linux/drivers/gpu/drm/amd/amdkfd/kfd_device.c
<<
>>
Prefs
   1/*
   2 * Copyright 2014 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 */
  22
  23#include <linux/bsearch.h>
  24#include <linux/pci.h>
  25#include <linux/slab.h>
  26#include "kfd_priv.h"
  27#include "kfd_device_queue_manager.h"
  28#include "kfd_pm4_headers_vi.h"
  29#include "kfd_pm4_headers_aldebaran.h"
  30#include "cwsr_trap_handler.h"
  31#include "kfd_iommu.h"
  32#include "amdgpu_amdkfd.h"
  33#include "kfd_smi_events.h"
  34#include "kfd_migrate.h"
  35
  36#define MQD_SIZE_ALIGNED 768
  37
  38/*
  39 * kfd_locked is used to lock the kfd driver during suspend or reset
  40 * once locked, kfd driver will stop any further GPU execution.
  41 * create process (open) will return -EAGAIN.
  42 */
  43static atomic_t kfd_locked = ATOMIC_INIT(0);
  44
  45#ifdef CONFIG_DRM_AMDGPU_CIK
  46extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
  47#endif
  48extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
  49extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
  50extern const struct kfd2kgd_calls arcturus_kfd2kgd;
  51extern const struct kfd2kgd_calls aldebaran_kfd2kgd;
  52extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
  53extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd;
  54
  55static const struct kfd2kgd_calls *kfd2kgd_funcs[] = {
  56#ifdef KFD_SUPPORT_IOMMU_V2
  57#ifdef CONFIG_DRM_AMDGPU_CIK
  58        [CHIP_KAVERI] = &gfx_v7_kfd2kgd,
  59#endif
  60        [CHIP_CARRIZO] = &gfx_v8_kfd2kgd,
  61        [CHIP_RAVEN] = &gfx_v9_kfd2kgd,
  62#endif
  63#ifdef CONFIG_DRM_AMDGPU_CIK
  64        [CHIP_HAWAII] = &gfx_v7_kfd2kgd,
  65#endif
  66        [CHIP_TONGA] = &gfx_v8_kfd2kgd,
  67        [CHIP_FIJI] = &gfx_v8_kfd2kgd,
  68        [CHIP_POLARIS10] = &gfx_v8_kfd2kgd,
  69        [CHIP_POLARIS11] = &gfx_v8_kfd2kgd,
  70        [CHIP_POLARIS12] = &gfx_v8_kfd2kgd,
  71        [CHIP_VEGAM] = &gfx_v8_kfd2kgd,
  72        [CHIP_VEGA10] = &gfx_v9_kfd2kgd,
  73        [CHIP_VEGA12] = &gfx_v9_kfd2kgd,
  74        [CHIP_VEGA20] = &gfx_v9_kfd2kgd,
  75        [CHIP_RENOIR] = &gfx_v9_kfd2kgd,
  76        [CHIP_ARCTURUS] = &arcturus_kfd2kgd,
  77        [CHIP_ALDEBARAN] = &aldebaran_kfd2kgd,
  78        [CHIP_NAVI10] = &gfx_v10_kfd2kgd,
  79        [CHIP_NAVI12] = &gfx_v10_kfd2kgd,
  80        [CHIP_NAVI14] = &gfx_v10_kfd2kgd,
  81        [CHIP_SIENNA_CICHLID] = &gfx_v10_3_kfd2kgd,
  82        [CHIP_NAVY_FLOUNDER] = &gfx_v10_3_kfd2kgd,
  83        [CHIP_VANGOGH] = &gfx_v10_3_kfd2kgd,
  84        [CHIP_DIMGREY_CAVEFISH] = &gfx_v10_3_kfd2kgd,
  85        [CHIP_BEIGE_GOBY] = &gfx_v10_3_kfd2kgd,
  86        [CHIP_YELLOW_CARP] = &gfx_v10_3_kfd2kgd,
  87        [CHIP_CYAN_SKILLFISH] = &gfx_v10_kfd2kgd,
  88};
  89
  90#ifdef KFD_SUPPORT_IOMMU_V2
  91static const struct kfd_device_info kaveri_device_info = {
  92        .asic_family = CHIP_KAVERI,
  93        .asic_name = "kaveri",
  94        .gfx_target_version = 70000,
  95        .max_pasid_bits = 16,
  96        /* max num of queues for KV.TODO should be a dynamic value */
  97        .max_no_of_hqd  = 24,
  98        .doorbell_size  = 4,
  99        .ih_ring_entry_size = 4 * sizeof(uint32_t),
 100        .event_interrupt_class = &event_interrupt_class_cik,
 101        .num_of_watch_points = 4,
 102        .mqd_size_aligned = MQD_SIZE_ALIGNED,
 103        .supports_cwsr = false,
 104        .needs_iommu_device = true,
 105        .needs_pci_atomics = false,
 106        .num_sdma_engines = 2,
