linux/drivers/edac/edac_mc.c
<<
>>
Prefs
   1/*
   2 * edac_mc kernel module
   3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
   4 * This file may be distributed under the terms of the
   5 * GNU General Public License.
   6 *
   7 * Written by Thayne Harbaugh
   8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
   9 *      http://www.anime.net/~goemon/linux-ecc/
  10 *
  11 * Modified by Dave Peterson and Doug Thompson
  12 *
  13 */
  14
  15#include <linux/module.h>
  16#include <linux/proc_fs.h>
  17#include <linux/kernel.h>
  18#include <linux/types.h>
  19#include <linux/smp.h>
  20#include <linux/init.h>
  21#include <linux/sysctl.h>
  22#include <linux/highmem.h>
  23#include <linux/timer.h>
  24#include <linux/slab.h>
  25#include <linux/jiffies.h>
  26#include <linux/spinlock.h>
  27#include <linux/list.h>
  28#include <linux/ctype.h>
  29#include <linux/edac.h>
  30#include <linux/bitops.h>
  31#include <linux/uaccess.h>
  32#include <asm/page.h>
  33#include "edac_mc.h"
  34#include "edac_module.h"
  35#include <ras/ras_event.h>
  36
  37#ifdef CONFIG_EDAC_ATOMIC_SCRUB
  38#include <asm/edac.h>
  39#else
  40#define edac_atomic_scrub(va, size) do { } while (0)
  41#endif
  42
  43int edac_op_state = EDAC_OPSTATE_INVAL;
  44EXPORT_SYMBOL_GPL(edac_op_state);
  45
  46/* lock to memory controller's control array */
  47static DEFINE_MUTEX(mem_ctls_mutex);
  48static LIST_HEAD(mc_devices);
  49
  50/*
  51 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
  52 *      apei/ghes and i7core_edac to be used at the same time.
  53 */
  54static const char *edac_mc_owner;
  55
  56static struct mem_ctl_info *error_desc_to_mci(struct edac_raw_error_desc *e)
  57{
  58        return container_of(e, struct mem_ctl_info, error_desc);
  59}
  60
  61unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf,
  62                                     unsigned int len)
  63{
  64        struct mem_ctl_info *mci = dimm->mci;
  65        int i, n, count = 0;
  66        char *p = buf;
  67
  68        for (i = 0; i < mci->n_layers; i++) {
  69                n = snprintf(p, len, "%s %d ",
  70                              edac_layer_name[mci->layers[i].type],
  71                              dimm->location[i]);
  72                p += n;
  73                len -= n;
  74                count += n;
  75                if (!len)
  76                        break;
  77        }
  78
  79        return count;
  80}
  81
  82#ifdef CONFIG_EDAC_DEBUG
  83
  84static void edac_mc_dump_channel(struct rank_info *chan)
  85{
  86        edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
  87        edac_dbg(4, "    channel = %p\n", chan);
  88        edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
  89        edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
  90}
  91
  92static void edac_mc_dump_dimm(struct dimm_info *dimm)
  93{
  94        char location[80];
  95
  96        if (!dimm->nr_pages)
  97                return;
  98
  99        edac_dimm_info_location(dimm, location, sizeof(location));
 100
 101        edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
 102                 dimm->mci->csbased ? "rank" : "dimm",
 103                 dimm->idx, location, dimm->csrow, dimm->cschannel);
 104        edac_dbg(4, "  dimm = %p\n", dimm);
 105        edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
 106        edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
 107        edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
 108        edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
 109}
 110
 111static void edac_mc_dump_csrow(struct csrow_info *csrow)
 112{
 113        edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
 114        edac_dbg(4, "  csrow = %p\n", csrow);
 115        edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
 116        edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
 117        edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
 118        edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
 119        edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
 120        edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
 121}
 122
 123static void edac_mc_dump_mci(struct mem_ctl_info *mci)
 124{
 125        edac_dbg(3, "\tmci = %p\n", mci);
 126        edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
 127        edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
 128        edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
 129        edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
 130        edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
 131                 mci->nr_csrows, mci->csrows);
 132        edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
 133                 mci->tot_dimms, mci->dimms);
 134        edac_dbg(3, "\tdev = %p\n", mci->pdev);
 135        edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
 136                 mci->mod_name, mci->ctl_name);
 137        edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
 138}
 139
 140#endif                          /* CONFIG_EDAC_DEBUG */
 141
 142const char * const edac_mem_types[] = {
 143        [MEM_EMPTY]     = "Empty",
 144        [MEM_RESERVED]  = "Reserved",
 145        [MEM_UNKNOWN]   = "Unknown",
 146        [MEM_FPM]       = "FPM",
 147        [MEM_EDO]       = "EDO",
