linux/drivers/edac/sb_edac.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
   3 *
   4 * This driver supports the memory controllers found on the Intel
   5 * processor family Sandy Bridge.
   6 *
   7 * Copyright (c) 2011 by:
   8 *       Mauro Carvalho Chehab
   9 */
  10
  11#include <linux/module.h>
  12#include <linux/init.h>
  13#include <linux/pci.h>
  14#include <linux/pci_ids.h>
  15#include <linux/slab.h>
  16#include <linux/delay.h>
  17#include <linux/edac.h>
  18#include <linux/mmzone.h>
  19#include <linux/smp.h>
  20#include <linux/bitmap.h>
  21#include <linux/math64.h>
  22#include <linux/mod_devicetable.h>
  23#include <asm/cpu_device_id.h>
  24#include <asm/intel-family.h>
  25#include <asm/processor.h>
  26#include <asm/mce.h>
  27
  28#include "edac_module.h"
  29
  30/* Static vars */
  31static LIST_HEAD(sbridge_edac_list);
  32
  33/*
  34 * Alter this version for the module when modifications are made
  35 */
  36#define SBRIDGE_REVISION    " Ver: 1.1.2 "
  37#define EDAC_MOD_STR        "sb_edac"
  38
  39/*
  40 * Debug macros
  41 */
  42#define sbridge_printk(level, fmt, arg...)                      \
  43        edac_printk(level, "sbridge", fmt, ##arg)
  44
  45#define sbridge_mc_printk(mci, level, fmt, arg...)              \
  46        edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
  47
  48/*
  49 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
  50 */
  51#define GET_BITFIELD(v, lo, hi) \
  52        (((v) & GENMASK_ULL(hi, lo)) >> (lo))
  53
  54/* Devices 12 Function 6, Offsets 0x80 to 0xcc */
  55static const u32 sbridge_dram_rule[] = {
  56        0x80, 0x88, 0x90, 0x98, 0xa0,
  57        0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
  58};
  59
  60static const u32 ibridge_dram_rule[] = {
  61        0x60, 0x68, 0x70, 0x78, 0x80,
  62        0x88, 0x90, 0x98, 0xa0, 0xa8,
  63        0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
  64        0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
  65};
  66
  67static const u32 knl_dram_rule[] = {
  68        0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
  69        0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
  70        0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
  71        0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
  72        0x100, 0x108, 0x110, 0x118,   /* 20-23 */
  73};
  74
  75#define DRAM_RULE_ENABLE(reg)   GET_BITFIELD(reg, 0,  0)
  76#define A7MODE(reg)             GET_BITFIELD(reg, 26, 26)
  77
  78static char *show_dram_attr(u32 attr)
  79{
  80        switch (attr) {
  81                case 0:
  82                        return "DRAM";
  83                case 1:
  84                        return "MMCFG";
  85                case 2:
  86                        return "NXM";
  87                default:
  88                        return "unknown";
  89        }
  90}
  91
  92static const u32 sbridge_interleave_list[] = {
  93        0x84, 0x8c, 0x94, 0x9c, 0xa4,
  94        0xac, 0xb4, 0xbc, 0xc4, 0xcc,
  95};
  96
  97static const u32 ibridge_interleave_list[] = {
  98        0x64, 0x6c, 0x74, 0x7c, 0x84,
  99        0x8c, 0x94, 0x9c, 0xa4, 0xac,
 100        0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
 101        0xdc, 0xe4, 0xec, 0xf4, 0xfc,
 102};
 103
 104static const u32 knl_interleave_list[] = {
 105        0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
 106        0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
 107        0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
 108        0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
 109        0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
 110};
 111#define MAX_INTERLEAVE                                                  \
 112        (max_t(unsigned int, ARRAY_SIZE(sbridge_interleave_list),       \
 113               max_t(unsigned int, ARRAY_SIZE(ibridge_interleave_list), \
 114                     ARRAY_SIZE(knl_interleave_list))))
 115
 116struct interleave_pkg {
 117        unsigned char start;
 118        unsigned char end;
 119};
 120
 121static const struct interleave_pkg sbridge_interleave_pkg[] = {
 122        { 0, 2 },
 123        { 3, 5 },
 124        { 8, 10 },
 125        { 11, 13 },
 126        { 16, 18 },
 127        { 19, 21 },
 128        { 24, 26 },
 129        { 27, 29 },
 130};
 131
 132static const struct interleave_pkg ibridge_interleave_pkg[] = {
 133        { 0, 3 },
 134        { 4, 7 },
 135        { 8, 11 },
 136        { 12, 15 },
 137        { 16, 19 },
 138        { 20, 23 },
 139        { 24, 27 },
 140        { 28, 31 },
 141};
 142
 143static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
 144                          int interleave)
 145{
 146        return GET_BITFIELD(reg, table[interleave].start,
 147                            table[interleave].end);
 148}
 149
 150/* Devices 12 Function 7 */
 151
 152#define TOLM            0x80
 153#define TOHM            0x84
 154#define HASWELL_TOLM    0xd0
 155#define HASWELL_TOHM_0  0xd4
 156#define HASWELL_TOHM_1  0xd8
 157#define KNL_TOLM        0xd0
 158#define KNL_TOHM_0      0xd4
 159#define KNL_TOHM_1      0xd8
 160
 161#define GET_TOLM(reg)           ((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
 162#define GET_TOHM(reg)           ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
 163
 164/* Device 13 Function 6 */
 165
 166#define SAD_TARGET      0xf0
 167
 168#define SOURCE_ID(reg)          GET_BITFIELD(reg, 9, 11)
 169
 170#define SOURCE_ID_KNL(reg)      GET_BITFIELD(reg, 12, 14)
 171
 172#define SAD_CONTROL     0xf4
 173
 174/* Device 14 function 0 */
 175
 176static const u32 tad_dram_rule[] = {
 177        0x40, 0x44, 0x48, 0x4c,
 178        0x50, 0x54, 0x58, 0x5c,
 179        0x60, 0x64, 0x68, 0x6c,
 180};
 181#define MAX_TAD ARRAY_SIZE(tad_dram_rule)
 182
 183#define TAD_LIMIT(reg)          ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
 184#define TAD_SOCK(reg)           GET_BITFIELD(reg, 10, 11)
 185#define TAD_CH(reg)             GET_BITFIELD(reg,  8,  9)
 186#define TAD_TGT3(reg)           GET_BITFIELD(reg,  6,  7)
 187#define TAD_TGT2(reg)           GET_BITFIELD(reg,  4,  5)
 188#define TAD_TGT1(reg)           GET_BITFIELD(reg,  2,  3)
 189#define TAD_TGT0(reg)           GET_BITFIELD(reg,  0,  1)
 190
 191/* Device 15, function 0 */
 192
 193#define MCMTR                   0x7c
 194#define KNL_MCMTR               0x624
 195
 196#define IS_ECC_ENABLED(mcmtr)           GET_BITFIELD(mcmtr, 2, 2)
 197#define IS_LOCKSTEP_ENABLED(mcmtr)      GET_BITFIELD(mcmtr, 1, 1)
 198#define IS_CLOSE_PG(mcmtr)              GET_BITFIELD(mcmtr, 0, 0)
 199
 200/* Device 15, function 1 */
 201
 202#define RASENABLES              0xac
 203#define IS_MIRROR_ENABLED(reg)          GET_BITFIELD(reg, 0, 0)
 204
 205/* Device 15, functions 2-5 */
 206
 207static const int mtr_regs[] = {
 208        0x80, 0x84, 0x88,
 209};
 210
 211static const int knl_mtr_reg = 0xb60;
 212
 213#define RANK_DISABLE(mtr)               GET_BITFIELD(mtr, 16, 19)
 214#define IS_DIMM_PRESENT(mtr)            GET_BITFIELD(mtr, 14, 14)
 215#define RANK_CNT_BITS(mtr)              GET_BITFIELD(mtr, 12, 13)
 216#define RANK_WIDTH_BITS(mtr)            GET_BITFIELD(mtr, 2, 4)
 217#define COL_WIDTH_BITS(mtr)             GET_BITFIELD(mtr, 0, 1)
 218
 219static const u32 tad_ch_nilv_offset[] = {
 220        0x90, 0x94, 0x98, 0x9c,
 221        0xa0, 0xa4, 0xa8, 0xac,
 222        0xb0, 0xb4, 0xb8, 0xbc,
 223};
 224#define CHN_IDX_OFFSET(reg)             GET_BITFIELD(reg, 28, 29)
 225#define TAD_OFFSET(reg)                 (GET_BITFIELD(reg,  6, 25) << 26)
 226
 227static const u32 rir_way_limit[] = {
 228        0x108, 0x10c, 0x110, 0x114, 0x118,
 229};
 230#define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
 231
 232#define IS_RIR_VALID(reg)       GET_BITFIELD(reg, 31, 31)
 233#define RIR_WAY(reg)            GET_BITFIELD(reg, 28, 29)
 234
 235#define MAX_RIR_WAY     8
 236
 237static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
 238        { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
 239        { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
 240        { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
 241        { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
 242        { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
 243};
 244
 245#define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
 246        GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
 247
 248#define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
 249        GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))
 250
 251/* Device 16, functions 2-7 */
 252
 253/*
 254 * FIXME: Implement the error count reads directly
 255 */
 256
 257#define RANK_ODD_OV(reg)                GET_BITFIELD(reg, 31, 31)
 258#define RANK_ODD_ERR_CNT(reg)           GET_BITFIELD(reg, 16, 30)
 259#define RANK_EVEN_OV(reg)               GET_BITFIELD(reg, 15, 15)
 260#define RANK_EVEN_ERR_CNT(reg)          GET_BITFIELD(reg,  0, 14)
 261
 262#if 0 /* Currently unused*/
 263static const u32 correrrcnt[] = {
 264        0x104, 0x108, 0x10c, 0x110,
 265};
 266
 267static const u32 correrrthrsld[] = {
 268        0x11c, 0x120, 0x124, 0x128,
 269};
 270#endif
 271
 272#define RANK_ODD_ERR_THRSLD(reg)        GET_BITFIELD(reg, 16, 30)
 273#define RANK_EVEN_ERR_THRSLD(reg)       GET_BITFIELD(reg,  0, 14)
 274
 275
 276/* Device 17, function 0 */
 277
 278#define SB_RANK_CFG_A           0x0328
 279
 280#define IB_RANK_CFG_A           0x0320
 281
 282/*
 283 * sbridge structs
 284 */
 285
 286#define NUM_CHANNELS            6       /* Max channels per MC */
 287#define MAX_DIMMS               3       /* Max DIMMS per channel */
 288#define KNL_MAX_CHAS            38      /* KNL max num. of Cache Home Agents */
 289#define KNL_MAX_CHANNELS        6       /* KNL max num. of PCI channels */
 290#define KNL_MAX_EDCS            8       /* Embedded DRAM controllers */
 291#define CHANNEL_UNSPECIFIED     0xf     /* Intel IA32 SDM 15-14 */
 292
 293enum type {
 294        SANDY_BRIDGE,
 295        IVY_BRIDGE,
 296        HASWELL,
 297        BROADWELL,
 298        KNIGHTS_LANDING,
 299};
 300
 301enum domain {
 302        IMC0 = 0,
 303        IMC1,
 304        SOCK,
 305};
 306
 307enum mirroring_mode {
 308        NON_MIRRORING,
 309        ADDR_RANGE_MIRRORING,
 310        FULL_MIRRORING,
 311};
 312
 313struct sbridge_pvt;
 314struct sbridge_info {
 315        enum type       type;
 316        u32             mcmtr;
 317        u32             rankcfgr;
 318        u64             (*get_tolm)(struct sbridge_pvt *pvt);
 319        u64             (*get_tohm)(struct sbridge_pvt *pvt);
 320        u64             (*rir_limit)(u32 reg);
 321        u64             (*sad_limit)(u32 reg);
 322        u32             (*interleave_mode)(u32 reg);
 323        u32             (*dram_attr)(u32 reg);
 324        const u32       *dram_rule;
 325        const u32       *interleave_list;
 326        const struct interleave_pkg *interleave_pkg;
 327        u8              max_sad;
 328        u8              (*get_node_id)(struct sbridge_pvt *pvt);
 329        u8              (*get_ha)(u8 bank);
 330        enum mem_type   (*get_memory_type)(struct sbridge_pvt *pvt);
 331        enum dev_type   (*get_width)(struct sbridge_pvt *pvt, u32 mtr);
 332        struct pci_dev  *pci_vtd;
 333};
 334
 335struct sbridge_channel {
 336        u32             ranks;
 337        u32             dimms;
 338};
 339
 340struct pci_id_descr {
 341        int                     dev_id;
 342        int                     optional;
 343        enum domain             dom;
 344};
 345
 346struct pci_id_table {
 347        const struct pci_id_descr       *descr;
 348        int                             n_devs_per_imc;
 349        int                             n_devs_per_sock;
 350        int                             n_imcs_per_sock;
 351        enum type                       type;
 352};
 353
 354struct sbridge_dev {
 355        struct list_head        list;
 356        int                     seg;
 357        u8                      bus, mc;
 358        u8                      node_id, source_id;
 359        struct pci_dev          **pdev;
 360        enum domain             dom;
 361        int                     n_devs;
 362        int                     i_devs;
 363        struct mem_ctl_info     *mci;
 364};
 365
 366struct knl_pvt {
 367        struct pci_dev          *pci_cha[KNL_MAX_CHAS];
 368        struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
 369        struct pci_dev          *pci_mc0;
 370        struct pci_dev          *pci_mc1;
 371        struct pci_dev          *pci_mc0_misc;
 372        struct pci_dev          *pci_mc1_misc;
 373        struct pci_dev          *pci_mc_info; /* tolm, tohm */
 374};
 375
 376struct sbridge_pvt {
 377        /* Devices per socket */
 378        struct pci_dev          *pci_ddrio;
 379        struct pci_dev          *pci_sad0, *pci_sad1;
 380        struct pci_dev          *pci_br0, *pci_br1;
 381        /* Devices per memory controller */
 382        struct pci_dev          *pci_ha, *pci_ta, *pci_ras;
 383        struct pci_dev          *pci_tad[NUM_CHANNELS];
 384
 385        struct sbridge_dev      *sbridge_dev;
 386
 387        struct sbridge_info     info;
 388        struct sbridge_channel  channel[NUM_CHANNELS];
 389
 390        /* Memory type detection */
 391        bool                    is_cur_addr_mirrored, is_lockstep, is_close_pg;
 392        bool                    is_chan_hash;
 393        enum mirroring_mode     mirror_mode;
 394
 395        /* Memory description */
 396        u64                     tolm, tohm;
 397        struct knl_pvt knl;
 398};
 399
 400#define PCI_DESCR(device_id, opt, domain)       \
 401        .dev_id = (device_id),          \
 402        .optional = opt,        \
 403        .dom = domain
 404
 405static const struct pci_id_descr pci_dev_descr_sbridge[] = {
 406                /* Processor Home Agent */
 407        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0,   0, IMC0) },
 408
 409                /* Memory controller */
 410        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA,    0, IMC0) },
 411        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS,   0, IMC0) },
 412        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0,  0, IMC0) },
 413        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1,  0, IMC0) },
 414        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2,  0, IMC0) },
 415        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3,  0, IMC0) },
 416        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
 417
 418                /* System Address Decoder */
 419        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0,      0, SOCK) },
 420        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1,      0, SOCK) },
 421
 422                /* Broadcast Registers */
 423        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR,        0, SOCK) },
 424};
 425
 426#define PCI_ID_TABLE_ENTRY(A, N, M, T) {        \
 427        .descr = A,                     \
 428        .n_devs_per_imc = N,    \
 429        .n_devs_per_sock = ARRAY_SIZE(A),       \
 430        .n_imcs_per_sock = M,   \
 431        .type = T                       \
 432}
 433
 434static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
 435        PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
 436        {0,}                    /* 0 terminated list. */
 437};
 438
 439/* This changes depending if 1HA or 2HA:
 440 * 1HA:
 441 *      0x0eb8 (17.0) is DDRIO0
 442 * 2HA:
 443 *      0x0ebc (17.4) is DDRIO0
 444 */
 445#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0      0x0eb8
 446#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0      0x0ebc
 447
 448/* pci ids */
 449#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0             0x0ea0
 450#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA          0x0ea8
 451#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS         0x0e71
 452#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0        0x0eaa
 453#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1        0x0eab
 454#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2        0x0eac
 455#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3        0x0ead
 456#define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD                 0x0ec8
 457#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0                 0x0ec9
 458#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1                 0x0eca
 459#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1             0x0e60
 460#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA          0x0e68
 461#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS         0x0e79
 462#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0        0x0e6a
 463#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1        0x0e6b
 464#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2        0x0e6c
 465#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3        0x0e6d
 466
 467static const struct pci_id_descr pci_dev_descr_ibridge[] = {
 468                /* Processor Home Agent */
 469        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0,        0, IMC0) },
 470        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1,        1, IMC1) },
 471
 472                /* Memory controller */
 473        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA,     0, IMC0) },
 474        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS,    0, IMC0) },
 475        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0,   0, IMC0) },
 476        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1,   0, IMC0) },
 477        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2,   0, IMC0) },
 478        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3,   0, IMC0) },
 479
 480                /* Optional, mode 2HA */
 481        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA,     1, IMC1) },
 482        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS,    1, IMC1) },
 483        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0,   1, IMC1) },
 484        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1,   1, IMC1) },
 485        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2,   1, IMC1) },
 486        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3,   1, IMC1) },
 487
 488        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
 489        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
 490
 491                /* System Address Decoder */
 492        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD,            0, SOCK) },
 493
 494                /* Broadcast Registers */
 495        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0,            1, SOCK) },
 496        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1,            0, SOCK) },
 497
 498};
 499
