linux/drivers/dma/ti/edma.c
<<
>>
Prefs
   1/*
   2 * TI EDMA DMA engine driver
   3 *
   4 * Copyright 2012 Texas Instruments
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License as
   8 * published by the Free Software Foundation version 2.
   9 *
  10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  11 * kind, whether express or implied; without even the implied warranty
  12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 */
  15
  16#include <linux/dmaengine.h>
  17#include <linux/dma-mapping.h>
  18#include <linux/bitmap.h>
  19#include <linux/err.h>
  20#include <linux/init.h>
  21#include <linux/interrupt.h>
  22#include <linux/list.h>
  23#include <linux/module.h>
  24#include <linux/platform_device.h>
  25#include <linux/slab.h>
  26#include <linux/spinlock.h>
  27#include <linux/of.h>
  28#include <linux/of_dma.h>
  29#include <linux/of_irq.h>
  30#include <linux/of_address.h>
  31#include <linux/of_device.h>
  32#include <linux/pm_runtime.h>
  33
  34#include <linux/platform_data/edma.h>
  35
  36#include "../dmaengine.h"
  37#include "../virt-dma.h"
  38
  39/* Offsets matching "struct edmacc_param" */
  40#define PARM_OPT                0x00
  41#define PARM_SRC                0x04
  42#define PARM_A_B_CNT            0x08
  43#define PARM_DST                0x0c
  44#define PARM_SRC_DST_BIDX       0x10
  45#define PARM_LINK_BCNTRLD       0x14
  46#define PARM_SRC_DST_CIDX       0x18
  47#define PARM_CCNT               0x1c
  48
  49#define PARM_SIZE               0x20
  50
  51/* Offsets for EDMA CC global channel registers and their shadows */
  52#define SH_ER                   0x00    /* 64 bits */
  53#define SH_ECR                  0x08    /* 64 bits */
  54#define SH_ESR                  0x10    /* 64 bits */
  55#define SH_CER                  0x18    /* 64 bits */
  56#define SH_EER                  0x20    /* 64 bits */
  57#define SH_EECR                 0x28    /* 64 bits */
  58#define SH_EESR                 0x30    /* 64 bits */
  59#define SH_SER                  0x38    /* 64 bits */
  60#define SH_SECR                 0x40    /* 64 bits */
  61#define SH_IER                  0x50    /* 64 bits */
  62#define SH_IECR                 0x58    /* 64 bits */
  63#define SH_IESR                 0x60    /* 64 bits */
  64#define SH_IPR                  0x68    /* 64 bits */
  65#define SH_ICR                  0x70    /* 64 bits */
  66#define SH_IEVAL                0x78
  67#define SH_QER                  0x80
  68#define SH_QEER                 0x84
  69#define SH_QEECR                0x88
  70#define SH_QEESR                0x8c
  71#define SH_QSER                 0x90
  72#define SH_QSECR                0x94
  73#define SH_SIZE                 0x200
  74
  75/* Offsets for EDMA CC global registers */
  76#define EDMA_REV                0x0000
  77#define EDMA_CCCFG              0x0004
  78#define EDMA_QCHMAP             0x0200  /* 8 registers */
  79#define EDMA_DMAQNUM            0x0240  /* 8 registers (4 on OMAP-L1xx) */
  80#define EDMA_QDMAQNUM           0x0260
  81#define EDMA_QUETCMAP           0x0280
  82#define EDMA_QUEPRI             0x0284
  83#define EDMA_EMR                0x0300  /* 64 bits */
  84#define EDMA_EMCR               0x0308  /* 64 bits */
  85#define EDMA_QEMR               0x0310
  86#define EDMA_QEMCR              0x0314
  87#define EDMA_CCERR              0x0318
  88#define EDMA_CCERRCLR           0x031c
  89#define EDMA_EEVAL              0x0320
  90#define EDMA_DRAE               0x0340  /* 4 x 64 bits*/
  91#define EDMA_QRAE               0x0380  /* 4 registers */
  92#define EDMA_QUEEVTENTRY        0x0400  /* 2 x 16 registers */
  93#define EDMA_QSTAT              0x0600  /* 2 registers */
  94#define EDMA_QWMTHRA            0x0620
  95#define EDMA_QWMTHRB            0x0624
  96#define EDMA_CCSTAT             0x0640
  97
  98#define EDMA_M                  0x1000  /* global channel registers */
  99#define EDMA_ECR                0x1008
 100#define EDMA_ECRH               0x100C
 101#define EDMA_SHADOW0            0x2000  /* 4 shadow regions */
 102#define EDMA_PARM               0x4000  /* PaRAM entries */
 103
 104#define PARM_OFFSET(param_no)   (EDMA_PARM + ((param_no) << 5))
 105
 106#define EDMA_DCHMAP             0x0100  /* 64 registers */
 107
 108/* CCCFG register */
 109#define GET_NUM_DMACH(x)        (x & 0x7) /* bits 0-2 */
 110#define GET_NUM_QDMACH(x)       ((x & 0x70) >> 4) /* bits 4-6 */
 111#define GET_NUM_PAENTRY(x)      ((x & 0x7000) >> 12) /* bits 12-14 */
 112#define GET_NUM_EVQUE(x)        ((x & 0x70000) >> 16) /* bits 16-18 */
 113#define GET_NUM_REGN(x)         ((x & 0x300000) >> 20) /* bits 20-21 */
 114#define CHMAP_EXIST             BIT(24)
 115
 116/* CCSTAT register */
 117#define EDMA_CCSTAT_ACTV        BIT(4)
 118
 119/*
 120 * Max of 20 segments per channel to conserve PaRAM slots
 121 * Also note that MAX_NR_SG should be atleast the no.of periods
 122 * that are required for ASoC, otherwise DMA prep calls will
 123 * fail. Today davinci-pcm is the only user of this driver and
 124 * requires atleast 17 slots, so we setup the default to 20.
 125 */
 126#define MAX_NR_SG               20
 127#define EDMA_MAX_SLOTS          MAX_NR_SG
 128#define EDMA_DESCRIPTORS        16
 129
 130#define EDMA_CHANNEL_ANY                -1      /* for edma_alloc_channel() */
 131#define EDMA_SLOT_ANY                   -1      /* for edma_alloc_slot() */
 132#define EDMA_CONT_PARAMS_ANY             1001
 133#define EDMA_CONT_PARAMS_FIXED_EXACT     1002
 134#define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
 135
 136/*
 137 * 64bit array registers are split into two 32bit registers:
 138 * reg0: channel/event 0-31
 139 * reg1: channel/event 32-63
 140 *
 141 * bit 5 in the channel number tells the array index (0/1)
 142 * bit 0-4 (0x1f) is the bit offset within the register
 143 */
 144#define EDMA_REG_ARRAY_INDEX(channel)   ((channel) >> 5)
 145#define EDMA_CHANNEL_BIT(channel)       (BIT((channel) & 0x1f))
 146
 147/* PaRAM slots are laid out like this */
 148struct edmacc_param {
 149        u32 opt;
 150        u32 src;
 151        u32 a_b_cnt;
 152        u32 dst;
 153        u32 src_dst_bidx;
 154        u32 link_bcntrld;
 155        u32 src_dst_cidx;
 156        u32 ccnt;
 157} __packed;
 158
 159/* fields in edmacc_param.opt */
 160#define SAM             BIT(0)
 161#define DAM             BIT(1)
 162#define SYNCDIM         BIT(2)
 163#define STATIC          BIT(3)
 164#define EDMA_FWID       (0x07 << 8)
 165#define TCCMODE         BIT(11)
 166#define EDMA_TCC(t)     ((t) << 12)
 167#define TCINTEN         BIT(20)
 168#define ITCINTEN        BIT(21)
 169#define TCCHEN          BIT(22)
 170#define ITCCHEN         BIT(23)
 171
 172struct edma_pset {
 173        u32                             len;
 174        dma_addr_t                      addr;
 175        struct edmacc_param             param;
 176};
 177
 178struct edma_desc {
 179        struct virt_dma_desc            vdesc;
 180        struct list_head                node;
 181        enum dma_transfer_direction     direction;
 182        int                             cyclic;
 183        bool                            polled;
 184        int                             absync;
 185        int                             pset_nr;
 186        struct edma_chan                *echan;
 187        int                             processed;
 188
 189        /*
 190         * The following 4 elements are used for residue accounting.
 191         *
 192         * - processed_stat: the number of SG elements we have traversed
 193         * so far to cover accounting. This is updated directly to processed
 194         * during edma_callback and is always <= processed, because processed
 195         * refers to the number of pending transfer (programmed to EDMA
 196         * controller), where as processed_stat tracks number of transfers
 197         * accounted for so far.
 198         *
 199         * - residue: The amount of bytes we have left to transfer for this desc
 200         *
 201         * - residue_stat: The residue in bytes of data we have covered
 202         * so far for accounting. This is updated directly to residue
 203         * during callbacks to keep it current.
 204         *
 205         * - sg_len: Tracks the length of the current intermediate transfer,
 206         * this is required to update the residue during intermediate transfer
 207         * completion callback.
 208         */
 209        int                             processed_stat;
 210        u32                             sg_len;
 211        u32                             residue;
 212        u32                             residue_stat;
 213
 214        struct edma_pset                pset[];
 215};
 216
 217struct edma_cc;
 218
 219struct edma_tc {
 220        struct device_node              *node;
 221        u16                             id;
 222};
 223
 224struct edma_chan {
 225        struct virt_dma_chan            vchan;
 226        struct list_head                node;
 227        struct edma_desc                *edesc;
 228        struct edma_cc                  *ecc;
 229        struct edma_tc                  *tc;
 230        int                             ch_num;
 231        bool                            alloced;
 232        bool                            hw_triggered;
 233        int                             slot[EDMA_MAX_SLOTS];
 234        int                             missed;
 235        struct dma_slave_config         cfg;
 236};
 237
 238struct edma_cc {
 239        struct device                   *dev;
 240        struct edma_soc_info            *info;
 241        void __iomem                    *base;
 242        int                             id;
 243        bool                            legacy_mode;
 244
 245        /* eDMA3 resource information */
 246        unsigned                        num_channels;
 247        unsigned                        num_qchannels;
 248        unsigned                        num_region;
 249        unsigned                        num_slots;
 250        unsigned                        num_tc;
 251        bool                            chmap_exist;
 252        enum dma_event_q                default_queue;
 253
 254        unsigned int                    ccint;
 255        unsigned int                    ccerrint;
 256
 257        /*
 258         * The slot_inuse bit for each PaRAM slot is clear unless the slot is
 259         * in use by Linux or if it is allocated to be used by DSP.
 260         */
 261        unsigned long *slot_inuse;
 262
 263        /*
 264         * For tracking reserved channels used by DSP.
 265         * If the bit is cleared, the channel is allocated to be used by DSP
 266         * and Linux must not touch it.