 148        [MEM_BEDO]      = "BEDO",
 149        [MEM_SDR]       = "Unbuffered-SDR",
 150        [MEM_RDR]       = "Registered-SDR",
 151        [MEM_DDR]       = "Unbuffered-DDR",
 152        [MEM_RDDR]      = "Registered-DDR",
 153        [MEM_RMBS]      = "RMBS",
 154        [MEM_DDR2]      = "Unbuffered-DDR2",
 155        [MEM_FB_DDR2]   = "FullyBuffered-DDR2",
 156        [MEM_RDDR2]     = "Registered-DDR2",
 157        [MEM_XDR]       = "XDR",
 158        [MEM_DDR3]      = "Unbuffered-DDR3",
 159        [MEM_RDDR3]     = "Registered-DDR3",
 160        [MEM_LRDDR3]    = "Load-Reduced-DDR3-RAM",
 161        [MEM_LPDDR3]    = "Low-Power-DDR3-RAM",
 162        [MEM_DDR4]      = "Unbuffered-DDR4",
 163        [MEM_RDDR4]     = "Registered-DDR4",
 164        [MEM_LPDDR4]    = "Low-Power-DDR4-RAM",
 165        [MEM_LRDDR4]    = "Load-Reduced-DDR4-RAM",
 166        [MEM_DDR5]      = "Unbuffered-DDR5",
 167        [MEM_NVDIMM]    = "Non-volatile-RAM",
 168        [MEM_WIO2]      = "Wide-IO-2",
 169        [MEM_HBM2]      = "High-bandwidth-memory-Gen2",
 170};
 171EXPORT_SYMBOL_GPL(edac_mem_types);
 172
 173/**
 174 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
 175 * @p:          pointer to a pointer with the memory offset to be used. At
 176 *              return, this will be incremented to point to the next offset
 177 * @size:       Size of the data structure to be reserved
 178 * @n_elems:    Number of elements that should be reserved
 179 *
 180 * If 'size' is a constant, the compiler will optimize this whole function
 181 * down to either a no-op or the addition of a constant to the value of '*p'.
 182 *
 183 * The 'p' pointer is absolutely needed to keep the proper advancing
 184 * further in memory to the proper offsets when allocating the struct along
 185 * with its embedded structs, as edac_device_alloc_ctl_info() does it
 186 * above, for example.
 187 *
 188 * At return, the pointer 'p' will be incremented to be used on a next call
 189 * to this function.
 190 */
 191void *edac_align_ptr(void **p, unsigned int size, int n_elems)
 192{
 193        unsigned int align, r;
 194        void *ptr = *p;
 195
 196        *p += size * n_elems;
 197
 198        /*
 199         * 'p' can possibly be an unaligned item X such that sizeof(X) is
 200         * 'size'.  Adjust 'p' so that its alignment is at least as
 201         * stringent as what the compiler would provide for X and return
 202         * the aligned result.
 203         * Here we assume that the alignment of a "long long" is the most
 204         * stringent alignment that the compiler will ever provide by default.
 205         * As far as I know, this is a reasonable assumption.
 206         */
 207        if (size > sizeof(long))
 208                align = sizeof(long long);
 209        else if (size > sizeof(int))
 210                align = sizeof(long);
 211        else if (size > sizeof(short))
 212                align = sizeof(int);
 213        else if (size > sizeof(char))
 214                align = sizeof(short);
 215        else
 216                return (char *)ptr;
 217
 218        r = (unsigned long)p % align;
 219
 220        if (r == 0)
 221                return (char *)ptr;
 222
 223        *p += align - r;
 224
 225        return (void *)(((unsigned long)ptr) + align - r);
 226}
 227
 228static void _edac_mc_free(struct mem_ctl_info *mci)
 229{
 230        put_device(&mci->dev);
 231}
 232
 233static void mci_release(struct device *dev)
 234{
 235        struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
 236        struct csrow_info *csr;
 237        int i, chn, row;
 238
 239        if (mci->dimms) {
 240                for (i = 0; i < mci->tot_dimms; i++)
 241                        kfree(mci->dimms[i]);
 242                kfree(mci->dimms);
 243        }
 244
 245        if (mci->csrows) {
 246                for (row = 0; row < mci->nr_csrows; row++) {
 247                        csr = mci->csrows[row];
 248                        if (!csr)
 249                                continue;
 250
 251                        if (csr->channels) {
 252                                for (chn = 0; chn < mci->num_cschannel; chn++)
 253                                        kfree(csr->channels[chn]);
 254                                kfree(csr->channels);
 255                        }
 256                        kfree(csr);
 257                }
 258                kfree(mci->csrows);
 259        }
 260        kfree(mci);
 261}
 262
 263static int edac_mc_alloc_csrows(struct mem_ctl_info *mci)
 264{
 265        unsigned int tot_channels = mci->num_cschannel;
 266        unsigned int tot_csrows = mci->nr_csrows;
 267        unsigned int row, chn;
 268
 269        /*
 270         * Alocate and fill the csrow/channels structs
 271         */
 272        mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
 273        if (!mci->csrows)
 274                return -ENOMEM;
 275
 276        for (row = 0; row < tot_csrows; row++) {
 277                struct csrow_info *csr;
 278
 279                csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
 280                if (!csr)
 281                        return -ENOMEM;
 282
 283                mci->csrows[row] = csr;
 284                csr->csrow_idx = row;
 285                csr->mci = mci;
