linux/drivers/edac/i7300_edac.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Intel 7300 class Memory Controllers kernel module (Clarksboro)
   4 *
   5 * Copyright (c) 2010 by:
   6 *       Mauro Carvalho Chehab
   7 *
   8 * Red Hat Inc. https://www.redhat.com
   9 *
  10 * Intel 7300 Chipset Memory Controller Hub (MCH) - Datasheet
  11 *      http://www.intel.com/Assets/PDF/datasheet/318082.pdf
  12 *
  13 * TODO: The chipset allow checking for PCI Express errors also. Currently,
  14 *       the driver covers only memory error errors
  15 *
  16 * This driver uses "csrows" EDAC attribute to represent DIMM slot#
  17 */
  18
  19#include <linux/module.h>
  20#include <linux/init.h>
  21#include <linux/pci.h>
  22#include <linux/pci_ids.h>
  23#include <linux/slab.h>
  24#include <linux/edac.h>
  25#include <linux/mmzone.h>
  26
  27#include "edac_module.h"
  28
  29/*
  30 * Alter this version for the I7300 module when modifications are made
  31 */
  32#define I7300_REVISION    " Ver: 1.0.0"
  33
  34#define EDAC_MOD_STR      "i7300_edac"
  35
  36#define i7300_printk(level, fmt, arg...) \
  37        edac_printk(level, "i7300", fmt, ##arg)
  38
  39#define i7300_mc_printk(mci, level, fmt, arg...) \
  40        edac_mc_chipset_printk(mci, level, "i7300", fmt, ##arg)
  41
  42/***********************************************
  43 * i7300 Limit constants Structs and static vars
  44 ***********************************************/
  45
  46/*
  47 * Memory topology is organized as:
  48 *      Branch 0 - 2 channels: channels 0 and 1 (FDB0 PCI dev 21.0)
  49 *      Branch 1 - 2 channels: channels 2 and 3 (FDB1 PCI dev 22.0)
  50 * Each channel can have to 8 DIMM sets (called as SLOTS)
  51 * Slots should generally be filled in pairs
  52 *      Except on Single Channel mode of operation
  53 *              just slot 0/channel0 filled on this mode
  54 *      On normal operation mode, the two channels on a branch should be
  55 *              filled together for the same SLOT#
  56 * When in mirrored mode, Branch 1 replicate memory at Branch 0, so, the four
  57 *              channels on both branches should be filled
  58 */
  59
  60/* Limits for i7300 */
  61#define MAX_SLOTS               8
  62#define MAX_BRANCHES            2
  63#define MAX_CH_PER_BRANCH       2
  64#define MAX_CHANNELS            (MAX_CH_PER_BRANCH * MAX_BRANCHES)
  65#define MAX_MIR                 3
  66
  67#define to_channel(ch, branch)  ((((branch)) << 1) | (ch))
  68
  69#define to_csrow(slot, ch, branch)                                      \
  70                (to_channel(ch, branch) | ((slot) << 2))
  71
  72/* Device name and register DID (Device ID) */
  73struct i7300_dev_info {
  74        const char *ctl_name;   /* name for this device */
  75        u16 fsb_mapping_errors; /* DID for the branchmap,control */
  76};
  77
  78/* Table of devices attributes supported by this driver */
  79static const struct i7300_dev_info i7300_devs[] = {
  80        {
  81                .ctl_name = "I7300",
  82                .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I7300_MCH_ERR,
  83        },
  84};
  85
  86struct i7300_dimm_info {
  87        int megabytes;          /* size, 0 means not present  */
  88};
  89
  90/* driver private data structure */
  91struct i7300_pvt {
  92        struct pci_dev *pci_dev_16_0_fsb_ctlr;          /* 16.0 */
  93        struct pci_dev *pci_dev_16_1_fsb_addr_map;      /* 16.1 */
  94        struct pci_dev *pci_dev_16_2_fsb_err_regs;      /* 16.2 */
  95        struct pci_dev *pci_dev_2x_0_fbd_branch[MAX_BRANCHES];  /* 21.0  and 22.0 */
  96
  97        u16 tolm;                               /* top of low memory */
  98        u64 ambase;                             /* AMB BAR */
  99
 100        u32 mc_settings;                        /* Report several settings */
 101        u32 mc_settings_a;
 102
 103        u16 mir[MAX_MIR];                       /* Memory Interleave Reg*/
 104
 105        u16 mtr[MAX_SLOTS][MAX_BRANCHES];       /* Memory Technlogy Reg */
 106        u16 ambpresent[MAX_CHANNELS];           /* AMB present regs */
 107
 108        /* DIMM information matrix, allocating architecture maximums */
 109        struct i7300_dimm_info dimm_info[MAX_SLOTS][MAX_CHANNELS];
 110
 111        /* Temporary buffer for use when preparing error messages */
 112        char *tmp_prt_buffer;
 113};
 114
 115/* FIXME: Why do we need to have this static? */
 116static struct edac_pci_ctl_info *i7300_pci;
 117
 118/***************************************************
 119 * i7300 Register definitions for memory enumeration
 120 ***************************************************/
 121
 122/*
 123 * Device 16,
 124 * Function 0: System Address (not documented)
 125 * Function 1: Memory Branch Map, Control, Errors Register
 126 */
 127
 128        /* OFFSETS for Function 0 */
 129#define AMBASE                  0x48 /* AMB Mem Mapped Reg Region Base */
 130#define MAXCH                   0x56 /* Max Channel Number */
 131#define MAXDIMMPERCH            0x57 /* Max DIMM PER Channel Number */
 132
 133        /* OFFSETS for Function 1 */
 134#define MC_SETTINGS             0x40
 135  #define IS_MIRRORED(mc)               ((mc) & (1 << 16))
 136  #define IS_ECC_ENABLED(mc)            ((mc) & (1 << 5))
 137  #define IS_RETRY_ENABLED(mc)          ((mc) & (1 << 31))
 138  #define IS_SCRBALGO_ENHANCED(mc)      ((mc) & (1 << 8))
 139
 140#define MC_SETTINGS_A           0x58
 141  #define IS_SINGLE_MODE(mca)           ((mca) & (1 << 14))
 142
 143#define TOLM                    0x6C
 144
 145#define MIR0                    0x80
 146#define MIR1                    0x84
 147#define MIR2                    0x88
 148
 149/*
 150 * Note: Other Intel EDAC drivers use AMBPRESENT to identify if the available
 151 * memory. From datasheet item 7.3.1 (FB-DIMM technology & organization), it
 152 * seems that we cannot use this information directly for the same usage.