 267         */
 268        unsigned long *channels_mask;
 269
 270        struct dma_device               dma_slave;
 271        struct dma_device               *dma_memcpy;
 272        struct edma_chan                *slave_chans;
 273        struct edma_tc                  *tc_list;
 274        int                             dummy_slot;
 275};
 276
 277/* dummy param set used to (re)initialize parameter RAM slots */
 278static const struct edmacc_param dummy_paramset = {
 279        .link_bcntrld = 0xffff,
 280        .ccnt = 1,
 281};
 282
 283#define EDMA_BINDING_LEGACY     0
 284#define EDMA_BINDING_TPCC       1
 285static const u32 edma_binding_type[] = {
 286        [EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
 287        [EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
 288};
 289
 290static const struct of_device_id edma_of_ids[] = {
 291        {
 292                .compatible = "ti,edma3",
 293                .data = &edma_binding_type[EDMA_BINDING_LEGACY],
 294        },
 295        {
 296                .compatible = "ti,edma3-tpcc",
 297                .data = &edma_binding_type[EDMA_BINDING_TPCC],
 298        },
 299        {}
 300};
 301MODULE_DEVICE_TABLE(of, edma_of_ids);
 302
 303static const struct of_device_id edma_tptc_of_ids[] = {
 304        { .compatible = "ti,edma3-tptc", },
 305        {}
 306};
 307MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
 308
 309static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
 310{
 311        return (unsigned int)__raw_readl(ecc->base + offset);
 312}
 313
 314static inline void edma_write(struct edma_cc *ecc, int offset, int val)
 315{
 316        __raw_writel(val, ecc->base + offset);
 317}
 318
 319static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
 320                               unsigned or)
 321{
 322        unsigned val = edma_read(ecc, offset);
 323
 324        val &= and;
 325        val |= or;
 326        edma_write(ecc, offset, val);
 327}
 328
 329static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
 330{
 331        unsigned val = edma_read(ecc, offset);
 332
 333        val &= and;
 334        edma_write(ecc, offset, val);
 335}
 336
 337static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
 338{
 339        unsigned val = edma_read(ecc, offset);
 340
 341        val |= or;
 342        edma_write(ecc, offset, val);
 343}
 344
 345static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
 346                                           int i)
 347{
 348        return edma_read(ecc, offset + (i << 2));
 349}
 350
 351static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
 352                                    unsigned val)
 353{
 354        edma_write(ecc, offset + (i << 2), val);
 355}
 356
 357static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
 358                                     unsigned and, unsigned or)
 359{
 360        edma_modify(ecc, offset + (i << 2), and, or);
 361}
 362
 363static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
 364                                 unsigned or)
 365{
 366        edma_or(ecc, offset + (i << 2), or);
 367}
 368
 369static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
 370                                  unsigned or)
 371{
 372        edma_or(ecc, offset + ((i * 2 + j) << 2), or);
 373}
 374
 375static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
 376                                     int j, unsigned val)
 377{
 378        edma_write(ecc, offset + ((i * 2 + j) << 2), val);
 379}
 380
 381static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
 382{
 383        return edma_read(ecc, EDMA_SHADOW0 + offset);
 384}
 385
 386static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
 387                                                   int offset, int i)
 388{
 389        return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
 390}
 391
 392static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
 393                                      unsigned val)
 394{
 395        edma_write(ecc, EDMA_SHADOW0 + offset, val);
 396}
 397
 398static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
 399                                            int i, unsigned val)
 400{
 401        edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
 402}
 403
 404static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
 405                                           int param_no)
 406{
 407        return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
 408}
 409
 410static inline void edma_param_write(struct edma_cc *ecc, int offset,
 411                                    int param_no, unsigned val)
 412{
 413        edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
 414}
 415
 416static inline void edma_param_modify(struct edma_cc *ecc, int offset,
 417                                     int param_no, unsigned and, unsigned or)
 418{
 419        edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
 420}
 421
 422static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
 423                                  unsigned and)
 424{
 425        edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
 426}
 427
 428static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
 429                                 unsigned or)
 430{
 431        edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
 432}
 433
 434static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
 435                                          int priority)
 436{
 437        int bit = queue_no * 4;
 438
 439        edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
 440}
 441
 442static void edma_set_chmap(struct edma_chan *echan, int slot)
 443{
 444        struct edma_cc *ecc = echan->ecc;
 445        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 446
 447        if (ecc->chmap_exist) {
 448                slot = EDMA_CHAN_SLOT(slot);
 449                edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
 450        }
 451}
 452
 453static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
 454{
 455        struct edma_cc *ecc = echan->ecc;
 456        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 457        int idx = EDMA_REG_ARRAY_INDEX(channel);
 458        int ch_bit = EDMA_CHANNEL_BIT(channel);
 459
 460        if (enable) {
 461                edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
 462                edma_shadow0_write_array(ecc, SH_IESR, idx, ch_bit);
 463        } else {
 464                edma_shadow0_write_array(ecc, SH_IECR, idx, ch_bit);
 465        }
 466}
 467
 468/*
 469 * paRAM slot management functions
 470 */
 471static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
 472                            const struct edmacc_param *param)
 473{
 474        slot = EDMA_CHAN_SLOT(slot);
 475        if (slot >= ecc->num_slots)
 476                return;
 477        memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
 478}
 479
 480static int edma_read_slot(struct edma_cc *ecc, unsigned slot,
 481                           struct edmacc_param *param)
 482{
 483        slot = EDMA_CHAN_SLOT(slot);
 484        if (slot >= ecc->num_slots)
 485                return -EINVAL;
 486        memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
 487
 488        return 0;
 489}
 490
 491/**
 492 * edma_alloc_slot - allocate DMA parameter RAM
 493 * @ecc: pointer to edma_cc struct
 494 * @slot: specific slot to allocate; negative for "any unused slot"
 495 *
 496 * This allocates a parameter RAM slot, initializing it to hold a
 497 * dummy transfer.  Slots allocated using this routine have not been
 498 * mapped to a hardware DMA channel, and will normally be used by
 499 * linking to them from a slot associated with a DMA channel.
 500 *
 501 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
 502 * slots may be allocated on behalf of DSP firmware.
 503 *
 504 * Returns the number of the slot, else negative errno.
 505 */
 506static int edma_alloc_slot(struct edma_cc *ecc, int slot)
 507{
 508        if (slot >= 0) {
 509                slot = EDMA_CHAN_SLOT(slot);
 510                /* Requesting entry paRAM slot for a HW triggered channel. */
 511                if (ecc->chmap_exist && slot < ecc->num_channels)
 512                        slot = EDMA_SLOT_ANY;
 513        }
 514
 515        if (slot < 0) {
 516                if (ecc->chmap_exist)
 517                        slot = 0;
 518                else
 519                        slot = ecc->num_channels;
 520                for (;;) {
 521                        slot = find_next_zero_bit(ecc->slot_inuse,
 522                                                  ecc->num_slots,
 523                                                  slot);
 524                        if (slot == ecc->num_slots)
 525                                return -ENOMEM;
 526                        if (!test_and_set_bit(slot, ecc->slot_inuse))
 527                                break;
 528                }
 529        } else if (slot >= ecc->num_slots) {
 530                return -EINVAL;
 531        } else if (test_and_set_bit(slot, ecc->slot_inuse)) {
 532                return -EBUSY;
 533        }
 534
 535        edma_write_slot(ecc, slot, &dummy_paramset);
 536
 537        return EDMA_CTLR_CHAN(ecc->id, slot);
 538}
 539
 540static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
 541{
 542        slot = EDMA_CHAN_SLOT(slot);
 543        if (slot >= ecc->num_slots)
 544                return;
 545
 546        edma_write_slot(ecc, slot, &dummy_paramset);
 547        clear_bit(slot, ecc->slot_inuse);
 548}
 549
 550/**
 551 * edma_link - link one parameter RAM slot to another
 552 * @ecc: pointer to edma_cc struct
 553 * @from: parameter RAM slot originating the link
 554 * @to: parameter RAM slot which is the link target
 555 *
 556 * The originating slot should not be part of any active DMA transfer.
 557 */
 558static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
 559{
 560        if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
 561                dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
 562
 563        from = EDMA_CHAN_SLOT(from);
 564        to = EDMA_CHAN_SLOT(to);
 565        if (from >= ecc->num_slots || to >= ecc->num_slots)
 566                return;
 567
 568        edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
 569                          PARM_OFFSET(to));
 570}
 571
 572/**
 573 * edma_get_position - returns the current transfer point
 574 * @ecc: pointer to edma_cc struct
 575 * @slot: parameter RAM slot being examined
 576 * @dst:  true selects the dest position, false the source
 577 *
 578 * Returns the position of the current active slot
 579 */
 580static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
 581                                    bool dst)
 582{
 583        u32 offs;
 584
 585        slot = EDMA_CHAN_SLOT(slot);
 586        offs = PARM_OFFSET(slot);
 587        offs += dst ? PARM_DST : PARM_SRC;
 588
 589        return edma_read(ecc, offs);
 590}
 591
 592/*
 593 * Channels with event associations will be triggered by their hardware
 594 * events, and channels without such associations will be triggered by
 595 * software.  (At this writing there is no interface for using software
 596 * triggers except with channels that don't support hardware triggers.)
 597 */
 598static void edma_start(struct edma_chan *echan)
 599{
 600        struct edma_cc *ecc = echan->ecc;
 601        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 602        int idx = EDMA_REG_ARRAY_INDEX(channel);
 603        int ch_bit = EDMA_CHANNEL_BIT(channel);
 604
 605        if (!echan->hw_triggered) {
 606                /* EDMA channels without event association */
 607                dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
 608                        edma_shadow0_read_array(ecc, SH_ESR, idx));
 609                edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
 610        } else {
 611                /* EDMA channel with event association */
 612                dev_dbg(ecc->dev, "ER%d %08x\n", idx,
 613                        edma_shadow0_read_array(ecc, SH_ER, idx));
 614                /* Clear any pending event or error */
 615                edma_write_array(ecc, EDMA_ECR, idx, ch_bit);
 616                edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
 617                /* Clear any SER */
 618                edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
 619                edma_shadow0_write_array(ecc, SH_EESR, idx, ch_bit);
 620                dev_dbg(ecc->dev, "EER%d %08x\n", idx,
 621                        edma_shadow0_read_array(ecc, SH_EER, idx));
 622        }
 623}
 624
 625static void edma_stop(struct edma_chan *echan)
 626{
 627        struct edma_cc *ecc = echan->ecc;
 628        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 629        int idx = EDMA_REG_ARRAY_INDEX(channel);
 630        int ch_bit = EDMA_CHANNEL_BIT(channel);
 631
 632        edma_shadow0_write_array(ecc, SH_EECR, idx, ch_bit);
 633        edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
 634        edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
 635        edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
 636
 637        /* clear possibly pending completion interrupt */
 638        edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
 639
 640        dev_dbg(ecc->dev, "EER%d %08x\n", idx,
 641                edma_shadow0_read_array(ecc, SH_EER, idx));
 642
 643        /* REVISIT:  consider guarding against inappropriate event
 644         * chaining by overwriting with dummy_paramset.