 286                csr->nr_channels = tot_channels;
 287                csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
 288                                        GFP_KERNEL);
 289                if (!csr->channels)
 290                        return -ENOMEM;
 291
 292                for (chn = 0; chn < tot_channels; chn++) {
 293                        struct rank_info *chan;
 294
 295                        chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
 296                        if (!chan)
 297                                return -ENOMEM;
 298
 299                        csr->channels[chn] = chan;
 300                        chan->chan_idx = chn;
 301                        chan->csrow = csr;
 302                }
 303        }
 304
 305        return 0;
 306}
 307
 308static int edac_mc_alloc_dimms(struct mem_ctl_info *mci)
 309{
 310        unsigned int pos[EDAC_MAX_LAYERS];
 311        unsigned int row, chn, idx;
 312        int layer;
 313        void *p;
 314
 315        /*
 316         * Allocate and fill the dimm structs
 317         */
 318        mci->dimms  = kcalloc(mci->tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
 319        if (!mci->dimms)
 320                return -ENOMEM;
 321
 322        memset(&pos, 0, sizeof(pos));
 323        row = 0;
 324        chn = 0;
 325        for (idx = 0; idx < mci->tot_dimms; idx++) {
 326                struct dimm_info *dimm;
 327                struct rank_info *chan;
 328                int n, len;
 329
 330                chan = mci->csrows[row]->channels[chn];
 331
 332                dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
 333                if (!dimm)
 334                        return -ENOMEM;
 335                mci->dimms[idx] = dimm;
 336                dimm->mci = mci;
 337                dimm->idx = idx;
 338
 339                /*
 340                 * Copy DIMM location and initialize it.
 341                 */
 342                len = sizeof(dimm->label);
 343                p = dimm->label;
 344                n = snprintf(p, len, "mc#%u", mci->mc_idx);
 345                p += n;
 346                len -= n;
 347                for (layer = 0; layer < mci->n_layers; layer++) {
 348                        n = snprintf(p, len, "%s#%u",
 349                                     edac_layer_name[mci->layers[layer].type],
 350                                     pos[layer]);
 351                        p += n;
 352                        len -= n;
 353                        dimm->location[layer] = pos[layer];
 354
 355                        if (len <= 0)
 356                                break;
 357                }
 358
 359                /* Link it to the csrows old API data */
 360                chan->dimm = dimm;
 361                dimm->csrow = row;
 362                dimm->cschannel = chn;
 363
 364                /* Increment csrow location */
 365                if (mci->layers[0].is_virt_csrow) {
 366                        chn++;
 367                        if (chn == mci->num_cschannel) {
 368                                chn = 0;
 369                                row++;
 370                        }
 371                } else {
 372                        row++;
 373                        if (row == mci->nr_csrows) {
 374                                row = 0;
 375                                chn++;
 376                        }
 377                }
 378
 379                /* Increment dimm location */
 380                for (layer = mci->n_layers - 1; layer >= 0; layer--) {
 381                        pos[layer]++;
 382                        if (pos[layer] < mci->layers[layer].size)
 383                                break;
 384                        pos[layer] = 0;
 385                }
 386        }
 387
 388        return 0;
 389}
 390
 391struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num,
 392                                   unsigned int n_layers,
 393                                   struct edac_mc_layer *layers,
 394                                   unsigned int sz_pvt)
 395{
 396        struct mem_ctl_info *mci;
 397        struct edac_mc_layer *layer;
 398        unsigned int idx, size, tot_dimms = 1;
 399        unsigned int tot_csrows = 1, tot_channels = 1;
 400        void *pvt, *ptr = NULL;
 401        bool per_rank = false;
 402
 403        if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0))
 404                return NULL;
 405
 406        /*
 407         * Calculate the total amount of dimms and csrows/cschannels while
 408         * in the old API emulation mode
 409         */
 410        for (idx = 0; idx < n_layers; idx++) {
 411                tot_dimms *= layers[idx].size;
 412
 413                if (layers[idx].is_virt_csrow)
 414                        tot_csrows *= layers[idx].size;
 415                else
 416                        tot_channels *= layers[idx].size;
 417
 418                if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT)
 419                        per_rank = true;
 420        }
 421
 422        /* Figure out the offsets of the various items from the start of an mc
 423         * structure.  We want the alignment of each item to be at least as
 424         * stringent as what the compiler would provide if we could simply
 425         * hardcode everything into a single struct.