 153 * Each memory slot may have up to 2 AMB interfaces, one for income and another
 154 * for outcome interface to the next slot.
 155 * For now, the driver just stores the AMB present registers, but rely only at
 156 * the MTR info to detect memory.
 157 * Datasheet is also not clear about how to map each AMBPRESENT registers to
 158 * one of the 4 available channels.
 159 */
 160#define AMBPRESENT_0    0x64
 161#define AMBPRESENT_1    0x66
 162
 163static const u16 mtr_regs[MAX_SLOTS] = {
 164        0x80, 0x84, 0x88, 0x8c,
 165        0x82, 0x86, 0x8a, 0x8e
 166};
 167
 168/*
 169 * Defines to extract the vaious fields from the
 170 *      MTRx - Memory Technology Registers
 171 */
 172#define MTR_DIMMS_PRESENT(mtr)          ((mtr) & (1 << 8))
 173#define MTR_DIMMS_ETHROTTLE(mtr)        ((mtr) & (1 << 7))
 174#define MTR_DRAM_WIDTH(mtr)             (((mtr) & (1 << 6)) ? 8 : 4)
 175#define MTR_DRAM_BANKS(mtr)             (((mtr) & (1 << 5)) ? 8 : 4)
 176#define MTR_DIMM_RANKS(mtr)             (((mtr) & (1 << 4)) ? 1 : 0)
 177#define MTR_DIMM_ROWS(mtr)              (((mtr) >> 2) & 0x3)
 178#define MTR_DRAM_BANKS_ADDR_BITS        2
 179#define MTR_DIMM_ROWS_ADDR_BITS(mtr)    (MTR_DIMM_ROWS(mtr) + 13)
 180#define MTR_DIMM_COLS(mtr)              ((mtr) & 0x3)
 181#define MTR_DIMM_COLS_ADDR_BITS(mtr)    (MTR_DIMM_COLS(mtr) + 10)
 182
 183/************************************************
 184 * i7300 Register definitions for error detection
 185 ************************************************/
 186
 187/*
 188 * Device 16.1: FBD Error Registers
 189 */
 190#define FERR_FAT_FBD    0x98
 191static const char *ferr_fat_fbd_name[] = {
 192        [22] = "Non-Redundant Fast Reset Timeout",
 193        [2]  = ">Tmid Thermal event with intelligent throttling disabled",
 194        [1]  = "Memory or FBD configuration CRC read error",
 195        [0]  = "Memory Write error on non-redundant retry or "
 196               "FBD configuration Write error on retry",
 197};
 198#define GET_FBD_FAT_IDX(fbderr) (((fbderr) >> 28) & 3)
 199#define FERR_FAT_FBD_ERR_MASK ((1 << 0) | (1 << 1) | (1 << 2) | (1 << 22))
 200
 201#define FERR_NF_FBD     0xa0
 202static const char *ferr_nf_fbd_name[] = {
 203        [24] = "DIMM-Spare Copy Completed",
 204        [23] = "DIMM-Spare Copy Initiated",
 205        [22] = "Redundant Fast Reset Timeout",
 206        [21] = "Memory Write error on redundant retry",
 207        [18] = "SPD protocol Error",
 208        [17] = "FBD Northbound parity error on FBD Sync Status",
 209        [16] = "Correctable Patrol Data ECC",
 210        [15] = "Correctable Resilver- or Spare-Copy Data ECC",
 211        [14] = "Correctable Mirrored Demand Data ECC",
 212        [13] = "Correctable Non-Mirrored Demand Data ECC",
 213        [11] = "Memory or FBD configuration CRC read error",
 214        [10] = "FBD Configuration Write error on first attempt",
 215        [9]  = "Memory Write error on first attempt",
 216        [8]  = "Non-Aliased Uncorrectable Patrol Data ECC",
 217        [7]  = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
 218        [6]  = "Non-Aliased Uncorrectable Mirrored Demand Data ECC",
 219        [5]  = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
 220        [4]  = "Aliased Uncorrectable Patrol Data ECC",
 221        [3]  = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
 222        [2]  = "Aliased Uncorrectable Mirrored Demand Data ECC",
 223        [1]  = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
 224        [0]  = "Uncorrectable Data ECC on Replay",
 225};
 226#define GET_FBD_NF_IDX(fbderr)  (((fbderr) >> 28) & 3)
 227#define FERR_NF_FBD_ERR_MASK ((1 << 24) | (1 << 23) | (1 << 22) | (1 << 21) |\
 228                              (1 << 18) | (1 << 17) | (1 << 16) | (1 << 15) |\
 229                              (1 << 14) | (1 << 13) | (1 << 11) | (1 << 10) |\
 230                              (1 << 9)  | (1 << 8)  | (1 << 7)  | (1 << 6)  |\
 231                              (1 << 5)  | (1 << 4)  | (1 << 3)  | (1 << 2)  |\
 232                              (1 << 1)  | (1 << 0))
 233
 234#define EMASK_FBD       0xa8
 235#define EMASK_FBD_ERR_MASK ((1 << 27) | (1 << 26) | (1 << 25) | (1 << 24) |\
 236                            (1 << 22) | (1 << 21) | (1 << 20) | (1 << 19) |\
 237                            (1 << 18) | (1 << 17) | (1 << 16) | (1 << 14) |\
 238                            (1 << 13) | (1 << 12) | (1 << 11) | (1 << 10) |\
 239                            (1 << 9)  | (1 << 8)  | (1 << 7)  | (1 << 6)  |\
 240                            (1 << 5)  | (1 << 4)  | (1 << 3)  | (1 << 2)  |\
 241                            (1 << 1)  | (1 << 0))
 242
 243/*
 244 * Device 16.2: Global Error Registers
 245 */
 246
 247#define FERR_GLOBAL_HI  0x48
 248static const char *ferr_global_hi_name[] = {
 249        [3] = "FSB 3 Fatal Error",
 250        [2] = "FSB 2 Fatal Error",
 251        [1] = "FSB 1 Fatal Error",
 252        [0] = "FSB 0 Fatal Error",
 253};
 254#define ferr_global_hi_is_fatal(errno)  1
 255
 256#define FERR_GLOBAL_LO  0x40
 257static const char *ferr_global_lo_name[] = {
 258        [31] = "Internal MCH Fatal Error",
 259        [30] = "Intel QuickData Technology Device Fatal Error",
 260        [29] = "FSB1 Fatal Error",
 261        [28] = "FSB0 Fatal Error",
 262        [27] = "FBD Channel 3 Fatal Error",
 263        [26] = "FBD Channel 2 Fatal Error",
 264        [25] = "FBD Channel 1 Fatal Error",
 265        [24] = "FBD Channel 0 Fatal Error",
 266        [23] = "PCI Express Device 7Fatal Error",
 267        [22] = "PCI Express Device 6 Fatal Error",
 268        [21] = "PCI Express Device 5 Fatal Error",
 269        [20] = "PCI Express Device 4 Fatal Error",
 270        [19] = "PCI Express Device 3 Fatal Error",
 271        [18] = "PCI Express Device 2 Fatal Error",
 272        [17] = "PCI Express Device 1 Fatal Error",
 273        [16] = "ESI Fatal Error",
 274        [15] = "Internal MCH Non-Fatal Error",
 275        [14] = "Intel QuickData Technology Device Non Fatal Error",
 276        [13] = "FSB1 Non-Fatal Error",
 277        [12] = "FSB 0 Non-Fatal Error",
 278        [11] = "FBD Channel 3 Non-Fatal Error",
 279        [10] = "FBD Channel 2 Non-Fatal Error",
 280        [9]  = "FBD Channel 1 Non-Fatal Error",
 281        [8]  = "FBD Channel 0 Non-Fatal Error",
 282        [7]  = "PCI Express Device 7 Non-Fatal Error",
