * again.
 782 */
 783static struct nbpf_desc *nbpf_desc_get(struct nbpf_channel *chan, size_t len)
 784{
 785        struct nbpf_desc *desc = NULL;
 786        struct nbpf_link_desc *ldesc, *prev = NULL;
 787
 788        nbpf_scan_acked(chan);
 789
 790        spin_lock_irq(&chan->lock);
 791
 792        do {
 793                int i = 0, ret;
 794
 795                if (list_empty(&chan->free)) {
 796                        /* No more free descriptors */
 797                        spin_unlock_irq(&chan->lock);
 798                        ret = nbpf_desc_page_alloc(chan);
 799                        if (ret < 0)
 800                                return NULL;
 801                        spin_lock_irq(&chan->lock);
 802                        continue;
 803                }
 804                desc = list_first_entry(&chan->free, struct nbpf_desc, node);
 805                list_del(&desc->node);
 806
 807                do {
 808                        if (list_empty(&chan->free_links)) {
 809                                /* No more free link descriptors */
 810                                spin_unlock_irq(&chan->lock);
 811                                ret = nbpf_desc_page_alloc(chan);
 812                                if (ret < 0) {
 813                                        nbpf_desc_put(desc);
 814                                        return NULL;
 815                                }
 816                                spin_lock_irq(&chan->lock);
 817                                continue;
 818                        }
 819
 820                        ldesc = list_first_entry(&chan->free_links,
 821                                                 struct nbpf_link_desc, node);
 822                        ldesc->desc = desc;
 823                        if (prev)
 824                                prev->hwdesc->next = (u32)ldesc->hwdesc_dma_addr;
 825
 826                        prev = ldesc;
 827                        list_move_tail(&ldesc->node, &desc->sg);
 828
 829                        i++;
 830                } while (i < len);
 831        } while (!desc);
 832
 833        prev->hwdesc->next = 0;
 834
 835        spin_unlock_irq(&chan->lock);
 836
 837        return desc;
 838}
 839
 840static void nbpf_chan_idle(struct nbpf_channel *chan)
 841{
 842        struct nbpf_desc *desc, *tmp;
 843        unsigned long flags;
 844        LIST_HEAD(head);
 845
 846        spin_lock_irqsave(&chan->lock, flags);
 847
 848        list_splice_init(&chan->done, &head);
 849        list_splice_init(&chan->active, &head);
 850        list_splice_init(&chan->queued, &head);
 851
 852        chan->running = NULL;
 853
 854        spin_unlock_irqrestore(&chan->lock, flags);
 855
 856        list_for_each_entry_safe(desc, tmp, &head, node) {
 857                dev_dbg(chan->nbpf->dma_dev.dev, "%s(): force-free desc %p cookie %d\n",
 858                        __func__, desc, desc->async_tx.cookie);
 859                list_del(&desc->node);
 860                nbpf_desc_put(desc);
 861        }
 862}
 863
 864static int nbpf_pause(struct dma_chan *dchan)
 865{
 866        struct nbpf_channel *chan = nbpf_to_chan(dchan);
 867
 868        dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
 869
 870        chan->paused = true;
 871        nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETSUS);
 872        /* See comment in nbpf_prep_one() */
 873        nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
 874
 875        return 0;
 876}
 877
 878static int nbpf_terminate_all(struct dma_chan *dchan)
 879{
 880        struct nbpf_channel *chan = nbpf_to_chan(dchan);
 881
 882        dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
 883        dev_dbg(dchan->device->dev, "Terminating\n");
 884
 885        nbpf_chan_halt(chan);
 886        nbpf_chan_idle(chan);
 887
 888        return 0;
 889}
 890
 891static int nbpf_config(struct dma_chan *dchan,
 892                       struct dma_slave_config *config)
 893{
 894        struct nbpf_channel *chan = nbpf_to_chan(dchan);
 895
 896        dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
 897
 898        /*
 899         * We could check config->slave_id to match chan->terminal here,
 900         * but with DT they would be coming from the same source, so
 901         * such a check would be superflous
 902         */
 903