 645         */
 646}
 647
 648/*
 649 * Temporarily disable EDMA hardware events on the specified channel,
 650 * preventing them from triggering new transfers
 651 */
 652static void edma_pause(struct edma_chan *echan)
 653{
 654        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 655
 656        edma_shadow0_write_array(echan->ecc, SH_EECR,
 657                                 EDMA_REG_ARRAY_INDEX(channel),
 658                                 EDMA_CHANNEL_BIT(channel));
 659}
 660
 661/* Re-enable EDMA hardware events on the specified channel.  */
 662static void edma_resume(struct edma_chan *echan)
 663{
 664        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 665
 666        edma_shadow0_write_array(echan->ecc, SH_EESR,
 667                                 EDMA_REG_ARRAY_INDEX(channel),
 668                                 EDMA_CHANNEL_BIT(channel));
 669}
 670
 671static void edma_trigger_channel(struct edma_chan *echan)
 672{
 673        struct edma_cc *ecc = echan->ecc;
 674        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 675        int idx = EDMA_REG_ARRAY_INDEX(channel);
 676        int ch_bit = EDMA_CHANNEL_BIT(channel);
 677
 678        edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
 679
 680        dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
 681                edma_shadow0_read_array(ecc, SH_ESR, idx));
 682}
 683
 684static void edma_clean_channel(struct edma_chan *echan)
 685{
 686        struct edma_cc *ecc = echan->ecc;
 687        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 688        int idx = EDMA_REG_ARRAY_INDEX(channel);
 689        int ch_bit = EDMA_CHANNEL_BIT(channel);
 690
 691        dev_dbg(ecc->dev, "EMR%d %08x\n", idx,
 692                edma_read_array(ecc, EDMA_EMR, idx));
 693        edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
 694        /* Clear the corresponding EMR bits */
 695        edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
 696        /* Clear any SER */
 697        edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
 698        edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
 699}
 700
 701/* Move channel to a specific event queue */
 702static void edma_assign_channel_eventq(struct edma_chan *echan,
 703                                       enum dma_event_q eventq_no)
 704{
 705        struct edma_cc *ecc = echan->ecc;
 706        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 707        int bit = (channel & 0x7) * 4;
 708
 709        /* default to low priority queue */
 710        if (eventq_no == EVENTQ_DEFAULT)
 711                eventq_no = ecc->default_queue;
 712        if (eventq_no >= ecc->num_tc)
 713                return;
 714
 715        eventq_no &= 7;
 716        edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
 717                          eventq_no << bit);
 718}
 719
 720static int edma_alloc_channel(struct edma_chan *echan,
 721                              enum dma_event_q eventq_no)
 722{
 723        struct edma_cc *ecc = echan->ecc;
 724        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 725
 726        if (!test_bit(echan->ch_num, ecc->channels_mask)) {
 727                dev_err(ecc->dev, "Channel%d is reserved, can not be used!\n",
 728                        echan->ch_num);
 729                return -EINVAL;
 730        }
 731
 732        /* ensure access through shadow region 0 */
 733        edma_or_array2(ecc, EDMA_DRAE, 0, EDMA_REG_ARRAY_INDEX(channel),
 734                       EDMA_CHANNEL_BIT(channel));
 735
 736        /* ensure no events are pending */
 737        edma_stop(echan);
 738
 739        edma_setup_interrupt(echan, true);
 740
 741        edma_assign_channel_eventq(echan, eventq_no);
 742
 743        return 0;
 744}
 745
 746static void edma_free_channel(struct edma_chan *echan)
 747{
 748        /* ensure no events are pending */
 749        edma_stop(echan);
 750        /* REVISIT should probably take out of shadow region 0 */
 751        edma_setup_interrupt(echan, false);
 752}
 753
 754static inline struct edma_cc *to_edma_cc(struct dma_device *d)
 755{
 756        return container_of(d, struct edma_cc, dma_slave);
 757}
 758
 759static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
 760{
 761        return container_of(c, struct edma_chan, vchan.chan);
 762}
 763
 764static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
 765{
 766        return container_of(tx, struct edma_desc, vdesc.tx);
 767}
 768
 769static void edma_desc_free(struct virt_dma_desc *vdesc)
 770{
 771        kfree(container_of(vdesc, struct edma_desc, vdesc));
 772}
 773
 774/* Dispatch a queued descriptor to the controller (caller holds lock) */
 775static void edma_execute(struct edma_chan *echan)
 776{
 777        struct edma_cc *ecc = echan->ecc;
 778        struct virt_dma_desc *vdesc;
 779        struct edma_desc *edesc;
 780        struct device *dev = echan->vchan.chan.device->dev;
 781        int i, j, left, nslots;
 782
 783        if (!echan->edesc) {
 784                /* Setup is needed for the first transfer */
 785                vdesc = vchan_next_desc(&echan->vchan);
 786                if (!vdesc)
 787                        return;
 788                list_del(&vdesc->node);
 789                echan->edesc = to_edma_desc(&vdesc->tx);
 790        }
 791
 792        edesc = echan->edesc;
 793
 794        /* Find out how many left */
 795        left = edesc->pset_nr - edesc->processed;
 796        nslots = min(MAX_NR_SG, left);
 797        edesc->sg_len = 0;
 798
 799        /* Write descriptor PaRAM set(s) */
 800        for (i = 0; i < nslots; i++) {
 801                j = i + edesc->processed;
 802                edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
 803                edesc->sg_len += edesc->pset[j].len;
 804                dev_vdbg(dev,
 805                         "\n pset[%d]:\n"
 806                         "  chnum\t%d\n"
 807                         "  slot\t%d\n"
 808                         "  opt\t%08x\n"
 809                         "  src\t%08x\n"
 810                         "  dst\t%08x\n"
 811                         "  abcnt\t%08x\n"
 812                         "  ccnt\t%08x\n"
 813                         "  bidx\t%08x\n"
 814                         "  cidx\t%08x\n"
 815                         "  lkrld\t%08x\n",
 816                         j, echan->ch_num, echan->slot[i],
 817                         edesc->pset[j].param.opt,
 818                         edesc->pset[j].param.src,
 819                         edesc->pset[j].param.dst,
 820                         edesc->pset[j].param.a_b_cnt,
 821                         edesc->pset[j].param.ccnt,
 822                         edesc->pset[j].param.src_dst_bidx,
 823                         edesc->pset[j].param.src_dst_cidx,
 824                         edesc->pset[j].param.link_bcntrld);
 825                /* Link to the previous slot if not the last set */
 826                if (i != (nslots - 1))
 827                        edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
 828        }
 829
 830        edesc->processed += nslots;
 831
 832        /*
 833         * If this is either the last set in a set of SG-list transactions
 834         * then setup a link to the dummy slot, this results in all future
 835         * events being absorbed and that's OK because we're done
 836         */
 837        if (edesc->processed == edesc->pset_nr) {
 838                if (edesc->cyclic)
 839                        edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
 840                else
 841                        edma_link(ecc, echan->slot[nslots - 1],
 842                                  echan->ecc->dummy_slot);
 843        }
 844
 845        if (echan->missed) {
 846                /*
 847                 * This happens due to setup times between intermediate
 848                 * transfers in long SG lists which have to be broken up into
 849                 * transfers of MAX_NR_SG
 850                 */
 851                dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
 852                edma_clean_channel(echan);
 853                edma_stop(echan);
 854                edma_start(echan);
 855                edma_trigger_channel(echan);
 856                echan->missed = 0;
 857        } else if (edesc->processed <= MAX_NR_SG) {
 858                dev_dbg(dev, "first transfer starting on channel %d\n",
 859                        echan->ch_num);
 860                edma_start(echan);
 861        } else {
 862                dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
 863                        echan->ch_num, edesc->processed);
 864                edma_resume(echan);
 865        }
 866}
 867
 868static int edma_terminate_all(struct dma_chan *chan)
 869{
 870        struct edma_chan *echan = to_edma_chan(chan);
 871        unsigned long flags;
 872        LIST_HEAD(head);
 873
 874        spin_lock_irqsave(&echan->vchan.lock, flags);
 875
 876        /*
 877         * Stop DMA activity: we assume the callback will not be called
 878         * after edma_dma() returns (even if it does, it will see
 879         * echan->edesc is NULL and exit.)
 880         */
 881        if (echan->edesc) {
 882                edma_stop(echan);
 883                /* Move the cyclic channel back to default queue */
 884                if (!echan->tc && echan->edesc->cyclic)
 885                        edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
 886
 887                vchan_terminate_vdesc(&echan->edesc->vdesc);
 888                echan->edesc = NULL;
 889        }
 890
 891        vchan_get_all_descriptors(&echan->vchan, &head);
 892        spin_unlock_irqrestore(&echan->vchan.lock, flags);
 893        vchan_dma_desc_free_list(&echan->vchan, &head);
 894
 895        return 0;
 896}
 897
 898static void edma_synchronize(struct dma_chan *chan)
 899{
 900        struct edma_chan *echan = to_edma_chan(chan);
 901
 902        vchan_synchronize(&echan->vchan);
 903}
 904
 905static int edma_slave_config(struct dma_chan *chan,
 906        struct dma_slave_config *cfg)
 907{
 908        struct edma_chan *echan = to_edma_chan(chan);
 909
 910        if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
 911            cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
 912                return -EINVAL;
 913
 914        if (cfg->src_maxburst > chan->device->max_burst ||
 915            cfg->dst_maxburst > chan->device->max_burst)
 916                return -EINVAL;
 917
 918        memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
 919
 920        return 0;
 921}
 922
 923static int edma_dma_pause(struct dma_chan *chan)
 924{
 925        struct edma_chan *echan = to_edma_chan(chan);
 926
 927        if (!echan->edesc)
 928                return -EINVAL;
 929
 930        edma_pause(echan);
 931        return 0;
 932}
 933
 934static int edma_dma_resume(struct dma_chan *chan)
 935{
 936        struct edma_chan *echan = to_edma_chan(chan);
 937
 938        edma_resume(echan);
 939        return 0;
 940}
 941
 942/*
 943 * A PaRAM set configuration abstraction used by other modes
 944 * @chan: Channel who's PaRAM set we're configuring
 945 * @pset: PaRAM set to initialize and setup.
 946 * @src_addr: Source address of the DMA
 947 * @dst_addr: Destination address of the DMA
 948 * @burst: In units of dev_width, how much to send
 949 * @dev_width: How much is the dev_width
 950 * @dma_length: Total length of the DMA transfer
 951 * @direction: Direction of the transfer
 952 */
 953static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
 954                            dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
 955                            unsigned int acnt, unsigned int dma_length,
 956                            enum dma_transfer_direction direction)
 957{
 958        struct edma_chan *echan = to_edma_chan(chan);
 959        struct device *dev = chan->device->dev;
 960        struct edmacc_param *param = &epset->param;
 961        int bcnt, ccnt, cidx;
 962        int src_bidx, dst_bidx, src_cidx, dst_cidx;
 963        int absync;
 964
 965        /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
 966        if (!burst)
 967                burst = 1;
 968        /*
 969         * If the maxburst is equal to the fifo width, use
 970         * A-synced transfers. This allows for large contiguous
 971         * buffer transfers using only one PaRAM set.
 972         */
 973        if (burst == 1) {
 974                /*
 975                 * For the A-sync case, bcnt and ccnt are the remainder
 976                 * and quotient respectively of the division of:
 977                 * (dma_length / acnt) by (SZ_64K -1). This is so
 978                 * that in case bcnt over flows, we have ccnt to use.
 979                 * Note: In A-sync tranfer only, bcntrld is used, but it
 980                 * only applies for sg_dma_len(sg) >= SZ_64K.
 981                 * In this case, the best way adopted is- bccnt for the
 982                 * first frame will be the remainder below. Then for
 983                 * every successive frame, bcnt will be SZ_64K-1. This
 984                 * is assured as bcntrld = 0xffff in end of function.
 985                 */
 986                absync = false;
 987                ccnt = dma_length / acnt / (SZ_64K - 1);
 988                bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
 989                /*
 990                 * If bcnt is non-zero, we have a remainder and hence an
 991                 * extra frame to transfer, so increment ccnt.
 992                 */
 993                if (bcnt)
 994                        ccnt++;
 995                else
 996                        bcnt = SZ_64K - 1;
 997                cidx = acnt;
 998        } else {
 999                /*
1000                 * If maxburst is greater than the fifo address_width,
1001                 * use AB-synced transfers where A count is the fifo
1002                 * address_width and B count is the maxburst. In this
1003                 * case, we are limited to transfers of C count frames
1004                 * of (address_width * maxburst) where C count is limited
1005                 * to SZ_64K-1. This places an upper bound on the length
1006                 * of an SG segment that can be handled.