 500static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
 501        PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
 502        {0,}                    /* 0 terminated list. */
 503};
 504
 505/* Haswell support */
 506/* EN processor:
 507 *      - 1 IMC
 508 *      - 3 DDR3 channels, 2 DPC per channel
 509 * EP processor:
 510 *      - 1 or 2 IMC
 511 *      - 4 DDR4 channels, 3 DPC per channel
 512 * EP 4S processor:
 513 *      - 2 IMC
 514 *      - 4 DDR4 channels, 3 DPC per channel
 515 * EX processor:
 516 *      - 2 IMC
 517 *      - each IMC interfaces with a SMI 2 channel
 518 *      - each SMI channel interfaces with a scalable memory buffer
 519 *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
 520 */
 521#define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
 522#define HASWELL_HASYSDEFEATURE2 0x84
 523#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
 524#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0     0x2fa0
 525#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1     0x2f60
 526#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA  0x2fa8
 527#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM  0x2f71
 528#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA  0x2f68
 529#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM  0x2f79
 530#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
 531#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
 532#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
 533#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
 534#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
 535#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
 536#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
 537#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
 538#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
 539#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
 540#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
 541#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
 542#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
 543#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
 544static const struct pci_id_descr pci_dev_descr_haswell[] = {
 545        /* first item must be the HA */
 546        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0,      0, IMC0) },
 547        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1,      1, IMC1) },
 548
 549        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA,   0, IMC0) },
 550        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM,   0, IMC0) },
 551        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
 552        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
 553        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
 554        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },
 555
 556        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA,   1, IMC1) },
 557        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM,   1, IMC1) },
 558        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
 559        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
 560        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
 561        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },
 562
 563        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
 564        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
 565        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0,   1, SOCK) },
 566        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1,   1, SOCK) },
 567        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2,   1, SOCK) },
 568        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3,   1, SOCK) },
 569};
 570
 571static const struct pci_id_table pci_dev_descr_haswell_table[] = {
 572        PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
 573        {0,}                    /* 0 terminated list. */
 574};
 575
 576/* Knight's Landing Support */
 577/*
 578 * KNL's memory channels are swizzled between memory controllers.
 579 * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
 580 */
 581#define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
 582
 583/* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
 584#define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
 585/* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
 586#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN     0x7843
 587/* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
 588#define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
 589/* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
 590#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
 591/* SAD target - 1-29-1 (1 of these) */
 592#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
 593/* Caching / Home Agent */
 594#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
 595/* Device with TOLM and TOHM, 0-5-0 (1 of these) */
 596#define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
 597
 598/*
 599 * KNL differs from SB, IB, and Haswell in that it has multiple
 600 * instances of the same device with the same device ID, so we handle that
 601 * by creating as many copies in the table as we expect to find.
 602 * (Like device ID must be grouped together.)
 603 */
 604
 605static const struct pci_id_descr pci_dev_descr_knl[] = {
 606        [0 ... 1]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC,    0, IMC0)},
 607        [2 ... 7]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN,  0, IMC0) },
 608        [8]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA,    0, IMC0) },
 609        [9]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
 610        [10]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0,  0, SOCK) },
 611        [11]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1,  0, SOCK) },
 612        [12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA,   0, SOCK) },
 613};
 614
 615static const struct pci_id_table pci_dev_descr_knl_table[] = {
 616        PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
 617        {0,}
 618};
 619
 620/*
 621 * Broadwell support
 622 *
 623 * DE processor:
 624 *      - 1 IMC
 625 *      - 2 DDR3 channels, 2 DPC per channel
 626 * EP processor:
 627 *      - 1 or 2 IMC
 628 *      - 4 DDR4 channels, 3 DPC per channel
 629 * EP 4S processor:
 630 *      - 2 IMC
 631 *      - 4 DDR4 channels, 3 DPC per channel
 632 * EX processor:
 633 *      - 2 IMC
 634 *      - each IMC interfaces with a SMI 2 channel
 635 *      - each SMI channel interfaces with a scalable memory buffer
 636 *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
 637 */
 638#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
 639#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0   0x6fa0
 640#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1   0x6f60
 641#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA        0x6fa8
 642#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM        0x6f71
 643#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA        0x6f68
 644#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM        0x6f79
 645#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
 646#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
 647#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
 648#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
 649#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
 650#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
 651#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
 652#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
 653#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
 654#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
 655#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
 656
 657static const struct pci_id_descr pci_dev_descr_broadwell[] = {
 658        /* first item must be the HA */
 659        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0,      0, IMC0) },
 660        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1,      1, IMC1) },
 661
 662        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA,   0, IMC0) },
 663        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM,   0, IMC0) },
 664        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
 665        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
 666        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
 667        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },
 668
 669        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA,   1, IMC1) },
 670        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM,   1, IMC1) },
 671        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
 672        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
 673        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
 674        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },
 675
 676        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
 677        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
 678        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0,   1, SOCK) },
 679};
 680
 681static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
 682        PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
 683        {0,}                    /* 0 terminated list. */
 684};
 685
 686
 687/****************************************************************************
 688                        Ancillary status routines
 689 ****************************************************************************/
 690
 691static inline int numrank(enum type type, u32 mtr)
 692{
 693        int ranks = (1 << RANK_CNT_BITS(mtr));
 694        int max = 4;
 695
 696        if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
 697                max = 8;
 698
 699        if (ranks > max) {
 700                edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
 701                         ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
 702                return -EINVAL;
 703        }
 704
 705        return ranks;
 706}
 707
 708static inline int numrow(u32 mtr)
 709{
 710        int rows = (RANK_WIDTH_BITS(mtr) + 12);
 711
 712        if (rows < 13 || rows > 18) {
 713                edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
 714                         rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
 715                return -EINVAL;
 716        }
 717
 718        return 1 << rows;
 719}
 720
 721static inline int numcol(u32 mtr)
 722{
 723        int cols = (COL_WIDTH_BITS(mtr) + 10);
 724
 725        if (cols > 12) {
 726                edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
 727                         cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
 728                return -EINVAL;
 729        }
 730
 731        return 1 << cols;
 732}
 733
 734static struct sbridge_dev *get_sbridge_dev(int seg, u8 bus, enum domain dom,
 735                                           int multi_bus,
 736                                           struct sbridge_dev *prev)
 737{
 738        struct sbridge_dev *sbridge_dev;
 739
 740        /*
 741         * If we have devices scattered across several busses that pertain
 742         * to the same memory controller, we'll lump them all together.
 743         */
 744        if (multi_bus) {
 745                return list_first_entry_or_null(&sbridge_edac_list,
 746                                struct sbridge_dev, list);
 747        }
 748
 749        sbridge_dev = list_entry(prev ? prev->list.next
 750                                      : sbridge_edac_list.next, struct sbridge_dev, list);
 751
 752        list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
 753                if ((sbridge_dev->seg == seg) && (sbridge_dev->bus == bus) &&
 754                                (dom == SOCK || dom == sbridge_dev->dom))
 755                        return sbridge_dev;
 756        }
 757
 758        return NULL;
 759}
 760
 761static struct sbridge_dev *alloc_sbridge_dev(int seg, u8 bus, enum domain dom,
 762                                             const struct pci_id_table *table)
 763{
 764        struct sbridge_dev *sbridge_dev;
 765
 766        sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
 767        if (!sbridge_dev)
 768                return NULL;
 769
 770        sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
 771                                    sizeof(*sbridge_dev->pdev),
 772                                    GFP_KERNEL);
 773        if (!sbridge_dev->pdev) {
 774                kfree(sbridge_dev);
 775                return NULL;
 776        }
 777
 778        sbridge_dev->seg = seg;
 779        sbridge_dev->bus = bus;
 780        sbridge_dev->dom = dom;
 781        sbridge_dev->n_devs = table->n_devs_per_imc;
 782        list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
 783
 784        return sbridge_dev;
 785}
 786
 787static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
 788{
 789        list_del(&sbridge_dev->list);
 790        kfree(sbridge_dev->pdev);
 791        kfree(sbridge_dev);
 792}
 793
 794static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
 795{
 796        u32 reg;
 797
 798        /* Address range is 32:28 */
 799        pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
 800        return GET_TOLM(reg);
 801}
 802
 803static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
 804{
 805        u32 reg;
 806
 807        pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
 808        return GET_TOHM(reg);
 809}
 810
 811static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
 812{
 813        u32 reg;
 814
 815        pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
 816
 817        return GET_TOLM(reg);
 818}
 819
 820static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
 821{
 822        u32 reg;
 823
 824        pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
 825
 826        return GET_TOHM(reg);
 827}
 828
 829static u64 rir_limit(u32 reg)
 830{
 831        return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
 832}
 833
 834static u64 sad_limit(u32 reg)
 835{
 836        return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
 837}
 838
 839static u32 interleave_mode(u32 reg)
 840{
 841        return GET_BITFIELD(reg, 1, 1);
 842}
 843
 844static u32 dram_attr(u32 reg)
 845{
 846        return GET_BITFIELD(reg, 2, 3);
 847}
 848
 849static u64 knl_sad_limit(u32 reg)
 850{
 851        return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
 852}
 853
 854static u32 knl_interleave_mode(u32 reg)
 855{
 856        return GET_BITFIELD(reg, 1, 2);
 857}
 858
 859static const char * const knl_intlv_mode[] = {
 860        "[8:6]", "[10:8]", "[14:12]", "[32:30]"
 861};
 862
 863static const char *get_intlv_mode_str(u32 reg, enum type t)
 864{
 865        if (t == KNIGHTS_LANDING)
 866                return knl_intlv_mode[knl_interleave_mode(reg)];
 867        else
 868                return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
 869}
 870
 871static u32 dram_attr_knl(u32 reg)
 872{
 873        return GET_BITFIELD(reg, 3, 4);
 874}
 875
 876
 877static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
 878{
 879        u32 reg;
 880        enum mem_type mtype;
 881
 882        if (pvt->pci_ddrio) {
 883                pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
 884                                      &reg);
 885                if (GET_BITFIELD(reg, 11, 11))
 886                        /* FIXME: Can also be LRDIMM */
 887                        mtype = MEM_RDDR3;
 888                else
 889                        mtype = MEM_DDR3;
 890        } else
 891                mtype = MEM_UNKNOWN;
 892
 893        return mtype;
 894}
 895
 896static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
 897{
 898        u32 reg;
 899        bool registered = false;
 900        enum mem_type mtype = MEM_UNKNOWN;
 901
 902        if (!pvt->pci_ddrio)
 903                goto out;
 904
 905        pci_read_config_dword(pvt->pci_ddrio,
 906                              HASWELL_DDRCRCLKCONTROLS, &reg);
 907        /* Is_Rdimm */
 908        if (GET_BITFIELD(reg, 16, 16))
 909                registered = true;
 910
 911        pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
 912        if (GET_BITFIELD(reg, 14, 14)) {
 913                if (registered)
 914                        mtype = MEM_RDDR4;
 915                else
 916                        mtype = MEM_DDR4;
 917        } else {
 918                if (registered)
 919                        mtype = MEM_RDDR3;
 920                else
 921                        mtype = MEM_DDR3;
 922        }
 923
 924out:
 925        return mtype;
 926}
 927
 928static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
 929{
 930        /* for KNL value is fixed */
 931        return DEV_X16;
 932}
 933
 934static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
 935{
 936        /* there's no way to figure out */
 937        return DEV_UNKNOWN;
 938}
 939
 940static enum dev_type __ibridge_get_width(u32 mtr)
 941{
 942        enum dev_type type = DEV_UNKNOWN;
 943
 944        switch (mtr) {
 945        case 2:
 946                type = DEV_X16;
 947                break;
 948        case 1:
 949                type = DEV_X8;
 950                break;
 951        case 0:
 952                type = DEV_X4;
 953                break;
 954        }
 955
 956        return type;
 957}
 958
 959static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
 960{
 961        /*
 962         * ddr3_width on the documentation but also valid for DDR4 on
 963         * Haswell
 964         */
 965        return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
 966}
 967
 968static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
 969{
 970        /* ddr3_width on the documentation but also valid for DDR4 */
 971        return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
 972}
 973
 974static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
 975{
 976        /* DDR4 RDIMMS and LRDIMMS are supported */
 977        return MEM_RDDR4;
 978}
 979
 980static u8 get_node_id(struct sbridge_pvt *pvt)
 981{
 982        u32 reg;
 983        pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
 984        return GET_BITFIELD(reg, 0, 2);
 985}
 986
 987static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
 988{
 989        u32 reg;
 990
 991        pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
 992        return GET_BITFIELD(reg, 0, 3);
 993}
 994
 995static u8 knl_get_node_id(struct sbridge_pvt *pvt)
 996{
 997        u32 reg;
 998
 999        pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
1000        return GET_BITFIELD(reg, 0, 2);
1001}
1002
1003/*
1004 * Use the reporting bank number to determine which memory
1005 * controller (also known as "ha" for "home agent"). Sandy
1006 * Bridge only has one memory controller per socket, so the
1007 * answer is always zero.