 904        chan->slave_dst_addr = config->dst_addr;
 905        chan->slave_dst_width = nbpf_xfer_size(chan->nbpf,
 906                                               config->dst_addr_width, 1);
 907        chan->slave_dst_burst = nbpf_xfer_size(chan->nbpf,
 908                                               config->dst_addr_width,
 909                                               config->dst_maxburst);
 910        chan->slave_src_addr = config->src_addr;
 911        chan->slave_src_width = nbpf_xfer_size(chan->nbpf,
 912                                               config->src_addr_width, 1);
 913        chan->slave_src_burst = nbpf_xfer_size(chan->nbpf,
 914                                               config->src_addr_width,
 915                                               config->src_maxburst);
 916
 917        return 0;
 918}
 919
 920static struct dma_async_tx_descriptor *nbpf_prep_sg(struct nbpf_channel *chan,
 921                struct scatterlist *src_sg, struct scatterlist *dst_sg,
 922                size_t len, enum dma_transfer_direction direction,
 923                unsigned long flags)
 924{
 925        struct nbpf_link_desc *ldesc;
 926        struct scatterlist *mem_sg;
 927        struct nbpf_desc *desc;
 928        bool inc_src, inc_dst;
 929        size_t data_len = 0;
 930        int i = 0;
 931
 932        switch (direction) {
 933        case DMA_DEV_TO_MEM:
 934                mem_sg = dst_sg;
 935                inc_src = false;
 936                inc_dst = true;
 937                break;
 938
 939        case DMA_MEM_TO_DEV:
 940                mem_sg = src_sg;
 941                inc_src = true;
 942                inc_dst = false;
 943                break;
 944
 945        default:
 946        case DMA_MEM_TO_MEM:
 947                mem_sg = src_sg;
 948                inc_src = true;
 949                inc_dst = true;
 950        }
 951
 952        desc = nbpf_desc_get(chan, len);
 953        if (!desc)
 954                return NULL;
 955
 956        desc->async_tx.flags = flags;
 957        desc->async_tx.cookie = -EBUSY;
 958        desc->user_wait = false;
 959
 960        /*
 961         * This is a private descriptor list, and we own the descriptor. No need
 962         * to lock.
 963         */
 964        list_for_each_entry(ldesc, &desc->sg, node) {
 965                int ret = nbpf_prep_one(ldesc, direction,
 966                                        sg_dma_address(src_sg),
 967                                        sg_dma_address(dst_sg),
 968                                        sg_dma_len(mem_sg),
 969                                        i == len - 1);
 970                if (ret < 0) {
 971                        nbpf_desc_put(desc);
 972                        return NULL;
 973                }
 974                data_len += sg_dma_len(mem_sg);
 975                if (inc_src)
 976                        src_sg = sg_next(src_sg);
 977                if (inc_dst)
 978                        dst_sg = sg_next(dst_sg);
 979                mem_sg = direction == DMA_DEV_TO_MEM ? dst_sg : src_sg;
 980                i++;
 981        }
 982
 983        desc->length = data_len;
 984
 985        /* The user has to return the descriptor to us ASAP via .tx_submit() */
 986        return &desc->async_tx;
 987}
 988
 989static struct dma_async_tx_descriptor *nbpf_prep_memcpy(
 990        struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
 991        size_t len, unsigned long flags)
 992{
 993        struct nbpf_channel *chan = nbpf_to_chan(dchan);
 994        struct scatterlist dst_sg;
 995        struct scatterlist src_sg;
 996
 997        sg_init_table(&dst_sg, 1);
 998        sg_init_table(&src_sg, 1);
 999
1000        sg_dma_address(&dst_sg) = dst;
1001        sg_dma_address(&src_sg) = src;
1002
1003        sg_dma_len(&dst_sg) = len;
1004        sg_dma_len(&src_sg) = len;
1005
1006        dev_dbg(dchan->device->dev, "%s(): %zu @ %pad -> %pad\n",
1007                __func__, len, &src, &dst);
1008
1009        return nbpf_prep_sg(chan, &src_sg, &dst_sg, 1,
1010                            DMA_MEM_TO_MEM, flags);
1011}
1012
1013static struct dma_async_tx_descriptor *nbpf_prep_slave_sg(
1014        struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
1015        enum dma_transfer_direction direction, unsigned long flags, void *context)
1016{