1007                 */
1008                absync = true;
1009                bcnt = burst;
1010                ccnt = dma_length / (acnt * bcnt);
1011                if (ccnt > (SZ_64K - 1)) {
1012                        dev_err(dev, "Exceeded max SG segment size\n");
1013                        return -EINVAL;
1014                }
1015                cidx = acnt * bcnt;
1016        }
1017
1018        epset->len = dma_length;
1019
1020        if (direction == DMA_MEM_TO_DEV) {
1021                src_bidx = acnt;
1022                src_cidx = cidx;
1023                dst_bidx = 0;
1024                dst_cidx = 0;
1025                epset->addr = src_addr;
1026        } else if (direction == DMA_DEV_TO_MEM)  {
1027                src_bidx = 0;
1028                src_cidx = 0;
1029                dst_bidx = acnt;
1030                dst_cidx = cidx;
1031                epset->addr = dst_addr;
1032        } else if (direction == DMA_MEM_TO_MEM)  {
1033                src_bidx = acnt;
1034                src_cidx = cidx;
1035                dst_bidx = acnt;
1036                dst_cidx = cidx;
1037                epset->addr = src_addr;
1038        } else {
1039                dev_err(dev, "%s: direction not implemented yet\n", __func__);
1040                return -EINVAL;
1041        }
1042
1043        param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1044        /* Configure A or AB synchronized transfers */
1045        if (absync)
1046                param->opt |= SYNCDIM;
1047
1048        param->src = src_addr;
1049        param->dst = dst_addr;
1050
1051        param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1052        param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1053
1054        param->a_b_cnt = bcnt << 16 | acnt;
1055        param->ccnt = ccnt;
1056        /*
1057         * Only time when (bcntrld) auto reload is required is for
1058         * A-sync case, and in this case, a requirement of reload value
1059         * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1060         * and then later will be populated by edma_execute.
1061         */
1062        param->link_bcntrld = 0xffffffff;
1063        return absync;
1064}
1065
1066static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1067        struct dma_chan *chan, struct scatterlist *sgl,
1068        unsigned int sg_len, enum dma_transfer_direction direction,
1069        unsigned long tx_flags, void *context)
1070{
1071        struct edma_chan *echan = to_edma_chan(chan);
1072        struct device *dev = chan->device->dev;
1073        struct edma_desc *edesc;
1074        dma_addr_t src_addr = 0, dst_addr = 0;
1075        enum dma_slave_buswidth dev_width;
1076        u32 burst;
1077        struct scatterlist *sg;
1078        int i, nslots, ret;
1079
1080        if (unlikely(!echan || !sgl || !sg_len))
1081                return NULL;
1082
1083        if (direction == DMA_DEV_TO_MEM) {
1084                src_addr = echan->cfg.src_addr;
1085                dev_width = echan->cfg.src_addr_width;
1086                burst = echan->cfg.src_maxburst;
1087        } else if (direction == DMA_MEM_TO_DEV) {
1088                dst_addr = echan->cfg.dst_addr;
1089                dev_width = echan->cfg.dst_addr_width;
1090                burst = echan->cfg.dst_maxburst;
1091        } else {
1092                dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1093                return NULL;
1094        }
1095
1096        if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1097                dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1098                return NULL;
1099        }
1100
1101        edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC);
1102        if (!edesc)
1103                return NULL;
1104
1105        edesc->pset_nr = sg_len;
1106        edesc->residue = 0;
1107        edesc->direction = direction;
1108        edesc->echan = echan;
1109
1110        /* Allocate a PaRAM slot, if needed */
1111        nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1112
1113        for (i = 0; i < nslots; i++) {
1114                if (echan->slot[i] < 0) {
1115                        echan->slot[i] =
1116                                edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1117                        if (echan->slot[i] < 0) {
1118                                kfree(edesc);
1119                                dev_err(dev, "%s: Failed to allocate slot\n",
1120                                        __func__);
1121                                return NULL;
1122                        }
1123                }
1124        }
1125
1126        /* Configure PaRAM sets for each SG */
1127        for_each_sg(sgl, sg, sg_len, i) {
1128                /* Get address for each SG */
1129                if (direction == DMA_DEV_TO_MEM)
1130                        dst_addr = sg_dma_address(sg);
1131                else
1132                        src_addr = sg_dma_address(sg);
1133
1134                ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1135                                       dst_addr, burst, dev_width,
1136                                       sg_dma_len(sg), direction);
1137                if (ret < 0) {
1138                        kfree(edesc);
1139                        return NULL;
1140                }
1141
1142                edesc->absync = ret;
1143                edesc->residue += sg_dma_len(sg);
1144
1145                if (i == sg_len - 1)
1146                        /* Enable completion interrupt */
1147                        edesc->pset[i].param.opt |= TCINTEN;
1148                else if (!((i+1) % MAX_NR_SG))
1149                        /*
1150                         * Enable early completion interrupt for the
1151                         * intermediateset. In this case the driver will be
1152                         * notified when the paRAM set is submitted to TC. This
1153                         * will allow more time to set up the next set of slots.
1154                         */
1155                        edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
1156        }
1157        edesc->residue_stat = edesc->residue;
1158
1159        return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1160}
1161
1162static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1163        struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1164        size_t len, unsigned long tx_flags)
1165{
1166        int ret, nslots;
1167        struct edma_desc *edesc;
1168        struct device *dev = chan->device->dev;
1169        struct edma_chan *echan = to_edma_chan(chan);
1170        unsigned int width, pset_len, array_size;
1171
1172        if (unlikely(!echan || !len))
1173                return NULL;
1174
1175        /* Align the array size (acnt block) with the transfer properties */
1176        switch (__ffs((src | dest | len))) {
1177        case 0:
1178                array_size = SZ_32K - 1;
1179                break;
1180        case 1:
1181                array_size = SZ_32K - 2;
1182                break;
1183        default:
1184                array_size = SZ_32K - 4;
1185                break;
1186        }
1187
1188        if (len < SZ_64K) {
1189                /*
1190                 * Transfer size less than 64K can be handled with one paRAM
1191                 * slot and with one burst.
1192                 * ACNT = length
1193                 */
1194                width = len;
1195                pset_len = len;
1196                nslots = 1;
1197        } else {
1198                /*
1199                 * Transfer size bigger than 64K will be handled with maximum of
1200                 * two paRAM slots.
1201                 * slot1: (full_length / 32767) times 32767 bytes bursts.
1202                 *        ACNT = 32767, length1: (full_length / 32767) * 32767
1203                 * slot2: the remaining amount of data after slot1.
1204                 *        ACNT = full_length - length1, length2 = ACNT
1205                 *
1206                 * When the full_length is multibple of 32767 one slot can be
1207                 * used to complete the transfer.
1208                 */
1209                width = array_size;
1210                pset_len = rounddown(len, width);
1211                /* One slot is enough for lengths multiple of (SZ_32K -1) */
1212                if (unlikely(pset_len == len))
1213                        nslots = 1;
1214                else
1215                        nslots = 2;
1216        }
1217
1218        edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1219        if (!edesc)
1220                return NULL;
1221
1222        edesc->pset_nr = nslots;
1223        edesc->residue = edesc->residue_stat = len;
1224        edesc->direction = DMA_MEM_TO_MEM;
1225        edesc->echan = echan;
1226
1227        ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1228                               width, pset_len, DMA_MEM_TO_MEM);
1229        if (ret < 0) {
1230                kfree(edesc);
1231                return NULL;
1232        }
1233
1234        edesc->absync = ret;
1235
1236        edesc->pset[0].param.opt |= ITCCHEN;
1237        if (nslots == 1) {
1238                /* Enable transfer complete interrupt if requested */
1239                if (tx_flags & DMA_PREP_INTERRUPT)
1240                        edesc->pset[0].param.opt |= TCINTEN;
1241        } else {
1242                /* Enable transfer complete chaining for the first slot */
1243                edesc->pset[0].param.opt |= TCCHEN;
1244
1245                if (echan->slot[1] < 0) {
1246                        echan->slot[1] = edma_alloc_slot(echan->ecc,
1247                                                         EDMA_SLOT_ANY);
1248                        if (echan->slot[1] < 0) {
1249                                kfree(edesc);
1250                                dev_err(dev, "%s: Failed to allocate slot\n",
1251                                        __func__);
1252                                return NULL;
1253                        }
1254                }
1255                dest += pset_len;
1256                src += pset_len;
1257                pset_len = width = len % array_size;
1258
1259                ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1260                                       width, pset_len, DMA_MEM_TO_MEM);
1261                if (ret < 0) {
1262                        kfree(edesc);
1263                        return NULL;
1264                }
1265
1266                edesc->pset[1].param.opt |= ITCCHEN;
1267                /* Enable transfer complete interrupt if requested */
1268                if (tx_flags & DMA_PREP_INTERRUPT)
1269                        edesc->pset[1].param.opt |= TCINTEN;
1270        }
1271
1272        if (!(tx_flags & DMA_PREP_INTERRUPT))
1273                edesc->polled = true;
1274
1275        return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1276}
1277
1278static struct dma_async_tx_descriptor *
1279edma_prep_dma_interleaved(struct dma_chan *chan,
1280                          struct dma_interleaved_template *xt,
1281                          unsigned long tx_flags)
1282{
1283        struct device *dev = chan->device->dev;
1284        struct edma_chan *echan = to_edma_chan(chan);
1285        struct edmacc_param *param;
1286        struct edma_desc *edesc;
1287        size_t src_icg, dst_icg;
1288        int src_bidx, dst_bidx;
1289
1290        /* Slave mode is not supported */
1291        if (is_slave_direction(xt->dir))
1292                return NULL;
1293
1294        if (xt->frame_size != 1 || xt->numf == 0)
1295                return NULL;
1296
1297        if (xt->sgl[0].size > SZ_64K || xt->numf > SZ_64K)
1298                return NULL;
1299
1300        src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
1301        if (src_icg) {
1302                src_bidx = src_icg + xt->sgl[0].size;
1303        } else if (xt->src_inc) {
1304                src_bidx = xt->sgl[0].size;
1305        } else {
1306                dev_err(dev, "%s: SRC constant addressing is not supported\n",
1307                        __func__);
1308                return NULL;
1309        }
1310
1311        dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
1312        if (dst_icg) {
1313                dst_bidx = dst_icg + xt->sgl[0].size;
1314        } else if (xt->dst_inc) {
1315                dst_bidx = xt->sgl[0].size;
1316        } else {
1317                dev_err(dev, "%s: DST constant addressing is not supported\n",
1318                        __func__);
1319                return NULL;
1320        }
1321
1322        if (src_bidx > SZ_64K || dst_bidx > SZ_64K)
1323                return NULL;
1324
1325        edesc = kzalloc(struct_size(edesc, pset, 1), GFP_ATOMIC);
1326        if (!edesc)
1327                return NULL;
1328
1329        edesc->direction = DMA_MEM_TO_MEM;
1330        edesc->echan = echan;
1331        edesc->pset_nr = 1;
1332
1333        param = &edesc->pset[0].param;
1334
1335        param->src = xt->src_start;
1336        param->dst = xt->dst_start;
1337        param->a_b_cnt = xt->numf << 16 | xt->sgl[0].size;
1338        param->ccnt = 1;
1339        param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1340        param->src_dst_cidx = 0;
1341
1342        param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1343        param->opt |= ITCCHEN;
1344        /* Enable transfer complete interrupt if requested */
1345        if (tx_flags & DMA_PREP_INTERRUPT)
1346                param->opt |= TCINTEN;
1347        else
1348                edesc->polled = true;
1349
1350        return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1351}
1352
1353static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1354        struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1355        size_t period_len, enum dma_transfer_direction direction,
1356        unsigned long tx_flags)
1357{
1358        struct edma_chan *echan = to_edma_chan(chan);
1359        struct device *dev = chan->device->dev;
1360        struct edma_desc *edesc;
1361        dma_addr_t src_addr, dst_addr;
1362        enum dma_slave_buswidth dev_width;
1363        bool use_intermediate = false;
1364        u32 burst;
1365        int i, ret, nslots;
1366
1367        if (unlikely(!echan || !buf_len || !period_len))
1368                return NULL;
1369
1370        if (direction == DMA_DEV_TO_MEM) {
1371                src_addr = echan->cfg.src_addr;
1372                dst_addr = buf_addr;
1373                dev_width = echan->cfg.src_addr_width;
1374                burst = echan->cfg.src_maxburst;
1375        } else if (direction == DMA_MEM_TO_DEV) {
1376                src_addr = buf_addr;
1377                dst_addr = echan->cfg.dst_addr;
1378                dev_width = echan->cfg.dst_addr_width;
1379                burst = echan->cfg.dst_maxburst;
1380        } else {
1381                dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1382                return NULL;
1383        }
1384
1385        if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1386                dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1387                return NULL;
1388        }
1389
1390        if (unlikely(buf_len % period_len)) {
1391                dev_err(dev, "Period should be multiple of Buffer length\n");
1392                return NULL;
1393        }
1394
1395        nslots = (buf_len / period_len) + 1;
1396
1397        /*
1398         * Cyclic DMA users such as audio cannot tolerate delays introduced
1399         * by cases where the number of periods is more than the maximum
1400         * number of SGs the EDMA driver can handle at a time. For DMA types
1401         * such as Slave SGs, such delays are tolerable and synchronized,
1402         * but the synchronization is difficult to achieve with Cyclic and
1403         * cannot be guaranteed, so we error out early.
