linux/drivers/dma/qcom/gpi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2017-2020, The Linux Foundation. All rights reserved.
   4 * Copyright (c) 2020, Linaro Limited
   5 */
   6
   7#include <dt-bindings/dma/qcom-gpi.h>
   8#include <linux/bitfield.h>
   9#include <linux/dma-mapping.h>
  10#include <linux/dmaengine.h>
  11#include <linux/module.h>
  12#include <linux/of_dma.h>
  13#include <linux/platform_device.h>
  14#include <linux/dma/qcom-gpi-dma.h>
  15#include <linux/scatterlist.h>
  16#include <linux/slab.h>
  17#include "../dmaengine.h"
  18#include "../virt-dma.h"
  19
  20#define TRE_TYPE_DMA            0x10
  21#define TRE_TYPE_GO             0x20
  22#define TRE_TYPE_CONFIG0        0x22
  23
  24/* TRE flags */
  25#define TRE_FLAGS_CHAIN         BIT(0)
  26#define TRE_FLAGS_IEOB          BIT(8)
  27#define TRE_FLAGS_IEOT          BIT(9)
  28#define TRE_FLAGS_BEI           BIT(10)
  29#define TRE_FLAGS_LINK          BIT(11)
  30#define TRE_FLAGS_TYPE          GENMASK(23, 16)
  31
  32/* SPI CONFIG0 WD0 */
  33#define TRE_SPI_C0_WORD_SZ      GENMASK(4, 0)
  34#define TRE_SPI_C0_LOOPBACK     BIT(8)
  35#define TRE_SPI_C0_CS           BIT(11)
  36#define TRE_SPI_C0_CPHA         BIT(12)
  37#define TRE_SPI_C0_CPOL         BIT(13)
  38#define TRE_SPI_C0_TX_PACK      BIT(24)
  39#define TRE_SPI_C0_RX_PACK      BIT(25)
  40
  41/* CONFIG0 WD2 */
  42#define TRE_C0_CLK_DIV          GENMASK(11, 0)
  43#define TRE_C0_CLK_SRC          GENMASK(19, 16)
  44
  45/* SPI GO WD0 */
  46#define TRE_SPI_GO_CMD          GENMASK(4, 0)
  47#define TRE_SPI_GO_CS           GENMASK(10, 8)
  48#define TRE_SPI_GO_FRAG         BIT(26)
  49
  50/* GO WD2 */
  51#define TRE_RX_LEN              GENMASK(23, 0)
  52
  53/* I2C Config0 WD0 */
  54#define TRE_I2C_C0_TLOW         GENMASK(7, 0)
  55#define TRE_I2C_C0_THIGH        GENMASK(15, 8)
  56#define TRE_I2C_C0_TCYL         GENMASK(23, 16)
  57#define TRE_I2C_C0_TX_PACK      BIT(24)
  58#define TRE_I2C_C0_RX_PACK      BIT(25)
  59
  60/* I2C GO WD0 */
  61#define TRE_I2C_GO_CMD          GENMASK(4, 0)
  62#define TRE_I2C_GO_ADDR         GENMASK(14, 8)
  63#define TRE_I2C_GO_STRETCH      BIT(26)
  64
  65/* DMA TRE */
  66#define TRE_DMA_LEN             GENMASK(23, 0)
  67
  68/* Register offsets from gpi-top */
  69#define GPII_n_CH_k_CNTXT_0_OFFS(n, k)  (0x20000 + (0x4000 * (n)) + (0x80 * (k)))
  70#define GPII_n_CH_k_CNTXT_0_EL_SIZE     GENMASK(31, 24)
  71#define GPII_n_CH_k_CNTXT_0_CHSTATE     GENMASK(23, 20)
  72#define GPII_n_CH_k_CNTXT_0_ERIDX       GENMASK(18, 14)
  73#define GPII_n_CH_k_CNTXT_0_DIR         BIT(3)
  74#define GPII_n_CH_k_CNTXT_0_PROTO       GENMASK(2, 0)
  75
  76#define GPII_n_CH_k_CNTXT_0(el_size, erindex, dir, chtype_proto)  \
  77        (FIELD_PREP(GPII_n_CH_k_CNTXT_0_EL_SIZE, el_size)       | \
  78         FIELD_PREP(GPII_n_CH_k_CNTXT_0_ERIDX, erindex)         | \
  79         FIELD_PREP(GPII_n_CH_k_CNTXT_0_DIR, dir)               | \
  80         FIELD_PREP(GPII_n_CH_k_CNTXT_0_PROTO, chtype_proto))
  81
  82#define GPI_CHTYPE_DIR_IN       (0)
  83#define GPI_CHTYPE_DIR_OUT      (1)
  84
  85#define GPI_CHTYPE_PROTO_GPI    (0x2)
  86
  87#define GPII_n_CH_k_DOORBELL_0_OFFS(n, k)       (0x22000 + (0x4000 * (n)) + (0x8 * (k)))
  88#define GPII_n_CH_CMD_OFFS(n)                   (0x23008 + (0x4000 * (n)))
  89#define GPII_n_CH_CMD_OPCODE                    GENMASK(31, 24)
  90#define GPII_n_CH_CMD_CHID                      GENMASK(7, 0)
  91#define GPII_n_CH_CMD(opcode, chid)                              \
  92                     (FIELD_PREP(GPII_n_CH_CMD_OPCODE, opcode) | \
  93                      FIELD_PREP(GPII_n_CH_CMD_CHID, chid))
  94
  95#define GPII_n_CH_CMD_ALLOCATE          (0)
  96#define GPII_n_CH_CMD_START             (1)
  97#define GPII_n_CH_CMD_STOP              (2)
  98#define GPII_n_CH_CMD_RESET             (9)
  99#define GPII_n_CH_CMD_DE_ALLOC          (10)
 100#define GPII_n_CH_CMD_UART_SW_STALE     (32)
 101#define GPII_n_CH_CMD_UART_RFR_READY    (33)
 102#define GPII_n_CH_CMD_UART_RFR_NOT_READY (34)
 103
 104/* EV Context Array */
 105#define GPII_n_EV_CH_k_CNTXT_0_OFFS(n, k) (0x21000 + (0x4000 * (n)) + (0x80 * (k)))
 106#define GPII_n_EV_k_CNTXT_0_EL_SIZE     GENMASK(31, 24)
 107#define GPII_n_EV_k_CNTXT_0_CHSTATE     GENMASK(23, 20)
 108#define GPII_n_EV_k_CNTXT_0_INTYPE      BIT(16)
 109#define GPII_n_EV_k_CNTXT_0_CHTYPE      GENMASK(3, 0)
 110
 111#define GPII_n_EV_k_CNTXT_0(el_size, inttype, chtype)           \
 112        (FIELD_PREP(GPII_n_EV_k_CNTXT_0_EL_SIZE, el_size) |     \
 113         FIELD_PREP(GPII_n_EV_k_CNTXT_0_INTYPE, inttype)  |     \
 114         FIELD_PREP(GPII_n_EV_k_CNTXT_0_CHTYPE, chtype))
 115
 116#define GPI_INTTYPE_IRQ         (1)
 117#define GPI_CHTYPE_GPI_EV       (0x2)
 118
 119enum CNTXT_OFFS {
 120        CNTXT_0_CONFIG = 0x0,
 121        CNTXT_1_R_LENGTH = 0x4,
 122        CNTXT_2_RING_BASE_LSB = 0x8,
 123        CNTXT_3_RING_BASE_MSB = 0xC,
 124        CNTXT_4_RING_RP_LSB = 0x10,
 125        CNTXT_5_RING_RP_MSB = 0x14,
 126        CNTXT_6_RING_WP_LSB = 0x18,
 127        CNTXT_7_RING_WP_MSB = 0x1C,
 128        CNTXT_8_RING_INT_MOD = 0x20,
 129        CNTXT_9_RING_INTVEC = 0x24,
 130        CNTXT_10_RING_MSI_LSB = 0x28,
 131        CNTXT_11_RING_MSI_MSB = 0x2C,
 132        CNTXT_12_RING_RP_UPDATE_LSB = 0x30,
 133        CNTXT_13_RING_RP_UPDATE_MSB = 0x34,
 134};
 135
 136#define GPII_n_EV_CH_k_DOORBELL_0_OFFS(n, k)    (0x22100 + (0x4000 * (n)) + (0x8 * (k)))
 137#define GPII_n_EV_CH_CMD_OFFS(n)                (0x23010 + (0x4000 * (n)))
 138#define GPII_n_EV_CMD_OPCODE                    GENMASK(31, 24)
 139#define GPII_n_EV_CMD_CHID                      GENMASK(7, 0)
 140#define GPII_n_EV_CMD(opcode, chid)                              \
 141                     (FIELD_PREP(GPII_n_EV_CMD_OPCODE, opcode) | \
 142                      FIELD_PREP(GPII_n_EV_CMD_CHID, chid))
 143
 144#define GPII_n_EV_CH_CMD_ALLOCATE               (0x00)
 145#define GPII_n_EV_CH_CMD_RESET                  (0x09)
 146#define GPII_n_EV_CH_CMD_DE_ALLOC               (0x0A)
 147
 148#define GPII_n_CNTXT_TYPE_IRQ_OFFS(n)           (0x23080 + (0x4000 * (n)))
 149
 150/* mask type register */
 151#define GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(n)       (0x23088 + (0x4000 * (n)))
 152#define GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK          GENMASK(6, 0)
 153#define GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL       BIT(6)
 154#define GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB          BIT(3)
 155#define GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB          BIT(2)
 156#define GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL       BIT(1)
 157#define GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL       BIT(0)
 158
 159#define GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(n)    (0x23090 + (0x4000 * (n)))
 160#define GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(n)      (0x23094 + (0x4000 * (n)))
 161
 162/* Mask channel control interrupt register */
 163#define GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(n)     (0x23098 + (0x4000 * (n)))
 164#define GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK        GENMASK(1, 0)
 165
 166/* Mask event control interrupt register */
 167#define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(n)  (0x2309C + (0x4000 * (n)))
 168#define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK     BIT(0)
 169
 170#define GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(n)     (0x230A0 + (0x4000 * (n)))
 171#define GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS(n)  (0x230A4 + (0x4000 * (n)))
 172
 173/* Mask event interrupt register */
 174#define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(n)   (0x230B8 + (0x4000 * (n)))
 175#define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK      BIT(0)
 176
 177#define GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(n)   (0x230C0 + (0x4000 * (n)))
 178#define GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(n)      (0x23100 + (0x4000 * (n)))
 179#define GPI_GLOB_IRQ_ERROR_INT_MSK              BIT(0)
 180
 181/* GPII specific Global - Enable bit register */
 182#define GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(n)        (0x23108 + (0x4000 * (n)))
 183#define GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(n)       (0x23110 + (0x4000 * (n)))
 184#define GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(n)      (0x23118 + (0x4000 * (n)))
 185
 186/* GPII general interrupt - Enable bit register */
 187#define GPII_n_CNTXT_GPII_IRQ_EN_OFFS(n)        (0x23120 + (0x4000 * (n)))
 188#define GPII_n_CNTXT_GPII_IRQ_EN_BMSK           GENMASK(3, 0)
 189
 190#define GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(n)       (0x23128 + (0x4000 * (n)))
 191
 192/* GPII Interrupt Type register */
 193#define GPII_n_CNTXT_INTSET_OFFS(n)             (0x23180 + (0x4000 * (n)))
 194#define GPII_n_CNTXT_INTSET_BMSK                BIT(0)
 195
 196#define GPII_n_CNTXT_MSI_BASE_LSB_OFFS(n)       (0x23188 + (0x4000 * (n)))
 197#define GPII_n_CNTXT_MSI_BASE_MSB_OFFS(n)       (0x2318C + (0x4000 * (n)))
 198#define GPII_n_CNTXT_SCRATCH_0_OFFS(n)          (0x23400 + (0x4000 * (n)))
 199#define GPII_n_CNTXT_SCRATCH_1_OFFS(n)          (0x23404 + (0x4000 * (n)))
 200
 201#define GPII_n_ERROR_LOG_OFFS(n)                (0x23200 + (0x4000 * (n)))
 202
 203/* QOS Registers */
 204#define GPII_n_CH_k_QOS_OFFS(n, k)              (0x2005C + (0x4000 * (n)) + (0x80 * (k)))
 205
 206/* Scratch registers */
 207#define GPII_n_CH_k_SCRATCH_0_OFFS(n, k)        (0x20060 + (0x4000 * (n)) + (0x80 * (k)))
 208#define GPII_n_CH_k_SCRATCH_0_SEID              GENMASK(2, 0)
 209#define GPII_n_CH_k_SCRATCH_0_PROTO             GENMASK(7, 4)
 210#define GPII_n_CH_k_SCRATCH_0_PAIR              GENMASK(20, 16)
 211#define GPII_n_CH_k_SCRATCH_0(pair, proto, seid)                \
 212                             (FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PAIR, pair)      | \
 213                              FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PROTO, proto)    | \
 214                              FIELD_PREP(GPII_n_CH_k_SCRATCH_0_SEID, seid))
 215#define GPII_n_CH_k_SCRATCH_1_OFFS(n, k)        (0x20064 + (0x4000 * (n)) + (0x80 * (k)))
 216#define GPII_n_CH_k_SCRATCH_2_OFFS(n, k)        (0x20068 + (0x4000 * (n)) + (0x80 * (k)))
 217#define GPII_n_CH_k_SCRATCH_3_OFFS(n, k)        (0x2006C + (0x4000 * (n)) + (0x80 * (k)))
 218
 219struct __packed gpi_tre {
 220        u32 dword[4];
 221};
 222
 223enum msm_gpi_tce_code {
 224        MSM_GPI_TCE_SUCCESS = 1,