 283        [6]  = "PCI Express Device 6 Non-Fatal Error",
 284        [5]  = "PCI Express Device 5 Non-Fatal Error",
 285        [4]  = "PCI Express Device 4 Non-Fatal Error",
 286        [3]  = "PCI Express Device 3 Non-Fatal Error",
 287        [2]  = "PCI Express Device 2 Non-Fatal Error",
 288        [1]  = "PCI Express Device 1 Non-Fatal Error",
 289        [0]  = "ESI Non-Fatal Error",
 290};
 291#define ferr_global_lo_is_fatal(errno)  ((errno < 16) ? 0 : 1)
 292
 293#define NRECMEMA        0xbe
 294  #define NRECMEMA_BANK(v)      (((v) >> 12) & 7)
 295  #define NRECMEMA_RANK(v)      (((v) >> 8) & 15)
 296
 297#define NRECMEMB        0xc0
 298  #define NRECMEMB_IS_WR(v)     ((v) & (1 << 31))
 299  #define NRECMEMB_CAS(v)       (((v) >> 16) & 0x1fff)
 300  #define NRECMEMB_RAS(v)       ((v) & 0xffff)
 301
 302#define REDMEMA         0xdc
 303
 304#define REDMEMB         0x7c
 305
 306#define RECMEMA         0xe0
 307  #define RECMEMA_BANK(v)       (((v) >> 12) & 7)
 308  #define RECMEMA_RANK(v)       (((v) >> 8) & 15)
 309
 310#define RECMEMB         0xe4
 311  #define RECMEMB_IS_WR(v)      ((v) & (1 << 31))
 312  #define RECMEMB_CAS(v)        (((v) >> 16) & 0x1fff)
 313  #define RECMEMB_RAS(v)        ((v) & 0xffff)
 314
 315/********************************************
 316 * i7300 Functions related to error detection
 317 ********************************************/
 318
 319/**
 320 * get_err_from_table() - Gets the error message from a table
 321 * @table:      table name (array of char *)
 322 * @size:       number of elements at the table
 323 * @pos:        position of the element to be returned
 324 *
 325 * This is a small routine that gets the pos-th element of a table. If the
 326 * element doesn't exist (or it is empty), it returns "reserved".
 327 * Instead of calling it directly, the better is to call via the macro
 328 * GET_ERR_FROM_TABLE(), that automatically checks the table size via
 329 * ARRAY_SIZE() macro
 330 */
 331static const char *get_err_from_table(const char *table[], int size, int pos)
 332{
 333        if (unlikely(pos >= size))
 334                return "Reserved";
 335
 336        if (unlikely(!table[pos]))
 337                return "Reserved";
 338
 339        return table[pos];
 340}
 341
 342#define GET_ERR_FROM_TABLE(table, pos)                          \
 343        get_err_from_table(table, ARRAY_SIZE(table), pos)
 344
 345/**
 346 * i7300_process_error_global() - Retrieve the hardware error information from
 347 *                                the hardware global error registers and
 348 *                                sends it to dmesg
 349 * @mci: struct mem_ctl_info pointer
 350 */
 351static void i7300_process_error_global(struct mem_ctl_info *mci)
 352{
 353        struct i7300_pvt *pvt;
 354        u32 errnum, error_reg;
 355        unsigned long errors;
 356        const char *specific;
 357        bool is_fatal;
 358
 359        pvt = mci->pvt_info;
 360
 361        /* read in the 1st FATAL error register */
 362        pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
 363                              FERR_GLOBAL_HI, &error_reg);
 364        if (unlikely(error_reg)) {
 365                errors = error_reg;
 366                errnum = find_first_bit(&errors,
 367                                        ARRAY_SIZE(ferr_global_hi_name));
 368                specific = GET_ERR_FROM_TABLE(ferr_global_hi_name, errnum);
 369                is_fatal = ferr_global_hi_is_fatal(errnum);
 370
 371                /* Clear the error bit */
 372                pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
 373                                       FERR_GLOBAL_HI, error_reg);
 374
 375                goto error_global;
 376        }
 377
 378        pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
 379                              FERR_GLOBAL_LO, &error_reg);
 380        if (unlikely(error_reg)) {
 381                errors = error_reg;
 382                errnum = find_first_bit(&errors,
 383                                        ARRAY_SIZE(ferr_global_lo_name));
 384                specific = GET_ERR_FROM_TABLE(ferr_global_lo_name, errnum);
 385                is_fatal = ferr_global_lo_is_fatal(errnum);
 386
 387                /* Clear the error bit */
 388                pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
 389                                       FERR_GLOBAL_LO, error_reg);
 390
 391                goto error_global;
 392        }
 393        return;
 394
 395error_global:
 396        i7300_mc_printk(mci, KERN_EMERG, "%s misc error: %s\n",
 397                        is_fatal ? "Fatal" : "NOT fatal", specific);
 398}
 399
 400/**
 401 * i7300_process_fbd_error() - Retrieve the hardware error information from
 402 *                             the FBD error registers and sends it via
 403 *                             EDAC error API calls
 404 * @mci: struct mem_ctl_info pointer
 405 */
 406static void i7300_process_fbd_error(struct mem_ctl_info *mci)
 407{
 408        struct i7300_pvt *pvt;
 409        u32 errnum, value, error_reg;
 410        u16 val16;
 411        unsigned branch, channel, bank, rank, cas, ras;
 412        u32 syndrome;
 413
 414        unsigned long errors;
 415        const char *specific;
 416        bool is_wr;
 417
 418        pvt = mci->pvt_info;
 419
 420        /* read in the 1st FATAL error register */
 421        pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
 422                              FERR_FAT_FBD, &error_reg);
 423        if (unlikely(error_reg & FERR_FAT_FBD_ERR_MASK)) {
 424                errors = error_reg & FERR_FAT_FBD_ERR_MASK ;
 425                errnum = find_first_bit(&errors,
 426                                        ARRAY_SIZE(ferr_fat_fbd_name));
 427                specific = GET_ERR_FROM_TABLE(ferr_fat_fbd_name, errnum);
 428                branch = (GET_FBD_FAT_IDX(error_reg) == 2) ? 1 : 0;
 429
 430                pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
 431                                     NRECMEMA, &val16);
 432                bank = NRECMEMA_BANK(val16);
 433                rank = NRECMEMA_RANK(val16);
 434
 435                pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
 436                                NRECMEMB, &value);
 437                is_wr = NRECMEMB_IS_WR(value);