 426         */
 427        mci     = edac_align_ptr(&ptr, sizeof(*mci), 1);
 428        layer   = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
 429        pvt     = edac_align_ptr(&ptr, sz_pvt, 1);
 430        size    = ((unsigned long)pvt) + sz_pvt;
 431
 432        edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
 433                 size,
 434                 tot_dimms,
 435                 per_rank ? "ranks" : "dimms",
 436                 tot_csrows * tot_channels);
 437
 438        mci = kzalloc(size, GFP_KERNEL);
 439        if (mci == NULL)
 440                return NULL;
 441
 442        mci->dev.release = mci_release;
 443        device_initialize(&mci->dev);
 444
 445        /* Adjust pointers so they point within the memory we just allocated
 446         * rather than an imaginary chunk of memory located at address 0.
 447         */
 448        layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
 449        pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
 450
 451        /* setup index and various internal pointers */
 452        mci->mc_idx = mc_num;
 453        mci->tot_dimms = tot_dimms;
 454        mci->pvt_info = pvt;
 455        mci->n_layers = n_layers;
 456        mci->layers = layer;
 457        memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
 458        mci->nr_csrows = tot_csrows;
 459        mci->num_cschannel = tot_channels;
 460        mci->csbased = per_rank;
 461
 462        if (edac_mc_alloc_csrows(mci))
 463                goto error;
 464
 465        if (edac_mc_alloc_dimms(mci))
 466                goto error;
 467
 468        mci->op_state = OP_ALLOC;
 469
 470        return mci;
 471
 472error:
 473        _edac_mc_free(mci);
 474
 475        return NULL;
 476}
 477EXPORT_SYMBOL_GPL(edac_mc_alloc);
 478
 479void edac_mc_free(struct mem_ctl_info *mci)
 480{
 481        edac_dbg(1, "\n");
 482
 483        _edac_mc_free(mci);
 484}
 485EXPORT_SYMBOL_GPL(edac_mc_free);
 486
 487bool edac_has_mcs(void)
 488{
 489        bool ret;
 490
 491        mutex_lock(&mem_ctls_mutex);
 492
 493        ret = list_empty(&mc_devices);
 494
 495        mutex_unlock(&mem_ctls_mutex);
 496
 497        return !ret;
 498}
 499EXPORT_SYMBOL_GPL(edac_has_mcs);
 500
 501/* Caller must hold mem_ctls_mutex */
 502static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
 503{
 504        struct mem_ctl_info *mci;
 505        struct list_head *item;
 506
 507        edac_dbg(3, "\n");
 508
 509        list_for_each(item, &mc_devices) {
 510                mci = list_entry(item, struct mem_ctl_info, link);
 511
 512                if (mci->pdev == dev)
 513                        return mci;
 514        }
 515
 516        return NULL;
 517}
 518
 519/**
 520 * find_mci_by_dev
 521 *
 522 *      scan list of controllers looking for the one that manages
 523 *      the 'dev' device
 524 * @dev: pointer to a struct device related with the MCI
 525 */
 526struct mem_ctl_info *find_mci_by_dev(struct device *dev)
 527{
 528        struct mem_ctl_info *ret;
 529
 530        mutex_lock(&mem_ctls_mutex);
 531        ret = __find_mci_by_dev(dev);
 532        mutex_unlock(&mem_ctls_mutex);
 533
 534        return ret;
 535}
 536EXPORT_SYMBOL_GPL(find_mci_by_dev);
 537
 538/*
 539 * edac_mc_workq_function
 540 *      performs the operation scheduled by a workq request
 541 */
 542static void edac_mc_workq_function(struct work_struct *work_req)
 543{
 544        struct delayed_work *d_work = to_delayed_work(work_req);
 545        struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
 546
 547        mutex_lock(&mem_ctls_mutex);
 548
 549        if (mci->op_state != OP_RUNNING_POLL) {
 550                mutex_unlock(&mem_ctls_mutex);
 551                return;
 552        }
 553
 554        if (edac_op_state == EDAC_OPSTATE_POLL)
 555                mci->edac_check(mci);
 556
 557        mutex_unlock(&mem_ctls_mutex);
 558
 559        /* Queue ourselves again. */
 560        edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
 561}
 562
 563/*
 564 * edac_mc_reset_delay_period(unsigned long value)
 565 *
 566 *      user space has updated our poll period value, need to
 567 *      reset our workq delays
 568 */
 569void edac_mc_reset_delay_period(unsigned long value)
 570{
 571        struct mem_ctl_info *mci;
 572        struct list_head *item;
 573
 574        mutex_lock(&mem_ctls_mutex);
 575
 576        list_for_each(item, &mc_devices) {
 577                mci = list_entry(item, struct mem_ctl_info, link);
 578
 579                if (mci->op_state == OP_RUNNING_POLL)
 580                        edac_mod_work(&mci->work, value);
 581        }
 582        mutex_unlock(&mem_ctls_mutex);
 583}
 584
 585
 586
 587/* Return 0 on success, 1 on failure.
 588 * Before calling this function, caller must
 589 * assign a unique value to mci->mc_idx.