1008 */
1009static u8 sbridge_get_ha(u8 bank)
1010{
1011        return 0;
1012}
1013
1014/*
1015 * On Ivy Bridge, Haswell and Broadwell the error may be in a
1016 * home agent bank (7, 8), or one of the per-channel memory
1017 * controller banks (9 .. 16).
1018 */
1019static u8 ibridge_get_ha(u8 bank)
1020{
1021        switch (bank) {
1022        case 7 ... 8:
1023                return bank - 7;
1024        case 9 ... 16:
1025                return (bank - 9) / 4;
1026        default:
1027                return 0xff;
1028        }
1029}
1030
1031/* Not used, but included for safety/symmetry */
1032static u8 knl_get_ha(u8 bank)
1033{
1034        return 0xff;
1035}
1036
1037static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
1038{
1039        u32 reg;
1040
1041        pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
1042        return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1043}
1044
1045static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1046{
1047        u64 rc;
1048        u32 reg;
1049
1050        pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
1051        rc = GET_BITFIELD(reg, 26, 31);
1052        pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1053        rc = ((reg << 6) | rc) << 26;
1054
1055        return rc | 0x1ffffff;
1056}
1057
1058static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1059{
1060        u32 reg;
1061
1062        pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1063        return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1064}
1065
1066static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1067{
1068        u64 rc;
1069        u32 reg_lo, reg_hi;
1070
1071        pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1072        pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1073        rc = ((u64)reg_hi << 32) | reg_lo;
1074        return rc | 0x3ffffff;
1075}
1076
1077
1078static u64 haswell_rir_limit(u32 reg)
1079{
1080        return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
1081}
1082
1083static inline u8 sad_pkg_socket(u8 pkg)
1084{
1085        /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1086        return ((pkg >> 3) << 2) | (pkg & 0x3);
1087}
1088
1089static inline u8 sad_pkg_ha(u8 pkg)
1090{
1091        return (pkg >> 2) & 0x1;
1092}
1093
1094static int haswell_chan_hash(int idx, u64 addr)
1095{
1096        int i;
1097
1098        /*
1099         * XOR even bits from 12:26 to bit0 of idx,
1100         *     odd bits from 13:27 to bit1
1101         */
1102        for (i = 12; i < 28; i += 2)
1103                idx ^= (addr >> i) & 3;
1104
1105        return idx;
1106}
1107
1108/* Low bits of TAD limit, and some metadata. */
1109static const u32 knl_tad_dram_limit_lo[] = {
1110        0x400, 0x500, 0x600, 0x700,
1111        0x800, 0x900, 0xa00, 0xb00,
1112};
1113
1114/* Low bits of TAD offset. */
1115static const u32 knl_tad_dram_offset_lo[] = {
1116        0x404, 0x504, 0x604, 0x704,
1117        0x804, 0x904, 0xa04, 0xb04,
1118};
1119
1120/* High 16 bits of TAD limit and offset. */
1121static const u32 knl_tad_dram_hi[] = {
1122        0x408, 0x508, 0x608, 0x708,
1123        0x808, 0x908, 0xa08, 0xb08,
1124};
1125
1126/* Number of ways a tad entry is interleaved. */
1127static const u32 knl_tad_ways[] = {
1128        8, 6, 4, 3, 2, 1,
1129};
1130
1131/*
1132 * Retrieve the n'th Target Address Decode table entry
1133 * from the memory controller's TAD table.
1134 *
1135 * @pvt:        driver private data
1136 * @entry:      which entry you want to retrieve
1137 * @mc:         which memory controller (0 or 1)
1138 * @offset:     output tad range offset
1139 * @limit:      output address of first byte above tad range
1140 * @ways:       output number of interleave ways
1141 *
1142 * The offset value has curious semantics.  It's a sort of running total
1143 * of the sizes of all the memory regions that aren't mapped in this
1144 * tad table.
1145 */
1146static int knl_get_tad(const struct sbridge_pvt *pvt,
1147                const int entry,
1148                const int mc,
1149                u64 *offset,
1150                u64 *limit,
1151                int *ways)
1152{
1153        u32 reg_limit_lo, reg_offset_lo, reg_hi;
1154        struct pci_dev *pci_mc;
1155        int way_id;
1156
1157        switch (mc) {
1158        case 0:
1159                pci_mc = pvt->knl.pci_mc0;
1160                break;
1161        case 1:
1162                pci_mc = pvt->knl.pci_mc1;
1163                break;
1164        default:
1165                WARN_ON(1);
1166                return -EINVAL;
1167        }
1168
1169        pci_read_config_dword(pci_mc,
1170                        knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1171        pci_read_config_dword(pci_mc,
1172                        knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1173        pci_read_config_dword(pci_mc,
1174                        knl_tad_dram_hi[entry], &reg_hi);
1175
1176        /* Is this TAD entry enabled? */
1177        if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1178                return -ENODEV;
1179
1180        way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1181
1182        if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1183                *ways = knl_tad_ways[way_id];
1184        } else {
1185                *ways = 0;
1186                sbridge_printk(KERN_ERR,
1187                                "Unexpected value %d in mc_tad_limit_lo wayness field\n",
1188                                way_id);
1189                return -ENODEV;
1190        }
1191
1192        /*
1193         * The least significant 6 bits of base and limit are truncated.
1194         * For limit, we fill the missing bits with 1s.
1195         */
1196        *offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1197                                ((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
1198        *limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
1199                                ((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1200
1201        return 0;
1202}
1203
1204/* Determine which memory controller is responsible for a given channel. */
1205static int knl_channel_mc(int channel)
1206{
1207        WARN_ON(channel < 0 || channel >= 6);
1208
1209        return channel < 3 ? 1 : 0;
1210}
1211
1212/*
1213 * Get the Nth entry from EDC_ROUTE_TABLE register.
1214 * (This is the per-tile mapping of logical interleave targets to
1215 *  physical EDC modules.)
1216 *
1217 * entry 0: 0:2
1218 *       1: 3:5
1219 *       2: 6:8
1220 *       3: 9:11
1221 *       4: 12:14
1222 *       5: 15:17
1223 *       6: 18:20
1224 *       7: 21:23
1225 * reserved: 24:31
1226 */
1227static u32 knl_get_edc_route(int entry, u32 reg)
1228{
1229        WARN_ON(entry >= KNL_MAX_EDCS);
1230        return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1231}
1232
1233/*
1234 * Get the Nth entry from MC_ROUTE_TABLE register.
1235 * (This is the per-tile mapping of logical interleave targets to
1236 *  physical DRAM channels modules.)
1237 *
1238 * entry 0: mc 0:2   channel 18:19
1239 *       1: mc 3:5   channel 20:21
1240 *       2: mc 6:8   channel 22:23
1241 *       3: mc 9:11  channel 24:25
1242 *       4: mc 12:14 channel 26:27
1243 *       5: mc 15:17 channel 28:29
1244 * reserved: 30:31
1245 *
1246 * Though we have 3 bits to identify the MC, we should only see
1247 * the values 0 or 1.
1248 */
1249
1250static u32 knl_get_mc_route(int entry, u32 reg)
1251{
1252        int mc, chan;
1253
1254        WARN_ON(entry >= KNL_MAX_CHANNELS);
1255
1256        mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1257        chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1258
1259        return knl_channel_remap(mc, chan);
1260}
1261
1262/*
1263 * Render the EDC_ROUTE register in human-readable form.
1264 * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1265 */
1266static void knl_show_edc_route(u32 reg, char *s)
1267{
1268        int i;
1269
1270        for (i = 0; i < KNL_MAX_EDCS; i++) {
1271                s[i*2] = knl_get_edc_route(i, reg) + '0';
1272                s[i*2+1] = '-';
1273        }
1274
1275        s[KNL_MAX_EDCS*2 - 1] = '\0';
1276}
1277
1278/*
1279 * Render the MC_ROUTE register in human-readable form.
1280 * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1281 */
1282static void knl_show_mc_route(u32 reg, char *s)
1283{
1284        int i;
1285
1286        for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1287                s[i*2] = knl_get_mc_route(i, reg) + '0';
1288                s[i*2+1] = '-';
1289        }
1290
1291        s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1292}
1293
1294#define KNL_EDC_ROUTE 0xb8
1295#define KNL_MC_ROUTE 0xb4
1296
1297/* Is this dram rule backed by regular DRAM in flat mode? */
1298#define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1299
1300/* Is this dram rule cached? */
1301#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1302
1303/* Is this rule backed by edc ? */
1304#define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1305
1306/* Is this rule backed by DRAM, cacheable in EDRAM? */
1307#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1308
1309/* Is this rule mod3? */
1310#define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1311
1312/*
1313 * Figure out how big our RAM modules are.
1314 *
1315 * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1316 * have to figure this out from the SAD rules, interleave lists, route tables,
1317 * and TAD rules.
1318 *
1319 * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1320 * inspect the TAD rules to figure out how large the SAD regions really are.
1321 *
1322 * When we know the real size of a SAD region and how many ways it's
1323 * interleaved, we know the individual contribution of each channel to
1324 * TAD is size/ways.
1325 *
1326 * Finally, we have to check whether each channel participates in each SAD
1327 * region.
1328 *
1329 * Fortunately, KNL only supports one DIMM per channel, so once we know how
1330 * much memory the channel uses, we know the DIMM is at least that large.
1331 * (The BIOS might possibly choose not to map all available memory, in which
1332 * case we will underreport the size of the DIMM.)
1333 *
1334 * In theory, we could try to determine the EDC sizes as well, but that would
1335 * only work in flat mode, not in cache mode.