1404         */
1405        if (nslots > MAX_NR_SG) {
1406                /*
1407                 * If the burst and period sizes are the same, we can put
1408                 * the full buffer into a single period and activate
1409                 * intermediate interrupts. This will produce interrupts
1410                 * after each burst, which is also after each desired period.
1411                 */
1412                if (burst == period_len) {
1413                        period_len = buf_len;
1414                        nslots = 2;
1415                        use_intermediate = true;
1416                } else {
1417                        return NULL;
1418                }
1419        }
1420
1421        edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1422        if (!edesc)
1423                return NULL;
1424
1425        edesc->cyclic = 1;
1426        edesc->pset_nr = nslots;
1427        edesc->residue = edesc->residue_stat = buf_len;
1428        edesc->direction = direction;
1429        edesc->echan = echan;
1430
1431        dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1432                __func__, echan->ch_num, nslots, period_len, buf_len);
1433
1434        for (i = 0; i < nslots; i++) {
1435                /* Allocate a PaRAM slot, if needed */
1436                if (echan->slot[i] < 0) {
1437                        echan->slot[i] =
1438                                edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1439                        if (echan->slot[i] < 0) {
1440                                kfree(edesc);
1441                                dev_err(dev, "%s: Failed to allocate slot\n",
1442                                        __func__);
1443                                return NULL;
1444                        }
1445                }
1446
1447                if (i == nslots - 1) {
1448                        memcpy(&edesc->pset[i], &edesc->pset[0],
1449                               sizeof(edesc->pset[0]));
1450                        break;
1451                }
1452
1453                ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1454                                       dst_addr, burst, dev_width, period_len,
1455                                       direction);
1456                if (ret < 0) {
1457                        kfree(edesc);
1458                        return NULL;
1459                }
1460
1461                if (direction == DMA_DEV_TO_MEM)
1462                        dst_addr += period_len;
1463                else
1464                        src_addr += period_len;
1465
1466                dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1467                dev_vdbg(dev,
1468                        "\n pset[%d]:\n"
1469                        "  chnum\t%d\n"
1470                        "  slot\t%d\n"
1471                        "  opt\t%08x\n"
1472                        "  src\t%08x\n"
1473                        "  dst\t%08x\n"
1474                        "  abcnt\t%08x\n"
1475                        "  ccnt\t%08x\n"
1476                        "  bidx\t%08x\n"
1477                        "  cidx\t%08x\n"
1478                        "  lkrld\t%08x\n",
1479                        i, echan->ch_num, echan->slot[i],
1480                        edesc->pset[i].param.opt,
1481                        edesc->pset[i].param.src,
1482                        edesc->pset[i].param.dst,
1483                        edesc->pset[i].param.a_b_cnt,
1484                        edesc->pset[i].param.ccnt,
1485                        edesc->pset[i].param.src_dst_bidx,
1486                        edesc->pset[i].param.src_dst_cidx,
1487                        edesc->pset[i].param.link_bcntrld);
1488
1489                edesc->absync = ret;
1490
1491                /*
1492                 * Enable period interrupt only if it is requested
1493                 */
1494                if (tx_flags & DMA_PREP_INTERRUPT) {
1495                        edesc->pset[i].param.opt |= TCINTEN;
1496
1497                        /* Also enable intermediate interrupts if necessary */
1498                        if (use_intermediate)
1499                                edesc->pset[i].param.opt |= ITCINTEN;
1500                }
1501        }
1502
1503        /* Place the cyclic channel to highest priority queue */
1504        if (!echan->tc)
1505                edma_assign_channel_eventq(echan, EVENTQ_0);
1506
1507        return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1508}
1509
1510static void edma_completion_handler(struct edma_chan *echan)
1511{
1512        struct device *dev = echan->vchan.chan.device->dev;
1513        struct edma_desc *edesc;
1514
1515        spin_lock(&echan->vchan.lock);
1516        edesc = echan->edesc;
1517        if (edesc) {
1518                if (edesc->cyclic) {
1519                        vchan_cyclic_callback(&edesc->vdesc);
1520                        spin_unlock(&echan->vchan.lock);
1521                        return;
1522                } else if (edesc->processed == edesc->pset_nr) {
1523                        edesc->residue = 0;
1524                        edma_stop(echan);
1525                        vchan_cookie_complete(&edesc->vdesc);
1526                        echan->edesc = NULL;
1527
1528                        dev_dbg(dev, "Transfer completed on channel %d\n",
1529                                echan->ch_num);
1530                } else {
1531                        dev_dbg(dev, "Sub transfer completed on channel %d\n",
1532                                echan->ch_num);
1533
1534                        edma_pause(echan);
1535
1536                        /* Update statistics for tx_status */
1537                        edesc->residue -= edesc->sg_len;
1538                        edesc->residue_stat = edesc->residue;
1539                        edesc->processed_stat = edesc->processed;
1540                }
1541                edma_execute(echan);
1542        }
1543
1544        spin_unlock(&echan->vchan.lock);
1545}
1546
1547/* eDMA interrupt handler */
1548static irqreturn_t dma_irq_handler(int irq, void *data)
1549{
1550        struct edma_cc *ecc = data;
1551        int ctlr;
1552        u32 sh_ier;
1553        u32 sh_ipr;
1554        u32 bank;
1555
1556        ctlr = ecc->id;
1557        if (ctlr < 0)
1558                return IRQ_NONE;
1559
1560        dev_vdbg(ecc->dev, "dma_irq_handler\n");
1561
1562        sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1563        if (!sh_ipr) {
1564                sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1565                if (!sh_ipr)
1566                        return IRQ_NONE;
1567                sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1568                bank = 1;
1569        } else {
1570                sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1571                bank = 0;
1572        }
1573
1574        do {
1575                u32 slot;
1576                u32 channel;
1577
1578                slot = __ffs(sh_ipr);
1579                sh_ipr &= ~(BIT(slot));
1580
1581                if (sh_ier & BIT(slot)) {
1582                        channel = (bank << 5) | slot;
1583                        /* Clear the corresponding IPR bits */
1584                        edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1585                        edma_completion_handler(&ecc->slave_chans[channel]);
1586                }
1587        } while (sh_ipr);
1588
1589        edma_shadow0_write(ecc, SH_IEVAL, 1);
1590        return IRQ_HANDLED;
1591}
1592
1593static void edma_error_handler(struct edma_chan *echan)
1594{
1595        struct edma_cc *ecc = echan->ecc;
1596        struct device *dev = echan->vchan.chan.device->dev;
1597        struct edmacc_param p;
1598        int err;
1599
1600        if (!echan->edesc)
1601                return;
1602
1603        spin_lock(&echan->vchan.lock);
1604
1605        err = edma_read_slot(ecc, echan->slot[0], &p);
1606
1607        /*
1608         * Issue later based on missed flag which will be sure
1609         * to happen as:
1610         * (1) we finished transmitting an intermediate slot and
1611         *     edma_execute is coming up.
1612         * (2) or we finished current transfer and issue will
1613         *     call edma_execute.
1614         *
1615         * Important note: issuing can be dangerous here and
1616         * lead to some nasty recursion when we are in a NULL
1617         * slot. So we avoid doing so and set the missed flag.
1618         */
1619        if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) {
1620                dev_dbg(dev, "Error on null slot, setting miss\n");
1621                echan->missed = 1;
1622        } else {
1623                /*
1624                 * The slot is already programmed but the event got
1625                 * missed, so its safe to issue it here.
1626                 */
1627                dev_dbg(dev, "Missed event, TRIGGERING\n");
1628                edma_clean_channel(echan);
1629                edma_stop(echan);
1630                edma_start(echan);
1631                edma_trigger_channel(echan);
1632        }
1633        spin_unlock(&echan->vchan.lock);
1634}
1635
1636static inline bool edma_error_pending(struct edma_cc *ecc)
1637{
1638        if (edma_read_array(ecc, EDMA_EMR, 0) ||
1639            edma_read_array(ecc, EDMA_EMR, 1) ||
1640            edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1641                return true;
1642
1643        return false;
1644}
1645
1646/* eDMA error interrupt handler */
1647static irqreturn_t dma_ccerr_handler(int irq, void *data)
1648{
1649        struct edma_cc *ecc = data;
1650        int i, j;
1651        int ctlr;
1652        unsigned int cnt = 0;
1653        unsigned int val;
1654
1655        ctlr = ecc->id;
1656        if (ctlr < 0)
1657                return IRQ_NONE;
1658
1659        dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1660
1661        if (!edma_error_pending(ecc)) {
1662                /*
1663                 * The registers indicate no pending error event but the irq
1664                 * handler has been called.
1665                 * Ask eDMA to re-evaluate the error registers.