 590 *
 591 *      locking model:
 592 *
 593 *              called with the mem_ctls_mutex lock held
 594 */
 595static int add_mc_to_global_list(struct mem_ctl_info *mci)
 596{
 597        struct list_head *item, *insert_before;
 598        struct mem_ctl_info *p;
 599
 600        insert_before = &mc_devices;
 601
 602        p = __find_mci_by_dev(mci->pdev);
 603        if (unlikely(p != NULL))
 604                goto fail0;
 605
 606        list_for_each(item, &mc_devices) {
 607                p = list_entry(item, struct mem_ctl_info, link);
 608
 609                if (p->mc_idx >= mci->mc_idx) {
 610                        if (unlikely(p->mc_idx == mci->mc_idx))
 611                                goto fail1;
 612
 613                        insert_before = item;
 614                        break;
 615                }
 616        }
 617
 618        list_add_tail_rcu(&mci->link, insert_before);
 619        return 0;
 620
 621fail0:
 622        edac_printk(KERN_WARNING, EDAC_MC,
 623                "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
 624                edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
 625        return 1;
 626
 627fail1:
 628        edac_printk(KERN_WARNING, EDAC_MC,
 629                "bug in low-level driver: attempt to assign\n"
 630                "    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
 631        return 1;
 632}
 633
 634static int del_mc_from_global_list(struct mem_ctl_info *mci)
 635{
 636        list_del_rcu(&mci->link);
 637
 638        /* these are for safe removal of devices from global list while
 639         * NMI handlers may be traversing list
 640         */
 641        synchronize_rcu();
 642        INIT_LIST_HEAD(&mci->link);
 643
 644        return list_empty(&mc_devices);
 645}
 646
 647struct mem_ctl_info *edac_mc_find(int idx)
 648{
 649        struct mem_ctl_info *mci;
 650        struct list_head *item;
 651
 652        mutex_lock(&mem_ctls_mutex);
 653
 654        list_for_each(item, &mc_devices) {
 655                mci = list_entry(item, struct mem_ctl_info, link);
 656                if (mci->mc_idx == idx)
 657                        goto unlock;
 658        }
 659
 660        mci = NULL;
 661unlock:
 662        mutex_unlock(&mem_ctls_mutex);
 663        return mci;
 664}
 665EXPORT_SYMBOL(edac_mc_find);
 666
 667const char *edac_get_owner(void)
 668{
 669        return edac_mc_owner;
 670}
 671EXPORT_SYMBOL_GPL(edac_get_owner);
 672
 673/* FIXME - should a warning be printed if no error detection? correction? */
 674int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
 675                               const struct attribute_group **groups)
 676{
 677        int ret = -EINVAL;
 678        edac_dbg(0, "\n");
 679
 680#ifdef CONFIG_EDAC_DEBUG
 681        if (edac_debug_level >= 3)
 682                edac_mc_dump_mci(mci);
 683
 684        if (edac_debug_level >= 4) {
 685                struct dimm_info *dimm;
 686                int i;
 687
 688                for (i = 0; i < mci->nr_csrows; i++) {
 689                        struct csrow_info *csrow = mci->csrows[i];
 690                        u32 nr_pages = 0;
 691                        int j;
 692
 693                        for (j = 0; j < csrow->nr_channels; j++)
 694                                nr_pages += csrow->channels[j]->dimm->nr_pages;
 695                        if (!nr_pages)
 696                                continue;
 697                        edac_mc_dump_csrow(csrow);
 698                        for (j = 0; j < csrow->nr_channels; j++)
 699                                if (csrow->channels[j]->dimm->nr_pages)
 700                                        edac_mc_dump_channel(csrow->channels[j]);
 701                }
 702
 703                mci_for_each_dimm(mci, dimm)
 704                        edac_mc_dump_dimm(dimm);
 705        }
 706#endif
 707        mutex_lock(&mem_ctls_mutex);
 708
 709        if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
 710                ret = -EPERM;
 711                goto fail0;
 712        }
 713
 714        if (add_mc_to_global_list(mci))
 715                goto fail0;
 716
 717        /* set load time so that error rate can be tracked */
 718        mci->start_time = jiffies;
 719
 720        mci->bus = edac_get_sysfs_subsys();
 721
 722        if (edac_create_sysfs_mci_device(mci, groups)) {
 723                edac_mc_printk(mci, KERN_WARNING,
 724                        "failed to create sysfs device\n");
 725                goto fail1;
 726        }
 727
 728        if (mci->edac_check) {
 729                mci->op_state = OP_RUNNING_POLL;
 730
 731                INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
 732                edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
 733
 734        } else {
 735                mci->op_state = OP_RUNNING_INTERRUPT;
 736        }
 737
 738        /* Report action taken */
 739        edac_mc_printk(mci, KERN_INFO,
 740                "Giving out device to module %s controller %s: DEV %s (%s)\n",
 741                mci->mod_name, mci->ctl_name, mci->dev_name,
 742                edac_op_state_to_string(mci->op_state));
 743
 744        edac_mc_owner = mci->mod_name;
 745
 746        mutex_unlock(&mem_ctls_mutex);
 747        return 0;
 748
 749fail1:
 750        del_mc_from_global_list(mci);
 751
 752fail0:
 753        mutex_unlock(&mem_ctls_mutex);
 754        return ret;
 755}
 756EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
 757
 758struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
 759{
 760        struct mem_ctl_info *mci;
 761
 762        edac_dbg(0, "\n");
 763
 764        mutex_lock(&mem_ctls_mutex);
 765
 766        /* find the requested mci struct in the global list */