1336 *
1337 * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1338 *            elements)
1339 */
1340static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1341{
1342        u64 sad_base, sad_limit = 0;
1343        u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1344        int sad_rule = 0;
1345        int tad_rule = 0;
1346        int intrlv_ways, tad_ways;
1347        u32 first_pkg, pkg;
1348        int i;
1349        u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1350        u32 dram_rule, interleave_reg;
1351        u32 mc_route_reg[KNL_MAX_CHAS];
1352        u32 edc_route_reg[KNL_MAX_CHAS];
1353        int edram_only;
1354        char edc_route_string[KNL_MAX_EDCS*2];
1355        char mc_route_string[KNL_MAX_CHANNELS*2];
1356        int cur_reg_start;
1357        int mc;
1358        int channel;
1359        int participants[KNL_MAX_CHANNELS];
1360
1361        for (i = 0; i < KNL_MAX_CHANNELS; i++)
1362                mc_sizes[i] = 0;
1363
1364        /* Read the EDC route table in each CHA. */
1365        cur_reg_start = 0;
1366        for (i = 0; i < KNL_MAX_CHAS; i++) {
1367                pci_read_config_dword(pvt->knl.pci_cha[i],
1368                                KNL_EDC_ROUTE, &edc_route_reg[i]);
1369
1370                if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1371                        knl_show_edc_route(edc_route_reg[i-1],
1372                                        edc_route_string);
1373                        if (cur_reg_start == i-1)
1374                                edac_dbg(0, "edc route table for CHA %d: %s\n",
1375                                        cur_reg_start, edc_route_string);
1376                        else
1377                                edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1378                                        cur_reg_start, i-1, edc_route_string);
1379                        cur_reg_start = i;
1380                }
1381        }
1382        knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1383        if (cur_reg_start == i-1)
1384                edac_dbg(0, "edc route table for CHA %d: %s\n",
1385                        cur_reg_start, edc_route_string);
1386        else
1387                edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1388                        cur_reg_start, i-1, edc_route_string);
1389
1390        /* Read the MC route table in each CHA. */
1391        cur_reg_start = 0;
1392        for (i = 0; i < KNL_MAX_CHAS; i++) {
1393                pci_read_config_dword(pvt->knl.pci_cha[i],
1394                        KNL_MC_ROUTE, &mc_route_reg[i]);
1395
1396                if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1397                        knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1398                        if (cur_reg_start == i-1)
1399                                edac_dbg(0, "mc route table for CHA %d: %s\n",
1400                                        cur_reg_start, mc_route_string);
1401                        else
1402                                edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1403                                        cur_reg_start, i-1, mc_route_string);
1404                        cur_reg_start = i;
1405                }
1406        }
1407        knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1408        if (cur_reg_start == i-1)
1409                edac_dbg(0, "mc route table for CHA %d: %s\n",
1410                        cur_reg_start, mc_route_string);
1411        else
1412                edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1413                        cur_reg_start, i-1, mc_route_string);
1414
1415        /* Process DRAM rules */
1416        for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1417                /* previous limit becomes the new base */
1418                sad_base = sad_limit;
1419
1420                pci_read_config_dword(pvt->pci_sad0,
1421                        pvt->info.dram_rule[sad_rule], &dram_rule);
1422
1423                if (!DRAM_RULE_ENABLE(dram_rule))
1424                        break;
1425
1426                edram_only = KNL_EDRAM_ONLY(dram_rule);
1427
1428                sad_limit = pvt->info.sad_limit(dram_rule)+1;
1429
1430                pci_read_config_dword(pvt->pci_sad0,
1431                        pvt->info.interleave_list[sad_rule], &interleave_reg);
1432
1433                /*
1434                 * Find out how many ways this dram rule is interleaved.
1435                 * We stop when we see the first channel again.
1436                 */
1437                first_pkg = sad_pkg(pvt->info.interleave_pkg,
1438                                                interleave_reg, 0);
1439                for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1440                        pkg = sad_pkg(pvt->info.interleave_pkg,
1441                                                interleave_reg, intrlv_ways);
1442
1443                        if ((pkg & 0x8) == 0) {
1444                                /*
1445                                 * 0 bit means memory is non-local,
1446                                 * which KNL doesn't support
1447                                 */
1448                                edac_dbg(0, "Unexpected interleave target %d\n",
1449                                        pkg);
1450                                return -1;
1451                        }
1452
1453                        if (pkg == first_pkg)
1454                                break;
1455                }
1456                if (KNL_MOD3(dram_rule))
1457                        intrlv_ways *= 3;
1458
1459                edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1460                        sad_rule,
1461                        sad_base,
1462                        sad_limit,
1463                        intrlv_ways,
1464                        edram_only ? ", EDRAM" : "");
1465
1466                /*
1467                 * Find out how big the SAD region really is by iterating
1468                 * over TAD tables (SAD regions may contain holes).
1469                 * Each memory controller might have a different TAD table, so
1470                 * we have to look at both.
1471                 *
1472                 * Livespace is the memory that's mapped in this TAD table,
1473                 * deadspace is the holes (this could be the MMIO hole, or it
1474                 * could be memory that's mapped by the other TAD table but
1475                 * not this one).
1476                 */
1477                for (mc = 0; mc < 2; mc++) {
1478                        sad_actual_size[mc] = 0;
1479                        tad_livespace = 0;
1480                        for (tad_rule = 0;
1481                                        tad_rule < ARRAY_SIZE(
1482                                                knl_tad_dram_limit_lo);
1483                                        tad_rule++) {
1484                                if (knl_get_tad(pvt,
1485                                                tad_rule,
1486                                                mc,
1487                                                &tad_deadspace,
1488                                                &tad_limit,
1489                                                &tad_ways))
1490                                        break;
1491
1492                                tad_size = (tad_limit+1) -
1493                                        (tad_livespace + tad_deadspace);
1494                                tad_livespace += tad_size;
1495                                tad_base = (tad_limit+1) - tad_size;
1496
1497                                if (tad_base < sad_base) {
1498                                        if (tad_limit > sad_base)
1499                                                edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1500                                } else if (tad_base < sad_limit) {
1501                                        if (tad_limit+1 > sad_limit) {
1502                                                edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1503                                        } else {
1504                                                /* TAD region is completely inside SAD region */
1505                                                edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1506                                                        tad_rule, tad_base,
1507                                                        tad_limit, tad_size,
1508                                                        mc);
1509                                                sad_actual_size[mc] += tad_size;
1510                                        }
1511                                }
1512                        }
1513                }
1514
1515                for (mc = 0; mc < 2; mc++) {
1516                        edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1517                                mc, sad_actual_size[mc], sad_actual_size[mc]);
1518                }
1519
1520                /* Ignore EDRAM rule */
1521                if (edram_only)
1522                        continue;
1523
1524                /* Figure out which channels participate in interleave. */
1525                for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1526                        participants[channel] = 0;
1527
1528                /* For each channel, does at least one CHA have
1529                 * this channel mapped to the given target?
1530                 */
1531                for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1532                        int target;
1533                        int cha;
1534
1535                        for (target = 0; target < KNL_MAX_CHANNELS; target++) {
1536                                for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1537                                        if (knl_get_mc_route(target,
1538                                                mc_route_reg[cha]) == channel
1539                                                && !participants[channel]) {
1540                                                participants[channel] = 1;
1541                                                break;
1542                                        }
1543                                }
1544                        }
1545                }
1546
1547                for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1548                        mc = knl_channel_mc(channel);
1549                        if (participants[channel]) {
1550                                edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1551                                        channel,
1552                                        sad_actual_size[mc]/intrlv_ways,
1553                                        sad_rule);
1554                                mc_sizes[channel] +=
1555                                        sad_actual_size[mc]/intrlv_ways;
1556                        }
1557                }
1558        }
1559
1560        return 0;
1561}
1562
1563static void get_source_id(struct mem_ctl_info *mci)
1564{
1565        struct sbridge_pvt *pvt = mci->pvt_info;
1566        u32 reg;
1567
1568        if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1569            pvt->info.type == KNIGHTS_LANDING)
1570                pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1571        else
1572                pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1573
1574        if (pvt->info.type == KNIGHTS_LANDING)
1575                pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1576        else
1577                pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1578}
1579
1580static int __populate_dimms(struct mem_ctl_info *mci,
1581                            u64 knl_mc_sizes[KNL_MAX_CHANNELS],
1582                            enum edac_type mode)
1583{
1584        struct sbridge_pvt *pvt = mci->pvt_info;
1585        int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
1586                                                         : NUM_CHANNELS;
1587        unsigned int i, j, banks, ranks, rows, cols, npages;
1588        struct dimm_info *dimm;
1589        enum mem_type mtype;
1590        u64 size;
1591
1592        mtype = pvt->info.get_memory_type(pvt);
1593        if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1594                edac_dbg(0, "Memory is registered\n");
1595        else if (mtype == MEM_UNKNOWN)
1596                edac_dbg(0, "Cannot determine memory type\n");
1597        else
1598                edac_dbg(0, "Memory is unregistered\n");
1599
1600        if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1601                banks = 16;
1602        else
1603                banks = 8;
1604
1605        for (i = 0; i < channels; i++) {
1606                u32 mtr;
1607
1608                int max_dimms_per_channel;
1609
1610                if (pvt->info.type == KNIGHTS_LANDING) {
1611                        max_dimms_per_channel = 1;
1612                        if (!pvt->knl.pci_channel[i])
1613                                continue;
1614                } else {
1615                        max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1616                        if (!pvt->pci_tad[i])
1617                                continue;
1618                }
1619
1620                for (j = 0; j < max_dimms_per_channel; j++) {
1621                        dimm = edac_get_dimm(mci, i, j, 0);
1622                        if (pvt->info.type == KNIGHTS_LANDING) {
1623                                pci_read_config_dword(pvt->knl.pci_channel[i],
1624                                        knl_mtr_reg, &mtr);
1625                        } else {
1626                                pci_read_config_dword(pvt->pci_tad[i],
1627                                        mtr_regs[j], &mtr);
1628                        }
1629                        edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1630                        if (IS_DIMM_PRESENT(mtr)) {
1631                                if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
1632                                        sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
1633                                                       pvt->sbridge_dev->source_id,
1634                                                       pvt->sbridge_dev->dom, i);
1635                                        return -ENODEV;
1636                                }
1637                                pvt->channel[i].dimms++;
1638
1639                                ranks = numrank(pvt->info.type, mtr);
1640
1641                                if (pvt->info.type == KNIGHTS_LANDING) {
1642                                        /* For DDR4, this is fixed. */
1643                                        cols = 1 << 10;
1644                                        rows = knl_mc_sizes[i] /
1645                                                ((u64) cols * ranks * banks * 8);
1646                                } else {
1647                                        rows = numrow(mtr);
1648                                        cols = numcol(mtr);
1649                                }
1650
1651                                size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1652                                npages = MiB_TO_PAGES(size);
1653
1654                                edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1655                                         pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
1656                                         size, npages,
1657                                         banks, ranks, rows, cols);
1658
1659                                dimm->nr_pages = npages;
1660                                dimm->grain = 32;
1661                                dimm->dtype = pvt->info.get_width(pvt, mtr);
1662                                dimm->mtype = mtype;
1663                                dimm->edac_mode = mode;
1664                                snprintf(dimm->label, sizeof(dimm->label),
1665                                                 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1666                                                 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
1667                        }
1668                }
1669        }
1670
1671        return 0;
1672}
1673
1674static int get_dimm_config(struct mem_ctl_info *mci)
1675{
1676        struct sbridge_pvt *pvt = mci->pvt_info;
1677        u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1678        enum edac_type mode;
1679        u32 reg;
1680
1681        pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1682        edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1683                 pvt->sbridge_dev->mc,
1684                 pvt->sbridge_dev->node_id,
1685                 pvt->sbridge_dev->source_id);
1686
1687        /* KNL doesn't support mirroring or lockstep,
1688         * and is always closed page
1689         */
1690        if (pvt->info.type == KNIGHTS_LANDING) {
1691                mode = EDAC_S4ECD4ED;
1692                pvt->mirror_mode = NON_MIRRORING;
1693                pvt->is_cur_addr_mirrored = false;
1694
1695                if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1696                        return -1;
1697                if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) {
1698                        edac_dbg(0, "Failed to read KNL_MCMTR register\n");
1699                        return -ENODEV;
1700                }
1701        } else {
1702                if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1703                        if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg)) {
1704                                edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
1705                                return -ENODEV;
1706                        }
1707                        pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1708                        if (GET_BITFIELD(reg, 28, 28)) {
1709                                pvt->mirror_mode = ADDR_RANGE_MIRRORING;
1710                                edac_dbg(0, "Address range partial memory mirroring is enabled\n");
1711                                goto next;
1712                        }
1713                }
1714                if (pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg)) {
1715                        edac_dbg(0, "Failed to read RASENABLES register\n");
1716                        return -ENODEV;
1717                }
1718                if (IS_MIRROR_ENABLED(reg)) {
1719                        pvt->mirror_mode = FULL_MIRRORING;
1720                        edac_dbg(0, "Full memory mirroring is enabled\n");
1721                } else {
1722                        pvt->mirror_mode = NON_MIRRORING;
1723                        edac_dbg(0, "Memory mirroring is disabled\n");
1724                }
1725
1726next:
1727                if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) {
1728                        edac_dbg(0, "Failed to read MCMTR register\n");
1729                        return -ENODEV;
1730                }
1731                if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1732                        edac_dbg(0, "Lockstep is enabled\n");
1733                        mode = EDAC_S8ECD8ED;
1734                        pvt->is_lockstep = true;
1735                } else {
1736                        edac_dbg(0, "Lockstep is disabled\n");
1737                        mode = EDAC_S4ECD4ED;
1738                        pvt->is_lockstep = false;
1739                }
1740                if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1741                        edac_dbg(0, "address map is on closed page mode\n");
1742                        pvt->is_close_pg = true;
1743                } else {
1744                        edac_dbg(0, "address map is on open page mode\n");
1745                        pvt->is_close_pg = false;
1746                }
1747        }
1748
1749        return __populate_dimms(mci, knl_mc_sizes, mode);
1750}
1751
1752static void get_memory_layout(const struct mem_ctl_info *mci)
1753{
1754        struct sbridge_pvt *pvt = mci->pvt_info;
1755        int i, j, k, n_sads, n_tads, sad_interl;
1756        u32 reg;
1757        u64 limit, prv = 0;
1758        u64 tmp_mb;
1759        u32 gb, mb;
1760        u32 rir_way;
1761
1762        /*
1763         * Step 1) Get TOLM/TOHM ranges
1764         */
1765
1766        pvt->tolm = pvt->info.get_tolm(pvt);
1767        tmp_mb = (1 + pvt->tolm) >> 20;
1768
1769        gb = div_u64_rem(tmp_mb, 1024, &mb);
1770        edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1771                gb, (mb*1000)/1024, (u64)pvt->tolm);
1772
1773        /* Address range is already 45:25 */
1774        pvt->tohm = pvt->info.get_tohm(pvt);
1775        tmp_mb = (1 + pvt->tohm) >> 20;
1776
1777        gb = div_u64_rem(tmp_mb, 1024, &mb);
1778        edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1779                gb, (mb*1000)/1024, (u64)pvt->tohm);
1780
1781        /*
1782         * Step 2) Get SAD range and SAD Interleave list
1783         * TAD registers contain the interleave wayness. However, it
1784         * seems simpler to just discover it indirectly, with the
1785         * algorithm bellow.