1666                 */
1667                dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
1668                        __func__);
1669                edma_write(ecc, EDMA_EEVAL, 1);
1670                return IRQ_NONE;
1671        }
1672
1673        while (1) {
1674                /* Event missed register(s) */
1675                for (j = 0; j < 2; j++) {
1676                        unsigned long emr;
1677
1678                        val = edma_read_array(ecc, EDMA_EMR, j);
1679                        if (!val)
1680                                continue;
1681
1682                        dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1683                        emr = val;
1684                        for (i = find_next_bit(&emr, 32, 0); i < 32;
1685                             i = find_next_bit(&emr, 32, i + 1)) {
1686                                int k = (j << 5) + i;
1687
1688                                /* Clear the corresponding EMR bits */
1689                                edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1690                                /* Clear any SER */
1691                                edma_shadow0_write_array(ecc, SH_SECR, j,
1692                                                         BIT(i));
1693                                edma_error_handler(&ecc->slave_chans[k]);
1694                        }
1695                }
1696
1697                val = edma_read(ecc, EDMA_QEMR);
1698                if (val) {
1699                        dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1700                        /* Not reported, just clear the interrupt reason. */
1701                        edma_write(ecc, EDMA_QEMCR, val);
1702                        edma_shadow0_write(ecc, SH_QSECR, val);
1703                }
1704
1705                val = edma_read(ecc, EDMA_CCERR);
1706                if (val) {
1707                        dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1708                        /* Not reported, just clear the interrupt reason. */
1709                        edma_write(ecc, EDMA_CCERRCLR, val);
1710                }
1711
1712                if (!edma_error_pending(ecc))
1713                        break;
1714                cnt++;
1715                if (cnt > 10)
1716                        break;
1717        }
1718        edma_write(ecc, EDMA_EEVAL, 1);
1719        return IRQ_HANDLED;
1720}
1721
1722/* Alloc channel resources */
1723static int edma_alloc_chan_resources(struct dma_chan *chan)
1724{
1725        struct edma_chan *echan = to_edma_chan(chan);
1726        struct edma_cc *ecc = echan->ecc;
1727        struct device *dev = ecc->dev;
1728        enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1729        int ret;
1730
1731        if (echan->tc) {
1732                eventq_no = echan->tc->id;
1733        } else if (ecc->tc_list) {
1734                /* memcpy channel */
1735                echan->tc = &ecc->tc_list[ecc->info->default_queue];
1736                eventq_no = echan->tc->id;
1737        }
1738
1739        ret = edma_alloc_channel(echan, eventq_no);
1740        if (ret)
1741                return ret;
1742
1743        echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1744        if (echan->slot[0] < 0) {
1745                dev_err(dev, "Entry slot allocation failed for channel %u\n",
1746                        EDMA_CHAN_SLOT(echan->ch_num));
1747                ret = echan->slot[0];
1748                goto err_slot;
1749        }
1750
1751        /* Set up channel -> slot mapping for the entry slot */
1752        edma_set_chmap(echan, echan->slot[0]);
1753        echan->alloced = true;
1754
1755        dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1756                EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1757                echan->hw_triggered ? "HW" : "SW");
1758
1759        return 0;
1760
1761err_slot:
1762        edma_free_channel(echan);
1763        return ret;
1764}
1765
1766/* Free channel resources */
1767static void edma_free_chan_resources(struct dma_chan *chan)
1768{
1769        struct edma_chan *echan = to_edma_chan(chan);
1770        struct device *dev = echan->ecc->dev;
1771        int i;
1772
1773        /* Terminate transfers */
1774        edma_stop(echan);
1775
1776        vchan_free_chan_resources(&echan->vchan);
1777
1778        /* Free EDMA PaRAM slots */
1779        for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1780                if (echan->slot[i] >= 0) {
1781                        edma_free_slot(echan->ecc, echan->slot[i]);
1782                        echan->slot[i] = -1;
1783                }
1784        }
1785
1786        /* Set entry slot to the dummy slot */
1787        edma_set_chmap(echan, echan->ecc->dummy_slot);
1788
1789        /* Free EDMA channel */
1790        if (echan->alloced) {
1791                edma_free_channel(echan);
1792                echan->alloced = false;
1793        }
1794
1795        echan->tc = NULL;
1796        echan->hw_triggered = false;
1797
1798        dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1799                EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1800}
1801
1802/* Send pending descriptor to hardware */
1803static void edma_issue_pending(struct dma_chan *chan)
1804{
1805        struct edma_chan *echan = to_edma_chan(chan);
1806        unsigned long flags;
1807
1808        spin_lock_irqsave(&echan->vchan.lock, flags);
1809        if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1810                edma_execute(echan);
1811        spin_unlock_irqrestore(&echan->vchan.lock, flags);
1812}
1813
1814/*
1815 * This limit exists to avoid a possible infinite loop when waiting for proof
1816 * that a particular transfer is completed. This limit can be hit if there
1817 * are large bursts to/from slow devices or the CPU is never able to catch
1818 * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART
1819 * RX-FIFO, as many as 55 loops have been seen.
1820 */
1821#define EDMA_MAX_TR_WAIT_LOOPS 1000
1822
1823static u32 edma_residue(struct edma_desc *edesc)
1824{
1825        bool dst = edesc->direction == DMA_DEV_TO_MEM;
1826        int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
1827        struct edma_chan *echan = edesc->echan;
1828        struct edma_pset *pset = edesc->pset;
1829        dma_addr_t done, pos, pos_old;
1830        int channel = EDMA_CHAN_SLOT(echan->ch_num);
1831        int idx = EDMA_REG_ARRAY_INDEX(channel);
1832        int ch_bit = EDMA_CHANNEL_BIT(channel);
1833        int event_reg;
1834        int i;
1835
1836        /*
1837         * We always read the dst/src position from the first RamPar
1838         * pset. That's the one which is active now.
1839         */
1840        pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1841
1842        /*
1843         * "pos" may represent a transfer request that is still being
1844         * processed by the EDMACC or EDMATC. We will busy wait until
1845         * any one of the situations occurs:
1846         *   1. while and event is pending for the channel
1847         *   2. a position updated
1848         *   3. we hit the loop limit
1849         */
1850        if (is_slave_direction(edesc->direction))
1851                event_reg = SH_ER;
1852        else
1853                event_reg = SH_ESR;
1854
1855        pos_old = pos;
1856        while (edma_shadow0_read_array(echan->ecc, event_reg, idx) & ch_bit) {
1857                pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1858                if (pos != pos_old)
1859                        break;
1860
1861                if (!--loop_count) {
1862                        dev_dbg_ratelimited(echan->vchan.chan.device->dev,
1863                                "%s: timeout waiting for PaRAM update\n",
1864                                __func__);
1865                        break;
1866                }
1867
1868                cpu_relax();
1869        }
1870
1871        /*
1872         * Cyclic is simple. Just subtract pset[0].addr from pos.
1873         *
1874         * We never update edesc->residue in the cyclic case, so we
1875         * can tell the remaining room to the end of the circular
1876         * buffer.
1877         */
1878        if (edesc->cyclic) {
1879                done = pos - pset->addr;
1880                edesc->residue_stat = edesc->residue - done;
1881                return edesc->residue_stat;
1882        }
1883
1884        /*
1885         * If the position is 0, then EDMA loaded the closing dummy slot, the
1886         * transfer is completed
1887         */
1888        if (!pos)
1889                return 0;
1890        /*
1891         * For SG operation we catch up with the last processed
1892         * status.
1893         */
1894        pset += edesc->processed_stat;
1895
1896        for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1897                /*
1898                 * If we are inside this pset address range, we know
1899                 * this is the active one. Get the current delta and
1900                 * stop walking the psets.
1901                 */
1902                if (pos >= pset->addr && pos < pset->addr + pset->len)
1903                        return edesc->residue_stat - (pos - pset->addr);
1904
1905                /* Otherwise mark it done and update residue_stat. */
1906                edesc->processed_stat++;
1907                edesc->residue_stat -= pset->len;
1908        }
1909        return edesc->residue_stat;
1910}
1911
1912/* Check request completion status */
1913static enum dma_status edma_tx_status(struct dma_chan *chan,
1914                                      dma_cookie_t cookie,
1915                                      struct dma_tx_state *txstate)
1916{
1917        struct edma_chan *echan = to_edma_chan(chan);
1918        struct dma_tx_state txstate_tmp;
1919        enum dma_status ret;
1920        unsigned long flags;
1921
1922        ret = dma_cookie_status(chan, cookie, txstate);
1923
1924        if (ret == DMA_COMPLETE)
1925                return ret;
1926
1927        /* Provide a dummy dma_tx_state for completion checking */
1928        if (!txstate)
1929                txstate = &txstate_tmp;
1930
1931        spin_lock_irqsave(&echan->vchan.lock, flags);
1932        if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) {
1933                txstate->residue = edma_residue(echan->edesc);
1934        } else {
1935                struct virt_dma_desc *vdesc = vchan_find_desc(&echan->vchan,
1936                                                              cookie);
1937
1938                if (vdesc)
1939                        txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1940                else
1941                        txstate->residue = 0;
1942        }
1943
1944        /*
1945         * Mark the cookie completed if the residue is 0 for non cyclic
1946         * transfers
1947         */
1948        if (ret != DMA_COMPLETE && !txstate->residue &&
1949            echan->edesc && echan->edesc->polled &&
1950            echan->edesc->vdesc.tx.cookie == cookie) {
1951                edma_stop(echan);
1952                vchan_cookie_complete(&echan->edesc->vdesc);
1953                echan->edesc = NULL;
1954                edma_execute(echan);
1955                ret = DMA_COMPLETE;
1956        }
1957
1958        spin_unlock_irqrestore(&echan->vchan.lock, flags);
1959
1960        return ret;
1961}
1962
1963static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1964{
1965        if (!memcpy_channels)
1966                return false;
1967        while (*memcpy_channels != -1) {
1968                if (*memcpy_channels == ch_num)
1969                        return true;
1970                memcpy_channels++;
1971        }
1972        return false;
1973}
1974
1975#define EDMA_DMA_BUSWIDTHS      (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1976                                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1977                                 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1978                                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1979
1980static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1981{
1982        struct dma_device *s_ddev = &ecc->dma_slave;
1983        struct dma_device *m_ddev = NULL;
1984        s32 *memcpy_channels = ecc->info->memcpy_channels;
1985        int i, j;
1986
1987        dma_cap_zero(s_ddev->cap_mask);
1988        dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1989        dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1990        if (ecc->legacy_mode && !memcpy_channels) {
1991                dev_warn(ecc->dev,
1992                         "Legacy memcpy is enabled, things might not work\n");
1993
1994                dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1995                dma_cap_set(DMA_INTERLEAVE, s_ddev->cap_mask);
1996                s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1997                s_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved;
1998                s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1999        }
2000
2001        s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
2002        s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
2003        s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
2004        s_ddev->device_free_chan_resources = edma_free_chan_resources;
2005        s_ddev->device_issue_pending = edma_issue_pending;
2006        s_ddev->device_tx_status = edma_tx_status;
2007        s_ddev->device_config = edma_slave_config;
2008        s_ddev->device_pause = edma_dma_pause;
2009        s_ddev->device_resume = edma_dma_resume;
2010        s_ddev->device_terminate_all = edma_terminate_all;
2011        s_ddev->device_synchronize = edma_synchronize;
2012
2013        s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
2014        s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
2015        s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
2016        s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2017        s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */
2018
2019        s_ddev->dev = ecc->dev;
2020        INIT_LIST_HEAD(&s_ddev->channels);
2021
2022        if (memcpy_channels) {
2023                m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
2024                if (!m_ddev) {
2025                        dev_warn(ecc->dev, "memcpy is disabled due to OoM\n");
2026                        memcpy_channels = NULL;
2027                        goto ch_setup;
2028                }
2029                ecc->dma_memcpy = m_ddev;
2030
2031                dma_cap_zero(m_ddev->cap_mask);
2032                dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
2033                dma_cap_set(DMA_INTERLEAVE, m_ddev->cap_mask);
2034
2035                m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
2036                m_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved;
2037                m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
2038                m_ddev->device_free_chan_resources = edma_free_chan_resources;
2039                m_ddev->device_issue_pending = edma_issue_pending;
2040                m_ddev->device_tx_status = edma_tx_status;
2041                m_ddev->device_config = edma_slave_config;
2042                m_ddev->device_pause = edma_dma_pause;
2043                m_ddev->device_resume = edma_dma_resume;
2044                m_ddev->device_terminate_all = edma_terminate_all;
2045                m_ddev->device_synchronize = edma_synchronize;
2046
2047                m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
2048                m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
2049                m_ddev->directions = BIT(DMA_MEM_TO_MEM);
2050                m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2051
2052                m_ddev->dev = ecc->dev;
2053                INIT_LIST_HEAD(&m_ddev->channels);
2054        } else if (!ecc->legacy_mode) {
2055                dev_info(ecc->dev, "memcpy is disabled\n");
2056        }
2057
2058ch_setup:
2059        for (i = 0; i < ecc->num_channels; i++) {
2060                struct edma_chan *echan = &ecc->slave_chans[i];
2061                echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
2062                echan->ecc = ecc;
2063                echan->vchan.desc_free = edma_desc_free;
2064
2065                if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
2066                        vchan_init(&echan->vchan, m_ddev);
2067                else
2068                        vchan_init(&echan->vchan, s_ddev);
2069
2070                INIT_LIST_HEAD(&echan->node);
2071                for (j = 0; j < EDMA_MAX_SLOTS; j++)
2072                        echan->slot[j] = -1;
2073        }
2074}
2075
2076static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
2077                              struct edma_cc *ecc)
2078{
2079        int i;
2080        u32 value, cccfg;
2081        s8 (*queue_priority_map)[2];
2082
2083        /* Decode the eDMA3 configuration from CCCFG register */
2084        cccfg = edma_read(ecc, EDMA_CCCFG);
2085
2086        value = GET_NUM_REGN(cccfg);
2087        ecc->num_region = BIT(value);
2088
2089        value = GET_NUM_DMACH(cccfg);
2090        ecc->num_channels = BIT(value + 1);
2091
2092        value = GET_NUM_QDMACH(cccfg);
2093        ecc->num_qchannels = value * 2;
2094
2095        value = GET_NUM_PAENTRY(cccfg);
2096        ecc->num_slots = BIT(value + 4);
2097
2098        value = GET_NUM_EVQUE(cccfg);
2099        ecc->num_tc = value + 1;
2100
2101        ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
2102
2103        dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
2104        dev_dbg(dev, "num_region: %u\n", ecc->num_region);
2105        dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
2106        dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
2107        dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
2108        dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
2109        dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
2110
2111        /* Nothing need to be done if queue priority is provided */
2112        if (pdata->queue_priority_mapping)
2113                return 0;
2114
2115        /*
2116         * Configure TC/queue priority as follows:
2117         * Q0 - priority 0
2118         * Q1 - priority 1
2119         * Q2 - priority 2
2120         * ...