 225        MSM_GPI_TCE_EOT = 2,
 226        MSM_GPI_TCE_EOB = 4,
 227        MSM_GPI_TCE_UNEXP_ERR = 16,
 228};
 229
 230#define CMD_TIMEOUT_MS          (250)
 231
 232#define MAX_CHANNELS_PER_GPII   (2)
 233#define GPI_TX_CHAN             (0)
 234#define GPI_RX_CHAN             (1)
 235#define STATE_IGNORE            (U32_MAX)
 236#define EV_FACTOR               (2)
 237#define REQ_OF_DMA_ARGS         (5) /* # of arguments required from client */
 238#define CHAN_TRES               64
 239
 240struct __packed xfer_compl_event {
 241        u64 ptr;
 242        u32 length:24;
 243        u8 code;
 244        u16 status;
 245        u8 type;
 246        u8 chid;
 247};
 248
 249struct __packed immediate_data_event {
 250        u8 data_bytes[8];
 251        u8 length:4;
 252        u8 resvd:4;
 253        u16 tre_index;
 254        u8 code;
 255        u16 status;
 256        u8 type;
 257        u8 chid;
 258};
 259
 260struct __packed qup_notif_event {
 261        u32 status;
 262        u32 time;
 263        u32 count:24;
 264        u8 resvd;
 265        u16 resvd1;
 266        u8 type;
 267        u8 chid;
 268};
 269
 270struct __packed gpi_ere {
 271        u32 dword[4];
 272};
 273
 274enum GPI_EV_TYPE {
 275        XFER_COMPLETE_EV_TYPE = 0x22,
 276        IMMEDIATE_DATA_EV_TYPE = 0x30,
 277        QUP_NOTIF_EV_TYPE = 0x31,
 278        STALE_EV_TYPE = 0xFF,
 279};
 280
 281union __packed gpi_event {
 282        struct __packed xfer_compl_event xfer_compl_event;
 283        struct __packed immediate_data_event immediate_data_event;
 284        struct __packed qup_notif_event qup_notif_event;
 285        struct __packed gpi_ere gpi_ere;
 286};
 287
 288enum gpii_irq_settings {
 289        DEFAULT_IRQ_SETTINGS,
 290        MASK_IEOB_SETTINGS,
 291};
 292
 293enum gpi_ev_state {
 294        DEFAULT_EV_CH_STATE = 0,
 295        EV_STATE_NOT_ALLOCATED = DEFAULT_EV_CH_STATE,
 296        EV_STATE_ALLOCATED,
 297        MAX_EV_STATES
 298};
 299
 300static const char *const gpi_ev_state_str[MAX_EV_STATES] = {
 301        [EV_STATE_NOT_ALLOCATED] = "NOT ALLOCATED",
 302        [EV_STATE_ALLOCATED] = "ALLOCATED",
 303};
 304
 305#define TO_GPI_EV_STATE_STR(_state) (((_state) >= MAX_EV_STATES) ? \
 306                                    "INVALID" : gpi_ev_state_str[(_state)])
 307
 308enum gpi_ch_state {
 309        DEFAULT_CH_STATE = 0x0,
 310        CH_STATE_NOT_ALLOCATED = DEFAULT_CH_STATE,
 311        CH_STATE_ALLOCATED = 0x1,
 312        CH_STATE_STARTED = 0x2,
 313        CH_STATE_STOPPED = 0x3,
 314        CH_STATE_STOP_IN_PROC = 0x4,
 315        CH_STATE_ERROR = 0xf,
 316        MAX_CH_STATES
 317};
 318
 319enum gpi_cmd {
 320        GPI_CH_CMD_BEGIN,
 321        GPI_CH_CMD_ALLOCATE = GPI_CH_CMD_BEGIN,
 322        GPI_CH_CMD_START,
 323        GPI_CH_CMD_STOP,
 324        GPI_CH_CMD_RESET,
 325        GPI_CH_CMD_DE_ALLOC,
 326        GPI_CH_CMD_UART_SW_STALE,
 327        GPI_CH_CMD_UART_RFR_READY,
 328        GPI_CH_CMD_UART_RFR_NOT_READY,
 329        GPI_CH_CMD_END = GPI_CH_CMD_UART_RFR_NOT_READY,
 330        GPI_EV_CMD_BEGIN,
 331        GPI_EV_CMD_ALLOCATE = GPI_EV_CMD_BEGIN,
 332        GPI_EV_CMD_RESET,
 333        GPI_EV_CMD_DEALLOC,
 334        GPI_EV_CMD_END = GPI_EV_CMD_DEALLOC,
 335        GPI_MAX_CMD,
 336};
 337
 338#define IS_CHAN_CMD(_cmd) ((_cmd) <= GPI_CH_CMD_END)
 339
 340static const char *const gpi_cmd_str[GPI_MAX_CMD] = {
 341        [GPI_CH_CMD_ALLOCATE] = "CH ALLOCATE",
 342        [GPI_CH_CMD_START] = "CH START",
 343        [GPI_CH_CMD_STOP] = "CH STOP",
 344        [GPI_CH_CMD_RESET] = "CH_RESET",
 345        [GPI_CH_CMD_DE_ALLOC] = "DE ALLOC",
 346        [GPI_CH_CMD_UART_SW_STALE] = "UART SW STALE",
 347        [GPI_CH_CMD_UART_RFR_READY] = "UART RFR READY",
 348        [GPI_CH_CMD_UART_RFR_NOT_READY] = "UART RFR NOT READY",
 349        [GPI_EV_CMD_ALLOCATE] = "EV ALLOCATE",
 350        [GPI_EV_CMD_RESET] = "EV RESET",
 351        [GPI_EV_CMD_DEALLOC] = "EV DEALLOC",
 352};
 353
 354#define TO_GPI_CMD_STR(_cmd) (((_cmd) >= GPI_MAX_CMD) ? "INVALID" : \
 355                                  gpi_cmd_str[(_cmd)])
 356
 357/*
 358 * @DISABLE_STATE: no register access allowed
 359 * @CONFIG_STATE:  client has configured the channel
 360 * @PREP_HARDWARE: register access is allowed
 361 *                 however, no processing EVENTS
 362 * @ACTIVE_STATE: channels are fully operational
 363 * @PREPARE_TERMINATE: graceful termination of channels
 364 *                     register access is allowed
 365 * @PAUSE_STATE: channels are active, but not processing any events
 366 */
 367enum gpi_pm_state {
 368        DISABLE_STATE,
 369        CONFIG_STATE,
 370        PREPARE_HARDWARE,
 371        ACTIVE_STATE,
 372        PREPARE_TERMINATE,
 373        PAUSE_STATE,
 374        MAX_PM_STATE
 375};
 376
 377#define REG_ACCESS_VALID(_pm_state) ((_pm_state) >= PREPARE_HARDWARE)
 378
 379static const char *const gpi_pm_state_str[MAX_PM_STATE] = {
 380        [DISABLE_STATE] = "DISABLE",
 381        [CONFIG_STATE] = "CONFIG",
 382        [PREPARE_HARDWARE] = "PREPARE HARDWARE",
 383        [ACTIVE_STATE] = "ACTIVE",
 384        [PREPARE_TERMINATE] = "PREPARE TERMINATE",
 385        [PAUSE_STATE] = "PAUSE",
 386};
 387
 388#define TO_GPI_PM_STR(_state) (((_state) >= MAX_PM_STATE) ? \
 389                              "INVALID" : gpi_pm_state_str[(_state)])
 390
 391static const struct {
 392        enum gpi_cmd gpi_cmd;
 393        u32 opcode;
 394        u32 state;
 395} gpi_cmd_info[GPI_MAX_CMD] = {
 396        {
 397                GPI_CH_CMD_ALLOCATE,
 398                GPII_n_CH_CMD_ALLOCATE,
 399                CH_STATE_ALLOCATED,
 400        },
 401        {
 402                GPI_CH_CMD_START,
 403                GPII_n_CH_CMD_START,
 404                CH_STATE_STARTED,
 405        },
 406        {
 407                GPI_CH_CMD_STOP,
 408                GPII_n_CH_CMD_STOP,
 409                CH_STATE_STOPPED,
 410        },
 411        {
 412                GPI_CH_CMD_RESET,
 413                GPII_n_CH_CMD_RESET,
 414                CH_STATE_ALLOCATED,
 415        },
 416        {
 417                GPI_CH_CMD_DE_ALLOC,
 418                GPII_n_CH_CMD_DE_ALLOC,
 419                CH_STATE_NOT_ALLOCATED,
 420        },
 421        {
 422                GPI_CH_CMD_UART_SW_STALE,
 423                GPII_n_CH_CMD_UART_SW_STALE,
 424                STATE_IGNORE,
 425        },
 426        {
 427                GPI_CH_CMD_UART_RFR_READY,
 428                GPII_n_CH_CMD_UART_RFR_READY,
 429                STATE_IGNORE,
 430        },
 431        {
 432                GPI_CH_CMD_UART_RFR_NOT_READY,
 433                GPII_n_CH_CMD_UART_RFR_NOT_READY,
 434                STATE_IGNORE,
 435        },
 436        {
 437                GPI_EV_CMD_ALLOCATE,
 438                GPII_n_EV_CH_CMD_ALLOCATE,
 439                EV_STATE_ALLOCATED,
 440        },
 441        {
 442                GPI_EV_CMD_RESET,
 443                GPII_n_EV_CH_CMD_RESET,
 444                EV_STATE_ALLOCATED,
 445        },
 446        {
 447                GPI_EV_CMD_DEALLOC,
 448                GPII_n_EV_CH_CMD_DE_ALLOC,
 449                EV_STATE_NOT_ALLOCATED,
 450        },
 451};
 452
 453struct gpi_ring {
 454        void *pre_aligned;
 455        size_t alloc_size;
 456        phys_addr_t phys_addr;
 457        dma_addr_t dma_handle;
 458        void *base;
 459        void *wp;
 460        void *rp;
 461        u32 len;
 462        u32 el_size;
 463        u32 elements;
 464        bool configured;
 465};
 466
 467struct gpi_dev {
 468        struct dma_device dma_device;
 469        struct device *dev;
 470        struct resource *res;
 471        void __iomem *regs;
 472        void __iomem *ee_base; /*ee register base address*/
 473        u32 max_gpii; /* maximum # of gpii instances available per gpi block */
 474        u32 gpii_mask; /* gpii instances available for apps */
 475        u32 ev_factor; /* ev ring length factor */
 476        struct gpii *gpiis;
 477};
 478
 479struct reg_info {
 480        char *name;
 481        u32 offset;
 482        u32 val;
 483};
 484
 485struct gchan {
 486        struct virt_dma_chan vc;
 487        u32 chid;
 488        u32 seid;
 489        u32 protocol;
 490        struct gpii *gpii;
 491        enum gpi_ch_state ch_state;
 492        enum gpi_pm_state pm_state;
 493        void __iomem *ch_cntxt_base_reg;
 494        void __iomem *ch_cntxt_db_reg;
 495        void __iomem *ch_cmd_reg;
 496        u32 dir;
 497        struct gpi_ring ch_ring;
 498        void *config;
 499};
 500
 501struct gpii {
 502        u32 gpii_id;
 503        struct gchan gchan[MAX_CHANNELS_PER_GPII];
 504        struct gpi_dev *gpi_dev;
 505        int irq;
 506        void __iomem *regs; /* points to gpi top */
 507        void __iomem *ev_cntxt_base_reg;
 508        void __iomem *ev_cntxt_db_reg;
 509        void __iomem *ev_ring_rp_lsb_reg;
 510        void __iomem *ev_cmd_reg;
 511        void __iomem *ieob_clr_reg;
 512        struct mutex ctrl_lock;
 513        enum gpi_ev_state ev_state;
 514        bool configured_irq;
 515        enum gpi_pm_state pm_state;
 516        rwlock_t pm_lock;
 517        struct gpi_ring ev_ring;
 518        struct tasklet_struct ev_task; /* event processing tasklet */
 519        struct completion cmd_completion;
 520        enum gpi_cmd gpi_cmd;
 521        u32 cntxt_type_irq_msk;
 522        bool ieob_set;
 523};
 524
 525#define MAX_TRE 3
 526
 527struct gpi_desc {
 528        struct virt_dma_desc vd;
 529        size_t len;
 530        void *db; /* DB register to program */
 531        struct gchan *gchan;
 532        struct gpi_tre tre[MAX_TRE];
 533        u32 num_tre;
 534};
 535
 536static const u32 GPII_CHAN_DIR[MAX_CHANNELS_PER_GPII] = {
 537        GPI_CHTYPE_DIR_OUT, GPI_CHTYPE_DIR_IN
 538};
 539
 540static irqreturn_t gpi_handle_irq(int irq, void *data);
 541static void gpi_ring_recycle_ev_element(struct gpi_ring *ring);
 542static int gpi_ring_add_element(struct gpi_ring *ring, void **wp);
 543static void gpi_process_events(struct gpii *gpii);
 544
 545static inline struct gchan *to_gchan(struct dma_chan *dma_chan)
 546{
 547        return container_of(dma_chan, struct gchan, vc.chan);
 548}
 549
 550static inline struct gpi_desc *to_gpi_desc(struct virt_dma_desc *vd)
 551{
 552        return container_of(vd, struct gpi_desc, vd);
 553}
 554
 555static inline phys_addr_t to_physical(const struct gpi_ring *const ring,
 556                                      void *addr)
 557{
 558        return ring->phys_addr + (addr - ring->base);
 559}
 560