 107        .num_xgmi_sdma_engines = 0,
 108        .num_sdma_queues_per_engine = 2,
 109};
 110
 111static const struct kfd_device_info carrizo_device_info = {
 112        .asic_family = CHIP_CARRIZO,
 113        .asic_name = "carrizo",
 114        .gfx_target_version = 80001,
 115        .max_pasid_bits = 16,
 116        /* max num of queues for CZ.TODO should be a dynamic value */
 117        .max_no_of_hqd  = 24,
 118        .doorbell_size  = 4,
 119        .ih_ring_entry_size = 4 * sizeof(uint32_t),
 120        .event_interrupt_class = &event_interrupt_class_cik,
 121        .num_of_watch_points = 4,
 122        .mqd_size_aligned = MQD_SIZE_ALIGNED,
 123        .supports_cwsr = true,
 124        .needs_iommu_device = true,
 125        .needs_pci_atomics = false,
 126        .num_sdma_engines = 2,
 127        .num_xgmi_sdma_engines = 0,
 128        .num_sdma_queues_per_engine = 2,
 129};
 130#endif
 131
 132static const struct kfd_device_info raven_device_info = {
 133        .asic_family = CHIP_RAVEN,
 134        .asic_name = "raven",
 135        .gfx_target_version = 90002,
 136        .max_pasid_bits = 16,
 137        .max_no_of_hqd  = 24,
 138        .doorbell_size  = 8,
 139        .ih_ring_entry_size = 8 * sizeof(uint32_t),
 140        .event_interrupt_class = &event_interrupt_class_v9,
 141        .num_of_watch_points = 4,
 142        .mqd_size_aligned = MQD_SIZE_ALIGNED,
 143        .supports_cwsr = true,
 144        .needs_iommu_device = true,
 145        .needs_pci_atomics = true,
 146        .num_sdma_engines = 1,
 147        .num_xgmi_sdma_engines = 0,
 148        .num_sdma_queues_per_engine = 2,
 149};
 150
 151static const struct kfd_device_info hawaii_device_info = {
 152        .asic_family = CHIP_HAWAII,
 153        .asic_name = "hawaii",
 154        .gfx_target_version = 70001,
 155        .max_pasid_bits = 16,
 156        /* max num of queues for KV.TODO should be a dynamic value */
 157        .max_no_of_hqd  = 24,
 158        .doorbell_size  = 4,
 159        .ih_ring_entry_size = 4 * sizeof(uint32_t),
 160        .event_interrupt_class = &event_interrupt_class_cik,
 161        .num_of_watch_points = 4,
 162        .mqd_size_aligned = MQD_SIZE_ALIGNED,
 163        .supports_cwsr = false,
 164        .needs_iommu_device = false,
 165        .needs_pci_atomics = false,
 166        .num_sdma_engines = 2,
 167        .num_xgmi_sdma_engines = 0,
 168        .num_sdma_queues_per_engine = 2,
 169};
 170
 171static const struct kfd_device_info tonga_device_info = {
 172        .asic_family = CHIP_TONGA,
 173        .asic_name = "tonga",
 174        .gfx_target_version = 80002,
 175        .max_pasid_bits = 16,
 176        .max_no_of_hqd  = 24,
 177        .doorbell_size  = 4,
 178        .ih_ring_entry_size = 4 * sizeof(uint32_t),
 179        .event_interrupt_class = &event_interrupt_class_cik,
 180        .num_of_watch_points = 4,
 181        .mqd_size_aligned = MQD_SIZE_ALIGNED,
 182        .supports_cwsr = false,
 183        .needs_iommu_device = false,
 184        .needs_pci_atomics = true,
 185        .num_sdma_engines = 2,
 186        .num_xgmi_sdma_engines = 0,
 187        .num_sdma_queues_per_engine = 2,
 188};
 189
 190static const struct kfd_device_info fiji_device_info = {
 191        .asic_family = CHIP_FIJI,
 192        .asic_name = "fiji",
 193        .gfx_target_version = 80003,
 194        .max_pasid_bits = 16,
 195        .max_no_of_hqd  = 24,
 196        .doorbell_size  = 4,
 197        .ih_ring_entry_size = 4 * sizeof(uint32_t),