 438                cas = NRECMEMB_CAS(value);
 439                ras = NRECMEMB_RAS(value);
 440
 441                /* Clean the error register */
 442                pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
 443                                FERR_FAT_FBD, error_reg);
 444
 445                snprintf(pvt->tmp_prt_buffer, PAGE_SIZE,
 446                         "Bank=%d RAS=%d CAS=%d Err=0x%lx (%s))",
 447                         bank, ras, cas, errors, specific);
 448
 449                edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0,
 450                                     branch, -1, rank,
 451                                     is_wr ? "Write error" : "Read error",
 452                                     pvt->tmp_prt_buffer);
 453
 454        }
 455
 456        /* read in the 1st NON-FATAL error register */
 457        pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
 458                              FERR_NF_FBD, &error_reg);
 459        if (unlikely(error_reg & FERR_NF_FBD_ERR_MASK)) {
 460                errors = error_reg & FERR_NF_FBD_ERR_MASK;
 461                errnum = find_first_bit(&errors,
 462                                        ARRAY_SIZE(ferr_nf_fbd_name));
 463                specific = GET_ERR_FROM_TABLE(ferr_nf_fbd_name, errnum);
 464                branch = (GET_FBD_NF_IDX(error_reg) == 2) ? 1 : 0;
 465
 466                pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
 467                        REDMEMA, &syndrome);
 468
 469                pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
 470                                     RECMEMA, &val16);
 471                bank = RECMEMA_BANK(val16);
 472                rank = RECMEMA_RANK(val16);
 473
 474                pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
 475                                RECMEMB, &value);
 476                is_wr = RECMEMB_IS_WR(value);
 477                cas = RECMEMB_CAS(value);
 478                ras = RECMEMB_RAS(value);
 479
 480                pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
 481                                     REDMEMB, &value);
 482                channel = (branch << 1);
 483
 484                /* Second channel ? */
 485                channel += !!(value & BIT(17));
 486
 487                /* Clear the error bit */
 488                pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
 489                                FERR_NF_FBD, error_reg);
 490
 491                /* Form out message */
 492                snprintf(pvt->tmp_prt_buffer, PAGE_SIZE,
 493                         "DRAM-Bank=%d RAS=%d CAS=%d, Err=0x%lx (%s))",
 494                         bank, ras, cas, errors, specific);
 495
 496                edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0,
 497                                     syndrome,
 498                                     branch >> 1, channel % 2, rank,
 499                                     is_wr ? "Write error" : "Read error",
 500                                     pvt->tmp_prt_buffer);
 501        }
 502        return;
 503}
 504
 505/**
 506 * i7300_check_error() - Calls the error checking subroutines
 507 * @mci: struct mem_ctl_info pointer
 508 */
 509static void i7300_check_error(struct mem_ctl_info *mci)
 510{
 511        i7300_process_error_global(mci);
 512        i7300_process_fbd_error(mci);
 513};
 514
 515/**
 516 * i7300_clear_error() - Clears the error registers
 517 * @mci: struct mem_ctl_info pointer
 518 */
 519static void i7300_clear_error(struct mem_ctl_info *mci)
 520{
 521        struct i7300_pvt *pvt = mci->pvt_info;
 522        u32 value;
 523        /*
 524         * All error values are RWC - we need to read and write 1 to the
 525         * bit that we want to cleanup
 526         */
 527
 528        /* Clear global error registers */
 529        pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
 530                              FERR_GLOBAL_HI, &value);
 531        pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
 532                              FERR_GLOBAL_HI, value);
 533
 534        pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
 535                              FERR_GLOBAL_LO, &value);
 536        pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
 537                              FERR_GLOBAL_LO, value);
 538
 539        /* Clear FBD error registers */
 540        pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
 541                              FERR_FAT_FBD, &value);
 542        pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
 543                              FERR_FAT_FBD, value);
 544
 545        pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
 546                              FERR_NF_FBD, &value);
 547        pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
 548                              FERR_NF_FBD, value);
 549}
 550
 551/**
 552 * i7300_enable_error_reporting() - Enable the memory reporting logic at the
 553 *                                  hardware
 554 * @mci: struct mem_ctl_info pointer
 555 */
 556static void i7300_enable_error_reporting(struct mem_ctl_info *mci)
 557{
 558        struct i7300_pvt *pvt = mci->pvt_info;
 559        u32 fbd_error_mask;
 560
 561        /* Read the FBD Error Mask Register */
 562        pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
 563                              EMASK_FBD, &fbd_error_mask);
 564
 565        /* Enable with a '0' */
 566        fbd_error_mask &= ~(EMASK_FBD_ERR_MASK);
 567
 568        pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
 569                               EMASK_FBD, fbd_error_mask);
 570}
 571
 572/************************************************
 573 * i7300 Functions related to memory enumberation
 574 ************************************************/
 575
 576/**
 577 * decode_mtr() - Decodes the MTR descriptor, filling the edac structs
 578 * @pvt: pointer to the private data struct used by i7300 driver
 579 * @slot: DIMM slot (0 to 7)
 580 * @ch: Channel number within the branch (0 or 1)
 581 * @branch: Branch number (0 or 1)
 582 * @dinfo: Pointer to DIMM info where dimm size is stored
 583 * @dimm: Pointer to the struct dimm_info that corresponds to that element
 584 */
 585static int decode_mtr(struct i7300_pvt *pvt,
 586                      int slot, int ch, int branch,