1017        struct nbpf_channel *chan = nbpf_to_chan(dchan);
1018        struct scatterlist slave_sg;
1019
1020        dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1021
1022        sg_init_table(&slave_sg, 1);
1023
1024        switch (direction) {
1025        case DMA_MEM_TO_DEV:
1026                sg_dma_address(&slave_sg) = chan->slave_dst_addr;
1027                return nbpf_prep_sg(chan, sgl, &slave_sg, sg_len,
1028                                    direction, flags);
1029
1030        case DMA_DEV_TO_MEM:
1031                sg_dma_address(&slave_sg) = chan->slave_src_addr;
1032                return nbpf_prep_sg(chan, &slave_sg, sgl, sg_len,
1033                                    direction, flags);
1034
1035        default:
1036                return NULL;
1037        }
1038}
1039
1040static int nbpf_alloc_chan_resources(struct dma_chan *dchan)
1041{
1042        struct nbpf_channel *chan = nbpf_to_chan(dchan);
1043        int ret;
1044
1045        INIT_LIST_HEAD(&chan->free);
1046        INIT_LIST_HEAD(&chan->free_links);
1047        INIT_LIST_HEAD(&chan->queued);
1048        INIT_LIST_HEAD(&chan->active);
1049        INIT_LIST_HEAD(&chan->done);
1050
1051        ret = nbpf_desc_page_alloc(chan);
1052        if (ret < 0)
1053                return ret;
1054
1055        dev_dbg(dchan->device->dev, "Entry %s(): terminal %u\n", __func__,
1056                chan->terminal);
1057
1058        nbpf_chan_configure(chan);
1059
1060        return ret;
1061}
1062
1063static void nbpf_free_chan_resources(struct dma_chan *dchan)
1064{
1065        struct nbpf_channel *chan = nbpf_to_chan(dchan);
1066        struct nbpf_desc_page *dpage, *tmp;
1067
1068        dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1069
1070        nbpf_chan_halt(chan);
1071        nbpf_chan_idle(chan);
1072        /* Clean up for if a channel is re-used for MEMCPY after slave DMA */
1073        nbpf_chan_prepare_default(chan);
1074
1075        list_for_each_entry_safe(dpage, tmp, &chan->desc_page, node) {
1076                struct nbpf_link_desc *ldesc;
1077                int i;
1078                list_del(&dpage->node);
1079                for (i = 0, ldesc = dpage->ldesc;
1080                     i < ARRAY_SIZE(dpage->ldesc);
1081                     i++, ldesc++)
1082                        dma_unmap_single(dchan->device->dev, ldesc->hwdesc_dma_addr,
1083                                         sizeof(*ldesc->hwdesc), DMA_TO_DEVICE);
1084                free_page((unsigned long)dpage);
1085        }
1086}
1087
1088static struct dma_chan *nbpf_of_xlate(struct of_phandle_args *dma_spec,
1089                                      struct of_dma *ofdma)
1090{
1091        struct nbpf_device *nbpf = ofdma->of_dma_data;
1092        struct dma_chan *dchan;
1093        struct nbpf_channel *chan;
1094
1095        if (dma_spec->args_count != 2)
1096                return NULL;
1097
1098        dchan = dma_get_any_slave_channel(&nbpf->dma_dev);
1099        if (!dchan)
1100                return NULL;
1101
1102        dev_dbg(dchan->device->dev, "Entry %s(%pOFn)\n", __func__,
1103                dma_spec->np);
1104
1105        chan = nbpf_to_chan(dchan);
1106
1107        chan->terminal = dma_spec->args[0];
1108        chan->flags = dma_spec->args[1];
1109
1110        nbpf_chan_prepare(chan);
1111        nbpf_chan_configure(chan);
1112
1113        return dchan;
1114}
1115
1116static void nbpf_chan_tasklet(struct tasklet_struct *t)
1117{
1118        struct nbpf_channel *chan = from_tasklet(chan, t, tasklet);
1119        struct nbpf_desc *desc, *tmp;
1120        struct dmaengine_desc_callback cb;
1121
1122        while (!list_empty(&chan->done)) {
1123                bool found = false, must_put, recycling = false;
1124
1125                spin_lock_irq(&chan->lock);
1126
1127                list_for_each_entry_safe(desc, tmp, &chan->done, node) {
1128                        if (!desc->user_wait) {
1129                                /* Newly completed descriptor, have to process */
1130                                found = true;
1131                                break;
1132                        } else if (async_tx_test_ack(&desc->async_tx)) {
1133                                /*
1134                                 * This descriptor was waiting for a user ACK,
1135                                 * it can be recycled now.