 198        .event_interrupt_class = &event_interrupt_class_cik,
 199        .num_of_watch_points = 4,
 200        .mqd_size_aligned = MQD_SIZE_ALIGNED,
 201        .supports_cwsr = true,
 202        .needs_iommu_device = false,
 203        .needs_pci_atomics = true,
 204        .num_sdma_engines = 2,
 205        .num_xgmi_sdma_engines = 0,
 206        .num_sdma_queues_per_engine = 2,
 207};
 208
 209static const struct kfd_device_info fiji_vf_device_info = {
 210        .asic_family = CHIP_FIJI,
 211        .asic_name = "fiji",
 212        .gfx_target_version = 80003,
 213        .max_pasid_bits = 16,
 214        .max_no_of_hqd  = 24,
 215        .doorbell_size  = 4,
 216        .ih_ring_entry_size = 4 * sizeof(uint32_t),
 217        .event_interrupt_class = &event_interrupt_class_cik,
 218        .num_of_watch_points = 4,
 219        .mqd_size_aligned = MQD_SIZE_ALIGNED,
 220        .supports_cwsr = true,
 221        .needs_iommu_device = false,
 222        .needs_pci_atomics = false,
 223        .num_sdma_engines = 2,
 224        .num_xgmi_sdma_engines = 0,
 225        .num_sdma_queues_per_engine = 2,
 226};
 227
 228
 229static const struct kfd_device_info polaris10_device_info = {
 230        .asic_family = CHIP_POLARIS10,
 231        .asic_name = "polaris10",
 232        .gfx_target_version = 80003,
 233        .max_pasid_bits = 16,
 234        .max_no_of_hqd  = 24,
 235        .doorbell_size  = 4,
 236        .ih_ring_entry_size = 4 * sizeof(uint32_t),
 237        .event_interrupt_class = &event_interrupt_class_cik,
 238        .num_of_watch_points = 4,
 239        .mqd_size_aligned = MQD_SIZE_ALIGNED,
 240        .supports_cwsr = true,
 241        .needs_iommu_device = false,
 242        .needs_pci_atomics = true,
 243        .num_sdma_engines = 2,
 244        .num_xgmi_sdma_engines = 0,
 245        .num_sdma_queues_per_engine = 2,
 246};
 247
 248static const struct kfd_device_info polaris10_vf_device_info = {
 249        .asic_family = CHIP_POLARIS10,
 250        .asic_name = "polaris10",
 251        .gfx_target_version = 80003,
 252        .max_pasid_bits = 16,
 253        .max_no_of_hqd  = 24,
 254        .doorbell_size  = 4,
 255        .ih_ring_entry_size = 4 * sizeof(uint32_t),
 256        .event_interrupt_class = &event_interrupt_class_cik,
 257        .num_of_watch_points = 4,
 258        .mqd_size_aligned = MQD_SIZE_ALIGNED,
 259        .supports_cwsr = true,
 260        .needs_iommu_device = false,
 261        .needs_pci_atomics = false,
 262        .num_sdma_engines = 2,
 263        .num_xgmi_sdma_engines = 0,
 264        .num_sdma_queues_per_engine = 2,
 265};
 266
 267static const struct kfd_device_info polaris11_device_info = {
 268        .asic_family = CHIP_POLARIS11,
 269        .asic_name = "polaris11",
 270        .gfx_target_version = 80003,
 271        .max_pasid_bits = 16,
 272        .max_no_of_hqd  = 24,
 273        .doorbell_size  = 4,
 274        .ih_ring_entry_size = 4 * sizeof(uint32_t),
 275        .event_interrupt_class = &event_interrupt_class_cik,
 276        .num_of_watch_points = 4,
 277        .mqd_size_aligned = MQD_SIZE_ALIGNED,
 278        .supports_cwsr = true,
 279        .needs_iommu_device = false,
 280        .needs_pci_atomics = true,
 281        .num_sdma_engines = 2,
 282        .num_xgmi_sdma_engines = 0,
 283        .num_sdma_queues_per_engine = 2,
 284};
 285
 286static const struct kfd_device_info polaris12_device_info = {
 287        .asic_family = CHIP_POLARIS12,
 288        .asic_name = "polaris12",