 587                      struct i7300_dimm_info *dinfo,
 588                      struct dimm_info *dimm)
 589{
 590        int mtr, ans, addrBits, channel;
 591
 592        channel = to_channel(ch, branch);
 593
 594        mtr = pvt->mtr[slot][branch];
 595        ans = MTR_DIMMS_PRESENT(mtr) ? 1 : 0;
 596
 597        edac_dbg(2, "\tMTR%d CH%d: DIMMs are %sPresent (mtr)\n",
 598                 slot, channel, ans ? "" : "NOT ");
 599
 600        /* Determine if there is a DIMM present in this DIMM slot */
 601        if (!ans)
 602                return 0;
 603
 604        /* Start with the number of bits for a Bank
 605        * on the DRAM */
 606        addrBits = MTR_DRAM_BANKS_ADDR_BITS;
 607        /* Add thenumber of ROW bits */
 608        addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
 609        /* add the number of COLUMN bits */
 610        addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
 611        /* add the number of RANK bits */
 612        addrBits += MTR_DIMM_RANKS(mtr);
 613
 614        addrBits += 6;  /* add 64 bits per DIMM */
 615        addrBits -= 20; /* divide by 2^^20 */
 616        addrBits -= 3;  /* 8 bits per bytes */
 617
 618        dinfo->megabytes = 1 << addrBits;
 619
 620        edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
 621
 622        edac_dbg(2, "\t\tELECTRICAL THROTTLING is %s\n",
 623                 MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
 624
 625        edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
 626        edac_dbg(2, "\t\tNUMRANK: %s\n",
 627                 MTR_DIMM_RANKS(mtr) ? "double" : "single");
 628        edac_dbg(2, "\t\tNUMROW: %s\n",
 629                 MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
 630                 MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
 631                 MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
 632                 "65,536 - 16 rows");
 633        edac_dbg(2, "\t\tNUMCOL: %s\n",
 634                 MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
 635                 MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
 636                 MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
 637                 "reserved");
 638        edac_dbg(2, "\t\tSIZE: %d MB\n", dinfo->megabytes);
 639
 640        /*
 641         * The type of error detection actually depends of the
 642         * mode of operation. When it is just one single memory chip, at
 643         * socket 0, channel 0, it uses 8-byte-over-32-byte SECDED+ code.
 644         * In normal or mirrored mode, it uses Lockstep mode,
 645         * with the possibility of using an extended algorithm for x8 memories
 646         * See datasheet Sections 7.3.6 to 7.3.8
 647         */
 648
 649        dimm->nr_pages = MiB_TO_PAGES(dinfo->megabytes);
 650        dimm->grain = 8;
 651        dimm->mtype = MEM_FB_DDR2;
 652        if (IS_SINGLE_MODE(pvt->mc_settings_a)) {
 653                dimm->edac_mode = EDAC_SECDED;
 654                edac_dbg(2, "\t\tECC code is 8-byte-over-32-byte SECDED+ code\n");
 655        } else {
 656                edac_dbg(2, "\t\tECC code is on Lockstep mode\n");
 657                if (MTR_DRAM_WIDTH(mtr) == 8)
 658                        dimm->edac_mode = EDAC_S8ECD8ED;
 659                else
 660                        dimm->edac_mode = EDAC_S4ECD4ED;
 661        }
 662
 663        /* ask what device type on this row */
 664        if (MTR_DRAM_WIDTH(mtr) == 8) {
 665                edac_dbg(2, "\t\tScrub algorithm for x8 is on %s mode\n",
 666                         IS_SCRBALGO_ENHANCED(pvt->mc_settings) ?
 667                         "enhanced" : "normal");
 668
 669                dimm->dtype = DEV_X8;
 670        } else
 671                dimm->dtype = DEV_X4;
 672
 673        return mtr;
 674}
 675
 676/**
 677 * print_dimm_size() - Prints dump of the memory organization
 678 * @pvt: pointer to the private data struct used by i7300 driver
 679 *
 680 * Useful for debug. If debug is disabled, this routine do nothing
 681 */
 682static void print_dimm_size(struct i7300_pvt *pvt)
 683{
 684#ifdef CONFIG_EDAC_DEBUG
 685        struct i7300_dimm_info *dinfo;
 686        char *p;
 687        int space, n;
 688        int channel, slot;
 689
 690        space = PAGE_SIZE;
 691        p = pvt->tmp_prt_buffer;
 692
 693        n = snprintf(p, space, "              ");
 694        p += n;
 695        space -= n;
 696        for (channel = 0; channel < MAX_CHANNELS; channel++) {
 697                n = snprintf(p, space, "channel %d | ", channel);
 698                p += n;
 699                space -= n;
 700        }
 701        edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
 702        p = pvt->tmp_prt_buffer;
 703        space = PAGE_SIZE;
 704        n = snprintf(p, space, "-------------------------------"
 705                               "------------------------------");
 706        p += n;
 707        space -= n;
 708        edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
 709        p = pvt->tmp_prt_buffer;
 710        space = PAGE_SIZE;
 711
 712        for (slot = 0; slot < MAX_SLOTS; slot++) {
 713                n = snprintf(p, space, "csrow/SLOT %d  ", slot);
 714                p += n;
 715                space -= n;
 716
 717                for (channel = 0; channel < MAX_CHANNELS; channel++) {
 718                        dinfo = &pvt->dimm_info[slot][channel];
 719                        n = snprintf(p, space, "%4d MB   | ", dinfo->megabytes);
 720                        p += n;
 721                        space -= n;
 722                }
 723
 724                edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
 725                p = pvt->tmp_prt_buffer;
 726                space = PAGE_SIZE;
 727        }
 728
 729        n = snprintf(p, space, "-------------------------------"
 730                               "------------------------------");
 731        p += n;
 732        space -= n;
 733        edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
 734        p = pvt->tmp_prt_buffer;
 735        space = PAGE_SIZE;
 736#endif
 737}
 738
 739/**
 740 * i7300_init_csrows() - Initialize the 'csrows' table within
 741 *                       the mci control structure with the
 742 *                       addressing of memory.