 561static inline void *to_virtual(const struct gpi_ring *const ring, phys_addr_t addr)
 562{
 563        return ring->base + (addr - ring->phys_addr);
 564}
 565
 566static inline u32 gpi_read_reg(struct gpii *gpii, void __iomem *addr)
 567{
 568        return readl_relaxed(addr);
 569}
 570
 571static inline void gpi_write_reg(struct gpii *gpii, void __iomem *addr, u32 val)
 572{
 573        writel_relaxed(val, addr);
 574}
 575
 576/* gpi_write_reg_field - write to specific bit field */
 577static inline void gpi_write_reg_field(struct gpii *gpii, void __iomem *addr,
 578                                       u32 mask, u32 shift, u32 val)
 579{
 580        u32 tmp = gpi_read_reg(gpii, addr);
 581
 582        tmp &= ~mask;
 583        val = tmp | ((val << shift) & mask);
 584        gpi_write_reg(gpii, addr, val);
 585}
 586
 587static __always_inline void
 588gpi_update_reg(struct gpii *gpii, u32 offset, u32 mask, u32 val)
 589{
 590        void __iomem *addr = gpii->regs + offset;
 591        u32 tmp = gpi_read_reg(gpii, addr);
 592
 593        tmp &= ~mask;
 594        tmp |= u32_encode_bits(val, mask);
 595
 596        gpi_write_reg(gpii, addr, tmp);
 597}
 598
 599static void gpi_disable_interrupts(struct gpii *gpii)
 600{
 601        gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
 602                       GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, 0);
 603        gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id),
 604                       GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK, 0);
 605        gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id),
 606                       GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK, 0);
 607        gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id),
 608                       GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK, 0);
 609        gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id),
 610                       GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0);
 611        gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id),
 612                       GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0);
 613        gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id),
 614                       GPII_n_CNTXT_INTSET_BMSK, 0);
 615
 616        gpii->cntxt_type_irq_msk = 0;
 617        devm_free_irq(gpii->gpi_dev->dev, gpii->irq, gpii);
 618        gpii->configured_irq = false;
 619}
 620
 621/* configure and enable interrupts */
 622static int gpi_config_interrupts(struct gpii *gpii, enum gpii_irq_settings settings, bool mask)
 623{
 624        const u32 enable = (GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL |
 625                              GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB |
 626                              GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB |
 627                              GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL |
 628                              GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL);
 629        int ret;
 630
 631        if (!gpii->configured_irq) {
 632                ret = devm_request_irq(gpii->gpi_dev->dev, gpii->irq,
 633                                       gpi_handle_irq, IRQF_TRIGGER_HIGH,
 634                                       "gpi-dma", gpii);
 635                if (ret < 0) {
 636                        dev_err(gpii->gpi_dev->dev, "error request irq:%d ret:%d\n",
 637                                gpii->irq, ret);
 638                        return ret;
 639                }
 640        }
 641
 642        if (settings == MASK_IEOB_SETTINGS) {
 643                /*
 644                 * GPII only uses one EV ring per gpii so we can globally
 645                 * enable/disable IEOB interrupt
 646                 */
 647                if (mask)
 648                        gpii->cntxt_type_irq_msk |= GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB;
 649                else
 650                        gpii->cntxt_type_irq_msk &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB);
 651                gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
 652                               GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, gpii->cntxt_type_irq_msk);
 653        } else {
 654                gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
 655                               GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, enable);
 656                gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id),
 657                               GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK,
 658                               GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK);
 659                gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id),
 660                               GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK,
 661                               GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK);
 662                gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id),
 663                               GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK,
 664                               GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK);
 665                gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id),
 666                               GPII_n_CNTXT_GPII_IRQ_EN_BMSK,
 667                               GPII_n_CNTXT_GPII_IRQ_EN_BMSK);
 668                gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id),
 669                               GPII_n_CNTXT_GPII_IRQ_EN_BMSK, GPII_n_CNTXT_GPII_IRQ_EN_BMSK);
 670                gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_LSB_OFFS(gpii->gpii_id), U32_MAX, 0);
 671                gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_MSB_OFFS(gpii->gpii_id), U32_MAX, 0);
 672                gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_0_OFFS(gpii->gpii_id), U32_MAX, 0);
 673                gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_1_OFFS(gpii->gpii_id), U32_MAX, 0);
 674                gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id),
 675                               GPII_n_CNTXT_INTSET_BMSK, 1);
 676                gpi_update_reg(gpii, GPII_n_ERROR_LOG_OFFS(gpii->gpii_id), U32_MAX, 0);
 677
 678                gpii->cntxt_type_irq_msk = enable;
 679        }
 680
 681        gpii->configured_irq = true;
 682        return 0;
 683}
 684
 685/* Sends gpii event or channel command */
 686static int gpi_send_cmd(struct gpii *gpii, struct gchan *gchan,
 687                        enum gpi_cmd gpi_cmd)
 688{
 689        u32 chid = MAX_CHANNELS_PER_GPII;
 690        unsigned long timeout;
 691        void __iomem *cmd_reg;
 692        u32 cmd;
 693
 694        if (gpi_cmd >= GPI_MAX_CMD)
 695                return -EINVAL;
 696        if (IS_CHAN_CMD(gpi_cmd))
 697                chid = gchan->chid;
 698
 699        dev_dbg(gpii->gpi_dev->dev,
 700                "sending cmd: %s:%u\n", TO_GPI_CMD_STR(gpi_cmd), chid);
 701
 702        /* send opcode and wait for completion */
 703        reinit_completion(&gpii->cmd_completion);
 704        gpii->gpi_cmd = gpi_cmd;
 705
 706        cmd_reg = IS_CHAN_CMD(gpi_cmd) ? gchan->ch_cmd_reg : gpii->ev_cmd_reg;
 707        cmd = IS_CHAN_CMD(gpi_cmd) ? GPII_n_CH_CMD(gpi_cmd_info[gpi_cmd].opcode, chid) :
 708                                     GPII_n_EV_CMD(gpi_cmd_info[gpi_cmd].opcode, 0);
 709        gpi_write_reg(gpii, cmd_reg, cmd);
 710        timeout = wait_for_completion_timeout(&gpii->cmd_completion,
 711                                              msecs_to_jiffies(CMD_TIMEOUT_MS));
 712        if (!timeout) {
 713                dev_err(gpii->gpi_dev->dev, "cmd: %s completion timeout:%u\n",
 714                        TO_GPI_CMD_STR(gpi_cmd), chid);
 715                return -EIO;
 716        }
 717
 718        /* confirm new ch state is correct , if the cmd is a state change cmd */
 719        if (gpi_cmd_info[gpi_cmd].state == STATE_IGNORE)
 720                return 0;
 721
 722        if (IS_CHAN_CMD(gpi_cmd) && gchan->ch_state == gpi_cmd_info[gpi_cmd].state)
 723                return 0;
 724
 725        if (!IS_CHAN_CMD(gpi_cmd) && gpii->ev_state == gpi_cmd_info[gpi_cmd].state)
 726                return 0;
 727
 728        return -EIO;
 729}
 730
 731/* program transfer ring DB register */
 732static inline void gpi_write_ch_db(struct gchan *gchan,
 733                                   struct gpi_ring *ring, void *wp)
 734{
 735        struct gpii *gpii = gchan->gpii;
 736        phys_addr_t p_wp;
 737
 738        p_wp = to_physical(ring, wp);
 739        gpi_write_reg(gpii, gchan->ch_cntxt_db_reg, p_wp);
 740}
 741
 742/* program event ring DB register */
 743static inline void gpi_write_ev_db(struct gpii *gpii,
 744                                   struct gpi_ring *ring, void *wp)
 745{
 746        phys_addr_t p_wp;
 747
 748        p_wp = ring->phys_addr + (wp - ring->base);
 749        gpi_write_reg(gpii, gpii->ev_cntxt_db_reg, p_wp);
 750}
 751
 752/* process transfer completion interrupt */
 753static void gpi_process_ieob(struct gpii *gpii)
 754{
 755        gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0));
 756
 757        gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 0);
 758        tasklet_hi_schedule(&gpii->ev_task);
 759}
 760
 761/* process channel control interrupt */
 762static void gpi_process_ch_ctrl_irq(struct gpii *gpii)
 763{
 764        u32 gpii_id = gpii->gpii_id;
 765        u32 offset = GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(gpii_id);
 766        u32 ch_irq = gpi_read_reg(gpii, gpii->regs + offset);
 767        struct gchan *gchan;
 768        u32 chid, state;
 769
 770        /* clear the status */
 771        offset = GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(gpii_id);
 772        gpi_write_reg(gpii, gpii->regs + offset, (u32)ch_irq);
 773
 774        for (chid = 0; chid < MAX_CHANNELS_PER_GPII; chid++) {
 775                if (!(BIT(chid) & ch_irq))
 776                        continue;
 777
 778                gchan = &gpii->gchan[chid];
 779                state = gpi_read_reg(gpii, gchan->ch_cntxt_base_reg +
 780                                     CNTXT_0_CONFIG);
 781                state = FIELD_GET(GPII_n_CH_k_CNTXT_0_CHSTATE, state);
 782
 783                /*
 784                 * CH_CMD_DEALLOC cmd always successful. However cmd does
 785                 * not change hardware status. So overwriting software state
 786                 * to default state.