 289        .gfx_target_version = 80003,
 290        .max_pasid_bits = 16,
 291        .max_no_of_hqd  = 24,
 292        .doorbell_size  = 4,
 293        .ih_ring_entry_size = 4 * sizeof(uint32_t),
 294        .event_interrupt_class = &event_interrupt_class_cik,
 295        .num_of_watch_points = 4,
 296        .mqd_size_aligned = MQD_SIZE_ALIGNED,
 297        .supports_cwsr = true,
 298        .needs_iommu_device = false,
 299        .needs_pci_atomics = true,
 300        .num_sdma_engines = 2,
 301        .num_xgmi_sdma_engines = 0,
 302        .num_sdma_queues_per_engine = 2,
 303};
 304
 305static const struct kfd_device_info vegam_device_info = {
 306        .asic_family = CHIP_VEGAM,
 307        .asic_name = "vegam",
 308        .gfx_target_version = 80003,
 309        .max_pasid_bits = 16,
 310        .max_no_of_hqd  = 24,
 311        .doorbell_size  = 4,
 312        .ih_ring_entry_size = 4 * sizeof(uint32_t),
 313        .event_interrupt_class = &event_interrupt_class_cik,
 314        .num_of_watch_points = 4,
 315        .mqd_size_aligned = MQD_SIZE_ALIGNED,
 316        .supports_cwsr = true,
 317        .needs_iommu_device = false,
 318        .needs_pci_atomics = true,
 319        .num_sdma_engines = 2,
 320        .num_xgmi_sdma_engines = 0,
 321        .num_sdma_queues_per_engine = 2,
 322};
 323
 324static const struct kfd_device_info vega10_device_info = {
 325        .asic_family = CHIP_VEGA10,
 326        .asic_name = "vega10",
 327        .gfx_target_version = 90000,
 328        .max_pasid_bits = 16,
 329        .max_no_of_hqd  = 24,
 330        .doorbell_size  = 8,
 331        .ih_ring_entry_size = 8 * sizeof(uint32_t),
 332        .event_interrupt_class = &event_interrupt_class_v9,
 333        .num_of_watch_points = 4,
 334        .mqd_size_aligned = MQD_SIZE_ALIGNED,
 335        .supports_cwsr = true,
 336        .needs_iommu_device = false,
 337        .needs_pci_atomics = false,
 338        .num_sdma_engines = 2,
 339        .num_xgmi_sdma_engines = 0,
 340        .num_sdma_queues_per_engine = 2,
 341};
 342
 343static const struct kfd_device_info vega10_vf_device_info = {
 344        .asic_family = CHIP_VEGA10,
 345        .asic_name = "vega10",
 346        .gfx_target_version = 90000,
 347        .max_pasid_bits = 16,
 348        .max_no_of_hqd  = 24,
 349        .doorbell_size  = 8,
 350        .ih_ring_entry_size = 8 * sizeof(uint32_t),
 351        .event_interrupt_class = &event_interrupt_class_v9,
 352        .num_of_watch_points = 4,
 353        .mqd_size_aligned = MQD_SIZE_ALIGNED,
 354        .supports_cwsr = true,
 355        .needs_iommu_device = false,
 356        .needs_pci_atomics = false,
 357        .num_sdma_engines = 2,
 358        .num_xgmi_sdma_engines = 0,
 359        .num_sdma_queues_per_engine = 2,
 360};
 361
 362static const struct kfd_device_info vega12_device_info = {
 363        .asic_family = CHIP_VEGA12,
 364        .asic_name = "vega12",
 365        .gfx_target_version = 90004,
 366        .max_pasid_bits = 16,
 367        .max_no_of_hqd  = 24,
 368        .doorbell_size  = 8,
 369        .ih_ring_entry_size = 8 * sizeof(uint32_t),
 370        .event_interrupt_class = &event_interrupt_class_v9,
 371        .num_of_watch_points = 4,
 372        .mqd_size_aligned = MQD_SIZE_ALIGNED,
 373        .supports_cwsr = true,
 374        .needs_iommu_device = false,
 375        .needs_pci_atomics = false,
 376        .num_sdma_engines = 2,
 377        .num_xgmi_sdma_engines = 0,
 378        .num_sdma_queues_per_engine = 2,