1786         */
1787        prv = 0;
1788        for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1789                /* SAD_LIMIT Address range is 45:26 */
1790                pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1791                                      &reg);
1792                limit = pvt->info.sad_limit(reg);
1793
1794                if (!DRAM_RULE_ENABLE(reg))
1795                        continue;
1796
1797                if (limit <= prv)
1798                        break;
1799
1800                tmp_mb = (limit + 1) >> 20;
1801                gb = div_u64_rem(tmp_mb, 1024, &mb);
1802                edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1803                         n_sads,
1804                         show_dram_attr(pvt->info.dram_attr(reg)),
1805                         gb, (mb*1000)/1024,
1806                         ((u64)tmp_mb) << 20L,
1807                         get_intlv_mode_str(reg, pvt->info.type),
1808                         reg);
1809                prv = limit;
1810
1811                pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1812                                      &reg);
1813                sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1814                for (j = 0; j < 8; j++) {
1815                        u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1816                        if (j > 0 && sad_interl == pkg)
1817                                break;
1818
1819                        edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1820                                 n_sads, j, pkg);
1821                }
1822        }
1823
1824        if (pvt->info.type == KNIGHTS_LANDING)
1825                return;
1826
1827        /*
1828         * Step 3) Get TAD range
1829         */
1830        prv = 0;
1831        for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1832                pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], &reg);
1833                limit = TAD_LIMIT(reg);
1834                if (limit <= prv)
1835                        break;
1836                tmp_mb = (limit + 1) >> 20;
1837
1838                gb = div_u64_rem(tmp_mb, 1024, &mb);
1839                edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1840                         n_tads, gb, (mb*1000)/1024,
1841                         ((u64)tmp_mb) << 20L,
1842                         (u32)(1 << TAD_SOCK(reg)),
1843                         (u32)TAD_CH(reg) + 1,
1844                         (u32)TAD_TGT0(reg),
1845                         (u32)TAD_TGT1(reg),
1846                         (u32)TAD_TGT2(reg),
1847                         (u32)TAD_TGT3(reg),
1848                         reg);
1849                prv = limit;
1850        }
1851
1852        /*
1853         * Step 4) Get TAD offsets, per each channel
1854         */
1855        for (i = 0; i < NUM_CHANNELS; i++) {
1856                if (!pvt->channel[i].dimms)
1857                        continue;
1858                for (j = 0; j < n_tads; j++) {
1859                        pci_read_config_dword(pvt->pci_tad[i],
1860                                              tad_ch_nilv_offset[j],
1861                                              &reg);
1862                        tmp_mb = TAD_OFFSET(reg) >> 20;
1863                        gb = div_u64_rem(tmp_mb, 1024, &mb);
1864                        edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1865                                 i, j,
1866                                 gb, (mb*1000)/1024,
1867                                 ((u64)tmp_mb) << 20L,
1868                                 reg);
1869                }
1870        }
1871
1872        /*
1873         * Step 6) Get RIR Wayness/Limit, per each channel
1874         */
1875        for (i = 0; i < NUM_CHANNELS; i++) {
1876                if (!pvt->channel[i].dimms)
1877                        continue;
1878                for (j = 0; j < MAX_RIR_RANGES; j++) {
1879                        pci_read_config_dword(pvt->pci_tad[i],
1880                                              rir_way_limit[j],
1881                                              &reg);
1882
1883                        if (!IS_RIR_VALID(reg))
1884                                continue;
1885
1886                        tmp_mb = pvt->info.rir_limit(reg) >> 20;
1887                        rir_way = 1 << RIR_WAY(reg);
1888                        gb = div_u64_rem(tmp_mb, 1024, &mb);
1889                        edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1890                                 i, j,
1891                                 gb, (mb*1000)/1024,
1892                                 ((u64)tmp_mb) << 20L,
1893                                 rir_way,
1894                                 reg);
1895
1896                        for (k = 0; k < rir_way; k++) {
1897                                pci_read_config_dword(pvt->pci_tad[i],
1898                                                      rir_offset[j][k],
1899                                                      &reg);
1900                                tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1901
1902                                gb = div_u64_rem(tmp_mb, 1024, &mb);
1903                                edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1904                                         i, j, k,
1905                                         gb, (mb*1000)/1024,
1906                                         ((u64)tmp_mb) << 20L,
1907                                         (u32)RIR_RNK_TGT(pvt->info.type, reg),
1908                                         reg);
1909                        }
1910                }
1911        }
1912}
1913
1914static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
1915{
1916        struct sbridge_dev *sbridge_dev;
1917
1918        list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1919                if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
1920                        return sbridge_dev->mci;
1921        }
1922        return NULL;
1923}
1924
1925static int get_memory_error_data(struct mem_ctl_info *mci,
1926                                 u64 addr,
1927                                 u8 *socket, u8 *ha,
1928                                 long *channel_mask,
1929                                 u8 *rank,
1930                                 char **area_type, char *msg)
1931{
1932        struct mem_ctl_info     *new_mci;
1933        struct sbridge_pvt *pvt = mci->pvt_info;
1934        struct pci_dev          *pci_ha;
1935        int                     n_rir, n_sads, n_tads, sad_way, sck_xch;
1936        int                     sad_interl, idx, base_ch;
1937        int                     interleave_mode, shiftup = 0;
1938        unsigned int            sad_interleave[MAX_INTERLEAVE];
1939        u32                     reg, dram_rule;
1940        u8                      ch_way, sck_way, pkg, sad_ha = 0;
1941        u32                     tad_offset;
1942        u32                     rir_way;
1943        u32                     mb, gb;
1944        u64                     ch_addr, offset, limit = 0, prv = 0;
1945
1946
1947        /*
1948         * Step 0) Check if the address is at special memory ranges
1949         * The check bellow is probably enough to fill all cases where
1950         * the error is not inside a memory, except for the legacy
1951         * range (e. g. VGA addresses). It is unlikely, however, that the
1952         * memory controller would generate an error on that range.
1953         */
1954        if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1955                sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1956                return -EINVAL;
1957        }
1958        if (addr >= (u64)pvt->tohm) {
1959                sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1960                return -EINVAL;
1961        }
1962
1963        /*
1964         * Step 1) Get socket
1965         */
1966        for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1967                pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1968                                      &reg);
1969
1970                if (!DRAM_RULE_ENABLE(reg))
1971                        continue;
1972
1973                limit = pvt->info.sad_limit(reg);
1974                if (limit <= prv) {
1975                        sprintf(msg, "Can't discover the memory socket");
1976                        return -EINVAL;
1977                }
1978                if  (addr <= limit)
1979                        break;
1980                prv = limit;
1981        }
1982        if (n_sads == pvt->info.max_sad) {
1983                sprintf(msg, "Can't discover the memory socket");
1984                return -EINVAL;
1985        }
1986        dram_rule = reg;
1987        *area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
1988        interleave_mode = pvt->info.interleave_mode(dram_rule);
1989
1990        pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1991                              &reg);
1992
1993        if (pvt->info.type == SANDY_BRIDGE) {
1994                sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1995                for (sad_way = 0; sad_way < 8; sad_way++) {
1996                        u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
1997                        if (sad_way > 0 && sad_interl == pkg)
1998                                break;
1999                        sad_interleave[sad_way] = pkg;
2000                        edac_dbg(0, "SAD interleave #%d: %d\n",
2001                                 sad_way, sad_interleave[sad_way]);
2002                }
2003                edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
2004                         pvt->sbridge_dev->mc,
2005                         n_sads,
2006                         addr,
2007                         limit,
2008                         sad_way + 7,
2009                         !interleave_mode ? "" : "XOR[18:16]");
2010                if (interleave_mode)
2011                        idx = ((addr >> 6) ^ (addr >> 16)) & 7;
2012                else
2013                        idx = (addr >> 6) & 7;
2014                switch (sad_way) {
2015                case 1:
2016                        idx = 0;
2017                        break;
2018                case 2:
2019                        idx = idx & 1;
2020                        break;
2021                case 4:
2022                        idx = idx & 3;
2023                        break;
2024                case 8:
2025                        break;
2026                default:
2027                        sprintf(msg, "Can't discover socket interleave");
2028                        return -EINVAL;
2029                }
2030                *socket = sad_interleave[idx];
2031                edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2032                         idx, sad_way, *socket);
2033        } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2034                int bits, a7mode = A7MODE(dram_rule);
2035
2036                if (a7mode) {
2037                        /* A7 mode swaps P9 with P6 */
2038                        bits = GET_BITFIELD(addr, 7, 8) << 1;
2039                        bits |= GET_BITFIELD(addr, 9, 9);
2040                } else
2041                        bits = GET_BITFIELD(addr, 6, 8);
2042
2043                if (interleave_mode == 0) {
2044                        /* interleave mode will XOR {8,7,6} with {18,17,16} */
2045                        idx = GET_BITFIELD(addr, 16, 18);
2046                        idx ^= bits;
2047                } else
2048                        idx = bits;
2049
2050                pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2051                *socket = sad_pkg_socket(pkg);
2052                sad_ha = sad_pkg_ha(pkg);
2053
2054                if (a7mode) {
2055                        /* MCChanShiftUpEnable */
2056                        pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
2057                        shiftup = GET_BITFIELD(reg, 22, 22);
2058                }
2059
2060                edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2061                         idx, *socket, sad_ha, shiftup);
2062        } else {
2063                /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2064                idx = (addr >> 6) & 7;
2065                pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2066                *socket = sad_pkg_socket(pkg);
2067                sad_ha = sad_pkg_ha(pkg);
2068                edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2069                         idx, *socket, sad_ha);
2070        }
2071
2072        *ha = sad_ha;
2073
2074        /*
2075         * Move to the proper node structure, in order to access the
2076         * right PCI registers
2077         */
2078        new_mci = get_mci_for_node_id(*socket, sad_ha);
2079        if (!new_mci) {
2080                sprintf(msg, "Struct for socket #%u wasn't initialized",
2081                        *socket);
2082                return -EINVAL;
2083        }
2084        mci = new_mci;
2085        pvt = mci->pvt_info;
2086
2087        /*
2088         * Step 2) Get memory channel
2089         */
2090        prv = 0;
2091        pci_ha = pvt->pci_ha;
2092        for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2093                pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2094                limit = TAD_LIMIT(reg);
2095                if (limit <= prv) {
2096                        sprintf(msg, "Can't discover the memory channel");
2097                        return -EINVAL;
2098                }
2099                if  (addr <= limit)
2100                        break;
2101                prv = limit;
2102        }
2103        if (n_tads == MAX_TAD) {
2104                sprintf(msg, "Can't discover the memory channel");
2105                return -EINVAL;
2106        }
2107
2108        ch_way = TAD_CH(reg) + 1;
2109        sck_way = TAD_SOCK(reg);
2110
2111        if (ch_way == 3)
2112                idx = addr >> 6;
2113        else {
2114                idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2115                if (pvt->is_chan_hash)
2116                        idx = haswell_chan_hash(idx, addr);
2117        }
2118        idx = idx % ch_way;
2119
2120        /*
2121         * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2122         */
2123        switch (idx) {
2124        case 0:
2125                base_ch = TAD_TGT0(reg);
2126                break;
2127        case 1:
2128                base_ch = TAD_TGT1(reg);
2129                break;
2130        case 2:
2131                base_ch = TAD_TGT2(reg);
2132                break;
2133        case 3:
2134                base_ch = TAD_TGT3(reg);
2135                break;
2136        default:
2137                sprintf(msg, "Can't discover the TAD target");
2138                return -EINVAL;
2139        }
2140        *channel_mask = 1 << base_ch;
2141
2142        pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
2143
2144        if (pvt->mirror_mode == FULL_MIRRORING ||
2145            (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) {
2146                *channel_mask |= 1 << ((base_ch + 2) % 4);
2147                switch(ch_way) {
2148                case 2:
2149                case 4:
2150                        sck_xch = (1 << sck_way) * (ch_way >> 1);
2151                        break;
2152                default:
2153                        sprintf(msg, "Invalid mirror set. Can't decode addr");
2154                        return -EINVAL;
2155                }
2156
2157                pvt->is_cur_addr_mirrored = true;
2158        } else {
2159                sck_xch = (1 << sck_way) * ch_way;
2160                pvt->is_cur_addr_mirrored = false;
2161        }
2162
2163        if (pvt->is_lockstep)
2164                *channel_mask |= 1 << ((base_ch + 1) % 4);
2165
2166        offset = TAD_OFFSET(tad_offset);
2167
2168        edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2169                 n_tads,
2170                 addr,
2171                 limit,
2172                 sck_way,
2173                 ch_way,
2174                 offset,
2175                 idx,
2176                 base_ch,
2177                 *channel_mask);
2178
2179        /* Calculate channel address */
2180        /* Remove the TAD offset */
2181
2182        if (offset > addr) {
2183                sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2184                        offset, addr);
2185                return -EINVAL;
2186        }
2187
2188        ch_addr = addr - offset;
2189        ch_addr >>= (6 + shiftup);
2190        ch_addr /= sck_xch;
2191        ch_addr <<= (6 + shiftup);
2192        ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2193
2194        /*
2195         * Step 3) Decode rank
2196         */
2197        for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2198                pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], &reg);
2199
2200                if (!IS_RIR_VALID(reg))
2201                        continue;
2202
2203                limit = pvt->info.rir_limit(reg);
2204                gb = div_u64_rem(limit >> 20, 1024, &mb);
2205                edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2206                         n_rir,
2207                         gb, (mb*1000)/1024,
2208                         limit,
2209                         1 << RIR_WAY(reg));
2210                if  (ch_addr <= limit)
2211                        break;
2212        }
2213        if (n_rir == MAX_RIR_RANGES) {
2214                sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2215                        ch_addr);
2216                return -EINVAL;
2217        }
2218        rir_way = RIR_WAY(reg);
2219
2220        if (pvt->is_close_pg)
2221                idx = (ch_addr >> 6);
2222        else
2223                idx = (ch_addr >> 13);  /* FIXME: Datasheet says to shift by 15 */
2224        idx %= 1 << rir_way;
2225
2226        pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], &reg);
2227        *rank = RIR_RNK_TGT(pvt->info.type, reg);
2228
2229        edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2230                 n_rir,
2231                 ch_addr,
2232                 limit,
2233                 rir_way,
2234                 idx);
2235
2236        return 0;
2237}
2238
2239static int get_memory_error_data_from_mce(struct mem_ctl_info *mci,
2240                                          const struct mce *m, u8 *socket,
2241                                          u8 *ha, long *channel_mask,
2242                                          char *msg)
2243{
2244        u32 reg, channel = GET_BITFIELD(m->status, 0, 3);