 767        mci = __find_mci_by_dev(dev);
 768        if (mci == NULL) {
 769                mutex_unlock(&mem_ctls_mutex);
 770                return NULL;
 771        }
 772
 773        /* mark MCI offline: */
 774        mci->op_state = OP_OFFLINE;
 775
 776        if (del_mc_from_global_list(mci))
 777                edac_mc_owner = NULL;
 778
 779        mutex_unlock(&mem_ctls_mutex);
 780
 781        if (mci->edac_check)
 782                edac_stop_work(&mci->work);
 783
 784        /* remove from sysfs */
 785        edac_remove_sysfs_mci_device(mci);
 786
 787        edac_printk(KERN_INFO, EDAC_MC,
 788                "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
 789                mci->mod_name, mci->ctl_name, edac_dev_name(mci));
 790
 791        return mci;
 792}
 793EXPORT_SYMBOL_GPL(edac_mc_del_mc);
 794
 795static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
 796                                u32 size)
 797{
 798        struct page *pg;
 799        void *virt_addr;
 800        unsigned long flags = 0;
 801
 802        edac_dbg(3, "\n");
 803
 804        /* ECC error page was not in our memory. Ignore it. */
 805        if (!pfn_valid(page))
 806                return;
 807
 808        /* Find the actual page structure then map it and fix */
 809        pg = pfn_to_page(page);
 810
 811        if (PageHighMem(pg))
 812                local_irq_save(flags);
 813
 814        virt_addr = kmap_atomic(pg);
 815
 816        /* Perform architecture specific atomic scrub operation */
 817        edac_atomic_scrub(virt_addr + offset, size);
 818
 819        /* Unmap and complete */
 820        kunmap_atomic(virt_addr);
 821
 822        if (PageHighMem(pg))
 823                local_irq_restore(flags);
 824}
 825
 826/* FIXME - should return -1 */
 827int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
 828{
 829        struct csrow_info **csrows = mci->csrows;
 830        int row, i, j, n;
 831
 832        edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
 833        row = -1;
 834
 835        for (i = 0; i < mci->nr_csrows; i++) {
 836                struct csrow_info *csrow = csrows[i];
 837                n = 0;
 838                for (j = 0; j < csrow->nr_channels; j++) {
 839                        struct dimm_info *dimm = csrow->channels[j]->dimm;
 840                        n += dimm->nr_pages;
 841                }
 842                if (n == 0)
 843                        continue;
 844
 845                edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
 846                         mci->mc_idx,
 847                         csrow->first_page, page, csrow->last_page,
 848                         csrow->page_mask);
 849
 850                if ((page >= csrow->first_page) &&
 851                    (page <= csrow->last_page) &&
 852                    ((page & csrow->page_mask) ==
 853                     (csrow->first_page & csrow->page_mask))) {
 854                        row = i;
 855                        break;
 856                }
 857        }
 858
 859        if (row == -1)
 860                edac_mc_printk(mci, KERN_ERR,
 861                        "could not look up page error address %lx\n",
 862                        (unsigned long)page);
 863
 864        return row;
 865}
 866EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
 867
 868const char *edac_layer_name[] = {
 869        [EDAC_MC_LAYER_BRANCH] = "branch",
 870        [EDAC_MC_LAYER_CHANNEL] = "channel",
 871        [EDAC_MC_LAYER_SLOT] = "slot",
 872        [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
 873        [EDAC_MC_LAYER_ALL_MEM] = "memory",
 874};
 875EXPORT_SYMBOL_GPL(edac_layer_name);
 876
 877static void edac_inc_ce_error(struct edac_raw_error_desc *e)
 878{
 879        int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
 880        struct mem_ctl_info *mci = error_desc_to_mci(e);
 881        struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
 882
 883        mci->ce_mc += e->error_count;
 884
 885        if (dimm)
 886                dimm->ce_count += e->error_count;
 887        else
 888                mci->ce_noinfo_count += e->error_count;
 889}
 890
 891static void edac_inc_ue_error(struct edac_raw_error_desc *e)
 892{
 893        int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
 894        struct mem_ctl_info *mci = error_desc_to_mci(e);
 895        struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
 896
 897        mci->ue_mc += e->error_count;
 898
 899        if (dimm)
 900                dimm->ue_count += e->error_count;
 901        else
 902                mci->ue_noinfo_count += e->error_count;
 903}
 904
 905static void edac_ce_error(struct edac_raw_error_desc *e)
 906{
 907        struct mem_ctl_info *mci = error_desc_to_mci(e);
 908        unsigned long remapped_page;
 909
 910        if (edac_mc_get_log_ce()) {
 911                edac_mc_printk(mci, KERN_WARNING,
 912                        "%d CE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx%s%s)\n",
 913                        e->error_count, e->msg,
 914                        *e->msg ? " " : "",
 915                        e->label, e->location, e->page_frame_number, e->offset_in_page,
 916                        e->grain, e->syndrome,
 917                        *e->other_detail ? " - " : "",
 918                        e->other_detail);
 919        }
 920
 921        edac_inc_ce_error(e);
 922
 923        if (mci->scrub_mode == SCRUB_SW_SRC) {
 924                /*
 925                        * Some memory controllers (called MCs below) can remap
 926                        * memory so that it is still available at a different
 927                        * address when PCI devices map into memory.