 379};
 380
 381static const struct kfd_device_info vega20_device_info = {
 382        .asic_family = CHIP_VEGA20,
 383        .asic_name = "vega20",
 384        .gfx_target_version = 90006,
 385        .max_pasid_bits = 16,
 386        .max_no_of_hqd  = 24,
 387        .doorbell_size  = 8,
 388        .ih_ring_entry_size = 8 * sizeof(uint32_t),
 389        .event_interrupt_class = &event_interrupt_class_v9,
 390        .num_of_watch_points = 4,
 391        .mqd_size_aligned = MQD_SIZE_ALIGNED,
 392        .supports_cwsr = true,
 393        .needs_iommu_device = false,
 394        .needs_pci_atomics = false,
 395        .num_sdma_engines = 2,
 396        .num_xgmi_sdma_engines = 0,
 397        .num_sdma_queues_per_engine = 8,
 398};
 399
 400static const struct kfd_device_info arcturus_device_info = {
 401        .asic_family = CHIP_ARCTURUS,
 402        .asic_name = "arcturus",
 403        .gfx_target_version = 90008,
 404        .max_pasid_bits = 16,
 405        .max_no_of_hqd  = 24,
 406        .doorbell_size  = 8,
 407        .ih_ring_entry_size = 8 * sizeof(uint32_t),
 408        .event_interrupt_class = &event_interrupt_class_v9,
 409        .num_of_watch_points = 4,
 410        .mqd_size_aligned = MQD_SIZE_ALIGNED,
 411        .supports_cwsr = true,
 412        .needs_iommu_device = false,
 413        .needs_pci_atomics = false,
 414        .num_sdma_engines = 2,
 415        .num_xgmi_sdma_engines = 6,
 416        .num_sdma_queues_per_engine = 8,
 417};
 418
 419static const struct kfd_device_info aldebaran_device_info = {
 420        .asic_family = CHIP_ALDEBARAN,
 421        .asic_name = "aldebaran",
 422        .gfx_target_version = 90010,
 423        .max_pasid_bits = 16,
 424        .max_no_of_hqd  = 24,
 425        .doorbell_size  = 8,
 426        .ih_ring_entry_size = 8 * sizeof(uint32_t),
 427        .event_interrupt_class = &event_interrupt_class_v9,
 428        .num_of_watch_points = 4,
 429        .mqd_size_aligned = MQD_SIZE_ALIGNED,
 430        .supports_cwsr = true,
 431        .needs_iommu_device = false,
 432        .needs_pci_atomics = false,
 433        .num_sdma_engines = 2,
 434        .num_xgmi_sdma_engines = 3,
 435        .num_sdma_queues_per_engine = 8,
 436};
 437
 438static const struct kfd_device_info renoir_device_info = {
 439        .asic_family = CHIP_RENOIR,
 440        .asic_name = "renoir",
 441        .gfx_target_version = 90002,
 442        .max_pasid_bits = 16,
 443        .max_no_of_hqd  = 24,
 444        .doorbell_size  = 8,
 445        .ih_ring_entry_size = 8 * sizeof(uint32_t),
 446        .event_interrupt_class = &event_interrupt_class_v9,
 447        .num_of_watch_points = 4,
 448        .mqd_size_aligned = MQD_SIZE_ALIGNED,
 449        .supports_cwsr = true,
 450        .needs_iommu_device = false,
 451        .needs_pci_atomics = false,
 452        .num_sdma_engines = 1,
 453        .num_xgmi_sdma_engines = 0,
 454        .num_sdma_queues_per_engine = 2,
 455};
 456
 457static const struct kfd_device_info navi10_device_info = {
 458        .asic_family = CHIP_NAVI10,
 459        .asic_name = "navi10",
 460        .gfx_target_version = 100100,
 461        .max_pasid_bits = 16,
 462        .max_no_of_hqd  = 24,
 463        .doorbell_size  = 8,
 464        .ih_ring_entry_size = 8 * sizeof(uint32_t),
 465        .event_interrupt_class = &event_interrupt_class_v9,
 466        .num_of_watch_points = 4,
 467        .mqd_size_aligned = MQD_SIZE_ALIGNED,
 468        .needs_iommu_device = false,