 787                 */
 788                if (gpii->gpi_cmd == GPI_CH_CMD_DE_ALLOC)
 789                        state = DEFAULT_CH_STATE;
 790                gchan->ch_state = state;
 791
 792                /*
 793                 * Triggering complete all if ch_state is not a stop in process.
 794                 * Stop in process is a transition state and we will wait for
 795                 * stop interrupt before notifying.
 796                 */
 797                if (gchan->ch_state != CH_STATE_STOP_IN_PROC)
 798                        complete_all(&gpii->cmd_completion);
 799        }
 800}
 801
 802/* processing gpi general error interrupts */
 803static void gpi_process_gen_err_irq(struct gpii *gpii)
 804{
 805        u32 gpii_id = gpii->gpii_id;
 806        u32 offset = GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(gpii_id);
 807        u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset);
 808
 809        /* clear the status */
 810        dev_dbg(gpii->gpi_dev->dev, "irq_stts:0x%x\n", irq_stts);
 811
 812        /* Clear the register */
 813        offset = GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(gpii_id);
 814        gpi_write_reg(gpii, gpii->regs + offset, irq_stts);
 815}
 816
 817/* processing gpi level error interrupts */
 818static void gpi_process_glob_err_irq(struct gpii *gpii)
 819{
 820        u32 gpii_id = gpii->gpii_id;
 821        u32 offset = GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(gpii_id);
 822        u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset);
 823
 824        offset = GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(gpii_id);
 825        gpi_write_reg(gpii, gpii->regs + offset, irq_stts);
 826
 827        /* only error interrupt should be set */
 828        if (irq_stts & ~GPI_GLOB_IRQ_ERROR_INT_MSK) {
 829                dev_err(gpii->gpi_dev->dev, "invalid error status:0x%x\n", irq_stts);
 830                return;
 831        }
 832
 833        offset = GPII_n_ERROR_LOG_OFFS(gpii_id);
 834        gpi_write_reg(gpii, gpii->regs + offset, 0);
 835}
 836
 837/* gpii interrupt handler */
 838static irqreturn_t gpi_handle_irq(int irq, void *data)
 839{
 840        struct gpii *gpii = data;
 841        u32 gpii_id = gpii->gpii_id;
 842        u32 type, offset;
 843        unsigned long flags;
 844
 845        read_lock_irqsave(&gpii->pm_lock, flags);
 846
 847        /*
 848         * States are out of sync to receive interrupt
 849         * while software state is in DISABLE state, bailing out.
 850         */
 851        if (!REG_ACCESS_VALID(gpii->pm_state)) {
 852                dev_err(gpii->gpi_dev->dev, "receive interrupt while in %s state\n",
 853                        TO_GPI_PM_STR(gpii->pm_state));
 854                goto exit_irq;
 855        }
 856
 857        offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id);
 858        type = gpi_read_reg(gpii, gpii->regs + offset);
 859
 860        do {
 861                /* global gpii error */
 862                if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB) {
 863                        gpi_process_glob_err_irq(gpii);
 864                        type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB);
 865                }
 866
 867                /* transfer complete interrupt */
 868                if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB) {
 869                        gpi_process_ieob(gpii);
 870                        type &= ~GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB;
 871                }
 872
 873                /* event control irq */
 874                if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL) {
 875                        u32 ev_state;
 876                        u32 ev_ch_irq;
 877
 878                        dev_dbg(gpii->gpi_dev->dev,
 879                                "processing EV CTRL interrupt\n");
 880                        offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(gpii_id);
 881                        ev_ch_irq = gpi_read_reg(gpii, gpii->regs + offset);
 882
 883                        offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS
 884                                (gpii_id);
 885                        gpi_write_reg(gpii, gpii->regs + offset, ev_ch_irq);
 886                        ev_state = gpi_read_reg(gpii, gpii->ev_cntxt_base_reg +
 887                                                CNTXT_0_CONFIG);
 888                        ev_state = FIELD_GET(GPII_n_EV_k_CNTXT_0_CHSTATE, ev_state);
 889
 890                        /*
 891                         * CMD EV_CMD_DEALLOC is always successful. However
 892                         * cmd does not change hardware status. So overwriting
 893                         * software state to default state.
 894                         */
 895                        if (gpii->gpi_cmd == GPI_EV_CMD_DEALLOC)
 896                                ev_state = DEFAULT_EV_CH_STATE;
 897
 898                        gpii->ev_state = ev_state;
 899                        dev_dbg(gpii->gpi_dev->dev, "setting EV state to %s\n",
 900                                TO_GPI_EV_STATE_STR(gpii->ev_state));
 901                        complete_all(&gpii->cmd_completion);
 902                        type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL);
 903                }
 904
 905                /* channel control irq */
 906                if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL) {
 907                        dev_dbg(gpii->gpi_dev->dev, "process CH CTRL interrupts\n");
 908                        gpi_process_ch_ctrl_irq(gpii);
 909                        type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL);
 910                }
 911
 912                if (type) {
 913                        dev_err(gpii->gpi_dev->dev, "Unhandled interrupt status:0x%x\n", type);
 914                        gpi_process_gen_err_irq(gpii);
 915                        goto exit_irq;
 916                }
 917
 918                offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id);
 919                type = gpi_read_reg(gpii, gpii->regs + offset);
 920        } while (type);
 921
 922exit_irq:
 923        read_unlock_irqrestore(&gpii->pm_lock, flags);
 924
 925        return IRQ_HANDLED;
 926}
 927
 928/* process DMA Immediate completion data events */
 929static void gpi_process_imed_data_event(struct gchan *gchan,
 930                                        struct immediate_data_event *imed_event)
 931{
 932        struct gpii *gpii = gchan->gpii;
 933        struct gpi_ring *ch_ring = &gchan->ch_ring;
 934        void *tre = ch_ring->base + (ch_ring->el_size * imed_event->tre_index);
 935        struct dmaengine_result result;
 936        struct gpi_desc *gpi_desc;
 937        struct virt_dma_desc *vd;
 938        unsigned long flags;
 939        u32 chid;
 940
 941        /*
 942         * If channel not active don't process event
 943         */
 944        if (gchan->pm_state != ACTIVE_STATE) {
 945                dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n",
 946                        TO_GPI_PM_STR(gchan->pm_state));
 947                return;
 948        }
 949
 950        spin_lock_irqsave(&gchan->vc.lock, flags);
 951        vd = vchan_next_desc(&gchan->vc);
 952        if (!vd) {
 953                struct gpi_ere *gpi_ere;
 954                struct gpi_tre *gpi_tre;
 955
 956                spin_unlock_irqrestore(&gchan->vc.lock, flags);
 957                dev_dbg(gpii->gpi_dev->dev, "event without a pending descriptor!\n");
 958                gpi_ere = (struct gpi_ere *)imed_event;
 959                dev_dbg(gpii->gpi_dev->dev,
 960                        "Event: %08x %08x %08x %08x\n",
 961                        gpi_ere->dword[0], gpi_ere->dword[1],
 962                        gpi_ere->dword[2], gpi_ere->dword[3]);
 963                gpi_tre = tre;
 964                dev_dbg(gpii->gpi_dev->dev,
 965                        "Pending TRE: %08x %08x %08x %08x\n",
 966                        gpi_tre->dword[0], gpi_tre->dword[1],
 967                        gpi_tre->dword[2], gpi_tre->dword[3]);
 968                return;
 969        }
 970        gpi_desc = to_gpi_desc(vd);
 971        spin_unlock_irqrestore(&gchan->vc.lock, flags);
 972
 973        /*
 974         * RP pointed by Event is to last TRE processed,
 975         * we need to update ring rp to tre + 1
 976         */
 977        tre += ch_ring->el_size;
 978        if (tre >= (ch_ring->base + ch_ring->len))
 979                tre = ch_ring->base;
 980        ch_ring->rp = tre;
 981
 982        /* make sure rp updates are immediately visible to all cores */
 983        smp_wmb();
 984
 985        chid = imed_event->chid;
 986        if (imed_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) {
 987                if (chid == GPI_RX_CHAN)
 988                        goto gpi_free_desc;
 989                else
 990                        return;
 991        }
 992
 993        if (imed_event->code == MSM_GPI_TCE_UNEXP_ERR)
 994                result.result = DMA_TRANS_ABORTED;
 995        else
 996                result.result = DMA_TRANS_NOERROR;
 997        result.residue = gpi_desc->len - imed_event->length;
 998
 999        dma_cookie_complete(&vd->tx);
1000        dmaengine_desc_get_callback_invoke(&vd->tx, &result);
1001
1002gpi_free_desc:
1003        spin_lock_irqsave(&gchan->vc.lock, flags);
1004        list_del(&vd->node);
1005        spin_unlock_irqrestore(&gchan->vc.lock, flags);
1006        kfree(gpi_desc);
1007        gpi_desc = NULL;
1008}
1009
1010/* processing transfer completion events */
1011static void gpi_process_xfer_compl_event(struct gchan *gchan,
1012                                         struct xfer_compl_event *compl_event)
1013{
1014        struct gpii *gpii = gchan->gpii;
1015        struct gpi_ring *ch_ring = &gchan->ch_ring;
1016        void *ev_rp = to_virtual(ch_ring, compl_event->ptr);
1017        struct virt_dma_desc *vd;
1018        struct gpi_desc *gpi_desc;
1019        struct dmaengine_result result;
1020        unsigned long flags;
1021        u32 chid;
1022
1023        /* only process events on active channel */
1024        if (unlikely(gchan->pm_state != ACTIVE_STATE)) {
1025                dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n",
1026                        TO_GPI_PM_STR(gchan->pm_state));
1027                return;
1028        }
1029
1030        spin_lock_irqsave(&gchan->vc.lock, flags);
1031        vd = vchan_next_desc(&gchan->vc);
1032        if (!vd) {
1033                struct gpi_ere *gpi_ere;
1034
1035                spin_unlock_irqrestore(&gchan->vc.lock, flags);
1036                dev_err(gpii->gpi_dev->dev, "Event without a pending descriptor!\n");
1037                gpi_ere = (struct gpi_ere *)compl_event;
1038                dev_err(gpii->gpi_dev->dev,
1039                        "Event: %08x %08x %08x %08x\n",
1040                        gpi_ere->dword[0], gpi_ere->dword[1],
1041                        gpi_ere->dword[2], gpi_ere->dword[3]);
1042                return;
1043        }
1044
1045        gpi_desc = to_gpi_desc(vd);
1046        spin_unlock_irqrestore(&gchan->vc.lock, flags);
1047
1048        /*
1049         * RP pointed by Event is to last TRE processed,
1050         * we need to update ring rp to ev_rp + 1
1051         */
1052        ev_rp += ch_ring->el_size;
1053        if (ev_rp >= (ch_ring->base + ch_ring->len))
1054                ev_rp = ch_ring->base;
1055        ch_ring->rp = ev_rp;
1056
1057        /* update must be visible to other cores */
1058        smp_wmb();
1059
1060        chid = compl_event->chid;
1061        if (compl_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) {
1062                if (chid == GPI_RX_CHAN)
1063                        goto gpi_free_desc;
1064                else
1065                        return;
1066        }
1067
1068        if (compl_event->code == MSM_GPI_TCE_UNEXP_ERR) {
1069                dev_err(gpii->gpi_dev->dev, "Error in Transaction\n");
1070                result.result = DMA_TRANS_ABORTED;
1071        } else {
1072                dev_dbg(gpii->gpi_dev->dev, "Transaction Success\n");