1136                                 */
1137                                list_del(&desc->node);
1138                                spin_unlock_irq(&chan->lock);
1139                                nbpf_desc_put(desc);
1140                                recycling = true;
1141                                break;
1142                        }
1143                }
1144
1145                if (recycling)
1146                        continue;
1147
1148                if (!found) {
1149                        /* This can happen if TERMINATE_ALL has been called */
1150                        spin_unlock_irq(&chan->lock);
1151                        break;
1152                }
1153
1154                dma_cookie_complete(&desc->async_tx);
1155
1156                /*
1157                 * With released lock we cannot dereference desc, maybe it's
1158                 * still on the "done" list
1159                 */
1160                if (async_tx_test_ack(&desc->async_tx)) {
1161                        list_del(&desc->node);
1162                        must_put = true;
1163                } else {
1164                        desc->user_wait = true;
1165                        must_put = false;
1166                }
1167
1168                dmaengine_desc_get_callback(&desc->async_tx, &cb);
1169
1170                /* ack and callback completed descriptor */
1171                spin_unlock_irq(&chan->lock);
1172
1173                dmaengine_desc_callback_invoke(&cb, NULL);
1174
1175                if (must_put)
1176                        nbpf_desc_put(desc);
1177        }
1178}
1179
1180static irqreturn_t nbpf_chan_irq(int irq, void *dev)
1181{
1182        struct nbpf_channel *chan = dev;
1183        bool done = nbpf_status_get(chan);
1184        struct nbpf_desc *desc;
1185        irqreturn_t ret;
1186        bool bh = false;
1187
1188        if (!done)
1189                return IRQ_NONE;
1190
1191        nbpf_status_ack(chan);
1192
1193        dev_dbg(&chan->dma_chan.dev->device, "%s()\n", __func__);
1194
1195        spin_lock(&chan->lock);
1196        desc = chan->running;
1197        if (WARN_ON(!desc)) {
1198                ret = IRQ_NONE;
1199                goto unlock;
1200        } else {
1201                ret = IRQ_HANDLED;
1202                bh = true;
1203        }
1204
1205        list_move_tail(&desc->node, &chan->done);
1206        chan->running = NULL;
1207
1208        if (!list_empty(&chan->active)) {
1209                desc = list_first_entry(&chan->active,
1210                                        struct nbpf_desc, node);
1211                if (!nbpf_start(desc))
1212                        chan->running = desc;
1213        }
1214
1215unlock:
1216        spin_unlock(&chan->lock);
1217
1218        if (bh)
1219                tasklet_schedule(&chan->tasklet);
1220
1221        return ret;
1222}
1223
1224static irqreturn_t nbpf_err_irq(int irq, void *dev)
1225{
1226        struct nbpf_device *nbpf = dev;
1227        u32 error = nbpf_error_get(nbpf);
1228
1229        dev_warn(nbpf->dma_dev.dev, "DMA error IRQ %u\n", irq);
1230
1231        if (!error)
1232                return IRQ_NONE;
1233
1234        do {
1235                struct nbpf_channel *chan = nbpf_error_get_channel(nbpf, error);
1236                /* On error: abort all queued transfers, no callback */
1237                nbpf_error_clear(chan);
1238                nbpf_chan_idle(chan);
1239                error = nbpf_error_get(nbpf);
1240        } while (error);
1241
1242        return IRQ_HANDLED;
1243}
1244
1245static int nbpf_chan_probe(struct nbpf_device *nbpf, int n)
1246{
1247        struct dma_device *dma_dev = &nbpf->dma_dev;