2245        struct mem_ctl_info *new_mci;
2246        struct sbridge_pvt *pvt;
2247        struct pci_dev *pci_ha;
2248        bool tad0;
2249
2250        if (channel >= NUM_CHANNELS) {
2251                sprintf(msg, "Invalid channel 0x%x", channel);
2252                return -EINVAL;
2253        }
2254
2255        pvt = mci->pvt_info;
2256        if (!pvt->info.get_ha) {
2257                sprintf(msg, "No get_ha()");
2258                return -EINVAL;
2259        }
2260        *ha = pvt->info.get_ha(m->bank);
2261        if (*ha != 0 && *ha != 1) {
2262                sprintf(msg, "Impossible bank %d", m->bank);
2263                return -EINVAL;
2264        }
2265
2266        *socket = m->socketid;
2267        new_mci = get_mci_for_node_id(*socket, *ha);
2268        if (!new_mci) {
2269                strcpy(msg, "mci socket got corrupted!");
2270                return -EINVAL;
2271        }
2272
2273        pvt = new_mci->pvt_info;
2274        pci_ha = pvt->pci_ha;
2275        pci_read_config_dword(pci_ha, tad_dram_rule[0], &reg);
2276        tad0 = m->addr <= TAD_LIMIT(reg);
2277
2278        *channel_mask = 1 << channel;
2279        if (pvt->mirror_mode == FULL_MIRRORING ||
2280            (pvt->mirror_mode == ADDR_RANGE_MIRRORING && tad0)) {
2281                *channel_mask |= 1 << ((channel + 2) % 4);
2282                pvt->is_cur_addr_mirrored = true;
2283        } else {
2284                pvt->is_cur_addr_mirrored = false;
2285        }
2286
2287        if (pvt->is_lockstep)
2288                *channel_mask |= 1 << ((channel + 1) % 4);
2289
2290        return 0;
2291}
2292
2293/****************************************************************************
2294        Device initialization routines: put/get, init/exit
2295 ****************************************************************************/
2296
2297/*
2298 *      sbridge_put_all_devices 'put' all the devices that we have
2299 *                              reserved via 'get'
2300 */
2301static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2302{
2303        int i;
2304
2305        edac_dbg(0, "\n");
2306        for (i = 0; i < sbridge_dev->n_devs; i++) {
2307                struct pci_dev *pdev = sbridge_dev->pdev[i];
2308                if (!pdev)
2309                        continue;
2310                edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2311                         pdev->bus->number,
2312                         PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2313                pci_dev_put(pdev);
2314        }
2315}
2316
2317static void sbridge_put_all_devices(void)
2318{
2319        struct sbridge_dev *sbridge_dev, *tmp;
2320
2321        list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2322                sbridge_put_devices(sbridge_dev);
2323                free_sbridge_dev(sbridge_dev);
2324        }
2325}
2326
2327static int sbridge_get_onedevice(struct pci_dev **prev,
2328                                 u8 *num_mc,
2329                                 const struct pci_id_table *table,
2330                                 const unsigned devno,
2331                                 const int multi_bus)
2332{
2333        struct sbridge_dev *sbridge_dev = NULL;
2334        const struct pci_id_descr *dev_descr = &table->descr[devno];
2335        struct pci_dev *pdev = NULL;
2336        int seg = 0;
2337        u8 bus = 0;
2338        int i = 0;
2339
2340        sbridge_printk(KERN_DEBUG,
2341                "Seeking for: PCI ID %04x:%04x\n",
2342                PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2343
2344        pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2345                              dev_descr->dev_id, *prev);
2346
2347        if (!pdev) {
2348                if (*prev) {
2349                        *prev = pdev;
2350                        return 0;
2351                }
2352
2353                if (dev_descr->optional)
2354                        return 0;
2355
2356                /* if the HA wasn't found */
2357                if (devno == 0)
2358                        return -ENODEV;
2359
2360                sbridge_printk(KERN_INFO,
2361                        "Device not found: %04x:%04x\n",
2362                        PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2363
2364                /* End of list, leave */
2365                return -ENODEV;
2366        }
2367        seg = pci_domain_nr(pdev->bus);
2368        bus = pdev->bus->number;
2369
2370next_imc:
2371        sbridge_dev = get_sbridge_dev(seg, bus, dev_descr->dom,
2372                                      multi_bus, sbridge_dev);
2373        if (!sbridge_dev) {
2374                /* If the HA1 wasn't found, don't create EDAC second memory controller */
2375                if (dev_descr->dom == IMC1 && devno != 1) {
2376                        edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
2377                                 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2378                        pci_dev_put(pdev);
2379                        return 0;
2380                }
2381
2382                if (dev_descr->dom == SOCK)
2383                        goto out_imc;
2384
2385                sbridge_dev = alloc_sbridge_dev(seg, bus, dev_descr->dom, table);
2386                if (!sbridge_dev) {
2387                        pci_dev_put(pdev);
2388                        return -ENOMEM;
2389                }
2390                (*num_mc)++;
2391        }
2392
2393        if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
2394                sbridge_printk(KERN_ERR,
2395                        "Duplicated device for %04x:%04x\n",
2396                        PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2397                pci_dev_put(pdev);
2398                return -ENODEV;
2399        }
2400
2401        sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;
2402
2403        /* pdev belongs to more than one IMC, do extra gets */
2404        if (++i > 1)
2405                pci_dev_get(pdev);
2406
2407        if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
2408                goto next_imc;
2409
2410out_imc:
2411        /* Be sure that the device is enabled */
2412        if (unlikely(pci_enable_device(pdev) < 0)) {
2413                sbridge_printk(KERN_ERR,
2414                        "Couldn't enable %04x:%04x\n",
2415                        PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2416                return -ENODEV;
2417        }
2418
2419        edac_dbg(0, "Detected %04x:%04x\n",
2420                 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2421
2422        /*
2423         * As stated on drivers/pci/search.c, the reference count for
2424         * @from is always decremented if it is not %NULL. So, as we need
2425         * to get all devices up to null, we need to do a get for the device
2426         */
2427        pci_dev_get(pdev);
2428
2429        *prev = pdev;
2430
2431        return 0;
2432}
2433
2434/*
2435 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2436 *                           devices we want to reference for this driver.
2437 * @num_mc: pointer to the memory controllers count, to be incremented in case
2438 *          of success.
2439 * @table: model specific table
2440 *
2441 * returns 0 in case of success or error code
2442 */
2443static int sbridge_get_all_devices(u8 *num_mc,
2444                                        const struct pci_id_table *table)
2445{
2446        int i, rc;
2447        struct pci_dev *pdev = NULL;
2448        int allow_dups = 0;
2449        int multi_bus = 0;
2450
2451        if (table->type == KNIGHTS_LANDING)
2452                allow_dups = multi_bus = 1;
2453        while (table && table->descr) {
2454                for (i = 0; i < table->n_devs_per_sock; i++) {
2455                        if (!allow_dups || i == 0 ||
2456                                        table->descr[i].dev_id !=
2457                                                table->descr[i-1].dev_id) {
2458                                pdev = NULL;
2459                        }
2460                        do {
2461                                rc = sbridge_get_onedevice(&pdev, num_mc,
2462                                                           table, i, multi_bus);
2463                                if (rc < 0) {
2464                                        if (i == 0) {
2465                                                i = table->n_devs_per_sock;
2466                                                break;
2467                                        }
2468                                        sbridge_put_all_devices();
2469                                        return -ENODEV;
2470                                }
2471                        } while (pdev && !allow_dups);
2472                }
2473                table++;
2474        }
2475
2476        return 0;
2477}
2478
2479/*
2480 * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
2481 * the format: XXXa. So we can convert from a device to the corresponding
2482 * channel like this
2483 */
2484#define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
2485
2486static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2487                                 struct sbridge_dev *sbridge_dev)
2488{
2489        struct sbridge_pvt *pvt = mci->pvt_info;
2490        struct pci_dev *pdev;
2491        u8 saw_chan_mask = 0;
2492        int i;
2493
2494        for (i = 0; i < sbridge_dev->n_devs; i++) {
2495                pdev = sbridge_dev->pdev[i];
2496                if (!pdev)
2497                        continue;
2498
2499                switch (pdev->device) {
2500                case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2501                        pvt->pci_sad0 = pdev;
2502                        break;
2503                case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2504                        pvt->pci_sad1 = pdev;
2505                        break;
2506                case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2507                        pvt->pci_br0 = pdev;
2508                        break;
2509                case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2510                        pvt->pci_ha = pdev;
2511                        break;
2512                case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2513                        pvt->pci_ta = pdev;
2514                        break;
2515                case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2516                        pvt->pci_ras = pdev;
2517                        break;
2518                case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2519                case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2520                case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2521                case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2522                {
2523                        int id = TAD_DEV_TO_CHAN(pdev->device);
2524                        pvt->pci_tad[id] = pdev;
2525                        saw_chan_mask |= 1 << id;
2526                }
2527                        break;
2528                case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2529                        pvt->pci_ddrio = pdev;
2530                        break;
2531                default:
2532                        goto error;
2533                }
2534
2535                edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2536                         pdev->vendor, pdev->device,
2537                         sbridge_dev->bus,
2538                         pdev);
2539        }
2540
2541        /* Check if everything were registered */
2542        if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
2543            !pvt->pci_ras || !pvt->pci_ta)
2544                goto enodev;
2545
2546        if (saw_chan_mask != 0x0f)
2547                goto enodev;
2548        return 0;
2549
2550enodev:
2551        sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2552        return -ENODEV;
2553
2554error:
2555        sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2556                       PCI_VENDOR_ID_INTEL, pdev->device);
2557        return -EINVAL;
2558}
2559
2560static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2561                                 struct sbridge_dev *sbridge_dev)
2562{
2563        struct sbridge_pvt *pvt = mci->pvt_info;
2564        struct pci_dev *pdev;
2565        u8 saw_chan_mask = 0;
2566        int i;
2567
2568        for (i = 0; i < sbridge_dev->n_devs; i++) {
2569                pdev = sbridge_dev->pdev[i];
2570                if (!pdev)
2571                        continue;
2572
2573                switch (pdev->device) {
2574                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2575                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2576                        pvt->pci_ha = pdev;
2577                        break;
2578                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2579                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
2580                        pvt->pci_ta = pdev;
2581                        break;
2582                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2583                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
2584                        pvt->pci_ras = pdev;
2585                        break;
2586                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2587                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2588                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2589                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2590                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2591                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2592                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2593                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2594                {
2595                        int id = TAD_DEV_TO_CHAN(pdev->device);
2596                        pvt->pci_tad[id] = pdev;
2597                        saw_chan_mask |= 1 << id;
2598                }
2599                        break;
2600                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2601                        pvt->pci_ddrio = pdev;
2602                        break;
2603                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2604                        pvt->pci_ddrio = pdev;
2605                        break;
2606                case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2607                        pvt->pci_sad0 = pdev;
2608                        break;
2609                case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2610                        pvt->pci_br0 = pdev;
2611                        break;
2612                case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2613                        pvt->pci_br1 = pdev;
2614                        break;
2615                default:
2616                        goto error;
2617                }
2618
2619                edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2620                         sbridge_dev->bus,
2621                         PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2622                         pdev);
2623        }
2624
2625        /* Check if everything were registered */
2626        if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
2627            !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
2628                goto enodev;
2629
2630        if (saw_chan_mask != 0x0f && /* -EN/-EX */
2631            saw_chan_mask != 0x03)   /* -EP */
2632                goto enodev;
2633        return 0;
2634
2635enodev:
2636        sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2637        return -ENODEV;
2638
2639error:
2640        sbridge_printk(KERN_ERR,
2641                       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2642                        pdev->device);
2643        return -EINVAL;
2644}
2645
2646static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2647                                 struct sbridge_dev *sbridge_dev)
2648{
2649        struct sbridge_pvt *pvt = mci->pvt_info;
2650        struct pci_dev *pdev;
2651        u8 saw_chan_mask = 0;
2652        int i;
2653
2654        /* there's only one device per system; not tied to any bus */
2655        if (pvt->info.pci_vtd == NULL)
2656                /* result will be checked later */
2657                pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2658                                                   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2659                                                   NULL);
2660
2661        for (i = 0; i < sbridge_dev->n_devs; i++) {
2662                pdev = sbridge_dev->pdev[i];
2663                if (!pdev)
2664                        continue;
2665
2666                switch (pdev->device) {
2667                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2668                        pvt->pci_sad0 = pdev;
2669                        break;
2670                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2671                        pvt->pci_sad1 = pdev;
2672                        break;
2673                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2674                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2675                        pvt->pci_ha = pdev;
2676                        break;
2677                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2678                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2679                        pvt->pci_ta = pdev;
2680                        break;
2681                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
2682                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
2683                        pvt->pci_ras = pdev;
2684                        break;
2685                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2686                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2687                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2688                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2689                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2690                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2691                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2692                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2693                {
2694                        int id = TAD_DEV_TO_CHAN(pdev->device);
2695                        pvt->pci_tad[id] = pdev;