1073                result.result = DMA_TRANS_NOERROR;
1074        }
1075        result.residue = gpi_desc->len - compl_event->length;
1076        dev_dbg(gpii->gpi_dev->dev, "Residue %d\n", result.residue);
1077
1078        dma_cookie_complete(&vd->tx);
1079        dmaengine_desc_get_callback_invoke(&vd->tx, &result);
1080
1081gpi_free_desc:
1082        spin_lock_irqsave(&gchan->vc.lock, flags);
1083        list_del(&vd->node);
1084        spin_unlock_irqrestore(&gchan->vc.lock, flags);
1085        kfree(gpi_desc);
1086        gpi_desc = NULL;
1087}
1088
1089/* process all events */
1090static void gpi_process_events(struct gpii *gpii)
1091{
1092        struct gpi_ring *ev_ring = &gpii->ev_ring;
1093        phys_addr_t cntxt_rp;
1094        void *rp;
1095        union gpi_event *gpi_event;
1096        struct gchan *gchan;
1097        u32 chid, type;
1098
1099        cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1100        rp = to_virtual(ev_ring, cntxt_rp);
1101
1102        do {
1103                while (rp != ev_ring->rp) {
1104                        gpi_event = ev_ring->rp;
1105                        chid = gpi_event->xfer_compl_event.chid;
1106                        type = gpi_event->xfer_compl_event.type;
1107
1108                        dev_dbg(gpii->gpi_dev->dev,
1109                                "Event: CHID:%u, type:%x %08x %08x %08x %08x\n",
1110                                chid, type, gpi_event->gpi_ere.dword[0],
1111                                gpi_event->gpi_ere.dword[1], gpi_event->gpi_ere.dword[2],
1112                                gpi_event->gpi_ere.dword[3]);
1113
1114                        switch (type) {
1115                        case XFER_COMPLETE_EV_TYPE:
1116                                gchan = &gpii->gchan[chid];
1117                                gpi_process_xfer_compl_event(gchan,
1118                                                             &gpi_event->xfer_compl_event);
1119                                break;
1120                        case STALE_EV_TYPE:
1121                                dev_dbg(gpii->gpi_dev->dev, "stale event, not processing\n");
1122                                break;
1123                        case IMMEDIATE_DATA_EV_TYPE:
1124                                gchan = &gpii->gchan[chid];
1125                                gpi_process_imed_data_event(gchan,
1126                                                            &gpi_event->immediate_data_event);
1127                                break;
1128                        case QUP_NOTIF_EV_TYPE:
1129                                dev_dbg(gpii->gpi_dev->dev, "QUP_NOTIF_EV_TYPE\n");
1130                                break;
1131                        default:
1132                                dev_dbg(gpii->gpi_dev->dev,
1133                                        "not supported event type:0x%x\n", type);
1134                        }
1135                        gpi_ring_recycle_ev_element(ev_ring);
1136                }
1137                gpi_write_ev_db(gpii, ev_ring, ev_ring->wp);
1138
1139                /* clear pending IEOB events */
1140                gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0));
1141
1142                cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1143                rp = to_virtual(ev_ring, cntxt_rp);
1144
1145        } while (rp != ev_ring->rp);
1146}
1147
1148/* processing events using tasklet */
1149static void gpi_ev_tasklet(unsigned long data)
1150{
1151        struct gpii *gpii = (struct gpii *)data;
1152
1153        read_lock_bh(&gpii->pm_lock);
1154        if (!REG_ACCESS_VALID(gpii->pm_state)) {
1155                read_unlock_bh(&gpii->pm_lock);
1156                dev_err(gpii->gpi_dev->dev, "not processing any events, pm_state:%s\n",
1157                        TO_GPI_PM_STR(gpii->pm_state));
1158                return;
1159        }
1160
1161        /* process the events */
1162        gpi_process_events(gpii);
1163
1164        /* enable IEOB, switching back to interrupts */
1165        gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 1);
1166        read_unlock_bh(&gpii->pm_lock);
1167}
1168
1169/* marks all pending events for the channel as stale */
1170static void gpi_mark_stale_events(struct gchan *gchan)
1171{
1172        struct gpii *gpii = gchan->gpii;
1173        struct gpi_ring *ev_ring = &gpii->ev_ring;
1174        u32 cntxt_rp, local_rp;
1175        void *ev_rp;
1176
1177        cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1178
1179        ev_rp = ev_ring->rp;
1180        local_rp = (u32)to_physical(ev_ring, ev_rp);
1181        while (local_rp != cntxt_rp) {
1182                union gpi_event *gpi_event = ev_rp;
1183                u32 chid = gpi_event->xfer_compl_event.chid;
1184
1185                if (chid == gchan->chid)
1186                        gpi_event->xfer_compl_event.type = STALE_EV_TYPE;
1187                ev_rp += ev_ring->el_size;
1188                if (ev_rp >= (ev_ring->base + ev_ring->len))
1189                        ev_rp = ev_ring->base;
1190                cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1191                local_rp = (u32)to_physical(ev_ring, ev_rp);
1192        }
1193}
1194
1195/* reset sw state and issue channel reset or de-alloc */
1196static int gpi_reset_chan(struct gchan *gchan, enum gpi_cmd gpi_cmd)
1197{
1198        struct gpii *gpii = gchan->gpii;
1199        struct gpi_ring *ch_ring = &gchan->ch_ring;
1200        unsigned long flags;
1201        LIST_HEAD(list);
1202        int ret;
1203
1204        ret = gpi_send_cmd(gpii, gchan, gpi_cmd);
1205        if (ret) {
1206                dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1207                        TO_GPI_CMD_STR(gpi_cmd), ret);
1208                return ret;
1209        }
1210
1211        /* initialize the local ring ptrs */
1212        ch_ring->rp = ch_ring->base;
1213        ch_ring->wp = ch_ring->base;
1214
1215        /* visible to other cores */
1216        smp_wmb();
1217
1218        /* check event ring for any stale events */
1219        write_lock_irq(&gpii->pm_lock);
1220        gpi_mark_stale_events(gchan);
1221
1222        /* remove all async descriptors */
1223        spin_lock_irqsave(&gchan->vc.lock, flags);
1224        vchan_get_all_descriptors(&gchan->vc, &list);
1225        spin_unlock_irqrestore(&gchan->vc.lock, flags);
1226        write_unlock_irq(&gpii->pm_lock);
1227        vchan_dma_desc_free_list(&gchan->vc, &list);
1228
1229        return 0;
1230}
1231
1232static int gpi_start_chan(struct gchan *gchan)
1233{
1234        struct gpii *gpii = gchan->gpii;
1235        int ret;
1236
1237        ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_START);
1238        if (ret) {
1239                dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1240                        TO_GPI_CMD_STR(GPI_CH_CMD_START), ret);
1241                return ret;
1242        }
1243
1244        /* gpii CH is active now */
1245        write_lock_irq(&gpii->pm_lock);
1246        gchan->pm_state = ACTIVE_STATE;
1247        write_unlock_irq(&gpii->pm_lock);
1248
1249        return 0;
1250}
1251
1252static int gpi_stop_chan(struct gchan *gchan)
1253{
1254        struct gpii *gpii = gchan->gpii;
1255        int ret;
1256
1257        ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_STOP);
1258        if (ret) {
1259                dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1260                        TO_GPI_CMD_STR(GPI_CH_CMD_STOP), ret);
1261                return ret;
1262        }
1263
1264        return 0;
1265}
1266
1267/* allocate and configure the transfer channel */
1268static int gpi_alloc_chan(struct gchan *chan, bool send_alloc_cmd)
1269{
1270        struct gpii *gpii = chan->gpii;
1271        struct gpi_ring *ring = &chan->ch_ring;
1272        int ret;
1273        u32 id = gpii->gpii_id;
1274        u32 chid = chan->chid;
1275        u32 pair_chid = !chid;
1276
1277        if (send_alloc_cmd) {
1278                ret = gpi_send_cmd(gpii, chan, GPI_CH_CMD_ALLOCATE);
1279                if (ret) {
1280                        dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1281                                TO_GPI_CMD_STR(GPI_CH_CMD_ALLOCATE), ret);
1282                        return ret;
1283                }
1284        }
1285
1286        gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_0_CONFIG,
1287                      GPII_n_CH_k_CNTXT_0(ring->el_size, 0, chan->dir, GPI_CHTYPE_PROTO_GPI));
1288        gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_1_R_LENGTH, ring->len);
1289        gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_2_RING_BASE_LSB, ring->phys_addr);
1290        gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_3_RING_BASE_MSB,
1291                      upper_32_bits(ring->phys_addr));
1292        gpi_write_reg(gpii, chan->ch_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB,
1293                      upper_32_bits(ring->phys_addr));
1294        gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_0_OFFS(id, chid),
1295                      GPII_n_CH_k_SCRATCH_0(pair_chid, chan->protocol, chan->seid));
1296        gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_1_OFFS(id, chid), 0);
1297        gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_2_OFFS(id, chid), 0);
1298        gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_3_OFFS(id, chid), 0);
1299        gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_QOS_OFFS(id, chid), 1);
1300
1301        /* flush all the writes */
1302        wmb();
1303        return 0;
1304}
1305
1306/* allocate and configure event ring */
1307static int gpi_alloc_ev_chan(struct gpii *gpii)
1308{
1309        struct gpi_ring *ring = &gpii->ev_ring;
1310        void __iomem *base = gpii->ev_cntxt_base_reg;
1311        int ret;
1312
1313        ret = gpi_send_cmd(gpii, NULL, GPI_EV_CMD_ALLOCATE);
1314        if (ret) {
1315                dev_err(gpii->gpi_dev->dev, "error with cmd:%s ret:%d\n",
1316                        TO_GPI_CMD_STR(GPI_EV_CMD_ALLOCATE), ret);
1317                return ret;
1318        }
1319
1320        /* program event context */
1321        gpi_write_reg(gpii, base + CNTXT_0_CONFIG,
1322                      GPII_n_EV_k_CNTXT_0(ring->el_size, GPI_INTTYPE_IRQ, GPI_CHTYPE_GPI_EV));
1323        gpi_write_reg(gpii, base + CNTXT_1_R_LENGTH, ring->len);
1324        gpi_write_reg(gpii, base + CNTXT_2_RING_BASE_LSB, lower_32_bits(ring->phys_addr));
1325        gpi_write_reg(gpii, base + CNTXT_3_RING_BASE_MSB, upper_32_bits(ring->phys_addr));
1326        gpi_write_reg(gpii, gpii->ev_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB,
1327                      upper_32_bits(ring->phys_addr));
1328        gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0);
1329        gpi_write_reg(gpii, base + CNTXT_10_RING_MSI_LSB, 0);
1330        gpi_write_reg(gpii, base + CNTXT_11_RING_MSI_MSB, 0);
1331        gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0);
1332        gpi_write_reg(gpii, base + CNTXT_12_RING_RP_UPDATE_LSB, 0);
1333        gpi_write_reg(gpii, base + CNTXT_13_RING_RP_UPDATE_MSB, 0);
1334
1335        /* add events to ring */
1336        ring->wp = (ring->base + ring->len - ring->el_size);
1337
1338        /* flush all the writes */
1339        wmb();
1340
1341        /* gpii is active now */
1342        write_lock_irq(&gpii->pm_lock);
1343        gpii->pm_state = ACTIVE_STATE;
1344        write_unlock_irq(&gpii->pm_lock);
1345        gpi_write_ev_db(gpii, ring, ring->wp);
1346
1347        return 0;
1348}
1349
1350/* calculate # of ERE/TRE available to queue */
1351static int gpi_ring_num_elements_avail(const struct gpi_ring * const ring)
1352{
1353        int elements = 0;
1354
1355        if (ring->wp < ring->rp) {
1356                elements = ((ring->rp - ring->wp) / ring->el_size) - 1;
1357        } else {
1358                elements = (ring->rp - ring->base) / ring->el_size;
1359                elements += ((ring->base + ring->len - ring->wp) / ring->el_size) - 1;
1360        }
1361
1362        return elements;
1363}
1364
1365static int gpi_ring_add_element(struct gpi_ring *ring, void **wp)
1366{