1248        struct nbpf_channel *chan = nbpf->chan + n;
1249        int ret;
1250
1251        chan->nbpf = nbpf;
1252        chan->base = nbpf->base + NBPF_REG_CHAN_OFFSET + NBPF_REG_CHAN_SIZE * n;
1253        INIT_LIST_HEAD(&chan->desc_page);
1254        spin_lock_init(&chan->lock);
1255        chan->dma_chan.device = dma_dev;
1256        dma_cookie_init(&chan->dma_chan);
1257        nbpf_chan_prepare_default(chan);
1258
1259        dev_dbg(dma_dev->dev, "%s(): channel %d: -> %p\n", __func__, n, chan->base);
1260
1261        snprintf(chan->name, sizeof(chan->name), "nbpf %d", n);
1262
1263        tasklet_setup(&chan->tasklet, nbpf_chan_tasklet);
1264        ret = devm_request_irq(dma_dev->dev, chan->irq,
1265                        nbpf_chan_irq, IRQF_SHARED,
1266                        chan->name, chan);
1267        if (ret < 0)
1268                return ret;
1269
1270        /* Add the channel to DMA device channel list */
1271        list_add_tail(&chan->dma_chan.device_node,
1272                      &dma_dev->channels);
1273
1274        return 0;
1275}
1276
1277static const struct of_device_id nbpf_match[] = {
1278        {.compatible = "renesas,nbpfaxi64dmac1b4",      .data = &nbpf_cfg[NBPF1B4]},
1279        {.compatible = "renesas,nbpfaxi64dmac1b8",      .data = &nbpf_cfg[NBPF1B8]},
1280        {.compatible = "renesas,nbpfaxi64dmac1b16",     .data = &nbpf_cfg[NBPF1B16]},
1281        {.compatible = "renesas,nbpfaxi64dmac4b4",      .data = &nbpf_cfg[NBPF4B4]},
1282        {.compatible = "renesas,nbpfaxi64dmac4b8",      .data = &nbpf_cfg[NBPF4B8]},
1283        {.compatible = "renesas,nbpfaxi64dmac4b16",     .data = &nbpf_cfg[NBPF4B16]},
1284        {.compatible = "renesas,nbpfaxi64dmac8b4",      .data = &nbpf_cfg[NBPF8B4]},
1285        {.compatible = "renesas,nbpfaxi64dmac8b8",      .data = &nbpf_cfg[NBPF8B8]},
1286        {.compatible = "renesas,nbpfaxi64dmac8b16",     .data = &nbpf_cfg[NBPF8B16]},
1287        {}
1288};
1289MODULE_DEVICE_TABLE(of, nbpf_match);
1290
1291static int nbpf_probe(struct platform_device *pdev)
1292{
1293        struct device *dev = &pdev->dev;
1294        struct device_node *np = dev->of_node;
1295        struct nbpf_device *nbpf;
1296        struct dma_device *dma_dev;
1297        struct resource *iomem, *irq_res;
1298        const struct nbpf_config *cfg;
1299        int num_channels;
1300        int ret, irq, eirq, i;
1301        int irqbuf[9] /* maximum 8 channels + error IRQ */;
1302        unsigned int irqs = 0;
1303
1304        BUILD_BUG_ON(sizeof(struct nbpf_desc_page) > PAGE_SIZE);
1305
1306        /* DT only */
1307        if (!np)
1308                return -ENODEV;
1309
1310        cfg = of_device_get_match_data(dev);
1311        num_channels = cfg->num_channels;
1312
1313        nbpf = devm_kzalloc(dev, struct_size(nbpf, chan, num_channels),
1314                            GFP_KERNEL);
1315        if (!nbpf)
1316                return -ENOMEM;
1317
1318        dma_dev = &nbpf->dma_dev;
1319        dma_dev->dev = dev;
1320
1321        iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1322        nbpf->base = devm_ioremap_resource(dev, iomem);
1323        if (IS_ERR(nbpf->base))
1324                return PTR_ERR(nbpf->base);
1325
1326        nbpf->clk = devm_clk_get(dev, NULL);
1327        if (IS_ERR(nbpf->clk))
1328                return PTR_ERR(nbpf->clk);
1329
1330        of_property_read_u32(np, "max-burst-mem-read",
1331                             &nbpf->max_burst_mem_read);
1332        of_property_read_u32(np, "max-burst-mem-write",
1333                             &nbpf->max_burst_mem_write);
1334
1335        nbpf->config = cfg;