2696                        saw_chan_mask |= 1 << id;
2697                }
2698                        break;
2699                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2700                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2701                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2702                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2703                        if (!pvt->pci_ddrio)
2704                                pvt->pci_ddrio = pdev;
2705                        break;
2706                default:
2707                        break;
2708                }
2709
2710                edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2711                         sbridge_dev->bus,
2712                         PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2713                         pdev);
2714        }
2715
2716        /* Check if everything were registered */
2717        if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2718            !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2719                goto enodev;
2720
2721        if (saw_chan_mask != 0x0f && /* -EN/-EX */
2722            saw_chan_mask != 0x03)   /* -EP */
2723                goto enodev;
2724        return 0;
2725
2726enodev:
2727        sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2728        return -ENODEV;
2729}
2730
2731static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2732                                 struct sbridge_dev *sbridge_dev)
2733{
2734        struct sbridge_pvt *pvt = mci->pvt_info;
2735        struct pci_dev *pdev;
2736        u8 saw_chan_mask = 0;
2737        int i;
2738
2739        /* there's only one device per system; not tied to any bus */
2740        if (pvt->info.pci_vtd == NULL)
2741                /* result will be checked later */
2742                pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2743                                                   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2744                                                   NULL);
2745
2746        for (i = 0; i < sbridge_dev->n_devs; i++) {
2747                pdev = sbridge_dev->pdev[i];
2748                if (!pdev)
2749                        continue;
2750
2751                switch (pdev->device) {
2752                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2753                        pvt->pci_sad0 = pdev;
2754                        break;
2755                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2756                        pvt->pci_sad1 = pdev;
2757                        break;
2758                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2759                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2760                        pvt->pci_ha = pdev;
2761                        break;
2762                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2763                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2764                        pvt->pci_ta = pdev;
2765                        break;
2766                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
2767                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
2768                        pvt->pci_ras = pdev;
2769                        break;
2770                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2771                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2772                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2773                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2774                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2775                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2776                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2777                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2778                {
2779                        int id = TAD_DEV_TO_CHAN(pdev->device);
2780                        pvt->pci_tad[id] = pdev;
2781                        saw_chan_mask |= 1 << id;
2782                }
2783                        break;
2784                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2785                        pvt->pci_ddrio = pdev;
2786                        break;
2787                default:
2788                        break;
2789                }
2790
2791                edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2792                         sbridge_dev->bus,
2793                         PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2794                         pdev);
2795        }
2796
2797        /* Check if everything were registered */
2798        if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2799            !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2800                goto enodev;
2801
2802        if (saw_chan_mask != 0x0f && /* -EN/-EX */
2803            saw_chan_mask != 0x03)   /* -EP */
2804                goto enodev;
2805        return 0;
2806
2807enodev:
2808        sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2809        return -ENODEV;
2810}
2811
2812static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2813                        struct sbridge_dev *sbridge_dev)
2814{
2815        struct sbridge_pvt *pvt = mci->pvt_info;
2816        struct pci_dev *pdev;
2817        int dev, func;
2818
2819        int i;
2820        int devidx;
2821
2822        for (i = 0; i < sbridge_dev->n_devs; i++) {
2823                pdev = sbridge_dev->pdev[i];
2824                if (!pdev)
2825                        continue;
2826
2827                /* Extract PCI device and function. */
2828                dev = (pdev->devfn >> 3) & 0x1f;
2829                func = pdev->devfn & 0x7;
2830
2831                switch (pdev->device) {
2832                case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2833                        if (dev == 8)
2834                                pvt->knl.pci_mc0 = pdev;
2835                        else if (dev == 9)
2836                                pvt->knl.pci_mc1 = pdev;
2837                        else {
2838                                sbridge_printk(KERN_ERR,
2839                                        "Memory controller in unexpected place! (dev %d, fn %d)\n",
2840                                        dev, func);
2841                                continue;
2842                        }
2843                        break;
2844
2845                case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2846                        pvt->pci_sad0 = pdev;
2847                        break;
2848
2849                case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2850                        pvt->pci_sad1 = pdev;
2851                        break;
2852
2853                case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2854                        /* There are one of these per tile, and range from
2855                         * 1.14.0 to 1.18.5.
2856                         */
2857                        devidx = ((dev-14)*8)+func;
2858
2859                        if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2860                                sbridge_printk(KERN_ERR,
2861                                        "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2862                                        dev, func);
2863                                continue;
2864                        }
2865
2866                        WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2867
2868                        pvt->knl.pci_cha[devidx] = pdev;
2869                        break;
2870
2871                case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
2872                        devidx = -1;
2873
2874                        /*
2875                         *  MC0 channels 0-2 are device 9 function 2-4,
2876                         *  MC1 channels 3-5 are device 8 function 2-4.
2877                         */
2878
2879                        if (dev == 9)
2880                                devidx = func-2;
2881                        else if (dev == 8)
2882                                devidx = 3 + (func-2);
2883
2884                        if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
2885                                sbridge_printk(KERN_ERR,
2886                                        "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2887                                        dev, func);
2888                                continue;
2889                        }
2890
2891                        WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
2892                        pvt->knl.pci_channel[devidx] = pdev;
2893                        break;
2894
2895                case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
2896                        pvt->knl.pci_mc_info = pdev;
2897                        break;
2898
2899                case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
2900                        pvt->pci_ta = pdev;
2901                        break;
2902
2903                default:
2904                        sbridge_printk(KERN_ERR, "Unexpected device %d\n",
2905                                pdev->device);
2906                        break;
2907                }
2908        }
2909
2910        if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
2911            !pvt->pci_sad0     || !pvt->pci_sad1    ||
2912            !pvt->pci_ta) {
2913                goto enodev;
2914        }
2915
2916        for (i = 0; i < KNL_MAX_CHANNELS; i++) {
2917                if (!pvt->knl.pci_channel[i]) {
2918                        sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
2919                        goto enodev;
2920                }
2921        }
2922
2923        for (i = 0; i < KNL_MAX_CHAS; i++) {
2924                if (!pvt->knl.pci_cha[i]) {
2925                        sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
2926                        goto enodev;
2927                }
2928        }
2929
2930        return 0;
2931
2932enodev:
2933        sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2934        return -ENODEV;
2935}
2936
2937/****************************************************************************
2938                        Error check routines
2939 ****************************************************************************/
2940
2941/*
2942 * While Sandy Bridge has error count registers, SMI BIOS read values from
2943 * and resets the counters. So, they are not reliable for the OS to read
2944 * from them. So, we have no option but to just trust on whatever MCE is
2945 * telling us about the errors.
2946 */
2947static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2948                                    const struct mce *m)
2949{
2950        struct mem_ctl_info *new_mci;
2951        struct sbridge_pvt *pvt = mci->pvt_info;
2952        enum hw_event_mc_err_type tp_event;
2953        char *optype, msg[256];
2954        bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2955        bool overflow = GET_BITFIELD(m->status, 62, 62);
2956        bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2957        bool recoverable;
2958        u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2959        u32 mscod = GET_BITFIELD(m->status, 16, 31);
2960        u32 errcode = GET_BITFIELD(m->status, 0, 15);
2961        u32 channel = GET_BITFIELD(m->status, 0, 3);
2962        u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2963        /*
2964         * Bits 5-0 of MCi_MISC give the least significant bit that is valid.
2965         * A value 6 is for cache line aligned address, a value 12 is for page
2966         * aligned address reported by patrol scrubber.
2967         */
2968        u32 lsb = GET_BITFIELD(m->misc, 0, 5);
2969        long channel_mask, first_channel;
2970        u8  rank = 0xff, socket, ha;
2971        int rc, dimm;
2972        char *area_type = "DRAM";
2973
2974        if (pvt->info.type != SANDY_BRIDGE)
2975                recoverable = true;
2976        else
2977                recoverable = GET_BITFIELD(m->status, 56, 56);
2978
2979        if (uncorrected_error) {
2980                core_err_cnt = 1;
2981                if (ripv) {
2982                        tp_event = HW_EVENT_ERR_UNCORRECTED;
2983                } else {
2984                        tp_event = HW_EVENT_ERR_FATAL;
2985                }
2986        } else {
2987                tp_event = HW_EVENT_ERR_CORRECTED;
2988        }
2989
2990        /*
2991         * According with Table 15-9 of the Intel Architecture spec vol 3A,
2992         * memory errors should fit in this mask:
2993         *      000f 0000 1mmm cccc (binary)
2994         * where:
2995         *      f = Correction Report Filtering Bit. If 1, subsequent errors
2996         *          won't be shown
2997         *      mmm = error type
2998         *      cccc = channel
2999         * If the mask doesn't match, report an error to the parsing logic
3000         */
3001        switch (optypenum) {
3002        case 0:
3003                optype = "generic undef request error";
3004                break;
3005        case 1:
3006                optype = "memory read error";
3007                break;
3008        case 2:
3009                optype = "memory write error";
3010                break;
3011        case 3:
3012                optype = "addr/cmd error";
3013                break;
3014        case 4:
3015                optype = "memory scrubbing error";
3016                break;
3017        default:
3018                optype = "reserved";
3019                break;
3020        }
3021
3022        if (pvt->info.type == KNIGHTS_LANDING) {
3023                if (channel == 14) {
3024                        edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
3025                                overflow ? " OVERFLOW" : "",
3026                                (uncorrected_error && recoverable)
3027                                ? " recoverable" : "",
3028                                mscod, errcode,
3029                                m->bank);
3030                } else {
3031                        char A = *("A");
3032
3033                        /*
3034                         * Reported channel is in range 0-2, so we can't map it
3035                         * back to mc. To figure out mc we check machine check
3036                         * bank register that reported this error.
3037                         * bank15 means mc0 and bank16 means mc1.
3038                         */
3039                        channel = knl_channel_remap(m->bank == 16, channel);
3040                        channel_mask = 1 << channel;
3041
3042                        snprintf(msg, sizeof(msg),
3043                                "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
3044                                overflow ? " OVERFLOW" : "",
3045                                (uncorrected_error && recoverable)
3046                                ? " recoverable" : " ",
3047                                mscod, errcode, channel, A + channel);
3048                        edac_mc_handle_error(tp_event, mci, core_err_cnt,
3049                                m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3050                                channel, 0, -1,
3051                                optype, msg);
3052                }
3053                return;
3054        } else if (lsb < 12) {
3055                rc = get_memory_error_data(mci, m->addr, &socket, &ha,
3056                                           &channel_mask, &rank,
3057                                           &area_type, msg);
3058        } else {
3059                rc = get_memory_error_data_from_mce(mci, m, &socket, &ha,
3060                                                    &channel_mask, msg);
3061        }
3062
3063        if (rc < 0)
3064                goto err_parsing;
3065        new_mci = get_mci_for_node_id(socket, ha);
3066        if (!new_mci) {
3067                strcpy(msg, "Error: socket got corrupted!");
3068                goto err_parsing;
3069        }
3070        mci = new_mci;
3071        pvt = mci->pvt_info;
3072
3073        first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
3074
3075        if (rank == 0xff)
3076                dimm = -1;
3077        else if (rank < 4)
3078                dimm = 0;
3079        else if (rank < 8)
3080                dimm = 1;
3081        else
3082                dimm = 2;
3083
3084        /*
3085         * FIXME: On some memory configurations (mirror, lockstep), the
3086         * Memory Controller can't point the error to a single DIMM. The
3087         * EDAC core should be handling the channel mask, in order to point
3088         * to the group of dimm's where the error may be happening.
3089         */
3090        if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg)
3091                channel = first_channel;
3092
3093        snprintf(msg, sizeof(msg),
3094                 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3095                 overflow ? " OVERFLOW" : "",
3096                 (uncorrected_error && recoverable) ? " recoverable" : "",
3097                 area_type,
3098                 mscod, errcode,
3099                 socket, ha,
3100                 channel_mask,
3101                 rank);
3102
3103        edac_dbg(0, "%s\n", msg);
3104
3105        /* FIXME: need support for channel mask */
3106
3107        if (channel == CHANNEL_UNSPECIFIED)
3108                channel = -1;
3109
3110        /* Call the helper to output message */
3111        edac_mc_handle_error(tp_event, mci, core_err_cnt,
3112                             m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3113                             channel, dimm, -1,
3114                             optype, msg);
3115        return;
3116err_parsing:
3117        edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3118                             -1, -1, -1,
3119                             msg, "");
3120
3121}
3122
3123/*
3124 * Check that logging is enabled and that this is the right type
3125 * of error for us to handle.
3126 */
3127static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3128                                   void *data)
3129{
3130        struct mce *mce = (struct mce *)data;
3131        struct mem_ctl_info *mci;
3132        char *type;
3133
3134        if (mce->kflags & MCE_HANDLED_CEC)
3135                return NOTIFY_DONE;
3136
3137        /*
3138         * Just let mcelog handle it if the error is
3139         * outside the memory controller. A memory error
3140         * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3141         * bit 12 has an special meaning.