1367        if (gpi_ring_num_elements_avail(ring) <= 0)
1368                return -ENOMEM;
1369
1370        *wp = ring->wp;
1371        ring->wp += ring->el_size;
1372        if (ring->wp  >= (ring->base + ring->len))
1373                ring->wp = ring->base;
1374
1375        /* visible to other cores */
1376        smp_wmb();
1377
1378        return 0;
1379}
1380
1381static void gpi_ring_recycle_ev_element(struct gpi_ring *ring)
1382{
1383        /* Update the WP */
1384        ring->wp += ring->el_size;
1385        if (ring->wp  >= (ring->base + ring->len))
1386                ring->wp = ring->base;
1387
1388        /* Update the RP */
1389        ring->rp += ring->el_size;
1390        if (ring->rp  >= (ring->base + ring->len))
1391                ring->rp = ring->base;
1392
1393        /* visible to other cores */
1394        smp_wmb();
1395}
1396
1397static void gpi_free_ring(struct gpi_ring *ring,
1398                          struct gpii *gpii)
1399{
1400        dma_free_coherent(gpii->gpi_dev->dev, ring->alloc_size,
1401                          ring->pre_aligned, ring->dma_handle);
1402        memset(ring, 0, sizeof(*ring));
1403}
1404
1405/* allocate memory for transfer and event rings */
1406static int gpi_alloc_ring(struct gpi_ring *ring, u32 elements,
1407                          u32 el_size, struct gpii *gpii)
1408{
1409        u64 len = elements * el_size;
1410        int bit;
1411
1412        /* ring len must be power of 2 */
1413        bit = find_last_bit((unsigned long *)&len, 32);
1414        if (((1 << bit) - 1) & len)
1415                bit++;
1416        len = 1 << bit;
1417        ring->alloc_size = (len + (len - 1));
1418        dev_dbg(gpii->gpi_dev->dev,
1419                "#el:%u el_size:%u len:%u actual_len:%llu alloc_size:%zu\n",
1420                  elements, el_size, (elements * el_size), len,
1421                  ring->alloc_size);
1422
1423        ring->pre_aligned = dma_alloc_coherent(gpii->gpi_dev->dev,
1424                                               ring->alloc_size,
1425                                               &ring->dma_handle, GFP_KERNEL);
1426        if (!ring->pre_aligned) {
1427                dev_err(gpii->gpi_dev->dev, "could not alloc size:%zu mem for ring\n",
1428                        ring->alloc_size);
1429                return -ENOMEM;
1430        }
1431
1432        /* align the physical mem */
1433        ring->phys_addr = (ring->dma_handle + (len - 1)) & ~(len - 1);
1434        ring->base = ring->pre_aligned + (ring->phys_addr - ring->dma_handle);
1435        ring->rp = ring->base;
1436        ring->wp = ring->base;
1437        ring->len = len;
1438        ring->el_size = el_size;
1439        ring->elements = ring->len / ring->el_size;
1440        memset(ring->base, 0, ring->len);
1441        ring->configured = true;
1442
1443        /* update to other cores */
1444        smp_wmb();
1445
1446        dev_dbg(gpii->gpi_dev->dev,
1447                "phy_pre:%pad phy_alig:%pa len:%u el_size:%u elements:%u\n",
1448                &ring->dma_handle, &ring->phys_addr, ring->len,
1449                ring->el_size, ring->elements);
1450
1451        return 0;
1452}
1453
1454/* copy tre into transfer ring */
1455static void gpi_queue_xfer(struct gpii *gpii, struct gchan *gchan,
1456                           struct gpi_tre *gpi_tre, void **wp)
1457{
1458        struct gpi_tre *ch_tre;
1459        int ret;
1460
1461        /* get next tre location we can copy */
1462        ret = gpi_ring_add_element(&gchan->ch_ring, (void **)&ch_tre);
1463        if (unlikely(ret)) {
1464                dev_err(gpii->gpi_dev->dev, "Error adding ring element to xfer ring\n");
1465                return;
1466        }
1467
1468        /* copy the tre info */
1469        memcpy(ch_tre, gpi_tre, sizeof(*ch_tre));
1470        *wp = ch_tre;
1471}
1472
1473/* reset and restart transfer channel */
1474static int gpi_terminate_all(struct dma_chan *chan)
1475{
1476        struct gchan *gchan = to_gchan(chan);
1477        struct gpii *gpii = gchan->gpii;
1478        int schid, echid, i;
1479        int ret = 0;
1480
1481        mutex_lock(&gpii->ctrl_lock);
1482
1483        /*
1484         * treat both channels as a group if its protocol is not UART
1485         * STOP, RESET, or START needs to be in lockstep
1486         */
1487        schid = (gchan->protocol == QCOM_GPI_UART) ? gchan->chid : 0;
1488        echid = (gchan->protocol == QCOM_GPI_UART) ? schid + 1 : MAX_CHANNELS_PER_GPII;
1489
1490        /* stop the channel */
1491        for (i = schid; i < echid; i++) {
1492                gchan = &gpii->gchan[i];
1493
1494                /* disable ch state so no more TRE processing */
1495                write_lock_irq(&gpii->pm_lock);
1496                gchan->pm_state = PREPARE_TERMINATE;
1497                write_unlock_irq(&gpii->pm_lock);
1498
1499                /* send command to Stop the channel */
1500                ret = gpi_stop_chan(gchan);
1501        }
1502
1503        /* reset the channels (clears any pending tre) */
1504        for (i = schid; i < echid; i++) {
1505                gchan = &gpii->gchan[i];
1506
1507                ret = gpi_reset_chan(gchan, GPI_CH_CMD_RESET);
1508                if (ret) {
1509                        dev_err(gpii->gpi_dev->dev, "Error resetting channel ret:%d\n", ret);
1510                        goto terminate_exit;
1511                }
1512
1513                /* reprogram channel CNTXT */
1514                ret = gpi_alloc_chan(gchan, false);
1515                if (ret) {
1516                        dev_err(gpii->gpi_dev->dev, "Error alloc_channel ret:%d\n", ret);
1517                        goto terminate_exit;
1518                }
1519        }
1520
1521        /* restart the channels */
1522        for (i = schid; i < echid; i++) {
1523                gchan = &gpii->gchan[i];
1524
1525                ret = gpi_start_chan(gchan);
1526                if (ret) {
1527                        dev_err(gpii->gpi_dev->dev, "Error Starting Channel ret:%d\n", ret);
1528                        goto terminate_exit;
1529                }
1530        }
1531
1532terminate_exit:
1533        mutex_unlock(&gpii->ctrl_lock);
1534        return ret;
1535}
1536
1537/* pause dma transfer for all channels */
1538static int gpi_pause(struct dma_chan *chan)
1539{
1540        struct gchan *gchan = to_gchan(chan);
1541        struct gpii *gpii = gchan->gpii;
1542        int i, ret;
1543
1544        mutex_lock(&gpii->ctrl_lock);
1545
1546        /*
1547         * pause/resume are per gpii not per channel, so
1548         * client needs to call pause only once
1549         */
1550        if (gpii->pm_state == PAUSE_STATE) {
1551                dev_dbg(gpii->gpi_dev->dev, "channel is already paused\n");
1552                mutex_unlock(&gpii->ctrl_lock);
1553                return 0;
1554        }
1555
1556        /* send stop command to stop the channels */
1557        for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1558                ret = gpi_stop_chan(&gpii->gchan[i]);
1559                if (ret) {
1560                        mutex_unlock(&gpii->ctrl_lock);
1561                        return ret;
1562                }
1563        }
1564
1565        disable_irq(gpii->irq);
1566
1567        /* Wait for threads to complete out */
1568        tasklet_kill(&gpii->ev_task);
1569
1570        write_lock_irq(&gpii->pm_lock);
1571        gpii->pm_state = PAUSE_STATE;
1572        write_unlock_irq(&gpii->pm_lock);
1573        mutex_unlock(&gpii->ctrl_lock);
1574
1575        return 0;
1576}
1577
1578/* resume dma transfer */
1579static int gpi_resume(struct dma_chan *chan)
1580{
1581        struct gchan *gchan = to_gchan(chan);
1582        struct gpii *gpii = gchan->gpii;
1583        int i, ret;
1584
1585        mutex_lock(&gpii->ctrl_lock);
1586        if (gpii->pm_state == ACTIVE_STATE) {
1587                dev_dbg(gpii->gpi_dev->dev, "channel is already active\n");
1588                mutex_unlock(&gpii->ctrl_lock);
1589                return 0;
1590        }
1591
1592        enable_irq(gpii->irq);
1593
1594        /* send start command to start the channels */
1595        for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1596                ret = gpi_send_cmd(gpii, &gpii->gchan[i], GPI_CH_CMD_START);
1597                if (ret) {
1598                        dev_err(gpii->gpi_dev->dev, "Error starting chan, ret:%d\n", ret);
1599                        mutex_unlock(&gpii->ctrl_lock);
1600                        return ret;
1601                }
1602        }
1603
1604        write_lock_irq(&gpii->pm_lock);
1605        gpii->pm_state = ACTIVE_STATE;
1606        write_unlock_irq(&gpii->pm_lock);
1607        mutex_unlock(&gpii->ctrl_lock);
1608
1609        return 0;
1610}
1611
1612static void gpi_desc_free(struct virt_dma_desc *vd)
1613{
1614        struct gpi_desc *gpi_desc = to_gpi_desc(vd);
1615
1616        kfree(gpi_desc);
1617        gpi_desc = NULL;
1618}
1619
1620static int
1621gpi_peripheral_config(struct dma_chan *chan, struct dma_slave_config *config)
1622{
1623        struct gchan *gchan = to_gchan(chan);
1624
1625        if (!config->peripheral_config)
1626                return -EINVAL;
1627
1628        gchan->config = krealloc(gchan->config, config->peripheral_size, GFP_NOWAIT);
1629        if (!gchan->config)
1630                return -ENOMEM;
1631
1632        memcpy(gchan->config, config->peripheral_config, config->peripheral_size);
1633
1634        return 0;
1635}
1636
1637static int gpi_create_i2c_tre(struct gchan *chan, struct gpi_desc *desc,
1638                              struct scatterlist *sgl, enum dma_transfer_direction direction)
1639{
1640        struct gpi_i2c_config *i2c = chan->config;
1641        struct device *dev = chan->gpii->gpi_dev->dev;
1642        unsigned int tre_idx = 0;
1643        dma_addr_t address;
1644        struct gpi_tre *tre;
1645        unsigned int i;
1646
1647        /* first create config tre if applicable */
1648        if (i2c->set_config) {
1649                tre = &desc->tre[tre_idx];
1650                tre_idx++;
1651
1652                tre->dword[0] = u32_encode_bits(i2c->low_count, TRE_I2C_C0_TLOW);
1653                tre->dword[0] |= u32_encode_bits(i2c->high_count, TRE_I2C_C0_THIGH);
1654                tre->dword[0] |= u32_encode_bits(i2c->cycle_count, TRE_I2C_C0_TCYL);
1655                tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_TX_PACK);
1656                tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_RX_PACK);
1657
1658                tre->dword[1] = 0;
1659
1660                tre->dword[2] = u32_encode_bits(i2c->clk_div, TRE_C0_CLK_DIV);
1661
1662                tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE);
1663                tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1664        }
1665
1666        /* create the GO tre for Tx */
1667        if (i2c->op == I2C_WRITE) {
1668                tre = &desc->tre[tre_idx];
1669                tre_idx++;
1670
1671                if (i2c->multi_msg)
1672                        tre->dword[0] = u32_encode_bits(I2C_READ, TRE_I2C_GO_CMD);
1673                else
1674                        tre->dword[0] = u32_encode_bits(i2c->op, TRE_I2C_GO_CMD);
1675
1676                tre->dword[0] |= u32_encode_bits(i2c->addr, TRE_I2C_GO_ADDR);
1677                tre->dword[0] |= u32_encode_bits(i2c->stretch, TRE_I2C_GO_STRETCH);
1678
1679                tre->dword[1] = 0;
1680                tre->dword[2] = u32_encode_bits(i2c->rx_len, TRE_RX_LEN);
1681
1682                tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE);
1683
1684                if (i2c->multi_msg)
1685                        tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK);
1686                else
1687                        tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1688        }
1689
1690        if (i2c->op == I2C_READ || i2c->multi_msg == false) {
1691                /* create the DMA TRE */
1692                tre = &desc->tre[tre_idx];
1693                tre_idx++;
1694
1695                address = sg_dma_address(sgl);
1696                tre->dword[0] = lower_32_bits(address);
1697                tre->dword[1] = upper_32_bits(address);