1336
1337        for (i = 0; irqs < ARRAY_SIZE(irqbuf); i++) {
1338                irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1339                if (!irq_res)
1340                        break;
1341
1342                for (irq = irq_res->start; irq <= irq_res->end;
1343                     irq++, irqs++)
1344                        irqbuf[irqs] = irq;
1345        }
1346
1347        /*
1348         * 3 IRQ resource schemes are supported:
1349         * 1. 1 shared IRQ for error and all channels
1350         * 2. 2 IRQs: one for error and one shared for all channels
1351         * 3. 1 IRQ for error and an own IRQ for each channel
1352         */
1353        if (irqs != 1 && irqs != 2 && irqs != num_channels + 1)
1354                return -ENXIO;
1355
1356        if (irqs == 1) {
1357                eirq = irqbuf[0];
1358
1359                for (i = 0; i <= num_channels; i++)
1360                        nbpf->chan[i].irq = irqbuf[0];
1361        } else {
1362                eirq = platform_get_irq_byname(pdev, "error");
1363                if (eirq < 0)
1364                        return eirq;
1365
1366                if (irqs == num_channels + 1) {
1367                        struct nbpf_channel *chan;
1368
1369                        for (i = 0, chan = nbpf->chan; i <= num_channels;
1370                             i++, chan++) {
1371                                /* Skip the error IRQ */
1372                                if (irqbuf[i] == eirq)
1373                                        i++;
1374                                chan->irq = irqbuf[i];
1375                        }
1376
1377                        if (chan != nbpf->chan + num_channels)
1378                                return -EINVAL;
1379                } else {
1380                        /* 2 IRQs and more than one channel */
1381                        if (irqbuf[0] == eirq)
1382                                irq = irqbuf[1];
1383                        else
1384                                irq = irqbuf[0];
1385
1386                        for (i = 0; i <= num_channels; i++)
1387                                nbpf->chan[i].irq = irq;
1388                }
1389        }
1390
1391        ret = devm_request_irq(dev, eirq, nbpf_err_irq,
1392                               IRQF_SHARED, "dma error", nbpf);
1393        if (ret < 0)
1394                return ret;
1395        nbpf->eirq = eirq;
1396
1397        INIT_LIST_HEAD(&dma_dev->channels);
1398
1399        /* Create DMA Channel */
1400        for (i = 0; i < num_channels; i++) {
1401                ret = nbpf_chan_probe(nbpf, i);
1402                if (ret < 0)
1403                        return ret;
1404        }
1405
1406        dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1407        dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1408        dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1409
1410        /* Common and MEMCPY operations */
1411        dma_dev->device_alloc_chan_resources
1412                = nbpf_alloc_chan_resources;
1413        dma_dev->device_free_chan_resources = nbpf_free_chan_resources;
1414        dma_dev->device_prep_dma_memcpy = nbpf_prep_memcpy;
1415        dma_dev->device_tx_status = nbpf_tx_status;
1416        dma_dev->device_issue_pending = nbpf_issue_pending;
1417
1418        /*
1419         * If we drop support for unaligned MEMCPY buffer addresses and / or
1420         * lengths by setting
1421         * dma_dev->copy_align = 4;
1422         * then we can set transfer length to 4 bytes in nbpf_prep_one() for
1423         * DMA_MEM_TO_MEM
1424         */
1425
1426        /* Compulsory for DMA_SLAVE fields */