 743 * @mci: struct mem_ctl_info pointer
 744 */
 745static int i7300_init_csrows(struct mem_ctl_info *mci)
 746{
 747        struct i7300_pvt *pvt;
 748        struct i7300_dimm_info *dinfo;
 749        int rc = -ENODEV;
 750        int mtr;
 751        int ch, branch, slot, channel, max_channel, max_branch;
 752        struct dimm_info *dimm;
 753
 754        pvt = mci->pvt_info;
 755
 756        edac_dbg(2, "Memory Technology Registers:\n");
 757
 758        if (IS_SINGLE_MODE(pvt->mc_settings_a)) {
 759                max_branch = 1;
 760                max_channel = 1;
 761        } else {
 762                max_branch = MAX_BRANCHES;
 763                max_channel = MAX_CH_PER_BRANCH;
 764        }
 765
 766        /* Get the AMB present registers for the four channels */
 767        for (branch = 0; branch < max_branch; branch++) {
 768                /* Read and dump branch 0's MTRs */
 769                channel = to_channel(0, branch);
 770                pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
 771                                     AMBPRESENT_0,
 772                                &pvt->ambpresent[channel]);
 773                edac_dbg(2, "\t\tAMB-present CH%d = 0x%x:\n",
 774                         channel, pvt->ambpresent[channel]);
 775
 776                if (max_channel == 1)
 777                        continue;
 778
 779                channel = to_channel(1, branch);
 780                pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
 781                                     AMBPRESENT_1,
 782                                &pvt->ambpresent[channel]);
 783                edac_dbg(2, "\t\tAMB-present CH%d = 0x%x:\n",
 784                         channel, pvt->ambpresent[channel]);
 785        }
 786
 787        /* Get the set of MTR[0-7] regs by each branch */
 788        for (slot = 0; slot < MAX_SLOTS; slot++) {
 789                int where = mtr_regs[slot];
 790                for (branch = 0; branch < max_branch; branch++) {
 791                        pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
 792                                        where,
 793                                        &pvt->mtr[slot][branch]);
 794                        for (ch = 0; ch < max_channel; ch++) {
 795                                int channel = to_channel(ch, branch);
 796
 797                                dimm = edac_get_dimm(mci, branch, ch, slot);
 798
 799                                dinfo = &pvt->dimm_info[slot][channel];
 800
 801                                mtr = decode_mtr(pvt, slot, ch, branch,
 802                                                 dinfo, dimm);
 803
 804                                /* if no DIMMS on this row, continue */
 805                                if (!MTR_DIMMS_PRESENT(mtr))
 806                                        continue;
 807
 808                                rc = 0;
 809
 810                        }
 811                }
 812        }
 813
 814        return rc;
 815}
 816
 817/**
 818 * decode_mir() - Decodes Memory Interleave Register (MIR) info
 819 * @mir_no: number of the MIR register to decode
 820 * @mir: array with the MIR data cached on the driver
 821 */
 822static void decode_mir(int mir_no, u16 mir[MAX_MIR])
 823{
 824        if (mir[mir_no] & 3)
 825                edac_dbg(2, "MIR%d: limit= 0x%x Branch(es) that participate: %s %s\n",
 826                         mir_no,
 827                         (mir[mir_no] >> 4) & 0xfff,
 828                         (mir[mir_no] & 1) ? "B0" : "",
 829                         (mir[mir_no] & 2) ? "B1" : "");
 830}
 831
 832/**
 833 * i7300_get_mc_regs() - Get the contents of the MC enumeration registers
 834 * @mci: struct mem_ctl_info pointer
 835 *
 836 * Data read is cached internally for its usage when needed
 837 */
 838static int i7300_get_mc_regs(struct mem_ctl_info *mci)
 839{
 840        struct i7300_pvt *pvt;
 841        u32 actual_tolm;
 842        int i, rc;
 843
 844        pvt = mci->pvt_info;
 845
 846        pci_read_config_dword(pvt->pci_dev_16_0_fsb_ctlr, AMBASE,
 847                        (u32 *) &pvt->ambase);
 848
 849        edac_dbg(2, "AMBASE= 0x%lx\n", (long unsigned int)pvt->ambase);
 850
 851        /* Get the Branch Map regs */
 852        pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, TOLM, &pvt->tolm);
 853        pvt->tolm >>= 12;
 854        edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n",
 855                 pvt->tolm, pvt->tolm);
 856
 857        actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
 858        edac_dbg(2, "Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
 859                 actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
 860
 861        /* Get memory controller settings */
 862        pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS,
 863                             &pvt->mc_settings);
 864        pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS_A,
 865                             &pvt->mc_settings_a);
 866
 867        if (IS_SINGLE_MODE(pvt->mc_settings_a))
 868                edac_dbg(0, "Memory controller operating on single mode\n");
 869        else
 870                edac_dbg(0, "Memory controller operating on %smirrored mode\n",
 871                         IS_MIRRORED(pvt->mc_settings) ? "" : "non-");
 872
 873        edac_dbg(0, "Error detection is %s\n",
 874                 IS_ECC_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
 875        edac_dbg(0, "Retry is %s\n",
 876                 IS_RETRY_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
 877
 878        /* Get Memory Interleave Range registers */
 879        pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR0,
 880                             &pvt->mir[0]);
 881        pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR1,
 882                             &pvt->mir[1]);
 883        pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR2,
 884                             &pvt->mir[2]);
 885
 886        /* Decode the MIR regs */