1698
1699                tre->dword[2] = u32_encode_bits(sg_dma_len(sgl), TRE_DMA_LEN);
1700
1701                tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE);
1702                tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOT);
1703        }
1704
1705        for (i = 0; i < tre_idx; i++)
1706                dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0],
1707                        desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]);
1708
1709        return tre_idx;
1710}
1711
1712static int gpi_create_spi_tre(struct gchan *chan, struct gpi_desc *desc,
1713                              struct scatterlist *sgl, enum dma_transfer_direction direction)
1714{
1715        struct gpi_spi_config *spi = chan->config;
1716        struct device *dev = chan->gpii->gpi_dev->dev;
1717        unsigned int tre_idx = 0;
1718        dma_addr_t address;
1719        struct gpi_tre *tre;
1720        unsigned int i;
1721
1722        /* first create config tre if applicable */
1723        if (direction == DMA_MEM_TO_DEV && spi->set_config) {
1724                tre = &desc->tre[tre_idx];
1725                tre_idx++;
1726
1727                tre->dword[0] = u32_encode_bits(spi->word_len, TRE_SPI_C0_WORD_SZ);
1728                tre->dword[0] |= u32_encode_bits(spi->loopback_en, TRE_SPI_C0_LOOPBACK);
1729                tre->dword[0] |= u32_encode_bits(spi->clock_pol_high, TRE_SPI_C0_CPOL);
1730                tre->dword[0] |= u32_encode_bits(spi->data_pol_high, TRE_SPI_C0_CPHA);
1731                tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_TX_PACK);
1732                tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_RX_PACK);
1733
1734                tre->dword[1] = 0;
1735
1736                tre->dword[2] = u32_encode_bits(spi->clk_div, TRE_C0_CLK_DIV);
1737                tre->dword[2] |= u32_encode_bits(spi->clk_src, TRE_C0_CLK_SRC);
1738
1739                tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE);
1740                tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1741        }
1742
1743        /* create the GO tre for Tx */
1744        if (direction == DMA_MEM_TO_DEV) {
1745                tre = &desc->tre[tre_idx];
1746                tre_idx++;
1747
1748                tre->dword[0] = u32_encode_bits(spi->fragmentation, TRE_SPI_GO_FRAG);
1749                tre->dword[0] |= u32_encode_bits(spi->cs, TRE_SPI_GO_CS);
1750                tre->dword[0] |= u32_encode_bits(spi->cmd, TRE_SPI_GO_CMD);
1751
1752                tre->dword[1] = 0;
1753
1754                tre->dword[2] = u32_encode_bits(spi->rx_len, TRE_RX_LEN);
1755
1756                tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE);
1757                if (spi->cmd == SPI_RX)
1758                        tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOB);
1759                else
1760                        tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1761        }
1762
1763        /* create the dma tre */
1764        tre = &desc->tre[tre_idx];
1765        tre_idx++;
1766
1767        address = sg_dma_address(sgl);
1768        tre->dword[0] = lower_32_bits(address);
1769        tre->dword[1] = upper_32_bits(address);
1770
1771        tre->dword[2] = u32_encode_bits(sg_dma_len(sgl), TRE_DMA_LEN);
1772
1773        tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE);
1774        if (direction == DMA_MEM_TO_DEV)
1775                tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOT);
1776
1777        for (i = 0; i < tre_idx; i++)
1778                dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0],
1779                        desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]);
1780
1781        return tre_idx;
1782}
1783
1784/* copy tre into transfer ring */
1785static struct dma_async_tx_descriptor *
1786gpi_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1787                  unsigned int sg_len, enum dma_transfer_direction direction,
1788                  unsigned long flags, void *context)
1789{
1790        struct gchan *gchan = to_gchan(chan);
1791        struct gpii *gpii = gchan->gpii;
1792        struct device *dev = gpii->gpi_dev->dev;
1793        struct gpi_ring *ch_ring = &gchan->ch_ring;
1794        struct gpi_desc *gpi_desc;
1795        u32 nr, nr_tre = 0;
1796        u8 set_config;
1797        int i;
1798
1799        gpii->ieob_set = false;
1800        if (!is_slave_direction(direction)) {
1801                dev_err(gpii->gpi_dev->dev, "invalid dma direction: %d\n", direction);
1802                return NULL;
1803        }
1804
1805        if (sg_len > 1) {
1806                dev_err(dev, "Multi sg sent, we support only one atm: %d\n", sg_len);
1807                return NULL;
1808        }
1809
1810        nr_tre = 3;
1811        set_config = *(u32 *)gchan->config;
1812        if (!set_config)
1813                nr_tre = 2;
1814        if (direction == DMA_DEV_TO_MEM) /* rx */
1815                nr_tre = 1;
1816
1817        /* calculate # of elements required & available */
1818        nr = gpi_ring_num_elements_avail(ch_ring);
1819        if (nr < nr_tre) {
1820                dev_err(dev, "not enough space in ring, avail:%u required:%u\n", nr, nr_tre);
1821                return NULL;
1822        }
1823
1824        gpi_desc = kzalloc(sizeof(*gpi_desc), GFP_NOWAIT);
1825        if (!gpi_desc)
1826                return NULL;
1827
1828        /* create TREs for xfer */
1829        if (gchan->protocol == QCOM_GPI_SPI) {
1830                i = gpi_create_spi_tre(gchan, gpi_desc, sgl, direction);
1831        } else if (gchan->protocol == QCOM_GPI_I2C) {
1832                i = gpi_create_i2c_tre(gchan, gpi_desc, sgl, direction);
1833        } else {
1834                dev_err(dev, "invalid peripheral: %d\n", gchan->protocol);
1835                kfree(gpi_desc);
1836                return NULL;
1837        }
1838
1839        /* set up the descriptor */
1840        gpi_desc->gchan = gchan;
1841        gpi_desc->len = sg_dma_len(sgl);
1842        gpi_desc->num_tre  = i;
1843
1844        return vchan_tx_prep(&gchan->vc, &gpi_desc->vd, flags);
1845}
1846
1847/* rings transfer ring db to being transfer */
1848static void gpi_issue_pending(struct dma_chan *chan)
1849{
1850        struct gchan *gchan = to_gchan(chan);
1851        struct gpii *gpii = gchan->gpii;
1852        unsigned long flags, pm_lock_flags;
1853        struct virt_dma_desc *vd = NULL;
1854        struct gpi_desc *gpi_desc;
1855        struct gpi_ring *ch_ring = &gchan->ch_ring;
1856        void *tre, *wp = NULL;
1857        int i;
1858
1859        read_lock_irqsave(&gpii->pm_lock, pm_lock_flags);
1860
1861        /* move all submitted discriptors to issued list */
1862        spin_lock_irqsave(&gchan->vc.lock, flags);
1863        if (vchan_issue_pending(&gchan->vc))
1864                vd = list_last_entry(&gchan->vc.desc_issued,
1865                                     struct virt_dma_desc, node);
1866        spin_unlock_irqrestore(&gchan->vc.lock, flags);
1867
1868        /* nothing to do list is empty */
1869        if (!vd) {
1870                read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags);
1871                return;
1872        }
1873
1874        gpi_desc = to_gpi_desc(vd);
1875        for (i = 0; i < gpi_desc->num_tre; i++) {
1876                tre = &gpi_desc->tre[i];
1877                gpi_queue_xfer(gpii, gchan, tre, &wp);
1878        }
1879
1880        gpi_desc->db = ch_ring->wp;
1881        gpi_write_ch_db(gchan, &gchan->ch_ring, gpi_desc->db);
1882        read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags);
1883}
1884
1885static int gpi_ch_init(struct gchan *gchan)
1886{
1887        struct gpii *gpii = gchan->gpii;
1888        const int ev_factor = gpii->gpi_dev->ev_factor;
1889        u32 elements;
1890        int i = 0, ret = 0;
1891
1892        gchan->pm_state = CONFIG_STATE;
1893
1894        /* check if both channels are configured before continue */
1895        for (i = 0; i < MAX_CHANNELS_PER_GPII; i++)
1896                if (gpii->gchan[i].pm_state != CONFIG_STATE)
1897                        goto exit_gpi_init;
1898
1899        /* protocol must be same for both channels */
1900        if (gpii->gchan[0].protocol != gpii->gchan[1].protocol) {
1901                dev_err(gpii->gpi_dev->dev, "protocol did not match protocol %u != %u\n",
1902                        gpii->gchan[0].protocol, gpii->gchan[1].protocol);
1903                ret = -EINVAL;
1904                goto exit_gpi_init;
1905        }
1906
1907        /* allocate memory for event ring */
1908        elements = CHAN_TRES << ev_factor;
1909        ret = gpi_alloc_ring(&gpii->ev_ring, elements,
1910                             sizeof(union gpi_event), gpii);
1911        if (ret)
1912                goto exit_gpi_init;
1913
1914        /* configure interrupts */
1915        write_lock_irq(&gpii->pm_lock);
1916        gpii->pm_state = PREPARE_HARDWARE;
1917        write_unlock_irq(&gpii->pm_lock);
1918        ret = gpi_config_interrupts(gpii, DEFAULT_IRQ_SETTINGS, 0);
1919        if (ret) {
1920                dev_err(gpii->gpi_dev->dev, "error config. interrupts, ret:%d\n", ret);
1921                goto error_config_int;
1922        }
1923
1924        /* allocate event rings */
1925        ret = gpi_alloc_ev_chan(gpii);
1926        if (ret) {
1927                dev_err(gpii->gpi_dev->dev, "error alloc_ev_chan:%d\n", ret);
1928                goto error_alloc_ev_ring;
1929        }
1930
1931        /* Allocate all channels */
1932        for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1933                ret = gpi_alloc_chan(&gpii->gchan[i], true);
1934                if (ret) {
1935                        dev_err(gpii->gpi_dev->dev, "Error allocating chan:%d\n", ret);
1936                        goto error_alloc_chan;
1937                }
1938        }
1939
1940        /* start channels  */
1941        for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1942                ret = gpi_start_chan(&gpii->gchan[i]);
1943                if (ret) {
1944                        dev_err(gpii->gpi_dev->dev, "Error start chan:%d\n", ret);
1945                        goto error_start_chan;
1946                }
1947        }
1948        return ret;
1949
1950error_start_chan:
1951        for (i = i - 1; i >= 0; i--) {
1952                gpi_stop_chan(&gpii->gchan[i]);
1953                gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET);
1954        }
1955        i = 2;
1956error_alloc_chan:
1957        for (i = i - 1; i >= 0; i--)
1958                gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC);
1959error_alloc_ev_ring:
1960        gpi_disable_interrupts(gpii);
1961error_config_int:
1962        gpi_free_ring(&gpii->ev_ring, gpii);
1963exit_gpi_init:
1964        mutex_unlock(&gpii->ctrl_lock);
1965        return ret;
1966}
1967
1968/* release all channel resources */
1969static void gpi_free_chan_resources(struct dma_chan *chan)
1970{
1971        struct gchan *gchan = to_gchan(chan);
1972        struct gpii *gpii = gchan->gpii;
1973        enum gpi_pm_state cur_state;
1974        int ret, i;
1975
1976        mutex_lock(&gpii->ctrl_lock);
1977
1978        cur_state = gchan->pm_state;
1979
1980        /* disable ch state so no more TRE processing for this channel */
1981        write_lock_irq(&gpii->pm_lock);
1982        gchan->pm_state = PREPARE_TERMINATE;
1983        write_unlock_irq(&gpii->pm_lock);
1984
1985        /* attempt to do graceful hardware shutdown */
1986        if (cur_state == ACTIVE_STATE) {
1987                gpi_stop_chan(gchan);
1988
1989                ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET);
1990                if (ret)
1991                        dev_err(gpii->gpi_dev->dev, "error resetting channel:%d\n", ret);
1992
1993                gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC);
1994        }
1995
1996        /* free all allocated memory */
1997        gpi_free_ring(&gchan->ch_ring, gpii);
1998        vchan_free_chan_resources(&gchan->vc);
1999        kfree(gchan->config);
2000
2001        write_lock_irq(&gpii->pm_lock);
2002        gchan->pm_state = DISABLE_STATE;