3142         */
3143        if ((mce->status & 0xefff) >> 7 != 1)
3144                return NOTIFY_DONE;
3145
3146        /* Check ADDRV bit in STATUS */
3147        if (!GET_BITFIELD(mce->status, 58, 58))
3148                return NOTIFY_DONE;
3149
3150        /* Check MISCV bit in STATUS */
3151        if (!GET_BITFIELD(mce->status, 59, 59))
3152                return NOTIFY_DONE;
3153
3154        /* Check address type in MISC (physical address only) */
3155        if (GET_BITFIELD(mce->misc, 6, 8) != 2)
3156                return NOTIFY_DONE;
3157
3158        mci = get_mci_for_node_id(mce->socketid, IMC0);
3159        if (!mci)
3160                return NOTIFY_DONE;
3161
3162        if (mce->mcgstatus & MCG_STATUS_MCIP)
3163                type = "Exception";
3164        else
3165                type = "Event";
3166
3167        sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3168
3169        sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3170                          "Bank %d: %016Lx\n", mce->extcpu, type,
3171                          mce->mcgstatus, mce->bank, mce->status);
3172        sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3173        sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3174        sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3175
3176        sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3177                          "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3178                          mce->time, mce->socketid, mce->apicid);
3179
3180        sbridge_mce_output_error(mci, mce);
3181
3182        /* Advice mcelog that the error were handled */
3183        mce->kflags |= MCE_HANDLED_EDAC;
3184        return NOTIFY_OK;
3185}
3186
3187static struct notifier_block sbridge_mce_dec = {
3188        .notifier_call  = sbridge_mce_check_error,
3189        .priority       = MCE_PRIO_EDAC,
3190};
3191
3192/****************************************************************************
3193                        EDAC register/unregister logic
3194 ****************************************************************************/
3195
3196static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3197{
3198        struct mem_ctl_info *mci = sbridge_dev->mci;
3199
3200        if (unlikely(!mci || !mci->pvt_info)) {
3201                edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3202
3203                sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3204                return;
3205        }
3206
3207        edac_dbg(0, "MC: mci = %p, dev = %p\n",
3208                 mci, &sbridge_dev->pdev[0]->dev);
3209
3210        /* Remove MC sysfs nodes */
3211        edac_mc_del_mc(mci->pdev);
3212
3213        edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3214        kfree(mci->ctl_name);
3215        edac_mc_free(mci);
3216        sbridge_dev->mci = NULL;
3217}
3218
3219static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3220{
3221        struct mem_ctl_info *mci;
3222        struct edac_mc_layer layers[2];
3223        struct sbridge_pvt *pvt;
3224        struct pci_dev *pdev = sbridge_dev->pdev[0];
3225        int rc;
3226
3227        /* allocate a new MC control structure */
3228        layers[0].type = EDAC_MC_LAYER_CHANNEL;
3229        layers[0].size = type == KNIGHTS_LANDING ?
3230                KNL_MAX_CHANNELS : NUM_CHANNELS;
3231        layers[0].is_virt_csrow = false;
3232        layers[1].type = EDAC_MC_LAYER_SLOT;
3233        layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3234        layers[1].is_virt_csrow = true;
3235        mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3236                            sizeof(*pvt));
3237
3238        if (unlikely(!mci))
3239                return -ENOMEM;
3240
3241        edac_dbg(0, "MC: mci = %p, dev = %p\n",
3242                 mci, &pdev->dev);
3243
3244        pvt = mci->pvt_info;
3245        memset(pvt, 0, sizeof(*pvt));
3246
3247        /* Associate sbridge_dev and mci for future usage */
3248        pvt->sbridge_dev = sbridge_dev;
3249        sbridge_dev->mci = mci;
3250
3251        mci->mtype_cap = type == KNIGHTS_LANDING ?
3252                MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3253        mci->edac_ctl_cap = EDAC_FLAG_NONE;
3254        mci->edac_cap = EDAC_FLAG_NONE;
3255        mci->mod_name = EDAC_MOD_STR;
3256        mci->dev_name = pci_name(pdev);
3257        mci->ctl_page_to_phys = NULL;
3258
3259        pvt->info.type = type;
3260        switch (type) {
3261        case IVY_BRIDGE:
3262                pvt->info.rankcfgr = IB_RANK_CFG_A;
3263                pvt->info.get_tolm = ibridge_get_tolm;
3264                pvt->info.get_tohm = ibridge_get_tohm;
3265                pvt->info.dram_rule = ibridge_dram_rule;
3266                pvt->info.get_memory_type = get_memory_type;
3267                pvt->info.get_node_id = get_node_id;
3268                pvt->info.get_ha = ibridge_get_ha;
3269                pvt->info.rir_limit = rir_limit;
3270                pvt->info.sad_limit = sad_limit;
3271                pvt->info.interleave_mode = interleave_mode;
3272                pvt->info.dram_attr = dram_attr;
3273                pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3274                pvt->info.interleave_list = ibridge_interleave_list;
3275                pvt->info.interleave_pkg = ibridge_interleave_pkg;
3276                pvt->info.get_width = ibridge_get_width;
3277
3278                /* Store pci devices at mci for faster access */
3279                rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3280                if (unlikely(rc < 0))
3281                        goto fail0;
3282                get_source_id(mci);
3283                mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
3284                        pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3285                break;
3286        case SANDY_BRIDGE:
3287                pvt->info.rankcfgr = SB_RANK_CFG_A;
3288                pvt->info.get_tolm = sbridge_get_tolm;
3289                pvt->info.get_tohm = sbridge_get_tohm;
3290                pvt->info.dram_rule = sbridge_dram_rule;
3291                pvt->info.get_memory_type = get_memory_type;
3292                pvt->info.get_node_id = get_node_id;
3293                pvt->info.get_ha = sbridge_get_ha;
3294                pvt->info.rir_limit = rir_limit;
3295                pvt->info.sad_limit = sad_limit;
3296                pvt->info.interleave_mode = interleave_mode;
3297                pvt->info.dram_attr = dram_attr;
3298                pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3299                pvt->info.interleave_list = sbridge_interleave_list;
3300                pvt->info.interleave_pkg = sbridge_interleave_pkg;
3301                pvt->info.get_width = sbridge_get_width;
3302
3303                /* Store pci devices at mci for faster access */
3304                rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3305                if (unlikely(rc < 0))
3306                        goto fail0;
3307                get_source_id(mci);
3308                mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
3309                        pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3310                break;
3311        case HASWELL:
3312                /* rankcfgr isn't used */
3313                pvt->info.get_tolm = haswell_get_tolm;
3314                pvt->info.get_tohm = haswell_get_tohm;
3315                pvt->info.dram_rule = ibridge_dram_rule;
3316                pvt->info.get_memory_type = haswell_get_memory_type;
3317                pvt->info.get_node_id = haswell_get_node_id;
3318                pvt->info.get_ha = ibridge_get_ha;
3319                pvt->info.rir_limit = haswell_rir_limit;
3320                pvt->info.sad_limit = sad_limit;
3321                pvt->info.interleave_mode = interleave_mode;
3322                pvt->info.dram_attr = dram_attr;
3323                pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3324                pvt->info.interleave_list = ibridge_interleave_list;
3325                pvt->info.interleave_pkg = ibridge_interleave_pkg;
3326                pvt->info.get_width = ibridge_get_width;
3327
3328                /* Store pci devices at mci for faster access */
3329                rc = haswell_mci_bind_devs(mci, sbridge_dev);
3330                if (unlikely(rc < 0))
3331                        goto fail0;
3332                get_source_id(mci);
3333                mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
3334                        pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3335                break;
3336        case BROADWELL:
3337                /* rankcfgr isn't used */
3338                pvt->info.get_tolm = haswell_get_tolm;
3339                pvt->info.get_tohm = haswell_get_tohm;
3340                pvt->info.dram_rule = ibridge_dram_rule;
3341                pvt->info.get_memory_type = haswell_get_memory_type;
3342                pvt->info.get_node_id = haswell_get_node_id;
3343                pvt->info.get_ha = ibridge_get_ha;
3344                pvt->info.rir_limit = haswell_rir_limit;
3345                pvt->info.sad_limit = sad_limit;
3346                pvt->info.interleave_mode = interleave_mode;
3347                pvt->info.dram_attr = dram_attr;
3348                pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3349                pvt->info.interleave_list = ibridge_interleave_list;
3350                pvt->info.interleave_pkg = ibridge_interleave_pkg;
3351                pvt->info.get_width = broadwell_get_width;
3352
3353                /* Store pci devices at mci for faster access */
3354                rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3355                if (unlikely(rc < 0))
3356                        goto fail0;
3357                get_source_id(mci);
3358                mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
3359                        pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3360                break;
3361        case KNIGHTS_LANDING:
3362                /* pvt->info.rankcfgr == ??? */
3363                pvt->info.get_tolm = knl_get_tolm;
3364                pvt->info.get_tohm = knl_get_tohm;
3365                pvt->info.dram_rule = knl_dram_rule;
3366                pvt->info.get_memory_type = knl_get_memory_type;
3367                pvt->info.get_node_id = knl_get_node_id;
3368                pvt->info.get_ha = knl_get_ha;
3369                pvt->info.rir_limit = NULL;
3370                pvt->info.sad_limit = knl_sad_limit;
3371                pvt->info.interleave_mode = knl_interleave_mode;
3372                pvt->info.dram_attr = dram_attr_knl;
3373                pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3374                pvt->info.interleave_list = knl_interleave_list;
3375                pvt->info.interleave_pkg = ibridge_interleave_pkg;
3376                pvt->info.get_width = knl_get_width;
3377
3378                rc = knl_mci_bind_devs(mci, sbridge_dev);
3379                if (unlikely(rc < 0))
3380                        goto fail0;
3381                get_source_id(mci);
3382                mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
3383                        pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3384                break;
3385        }
3386
3387        if (!mci->ctl_name) {
3388                rc = -ENOMEM;
3389                goto fail0;
3390        }
3391
3392        /* Get dimm basic config and the memory layout */
3393        rc = get_dimm_config(mci);
3394        if (rc < 0) {
3395                edac_dbg(0, "MC: failed to get_dimm_config()\n");
3396                goto fail;
3397        }
3398        get_memory_layout(mci);
3399
3400        /* record ptr to the generic device */
3401        mci->pdev = &pdev->dev;
3402
3403        /* add this new MC control structure to EDAC's list of MCs */
3404        if (unlikely(edac_mc_add_mc(mci))) {
3405                edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3406                rc = -EINVAL;
3407                goto fail;
3408        }
3409
3410        return 0;
3411
3412fail:
3413        kfree(mci->ctl_name);
3414fail0:
3415        edac_mc_free(mci);
3416        sbridge_dev->mci = NULL;
3417        return rc;
3418}
3419
3420static const struct x86_cpu_id sbridge_cpuids[] = {
3421        X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &pci_dev_descr_sbridge_table),
3422        X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X,   &pci_dev_descr_ibridge_table),
3423        X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X,     &pci_dev_descr_haswell_table),
3424        X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X,   &pci_dev_descr_broadwell_table),
3425        X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D,   &pci_dev_descr_broadwell_table),
3426        X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL,  &pci_dev_descr_knl_table),
3427        X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM,  &pci_dev_descr_knl_table),
3428        { }
3429};
3430MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
3431
3432/*
3433 *      sbridge_probe   Get all devices and register memory controllers
3434 *                      present.
3435 *      return:
3436 *              0 for FOUND a device
3437 *              < 0 for error code
3438 */
3439
3440static int sbridge_probe(const struct x86_cpu_id *id)
3441{
3442        int rc = -ENODEV;
3443        u8 mc, num_mc = 0;
3444        struct sbridge_dev *sbridge_dev;
3445        struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3446
3447        /* get the pci devices we want to reserve for our use */
3448        rc = sbridge_get_all_devices(&num_mc, ptable);
3449
3450        if (unlikely(rc < 0)) {
3451                edac_dbg(0, "couldn't get all devices\n");
3452                goto fail0;
3453        }
3454
3455        mc = 0;
3456
3457        list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3458                edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3459                         mc, mc + 1, num_mc);
3460
3461                sbridge_dev->mc = mc++;
3462                rc = sbridge_register_mci(sbridge_dev, ptable->type);
3463                if (unlikely(rc < 0))
3464                        goto fail1;
3465        }
3466
3467        sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3468
3469        return 0;
3470
3471fail1:
3472        list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3473                sbridge_unregister_mci(sbridge_dev);
3474
3475        sbridge_put_all_devices();
3476fail0:
3477        return rc;
3478}
3479
3480/*
3481 *      sbridge_remove  cleanup
3482 *
3483 */
3484static void sbridge_remove(void)
3485{
3486        struct sbridge_dev *sbridge_dev;
3487
3488        edac_dbg(0, "\n");
3489
3490        list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3491                sbridge_unregister_mci(sbridge_dev);
3492
3493        /* Release PCI resources */
3494        sbridge_put_all_devices();
3495}
3496
3497/*
3498 *      sbridge_init            Module entry function
3499 *                      Try to initialize this module for its devices
3500 */
3501static int __init sbridge_init(void)
3502{
3503        const struct x86_cpu_id *id;
3504        const char *owner;
3505        int rc;
3506
3507        edac_dbg(2, "\n");
3508
3509        owner = edac_get_owner();
3510        if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
3511                return -EBUSY;
3512
3513        if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
3514                return -ENODEV;
3515
3516        id = x86_match_cpu(sbridge_cpuids);
3517        if (!id)
3518                return -ENODEV;
3519
3520        /* Ensure that the OPSTATE is set correctly for POLL or NMI */
3521        opstate_init();
3522
3523        rc = sbridge_probe(id);
3524
3525        if (rc >= 0) {
3526                mce_register_decode_chain(&sbridge_mce_dec);
3527                return 0;
3528        }
3529
3530        sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3531                      rc);
3532
3533        return rc;
3534}
3535
3536/*
3537 *      sbridge_exit()  Module exit function
3538 *                      Unregister the driver
3539 */
3540static void __exit sbridge_exit(void)
3541{
3542        edac_dbg(2, "\n");
3543        sbridge_remove();
3544        mce_unregister_decode_chain(&sbridge_mce_dec);
3545}
3546
3547module_init(sbridge_init);
3548module_exit(sbridge_exit);
3549
3550module_param(edac_op_state, int, 0444);
3551MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3552
3553MODULE_LICENSE("GPL");
3554MODULE_AUTHOR("Mauro Carvalho Chehab");
3555MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)");
3556MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3557                   SBRIDGE_REVISION);
3558