 928                        * MC's that can't do this, lose the memory where PCI
 929                        * devices are mapped. This mapping is MC-dependent
 930                        * and so we call back into the MC driver for it to
 931                        * map the MC page to a physical (CPU) page which can
 932                        * then be mapped to a virtual page - which can then
 933                        * be scrubbed.
 934                        */
 935                remapped_page = mci->ctl_page_to_phys ?
 936                        mci->ctl_page_to_phys(mci, e->page_frame_number) :
 937                        e->page_frame_number;
 938
 939                edac_mc_scrub_block(remapped_page, e->offset_in_page, e->grain);
 940        }
 941}
 942
 943static void edac_ue_error(struct edac_raw_error_desc *e)
 944{
 945        struct mem_ctl_info *mci = error_desc_to_mci(e);
 946
 947        if (edac_mc_get_log_ue()) {
 948                edac_mc_printk(mci, KERN_WARNING,
 949                        "%d UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
 950                        e->error_count, e->msg,
 951                        *e->msg ? " " : "",
 952                        e->label, e->location, e->page_frame_number, e->offset_in_page,
 953                        e->grain,
 954                        *e->other_detail ? " - " : "",
 955                        e->other_detail);
 956        }
 957
 958        edac_inc_ue_error(e);
 959
 960        if (edac_mc_get_panic_on_ue()) {
 961                panic("UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
 962                        e->msg,
 963                        *e->msg ? " " : "",
 964                        e->label, e->location, e->page_frame_number, e->offset_in_page,
 965                        e->grain,
 966                        *e->other_detail ? " - " : "",
 967                        e->other_detail);
 968        }
 969}
 970
 971static void edac_inc_csrow(struct edac_raw_error_desc *e, int row, int chan)
 972{
 973        struct mem_ctl_info *mci = error_desc_to_mci(e);
 974        enum hw_event_mc_err_type type = e->type;
 975        u16 count = e->error_count;
 976
 977        if (row < 0)
 978                return;
 979
 980        edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
 981
 982        if (type == HW_EVENT_ERR_CORRECTED) {
 983                mci->csrows[row]->ce_count += count;
 984                if (chan >= 0)
 985                        mci->csrows[row]->channels[chan]->ce_count += count;
 986        } else {
 987                mci->csrows[row]->ue_count += count;
 988        }
 989}
 990
 991void edac_raw_mc_handle_error(struct edac_raw_error_desc *e)
 992{
 993        struct mem_ctl_info *mci = error_desc_to_mci(e);
 994        u8 grain_bits;
 995
 996        /* Sanity-check driver-supplied grain value. */
 997        if (WARN_ON_ONCE(!e->grain))
 998                e->grain = 1;
 999
1000        grain_bits = fls_long(e->grain - 1);
1001
1002        /* Report the error via the trace interface */
1003        if (IS_ENABLED(CONFIG_RAS))
1004                trace_mc_event(e->type, e->msg, e->label, e->error_count,
1005                               mci->mc_idx, e->top_layer, e->mid_layer,
1006                               e->low_layer,
1007                               (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1008                               grain_bits, e->syndrome, e->other_detail);
1009
1010        if (e->type == HW_EVENT_ERR_CORRECTED)
1011                edac_ce_error(e);
1012        else
1013                edac_ue_error(e);
1014}
1015EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1016
1017void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1018                          struct mem_ctl_info *mci,
1019                          const u16 error_count,
1020                          const unsigned long page_frame_number,
1021                          const unsigned long offset_in_page,
1022                          const unsigned long syndrome,
1023                          const int top_layer,
1024                          const int mid_layer,
1025                          const int low_layer,
1026                          const char *msg,
1027                          const char *other_detail)
1028{
1029        struct dimm_info *dimm;
1030        char *p;
1031        int row = -1, chan = -1;
1032        int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1033        int i, n_labels = 0;
1034        struct edac_raw_error_desc *e = &mci->error_desc;
1035        bool any_memory = true;
1036
1037        edac_dbg(3, "MC%d\n", mci->mc_idx);
1038
1039        /* Fills the error report buffer */
1040        memset(e, 0, sizeof (*e));
1041        e->error_count = error_count;
1042        e->type = type;
1043        e->top_layer = top_layer;
1044        e->mid_layer = mid_layer;
1045        e->low_layer = low_layer;
1046        e->page_frame_number = page_frame_number;
1047        e->offset_in_page = offset_in_page;
1048        e->syndrome = syndrome;
1049        /* need valid strings here for both: */
1050        e->msg = msg ?: "";
1051        e->other_detail = other_detail ?: "";
1052
1053        /*
1054         * Check if the event report is consistent and if the memory location is
1055         * known. If it is, the DIMM(s) label info will be filled and the DIMM's
1056         * error counters will be incremented.