2003        write_unlock_irq(&gpii->pm_lock);
2004
2005        /* if other rings are still active exit */
2006        for (i = 0; i < MAX_CHANNELS_PER_GPII; i++)
2007                if (gpii->gchan[i].ch_ring.configured)
2008                        goto exit_free;
2009
2010        /* deallocate EV Ring */
2011        cur_state = gpii->pm_state;
2012        write_lock_irq(&gpii->pm_lock);
2013        gpii->pm_state = PREPARE_TERMINATE;
2014        write_unlock_irq(&gpii->pm_lock);
2015
2016        /* wait for threads to complete out */
2017        tasklet_kill(&gpii->ev_task);
2018
2019        /* send command to de allocate event ring */
2020        if (cur_state == ACTIVE_STATE)
2021                gpi_send_cmd(gpii, NULL, GPI_EV_CMD_DEALLOC);
2022
2023        gpi_free_ring(&gpii->ev_ring, gpii);
2024
2025        /* disable interrupts */
2026        if (cur_state == ACTIVE_STATE)
2027                gpi_disable_interrupts(gpii);
2028
2029        /* set final state to disable */
2030        write_lock_irq(&gpii->pm_lock);
2031        gpii->pm_state = DISABLE_STATE;
2032        write_unlock_irq(&gpii->pm_lock);
2033
2034exit_free:
2035        mutex_unlock(&gpii->ctrl_lock);
2036}
2037
2038/* allocate channel resources */
2039static int gpi_alloc_chan_resources(struct dma_chan *chan)
2040{
2041        struct gchan *gchan = to_gchan(chan);
2042        struct gpii *gpii = gchan->gpii;
2043        int ret;
2044
2045        mutex_lock(&gpii->ctrl_lock);
2046
2047        /* allocate memory for transfer ring */
2048        ret = gpi_alloc_ring(&gchan->ch_ring, CHAN_TRES,
2049                             sizeof(struct gpi_tre), gpii);
2050        if (ret)
2051                goto xfer_alloc_err;
2052
2053        ret = gpi_ch_init(gchan);
2054
2055        mutex_unlock(&gpii->ctrl_lock);
2056
2057        return ret;
2058xfer_alloc_err:
2059        mutex_unlock(&gpii->ctrl_lock);
2060
2061        return ret;
2062}
2063
2064static int gpi_find_avail_gpii(struct gpi_dev *gpi_dev, u32 seid)
2065{
2066        struct gchan *tx_chan, *rx_chan;
2067        unsigned int gpii;
2068
2069        /* check if same seid is already configured for another chid */
2070        for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) {
2071                if (!((1 << gpii) & gpi_dev->gpii_mask))
2072                        continue;
2073
2074                tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN];
2075                rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN];
2076
2077                if (rx_chan->vc.chan.client_count && rx_chan->seid == seid)
2078                        return gpii;
2079                if (tx_chan->vc.chan.client_count && tx_chan->seid == seid)
2080                        return gpii;
2081        }
2082
2083        /* no channels configured with same seid, return next avail gpii */
2084        for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) {
2085                if (!((1 << gpii) & gpi_dev->gpii_mask))
2086                        continue;
2087
2088                tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN];
2089                rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN];
2090
2091                /* check if gpii is configured */
2092                if (tx_chan->vc.chan.client_count ||
2093                    rx_chan->vc.chan.client_count)
2094                        continue;
2095
2096                /* found a free gpii */
2097                return gpii;
2098        }
2099
2100        /* no gpii instance available to use */
2101        return -EIO;
2102}
2103
2104/* gpi_of_dma_xlate: open client requested channel */
2105static struct dma_chan *gpi_of_dma_xlate(struct of_phandle_args *args,
2106                                         struct of_dma *of_dma)
2107{
2108        struct gpi_dev *gpi_dev = (struct gpi_dev *)of_dma->of_dma_data;
2109        u32 seid, chid;
2110        int gpii;
2111        struct gchan *gchan;
2112
2113        if (args->args_count < 3) {
2114                dev_err(gpi_dev->dev, "gpii require minimum 2 args, client passed:%d args\n",
2115                        args->args_count);
2116                return NULL;
2117        }
2118
2119        chid = args->args[0];
2120        if (chid >= MAX_CHANNELS_PER_GPII) {
2121                dev_err(gpi_dev->dev, "gpii channel:%d not valid\n", chid);
2122                return NULL;
2123        }
2124
2125        seid = args->args[1];
2126
2127        /* find next available gpii to use */
2128        gpii = gpi_find_avail_gpii(gpi_dev, seid);
2129        if (gpii < 0) {
2130                dev_err(gpi_dev->dev, "no available gpii instances\n");
2131                return NULL;
2132        }
2133
2134        gchan = &gpi_dev->gpiis[gpii].gchan[chid];
2135        if (gchan->vc.chan.client_count) {
2136                dev_err(gpi_dev->dev, "gpii:%d chid:%d seid:%d already configured\n",
2137                        gpii, chid, gchan->seid);
2138                return NULL;
2139        }
2140
2141        gchan->seid = seid;
2142        gchan->protocol = args->args[2];
2143
2144        return dma_get_slave_channel(&gchan->vc.chan);
2145}
2146
2147static int gpi_probe(struct platform_device *pdev)
2148{
2149        struct gpi_dev *gpi_dev;
2150        unsigned int i;
2151        int ret;
2152
2153        gpi_dev = devm_kzalloc(&pdev->dev, sizeof(*gpi_dev), GFP_KERNEL);
2154        if (!gpi_dev)
2155                return -ENOMEM;
2156
2157        gpi_dev->dev = &pdev->dev;
2158        gpi_dev->res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2159        gpi_dev->regs = devm_ioremap_resource(gpi_dev->dev, gpi_dev->res);
2160        if (IS_ERR(gpi_dev->regs))
2161                return PTR_ERR(gpi_dev->regs);
2162        gpi_dev->ee_base = gpi_dev->regs;
2163
2164        ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channels",
2165                                   &gpi_dev->max_gpii);
2166        if (ret) {
2167                dev_err(gpi_dev->dev, "missing 'max-no-gpii' DT node\n");
2168                return ret;
2169        }
2170
2171        ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channel-mask",
2172                                   &gpi_dev->gpii_mask);
2173        if (ret) {
2174                dev_err(gpi_dev->dev, "missing 'gpii-mask' DT node\n");
2175                return ret;
2176        }
2177
2178        gpi_dev->ev_factor = EV_FACTOR;
2179
2180        ret = dma_set_mask(gpi_dev->dev, DMA_BIT_MASK(64));
2181        if (ret) {
2182                dev_err(gpi_dev->dev, "Error setting dma_mask to 64, ret:%d\n", ret);
2183                return ret;
2184        }
2185
2186        gpi_dev->gpiis = devm_kzalloc(gpi_dev->dev, sizeof(*gpi_dev->gpiis) *
2187                                      gpi_dev->max_gpii, GFP_KERNEL);
2188        if (!gpi_dev->gpiis)
2189                return -ENOMEM;
2190
2191        /* setup all the supported gpii */
2192        INIT_LIST_HEAD(&gpi_dev->dma_device.channels);
2193        for (i = 0; i < gpi_dev->max_gpii; i++) {
2194                struct gpii *gpii = &gpi_dev->gpiis[i];
2195                int chan;
2196
2197                if (!((1 << i) & gpi_dev->gpii_mask))
2198                        continue;
2199
2200                /* set up ev cntxt register map */
2201                gpii->ev_cntxt_base_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_CNTXT_0_OFFS(i, 0);
2202                gpii->ev_cntxt_db_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_DOORBELL_0_OFFS(i, 0);
2203                gpii->ev_ring_rp_lsb_reg = gpii->ev_cntxt_base_reg + CNTXT_4_RING_RP_LSB;
2204                gpii->ev_cmd_reg = gpi_dev->ee_base + GPII_n_EV_CH_CMD_OFFS(i);
2205                gpii->ieob_clr_reg = gpi_dev->ee_base + GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(i);
2206
2207                /* set up irq */
2208                ret = platform_get_irq(pdev, i);
2209                if (ret < 0) {
2210                        dev_err(gpi_dev->dev, "platform_get_irq failed for %d:%d\n", i, ret);
2211                        return ret;
2212                }
2213                gpii->irq = ret;
2214
2215                /* set up channel specific register info */
2216                for (chan = 0; chan < MAX_CHANNELS_PER_GPII; chan++) {
2217                        struct gchan *gchan = &gpii->gchan[chan];
2218
2219                        /* set up ch cntxt register map */
2220                        gchan->ch_cntxt_base_reg = gpi_dev->ee_base +
2221                                GPII_n_CH_k_CNTXT_0_OFFS(i, chan);
2222                        gchan->ch_cntxt_db_reg = gpi_dev->ee_base +
2223                                GPII_n_CH_k_DOORBELL_0_OFFS(i, chan);
2224                        gchan->ch_cmd_reg = gpi_dev->ee_base + GPII_n_CH_CMD_OFFS(i);
2225
2226                        /* vchan setup */
2227                        vchan_init(&gchan->vc, &gpi_dev->dma_device);
2228                        gchan->vc.desc_free = gpi_desc_free;
2229                        gchan->chid = chan;
2230                        gchan->gpii = gpii;
2231                        gchan->dir = GPII_CHAN_DIR[chan];
2232                }
2233                mutex_init(&gpii->ctrl_lock);
2234                rwlock_init(&gpii->pm_lock);
2235                tasklet_init(&gpii->ev_task, gpi_ev_tasklet,
2236                             (unsigned long)gpii);
2237                init_completion(&gpii->cmd_completion);
2238                gpii->gpii_id = i;
2239                gpii->regs = gpi_dev->ee_base;
2240                gpii->gpi_dev = gpi_dev;
2241        }
2242
2243        platform_set_drvdata(pdev, gpi_dev);
2244
2245        /* clear and Set capabilities */
2246        dma_cap_zero(gpi_dev->dma_device.cap_mask);
2247        dma_cap_set(DMA_SLAVE, gpi_dev->dma_device.cap_mask);
2248
2249        /* configure dmaengine apis */
2250        gpi_dev->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2251        gpi_dev->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
2252        gpi_dev->dma_device.src_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES;
2253        gpi_dev->dma_device.dst_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES;
2254        gpi_dev->dma_device.device_alloc_chan_resources = gpi_alloc_chan_resources;
2255        gpi_dev->dma_device.device_free_chan_resources = gpi_free_chan_resources;
2256        gpi_dev->dma_device.device_tx_status = dma_cookie_status;
2257        gpi_dev->dma_device.device_issue_pending = gpi_issue_pending;
2258        gpi_dev->dma_device.device_prep_slave_sg = gpi_prep_slave_sg;
2259        gpi_dev->dma_device.device_config = gpi_peripheral_config;
2260        gpi_dev->dma_device.device_terminate_all = gpi_terminate_all;
2261        gpi_dev->dma_device.dev = gpi_dev->dev;
2262        gpi_dev->dma_device.device_pause = gpi_pause;
2263        gpi_dev->dma_device.device_resume = gpi_resume;
2264
2265        /* register with dmaengine framework */
2266        ret = dma_async_device_register(&gpi_dev->dma_device);
2267        if (ret) {
2268                dev_err(gpi_dev->dev, "async_device_register failed ret:%d", ret);
2269                return ret;
2270        }
2271
2272        ret = of_dma_controller_register(gpi_dev->dev->of_node,
2273                                         gpi_of_dma_xlate, gpi_dev);
2274        if (ret) {
2275                dev_err(gpi_dev->dev, "of_dma_controller_reg failed ret:%d", ret);
2276                return ret;
2277        }
2278
2279        return ret;
2280}
2281
2282static const struct of_device_id gpi_of_match[] = {
2283        { .compatible = "qcom,sdm845-gpi-dma" },
2284        { .compatible = "qcom,sm8150-gpi-dma" },
2285        { .compatible = "qcom,sm8250-gpi-dma" },
2286        { },
2287};
2288MODULE_DEVICE_TABLE(of, gpi_of_match);
2289
2290static struct platform_driver gpi_driver = {
2291        .probe = gpi_probe,
2292        .driver = {
2293                .name = KBUILD_MODNAME,
2294                .of_match_table = gpi_of_match,
2295        },
2296};
2297
2298static int __init gpi_init(void)
2299{
2300        return platform_driver_register(&gpi_driver);
2301}
2302subsys_initcall(gpi_init)
2303
2304MODULE_DESCRIPTION("QCOM GPI DMA engine driver");
2305MODULE_LICENSE("GPL v2");
2306