 887        for (i = 0; i < MAX_MIR; i++)
 888                decode_mir(i, pvt->mir);
 889
 890        rc = i7300_init_csrows(mci);
 891        if (rc < 0)
 892                return rc;
 893
 894        /* Go and determine the size of each DIMM and place in an
 895         * orderly matrix */
 896        print_dimm_size(pvt);
 897
 898        return 0;
 899}
 900
 901/*************************************************
 902 * i7300 Functions related to device probe/release
 903 *************************************************/
 904
 905/**
 906 * i7300_put_devices() - Release the PCI devices
 907 * @mci: struct mem_ctl_info pointer
 908 */
 909static void i7300_put_devices(struct mem_ctl_info *mci)
 910{
 911        struct i7300_pvt *pvt;
 912        int branch;
 913
 914        pvt = mci->pvt_info;
 915
 916        /* Decrement usage count for devices */
 917        for (branch = 0; branch < MAX_CH_PER_BRANCH; branch++)
 918                pci_dev_put(pvt->pci_dev_2x_0_fbd_branch[branch]);
 919        pci_dev_put(pvt->pci_dev_16_2_fsb_err_regs);
 920        pci_dev_put(pvt->pci_dev_16_1_fsb_addr_map);
 921}
 922
 923/**
 924 * i7300_get_devices() - Find and perform 'get' operation on the MCH's
 925 *                       device/functions we want to reference for this driver
 926 * @mci: struct mem_ctl_info pointer
 927 *
 928 * Access and prepare the several devices for usage:
 929 * I7300 devices used by this driver:
 930 *    Device 16, functions 0,1 and 2:   PCI_DEVICE_ID_INTEL_I7300_MCH_ERR
 931 *    Device 21 function 0:             PCI_DEVICE_ID_INTEL_I7300_MCH_FB0
 932 *    Device 22 function 0:             PCI_DEVICE_ID_INTEL_I7300_MCH_FB1
 933 */
 934static int i7300_get_devices(struct mem_ctl_info *mci)
 935{
 936        struct i7300_pvt *pvt;
 937        struct pci_dev *pdev;
 938
 939        pvt = mci->pvt_info;
 940
 941        /* Attempt to 'get' the MCH register we want */
 942        pdev = NULL;
 943        while ((pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
 944                                      PCI_DEVICE_ID_INTEL_I7300_MCH_ERR,
 945                                      pdev))) {
 946                /* Store device 16 funcs 1 and 2 */
 947                switch (PCI_FUNC(pdev->devfn)) {
 948                case 1:
 949                        if (!pvt->pci_dev_16_1_fsb_addr_map)
 950                                pvt->pci_dev_16_1_fsb_addr_map =
 951                                                        pci_dev_get(pdev);
 952                        break;
 953                case 2:
 954                        if (!pvt->pci_dev_16_2_fsb_err_regs)
 955                                pvt->pci_dev_16_2_fsb_err_regs =
 956                                                        pci_dev_get(pdev);
 957                        break;
 958                }
 959        }
 960
 961        if (!pvt->pci_dev_16_1_fsb_addr_map ||
 962            !pvt->pci_dev_16_2_fsb_err_regs) {
 963                /* At least one device was not found */
 964                i7300_printk(KERN_ERR,
 965                        "'system address,Process Bus' device not found:"
 966                        "vendor 0x%x device 0x%x ERR funcs (broken BIOS?)\n",
 967                        PCI_VENDOR_ID_INTEL,
 968                        PCI_DEVICE_ID_INTEL_I7300_MCH_ERR);
 969                goto error;
 970        }
 971
 972        edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
 973                 pci_name(pvt->pci_dev_16_0_fsb_ctlr),
 974                 pvt->pci_dev_16_0_fsb_ctlr->vendor,
 975                 pvt->pci_dev_16_0_fsb_ctlr->device);
 976        edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
 977                 pci_name(pvt->pci_dev_16_1_fsb_addr_map),
 978                 pvt->pci_dev_16_1_fsb_addr_map->vendor,
 979                 pvt->pci_dev_16_1_fsb_addr_map->device);
 980        edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
 981                 pci_name(pvt->pci_dev_16_2_fsb_err_regs),
 982                 pvt->pci_dev_16_2_fsb_err_regs->vendor,
 983                 pvt->pci_dev_16_2_fsb_err_regs->device);
 984
 985        pvt->pci_dev_2x_0_fbd_branch[0] = pci_get_device(PCI_VENDOR_ID_INTEL,
 986                                            PCI_DEVICE_ID_INTEL_I7300_MCH_FB0,
 987                                            NULL);
 988        if (!pvt->pci_dev_2x_0_fbd_branch[0]) {
 989                i7300_printk(KERN_ERR,
 990                        "MC: 'BRANCH 0' device not found:"
 991                        "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
 992                        PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_FB0);
 993                goto error;
 994        }
 995
 996        pvt->pci_dev_2x_0_fbd_branch[1] = pci_get_device(PCI_VENDOR_ID_INTEL,
 997                                            PCI_DEVICE_ID_INTEL_I7300_MCH_FB1,
 998                                            NULL);
 999        if (!pvt->pci_dev_2x_0_fbd_branch[1]) {
1000                i7300_printk(KERN_ERR,
1001                        "MC: 'BRANCH 1' device not found:"
1002                        "vendor 0x%x device 0x%x Func 0 "
1003                        "(broken BIOS?)\n",
1004                        PCI_VENDOR_ID_INTEL,
1005                        PCI_DEVICE_ID_INTEL_I7300_MCH_FB1);
1006                goto error;
1007        }
1008
1009        return 0;
1010
1011error:
1012        i7300_put_devices(mci);
1013        return -ENODEV;
1014}
1015
1016/**
1017 * i7300_init_one() - Probe for one instance of the device
1018 * @pdev: struct pci_dev pointer
1019 * @id: struct pci_device_id pointer - currently unused
1020 */
1021static int i7300_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
1022{
1023        struct mem_ctl_info *mci;
1024        struct edac_mc_layer layers[3];
1025        struct i7300_pvt *pvt;
1026        int rc;
1027
1028        /* wake up device */
1029        rc = pci_enable_device(pdev);
1030        if (rc == -EIO)
1031                return rc;
1032
1033        edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