2121         * The meaning of priority numbers: 0 highest priority, 7 lowest
2122         * priority. So Q0 is the highest priority queue and the last queue has
2123         * the lowest priority.
2124         */
2125        queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
2126                                          GFP_KERNEL);
2127        if (!queue_priority_map)
2128                return -ENOMEM;
2129
2130        for (i = 0; i < ecc->num_tc; i++) {
2131                queue_priority_map[i][0] = i;
2132                queue_priority_map[i][1] = i;
2133        }
2134        queue_priority_map[i][0] = -1;
2135        queue_priority_map[i][1] = -1;
2136
2137        pdata->queue_priority_mapping = queue_priority_map;
2138        /* Default queue has the lowest priority */
2139        pdata->default_queue = i - 1;
2140
2141        return 0;
2142}
2143
2144#if IS_ENABLED(CONFIG_OF)
2145static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
2146                               size_t sz)
2147{
2148        const char pname[] = "ti,edma-xbar-event-map";
2149        struct resource res;
2150        void __iomem *xbar;
2151        s16 (*xbar_chans)[2];
2152        size_t nelm = sz / sizeof(s16);
2153        u32 shift, offset, mux;
2154        int ret, i;
2155
2156        xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
2157        if (!xbar_chans)
2158                return -ENOMEM;
2159
2160        ret = of_address_to_resource(dev->of_node, 1, &res);
2161        if (ret)
2162                return -ENOMEM;
2163
2164        xbar = devm_ioremap(dev, res.start, resource_size(&res));
2165        if (!xbar)
2166                return -ENOMEM;
2167
2168        ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
2169                                         nelm);
2170        if (ret)
2171                return -EIO;
2172
2173        /* Invalidate last entry for the other user of this mess */
2174        nelm >>= 1;
2175        xbar_chans[nelm][0] = -1;
2176        xbar_chans[nelm][1] = -1;
2177
2178        for (i = 0; i < nelm; i++) {
2179                shift = (xbar_chans[i][1] & 0x03) << 3;
2180                offset = xbar_chans[i][1] & 0xfffffffc;
2181                mux = readl(xbar + offset);
2182                mux &= ~(0xff << shift);
2183                mux |= xbar_chans[i][0] << shift;
2184                writel(mux, (xbar + offset));
2185        }
2186
2187        pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
2188        return 0;
2189}
2190
2191static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2192                                                     bool legacy_mode)
2193{
2194        struct edma_soc_info *info;
2195        struct property *prop;
2196        int sz, ret;
2197
2198        info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
2199        if (!info)
2200                return ERR_PTR(-ENOMEM);
2201
2202        if (legacy_mode) {
2203                prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
2204                                        &sz);
2205                if (prop) {
2206                        ret = edma_xbar_event_map(dev, info, sz);
2207                        if (ret)
2208                                return ERR_PTR(ret);
2209                }
2210                return info;
2211        }
2212
2213        /* Get the list of channels allocated to be used for memcpy */
2214        prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
2215        if (prop) {
2216                const char pname[] = "ti,edma-memcpy-channels";
2217                size_t nelm = sz / sizeof(s32);
2218                s32 *memcpy_ch;
2219
2220                memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2221                                         GFP_KERNEL);
2222                if (!memcpy_ch)
2223                        return ERR_PTR(-ENOMEM);
2224
2225                ret = of_property_read_u32_array(dev->of_node, pname,
2226                                                 (u32 *)memcpy_ch, nelm);
2227                if (ret)
2228                        return ERR_PTR(ret);
2229
2230                memcpy_ch[nelm] = -1;
2231                info->memcpy_channels = memcpy_ch;
2232        }
2233
2234        prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2235                                &sz);
2236        if (prop) {
2237                const char pname[] = "ti,edma-reserved-slot-ranges";
2238                u32 (*tmp)[2];
2239                s16 (*rsv_slots)[2];
2240                size_t nelm = sz / sizeof(*tmp);
2241                struct edma_rsv_info *rsv_info;
2242                int i;
2243
2244                if (!nelm)
2245                        return info;
2246
2247                tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2248                if (!tmp)
2249                        return ERR_PTR(-ENOMEM);
2250
2251                rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2252                if (!rsv_info) {
2253                        kfree(tmp);
2254                        return ERR_PTR(-ENOMEM);
2255                }
2256
2257                rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2258                                         GFP_KERNEL);
2259                if (!rsv_slots) {
2260                        kfree(tmp);
2261                        return ERR_PTR(-ENOMEM);
2262                }
2263
2264                ret = of_property_read_u32_array(dev->of_node, pname,
2265                                                 (u32 *)tmp, nelm * 2);
2266                if (ret) {
2267                        kfree(tmp);
2268                        return ERR_PTR(ret);
2269                }
2270
2271                for (i = 0; i < nelm; i++) {
2272                        rsv_slots[i][0] = tmp[i][0];
2273                        rsv_slots[i][1] = tmp[i][1];
2274                }
2275                rsv_slots[nelm][0] = -1;
2276                rsv_slots[nelm][1] = -1;
2277
2278                info->rsv = rsv_info;
2279                info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2280
2281                kfree(tmp);
2282        }
2283
2284        return info;
2285}
2286
2287static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2288                                      struct of_dma *ofdma)
2289{
2290        struct edma_cc *ecc = ofdma->of_dma_data;
2291        struct dma_chan *chan = NULL;
2292        struct edma_chan *echan;
2293        int i;
2294
2295        if (!ecc || dma_spec->args_count < 1)
2296                return NULL;
2297
2298        for (i = 0; i < ecc->num_channels; i++) {
2299                echan = &ecc->slave_chans[i];
2300                if (echan->ch_num == dma_spec->args[0]) {
2301                        chan = &echan->vchan.chan;
2302                        break;
2303                }
2304        }
2305
2306        if (!chan)
2307                return NULL;
2308
2309        if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2310                goto out;
2311
2312        if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2313            dma_spec->args[1] < echan->ecc->num_tc) {
2314                echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2315                goto out;
2316        }
2317
2318        return NULL;
2319out:
2320        /* The channel is going to be used as HW synchronized */
2321        echan->hw_triggered = true;
2322        return dma_get_slave_channel(chan);
2323}
2324#else
2325static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2326                                                     bool legacy_mode)
2327{
2328        return ERR_PTR(-EINVAL);
2329}
2330
2331static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2332                                      struct of_dma *ofdma)
2333{
2334        return NULL;
2335}
2336#endif
2337
2338static bool edma_filter_fn(struct dma_chan *chan, void *param);
2339
2340static int edma_probe(struct platform_device *pdev)
2341{
2342        struct edma_soc_info    *info = pdev->dev.platform_data;
2343        s8                      (*queue_priority_mapping)[2];
2344        const s16               (*reserved)[2];
2345        int                     i, irq;
2346        char                    *irq_name;
2347        struct resource         *mem;
2348        struct device_node      *node = pdev->dev.of_node;
2349        struct device           *dev = &pdev->dev;
2350        struct edma_cc          *ecc;
2351        bool                    legacy_mode = true;
2352        int ret;
2353
2354        if (node) {
2355                const struct of_device_id *match;
2356
2357                match = of_match_node(edma_of_ids, node);
2358                if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
2359                        legacy_mode = false;
2360
2361                info = edma_setup_info_from_dt(dev, legacy_mode);
2362                if (IS_ERR(info)) {
2363                        dev_err(dev, "failed to get DT data\n");
2364                        return PTR_ERR(info);
2365                }
2366        }
2367
2368        if (!info)
2369                return -ENODEV;
2370
2371        ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2372        if (ret)
2373                return ret;
2374
2375        ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2376        if (!ecc)
2377                return -ENOMEM;
2378
2379        ecc->dev = dev;
2380        ecc->id = pdev->id;
2381        ecc->legacy_mode = legacy_mode;
2382        /* When booting with DT the pdev->id is -1 */
2383        if (ecc->id < 0)
2384                ecc->id = 0;
2385
2386        mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2387        if (!mem) {
2388                dev_dbg(dev, "mem resource not found, using index 0\n");
2389                mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2390                if (!mem) {
2391                        dev_err(dev, "no mem resource?\n");
2392                        return -ENODEV;
2393                }
2394        }
2395        ecc->base = devm_ioremap_resource(dev, mem);
2396        if (IS_ERR(ecc->base))
2397                return PTR_ERR(ecc->base);
2398
2399        platform_set_drvdata(pdev, ecc);
2400
2401        pm_runtime_enable(dev);
2402        ret = pm_runtime_get_sync(dev);
2403        if (ret < 0) {
2404                dev_err(dev, "pm_runtime_get_sync() failed\n");
2405                pm_runtime_disable(dev);
2406                return ret;
2407        }
2408
2409        /* Get eDMA3 configuration from IP */
2410        ret = edma_setup_from_hw(dev, info, ecc);
2411        if (ret)
2412                goto err_disable_pm;
2413
2414        /* Allocate memory based on the information we got from the IP */
2415        ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2416                                        sizeof(*ecc->slave_chans), GFP_KERNEL);
2417
2418        ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2419                                       sizeof(unsigned long), GFP_KERNEL);
2420
2421        ecc->channels_mask = devm_kcalloc(dev,
2422                                           BITS_TO_LONGS(ecc->num_channels),
2423                                           sizeof(unsigned long), GFP_KERNEL);
2424        if (!ecc->slave_chans || !ecc->slot_inuse || !ecc->channels_mask) {
2425                ret = -ENOMEM;
2426                goto err_disable_pm;
2427        }
2428
2429        /* Mark all channels available initially */
2430        bitmap_fill(ecc->channels_mask, ecc->num_channels);
2431
2432        ecc->default_queue = info->default_queue;
2433
2434        if (info->rsv) {
2435                /* Set the reserved slots in inuse list */
2436                reserved = info->rsv->rsv_slots;
2437                if (reserved) {
2438                        for (i = 0; reserved[i][0] != -1; i++)
2439                                bitmap_set(ecc->slot_inuse, reserved[i][0],