1427        dma_dev->device_prep_slave_sg = nbpf_prep_slave_sg;
1428        dma_dev->device_config = nbpf_config;
1429        dma_dev->device_pause = nbpf_pause;
1430        dma_dev->device_terminate_all = nbpf_terminate_all;
1431
1432        dma_dev->src_addr_widths = NBPF_DMA_BUSWIDTHS;
1433        dma_dev->dst_addr_widths = NBPF_DMA_BUSWIDTHS;
1434        dma_dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1435
1436        platform_set_drvdata(pdev, nbpf);
1437
1438        ret = clk_prepare_enable(nbpf->clk);
1439        if (ret < 0)
1440                return ret;
1441
1442        nbpf_configure(nbpf);
1443
1444        ret = dma_async_device_register(dma_dev);
1445        if (ret < 0)
1446                goto e_clk_off;
1447
1448        ret = of_dma_controller_register(np, nbpf_of_xlate, nbpf);
1449        if (ret < 0)
1450                goto e_dma_dev_unreg;
1451
1452        return 0;
1453
1454e_dma_dev_unreg:
1455        dma_async_device_unregister(dma_dev);
1456e_clk_off:
1457        clk_disable_unprepare(nbpf->clk);
1458
1459        return ret;
1460}
1461
1462static int nbpf_remove(struct platform_device *pdev)
1463{
1464        struct nbpf_device *nbpf = platform_get_drvdata(pdev);
1465        int i;
1466
1467        devm_free_irq(&pdev->dev, nbpf->eirq, nbpf);
1468
1469        for (i = 0; i < nbpf->config->num_channels; i++) {
1470                struct nbpf_channel *chan = nbpf->chan + i;
1471
1472                devm_free_irq(&pdev->dev, chan->irq, chan);
1473
1474                tasklet_kill(&chan->tasklet);
1475        }
1476
1477        of_dma_controller_free(pdev->dev.of_node);
1478        dma_async_device_unregister(&nbpf->dma_dev);
1479        clk_disable_unprepare(nbpf->clk);
1480
1481        return 0;
1482}
1483
1484static const struct platform_device_id nbpf_ids[] = {
1485        {"nbpfaxi64dmac1b4",    (kernel_ulong_t)&nbpf_cfg[NBPF1B4]},
1486        {"nbpfaxi64dmac1b8",    (kernel_ulong_t)&nbpf_cfg[NBPF1B8]},
1487        {"nbpfaxi64dmac1b16",   (kernel_ulong_t)&nbpf_cfg[NBPF1B16]},
1488        {"nbpfaxi64dmac4b4",    (kernel_ulong_t)&nbpf_cfg[NBPF4B4]},
1489        {"nbpfaxi64dmac4b8",    (kernel_ulong_t)&nbpf_cfg[NBPF4B8]},
1490        {"nbpfaxi64dmac4b16",   (kernel_ulong_t)&nbpf_cfg[NBPF4B16]},
1491        {"nbpfaxi64dmac8b4",    (kernel_ulong_t)&nbpf_cfg[NBPF8B4]},
1492        {"nbpfaxi64dmac8b8",    (kernel_ulong_t)&nbpf_cfg[NBPF8B8]},
1493        {"nbpfaxi64dmac8b16",   (kernel_ulong_t)&nbpf_cfg[NBPF8B16]},
1494        {},
1495};
1496MODULE_DEVICE_TABLE(platform, nbpf_ids);
1497
1498#ifdef CONFIG_PM
1499static int nbpf_runtime_suspend(struct device *dev)
1500{
1501        struct nbpf_device *nbpf = dev_get_drvdata(dev);
1502        clk_disable_unprepare(nbpf->clk);
1503        return 0;
1504}
1505
1506static int nbpf_runtime_resume(struct device *dev)
1507{
1508        struct nbpf_device *nbpf = dev_get_drvdata(dev);
1509        return clk_prepare_enable(nbpf->clk);
1510}
1511#endif
1512
1513static const struct dev_pm_ops nbpf_pm_ops = {
1514        SET_RUNTIME_PM_OPS(nbpf_runtime_suspend, nbpf_runtime_resume, NULL)
1515};
1516
1517static struct platform_driver nbpf_driver = {
1518        .driver = {
1519                .name = "dma-nbpf",
1520                .of_match_table = nbpf_match,
1521                .pm = &nbpf_pm_ops,
1522        },
1523        .id_table = nbpf_ids,
1524        .probe = nbpf_probe,
1525        .remove = nbpf_remove,
1526};
1527
1528module_platform_driver(nbpf_driver);
1529
1530MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1531MODULE_DESCRIPTION("dmaengine driver for NBPFAXI64* DMACs");
1532MODULE_LICENSE("GPL v2");
1533