1057         */
1058        for (i = 0; i < mci->n_layers; i++) {
1059                if (pos[i] >= (int)mci->layers[i].size) {
1060
1061                        edac_mc_printk(mci, KERN_ERR,
1062                                       "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1063                                       edac_layer_name[mci->layers[i].type],
1064                                       pos[i], mci->layers[i].size);
1065                        /*
1066                         * Instead of just returning it, let's use what's
1067                         * known about the error. The increment routines and
1068                         * the DIMM filter logic will do the right thing by
1069                         * pointing the likely damaged DIMMs.
1070                         */
1071                        pos[i] = -1;
1072                }
1073                if (pos[i] >= 0)
1074                        any_memory = false;
1075        }
1076
1077        /*
1078         * Get the dimm label/grain that applies to the match criteria.
1079         * As the error algorithm may not be able to point to just one memory
1080         * stick, the logic here will get all possible labels that could
1081         * pottentially be affected by the error.
1082         * On FB-DIMM memory controllers, for uncorrected errors, it is common
1083         * to have only the MC channel and the MC dimm (also called "branch")
1084         * but the channel is not known, as the memory is arranged in pairs,
1085         * where each memory belongs to a separate channel within the same
1086         * branch.
1087         */
1088        p = e->label;
1089        *p = '\0';
1090
1091        mci_for_each_dimm(mci, dimm) {
1092                if (top_layer >= 0 && top_layer != dimm->location[0])
1093                        continue;
1094                if (mid_layer >= 0 && mid_layer != dimm->location[1])
1095                        continue;
1096                if (low_layer >= 0 && low_layer != dimm->location[2])
1097                        continue;
1098
1099                /* get the max grain, over the error match range */
1100                if (dimm->grain > e->grain)
1101                        e->grain = dimm->grain;
1102
1103                /*
1104                 * If the error is memory-controller wide, there's no need to
1105                 * seek for the affected DIMMs because the whole channel/memory
1106                 * controller/... may be affected. Also, don't show errors for
1107                 * empty DIMM slots.
1108                 */
1109                if (!dimm->nr_pages)
1110                        continue;
1111
1112                n_labels++;
1113                if (n_labels > EDAC_MAX_LABELS) {
1114                        p = e->label;
1115                        *p = '\0';
1116                } else {
1117                        if (p != e->label) {
1118                                strcpy(p, OTHER_LABEL);
1119                                p += strlen(OTHER_LABEL);
1120                        }
1121                        strcpy(p, dimm->label);
1122                        p += strlen(p);
1123                }
1124
1125                /*
1126                 * get csrow/channel of the DIMM, in order to allow
1127                 * incrementing the compat API counters
1128                 */
1129                edac_dbg(4, "%s csrows map: (%d,%d)\n",
1130                        mci->csbased ? "rank" : "dimm",
1131                        dimm->csrow, dimm->cschannel);
1132                if (row == -1)
1133                        row = dimm->csrow;
1134                else if (row >= 0 && row != dimm->csrow)
1135                        row = -2;
1136
1137                if (chan == -1)
1138                        chan = dimm->cschannel;
1139                else if (chan >= 0 && chan != dimm->cschannel)
1140                        chan = -2;
1141        }
1142
1143        if (any_memory)
1144                strcpy(e->label, "any memory");
1145        else if (!*e->label)
1146                strcpy(e->label, "unknown memory");
1147
1148        edac_inc_csrow(e, row, chan);
1149
1150        /* Fill the RAM location data */
1151        p = e->location;
1152
1153        for (i = 0; i < mci->n_layers; i++) {
1154                if (pos[i] < 0)
1155                        continue;
1156
1157                p += sprintf(p, "%s:%d ",
1158                             edac_layer_name[mci->layers[i].type],
1159                             pos[i]);
1160        }
1161        if (p > e->location)
1162                *(p - 1) = '\0';
1163
1164        edac_raw_mc_handle_error(e);
1165}
1166EXPORT_SYMBOL_GPL(edac_mc_handle_error);
1167