2440                                           reserved[i][1]);
2441                }
2442
2443                /* Clear channels not usable for Linux */
2444                reserved = info->rsv->rsv_chans;
2445                if (reserved) {
2446                        for (i = 0; reserved[i][0] != -1; i++)
2447                                bitmap_clear(ecc->channels_mask, reserved[i][0],
2448                                             reserved[i][1]);
2449                }
2450        }
2451
2452        for (i = 0; i < ecc->num_slots; i++) {
2453                /* Reset only unused - not reserved - paRAM slots */
2454                if (!test_bit(i, ecc->slot_inuse))
2455                        edma_write_slot(ecc, i, &dummy_paramset);
2456        }
2457
2458        irq = platform_get_irq_byname(pdev, "edma3_ccint");
2459        if (irq < 0 && node)
2460                irq = irq_of_parse_and_map(node, 0);
2461
2462        if (irq >= 0) {
2463                irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2464                                          dev_name(dev));
2465                ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2466                                       ecc);
2467                if (ret) {
2468                        dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2469                        goto err_disable_pm;
2470                }
2471                ecc->ccint = irq;
2472        }
2473
2474        irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2475        if (irq < 0 && node)
2476                irq = irq_of_parse_and_map(node, 2);
2477
2478        if (irq >= 0) {
2479                irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2480                                          dev_name(dev));
2481                ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2482                                       ecc);
2483                if (ret) {
2484                        dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2485                        goto err_disable_pm;
2486                }
2487                ecc->ccerrint = irq;
2488        }
2489
2490        ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2491        if (ecc->dummy_slot < 0) {
2492                dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2493                ret = ecc->dummy_slot;
2494                goto err_disable_pm;
2495        }
2496
2497        queue_priority_mapping = info->queue_priority_mapping;
2498
2499        if (!ecc->legacy_mode) {
2500                int lowest_priority = 0;
2501                unsigned int array_max;
2502                struct of_phandle_args tc_args;
2503
2504                ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2505                                            sizeof(*ecc->tc_list), GFP_KERNEL);
2506                if (!ecc->tc_list) {
2507                        ret = -ENOMEM;
2508                        goto err_reg1;
2509                }
2510
2511                for (i = 0;; i++) {
2512                        ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2513                                                               1, i, &tc_args);
2514                        if (ret || i == ecc->num_tc)
2515                                break;
2516
2517                        ecc->tc_list[i].node = tc_args.np;
2518                        ecc->tc_list[i].id = i;
2519                        queue_priority_mapping[i][1] = tc_args.args[0];
2520                        if (queue_priority_mapping[i][1] > lowest_priority) {
2521                                lowest_priority = queue_priority_mapping[i][1];
2522                                info->default_queue = i;
2523                        }
2524                }
2525
2526                /* See if we have optional dma-channel-mask array */
2527                array_max = DIV_ROUND_UP(ecc->num_channels, BITS_PER_TYPE(u32));
2528                ret = of_property_read_variable_u32_array(node,
2529                                                "dma-channel-mask",
2530                                                (u32 *)ecc->channels_mask,
2531                                                1, array_max);
2532                if (ret > 0 && ret != array_max)
2533                        dev_warn(dev, "dma-channel-mask is not complete.\n");
2534                else if (ret == -EOVERFLOW || ret == -ENODATA)
2535                        dev_warn(dev,
2536                                 "dma-channel-mask is out of range or empty\n");
2537        }
2538
2539        /* Event queue priority mapping */
2540        for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2541                edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2542                                              queue_priority_mapping[i][1]);
2543
2544        edma_write_array2(ecc, EDMA_DRAE, 0, 0, 0x0);
2545        edma_write_array2(ecc, EDMA_DRAE, 0, 1, 0x0);
2546        edma_write_array(ecc, EDMA_QRAE, 0, 0x0);
2547
2548        ecc->info = info;
2549
2550        /* Init the dma device and channels */
2551        edma_dma_init(ecc, legacy_mode);
2552
2553        for (i = 0; i < ecc->num_channels; i++) {
2554                /* Do not touch reserved channels */
2555                if (!test_bit(i, ecc->channels_mask))
2556                        continue;
2557
2558                /* Assign all channels to the default queue */
2559                edma_assign_channel_eventq(&ecc->slave_chans[i],
2560                                           info->default_queue);
2561                /* Set entry slot to the dummy slot */
2562                edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2563        }
2564
2565        ecc->dma_slave.filter.map = info->slave_map;
2566        ecc->dma_slave.filter.mapcnt = info->slavecnt;
2567        ecc->dma_slave.filter.fn = edma_filter_fn;
2568
2569        ret = dma_async_device_register(&ecc->dma_slave);
2570        if (ret) {
2571                dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2572                goto err_reg1;
2573        }
2574
2575        if (ecc->dma_memcpy) {
2576                ret = dma_async_device_register(ecc->dma_memcpy);
2577                if (ret) {
2578                        dev_err(dev, "memcpy ddev registration failed (%d)\n",
2579                                ret);
2580                        dma_async_device_unregister(&ecc->dma_slave);
2581                        goto err_reg1;
2582                }
2583        }
2584
2585        if (node)
2586                of_dma_controller_register(node, of_edma_xlate, ecc);
2587
2588        dev_info(dev, "TI EDMA DMA engine driver\n");
2589
2590        return 0;
2591
2592err_reg1:
2593        edma_free_slot(ecc, ecc->dummy_slot);
2594err_disable_pm:
2595        pm_runtime_put_sync(dev);
2596        pm_runtime_disable(dev);
2597        return ret;
2598}
2599
2600static void edma_cleanupp_vchan(struct dma_device *dmadev)
2601{
2602        struct edma_chan *echan, *_echan;
2603
2604        list_for_each_entry_safe(echan, _echan,
2605                        &dmadev->channels, vchan.chan.device_node) {
2606                list_del(&echan->vchan.chan.device_node);
2607                tasklet_kill(&echan->vchan.task);
2608        }
2609}
2610
2611static int edma_remove(struct platform_device *pdev)
2612{
2613        struct device *dev = &pdev->dev;
2614        struct edma_cc *ecc = dev_get_drvdata(dev);
2615
2616        devm_free_irq(dev, ecc->ccint, ecc);
2617        devm_free_irq(dev, ecc->ccerrint, ecc);
2618
2619        edma_cleanupp_vchan(&ecc->dma_slave);
2620
2621        if (dev->of_node)
2622                of_dma_controller_free(dev->of_node);
2623        dma_async_device_unregister(&ecc->dma_slave);
2624        if (ecc->dma_memcpy)
2625                dma_async_device_unregister(ecc->dma_memcpy);
2626        edma_free_slot(ecc, ecc->dummy_slot);
2627        pm_runtime_put_sync(dev);
2628        pm_runtime_disable(dev);
2629
2630        return 0;
2631}
2632
2633#ifdef CONFIG_PM_SLEEP
2634static int edma_pm_suspend(struct device *dev)
2635{
2636        struct edma_cc *ecc = dev_get_drvdata(dev);
2637        struct edma_chan *echan = ecc->slave_chans;
2638        int i;
2639
2640        for (i = 0; i < ecc->num_channels; i++) {
2641                if (echan[i].alloced)
2642                        edma_setup_interrupt(&echan[i], false);
2643        }
2644
2645        return 0;
2646}
2647
2648static int edma_pm_resume(struct device *dev)
2649{
2650        struct edma_cc *ecc = dev_get_drvdata(dev);
2651        struct edma_chan *echan = ecc->slave_chans;
2652        int i;
2653        s8 (*queue_priority_mapping)[2];
2654
2655        /* re initialize dummy slot to dummy param set */
2656        edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset);
2657
2658        queue_priority_mapping = ecc->info->queue_priority_mapping;
2659
2660        /* Event queue priority mapping */
2661        for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2662                edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2663                                              queue_priority_mapping[i][1]);
2664
2665        for (i = 0; i < ecc->num_channels; i++) {
2666                if (echan[i].alloced) {
2667                        /* ensure access through shadow region 0 */
2668                        edma_or_array2(ecc, EDMA_DRAE, 0,
2669                                       EDMA_REG_ARRAY_INDEX(i),
2670                                       EDMA_CHANNEL_BIT(i));
2671
2672                        edma_setup_interrupt(&echan[i], true);
2673
2674                        /* Set up channel -> slot mapping for the entry slot */
2675                        edma_set_chmap(&echan[i], echan[i].slot[0]);
2676                }
2677        }
2678
2679        return 0;
2680}
2681#endif
2682
2683static const struct dev_pm_ops edma_pm_ops = {
2684        SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2685};
2686
2687static struct platform_driver edma_driver = {
2688        .probe          = edma_probe,
2689        .remove         = edma_remove,
2690        .driver = {
2691                .name   = "edma",
2692                .pm     = &edma_pm_ops,
2693                .of_match_table = edma_of_ids,
2694        },
2695};
2696
2697static int edma_tptc_probe(struct platform_device *pdev)
2698{
2699        pm_runtime_enable(&pdev->dev);
2700        return pm_runtime_get_sync(&pdev->dev);
2701}
2702
2703static struct platform_driver edma_tptc_driver = {
2704        .probe          = edma_tptc_probe,
2705        .driver = {
2706                .name   = "edma3-tptc",
2707                .of_match_table = edma_tptc_of_ids,
2708        },
2709};
2710
2711static bool edma_filter_fn(struct dma_chan *chan, void *param)
2712{
2713        bool match = false;
2714
2715        if (chan->device->dev->driver == &edma_driver.driver) {
2716                struct edma_chan *echan = to_edma_chan(chan);
2717                unsigned ch_req = *(unsigned *)param;
2718                if (ch_req == echan->ch_num) {
2719                        /* The channel is going to be used as HW synchronized */
2720                        echan->hw_triggered = true;
2721                        match = true;
2722                }
2723        }
2724        return match;
2725}
2726
2727static int edma_init(void)
2728{
2729        int ret;
2730
2731        ret = platform_driver_register(&edma_tptc_driver);
2732        if (ret)
2733                return ret;
2734
2735        return platform_driver_register(&edma_driver);
2736}
2737subsys_initcall(edma_init);
2738
2739static void __exit edma_exit(void)
2740{
2741        platform_driver_unregister(&edma_driver);
2742        platform_driver_unregister(&edma_tptc_driver);
2743}
2744module_exit(edma_exit);
2745
2746MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2747MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2748MODULE_LICENSE("GPL v2");
2749