1034                 pdev->bus->number,
1035                 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1036
1037        /* We only are looking for func 0 of the set */
1038        if (PCI_FUNC(pdev->devfn) != 0)
1039                return -ENODEV;
1040
1041        /* allocate a new MC control structure */
1042        layers[0].type = EDAC_MC_LAYER_BRANCH;
1043        layers[0].size = MAX_BRANCHES;
1044        layers[0].is_virt_csrow = false;
1045        layers[1].type = EDAC_MC_LAYER_CHANNEL;
1046        layers[1].size = MAX_CH_PER_BRANCH;
1047        layers[1].is_virt_csrow = true;
1048        layers[2].type = EDAC_MC_LAYER_SLOT;
1049        layers[2].size = MAX_SLOTS;
1050        layers[2].is_virt_csrow = true;
1051        mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
1052        if (mci == NULL)
1053                return -ENOMEM;
1054
1055        edac_dbg(0, "MC: mci = %p\n", mci);
1056
1057        mci->pdev = &pdev->dev; /* record ptr  to the generic device */
1058
1059        pvt = mci->pvt_info;
1060        pvt->pci_dev_16_0_fsb_ctlr = pdev;      /* Record this device in our private */
1061
1062        pvt->tmp_prt_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1063        if (!pvt->tmp_prt_buffer) {
1064                edac_mc_free(mci);
1065                return -ENOMEM;
1066        }
1067
1068        /* 'get' the pci devices we want to reserve for our use */
1069        if (i7300_get_devices(mci))
1070                goto fail0;
1071
1072        mci->mc_idx = 0;
1073        mci->mtype_cap = MEM_FLAG_FB_DDR2;
1074        mci->edac_ctl_cap = EDAC_FLAG_NONE;
1075        mci->edac_cap = EDAC_FLAG_NONE;
1076        mci->mod_name = "i7300_edac.c";
1077        mci->ctl_name = i7300_devs[0].ctl_name;
1078        mci->dev_name = pci_name(pdev);
1079        mci->ctl_page_to_phys = NULL;
1080
1081        /* Set the function pointer to an actual operation function */
1082        mci->edac_check = i7300_check_error;
1083
1084        /* initialize the MC control structure 'csrows' table
1085         * with the mapping and control information */
1086        if (i7300_get_mc_regs(mci)) {
1087                edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i7300_init_csrows() returned nonzero value\n");
1088                mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */
1089        } else {
1090                edac_dbg(1, "MC: Enable error reporting now\n");
1091                i7300_enable_error_reporting(mci);
1092        }
1093
1094        /* add this new MC control structure to EDAC's list of MCs */
1095        if (edac_mc_add_mc(mci)) {
1096                edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1097                /* FIXME: perhaps some code should go here that disables error
1098                 * reporting if we just enabled it
1099                 */
1100                goto fail1;
1101        }
1102
1103        i7300_clear_error(mci);
1104
1105        /* allocating generic PCI control info */
1106        i7300_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1107        if (!i7300_pci) {
1108                printk(KERN_WARNING
1109                        "%s(): Unable to create PCI control\n",
1110                        __func__);
1111                printk(KERN_WARNING
1112                        "%s(): PCI error report via EDAC not setup\n",
1113                        __func__);
1114        }
1115
1116        return 0;
1117
1118        /* Error exit unwinding stack */
1119fail1:
1120
1121        i7300_put_devices(mci);
1122
1123fail0:
1124        kfree(pvt->tmp_prt_buffer);
1125        edac_mc_free(mci);
1126        return -ENODEV;
1127}
1128
1129/**
1130 * i7300_remove_one() - Remove the driver
1131 * @pdev: struct pci_dev pointer
1132 */
1133static void i7300_remove_one(struct pci_dev *pdev)
1134{
1135        struct mem_ctl_info *mci;
1136        char *tmp;
1137
1138        edac_dbg(0, "\n");
1139
1140        if (i7300_pci)
1141                edac_pci_release_generic_ctl(i7300_pci);
1142
1143        mci = edac_mc_del_mc(&pdev->dev);
1144        if (!mci)
1145                return;
1146
1147        tmp = ((struct i7300_pvt *)mci->pvt_info)->tmp_prt_buffer;
1148
1149        /* retrieve references to resources, and free those resources */
1150        i7300_put_devices(mci);
1151
1152        kfree(tmp);
1153        edac_mc_free(mci);
1154}
1155
1156/*
1157 * pci_device_id: table for which devices we are looking for
1158 *
1159 * Has only 8086:360c PCI ID
1160 */
1161static const struct pci_device_id i7300_pci_tbl[] = {
1162        {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_ERR)},
1163        {0,}                    /* 0 terminated list. */
1164};
1165
1166MODULE_DEVICE_TABLE(pci, i7300_pci_tbl);
1167
1168/*
1169 * i7300_driver: pci_driver structure for this module
1170 */
1171static struct pci_driver i7300_driver = {
1172        .name = "i7300_edac",
1173        .probe = i7300_init_one,
1174        .remove = i7300_remove_one,
1175        .id_table = i7300_pci_tbl,
1176};
1177
1178/**
1179 * i7300_init() - Registers the driver
1180 */
1181static int __init i7300_init(void)
1182{
1183        int pci_rc;
1184
1185        edac_dbg(2, "\n");
1186
1187        /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1188        opstate_init();
1189
1190        pci_rc = pci_register_driver(&i7300_driver);
1191
1192        return (pci_rc < 0) ? pci_rc : 0;
1193}
1194
1195/**
1196 * i7300_init() - Unregisters the driver
1197 */
1198static void __exit i7300_exit(void)
1199{
1200        edac_dbg(2, "\n");
1201        pci_unregister_driver(&i7300_driver);
1202}
1203
1204module_init(i7300_init);
1205module_exit(i7300_exit);
1206
1207MODULE_LICENSE("GPL");
1208MODULE_AUTHOR("Mauro Carvalho Chehab");
1209MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)");
1210MODULE_DESCRIPTION("MC Driver for Intel I7300 memory controllers - "
1211                   I7300_REVISION);
1212
1213module_param(edac_op_state, int, 0444);
1214MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1215