 469        .supports_cwsr = true,
 470        .needs_pci_atomics = true,
 471        .no_atomic_fw_version = 145,
 472        .num_sdma_engines = 2,
 473        .num_xgmi_sdma_engines = 0,
 474        .num_sdma_queues_per_engine = 8,
 475};
 476
 477static const struct kfd_device_info navi12_device_info = {
 478        .asic_family = CHIP_NAVI12,
 479        .asic_name = "navi12",
 480        .gfx_target_version = 100101,
 481        .max_pasid_bits = 16,
 482        .max_no_of_hqd  = 24,
 483        .doorbell_size  = 8,
 484        .ih_ring_entry_size = 8 * sizeof(uint32_t),
 485        .event_interrupt_class = &event_interrupt_class_v9,
 486        .num_of_watch_points = 4,
 487        .mqd_size_aligned = MQD_SIZE_ALIGNED,
 488        .needs_iommu_device = false,
 489        .supports_cwsr = true,
 490        .needs_pci_atomics = true,
 491        .no_atomic_fw_version = 145,
 492        .num_sdma_engines = 2,
 493        .num_xgmi_sdma_engines = 0,
 494        .num_sdma_queues_per_engine = 8,
 495};
 496
 497static const struct kfd_device_info navi14_device_info = {
 498        .asic_family = CHIP_NAVI14,
 499        .asic_name = "navi14",
 500        .gfx_target_version = 100102,
 501        .max_pasid_bits = 16,
 502        .max_no_of_hqd  = 24,
 503        .doorbell_size  = 8,
 504        .ih_ring_entry_size = 8 * sizeof(uint32_t),
 505        .event_interrupt_class = &event_interrupt_class_v9,
 506        .num_of_watch_points = 4,
 507        .mqd_size_aligned = MQD_SIZE_ALIGNED,
 508        .needs_iommu_device = false,
 509        .supports_cwsr = true,
 510        .needs_pci_atomics = true,
 511        .no_atomic_fw_version = 145,
 512        .num_sdma_engines = 2,
 513        .num_xgmi_sdma_engines = 0,
 514        .num_sdma_queues_per_engine = 8,
 515};
 516
 517static const struct kfd_device_info sienna_cichlid_device_info = {
 518        .asic_family = CHIP_SIENNA_CICHLID,
 519        .asic_name = "sienna_cichlid",
 520        .gfx_target_version = 100300,
 521        .max_pasid_bits = 16,
 522        .max_no_of_hqd  = 24,
 523        .doorbell_size  = 8,
 524        .ih_ring_entry_size = 8 * sizeof(uint32_t),
 525        .event_interrupt_class = &event_interrupt_class_v9,
 526        .num_of_watch_points = 4,
 527        .mqd_size_aligned = MQD_SIZE_ALIGNED,
 528        .needs_iommu_device = false,
 529        .supports_cwsr = true,
 530        .needs_pci_atomics = true,
 531        .no_atomic_fw_version = 92,
 532        .num_sdma_engines = 4,
 533        .num_xgmi_sdma_engines = 0,
 534        .num_sdma_queues_per_engine = 8,
 535};
 536
 537static const struct kfd_device_info navy_flounder_device_info = {
 538        .asic_family = CHIP_NAVY_FLOUNDER,
 539        .asic_name = "navy_flounder",
 540        .gfx_target_version = 100301,
 541        .max_pasid_bits = 16,
 542        .max_no_of_hqd  = 24,
 543        .doorbell_size  = 8,
 544        .ih_ring_entry_size = 8 * sizeof(uint32_t),
 545        .event_interrupt_class = &event_interrupt_class_v9,
 546        .num_of_watch_points = 4,
 547        .mqd_size_aligned = MQD_SIZE_ALIGNED,
 548        .needs_iommu_device = false,
 549        .supports_cwsr = true,
 550        .needs_pci_atomics = true,
 551        .no_atomic_fw_version = 92,
 552        .num_sdma_engines = 2,
 553        .num_xgmi_sdma_engines = 0,
 554        .num_sdma_queues_per_engine = 8,
 555};
 556
 557static const struct kfd_device_info vangogh_device_info = {
 558        .asic_family = CHIP_VANGOGH,
 559        .asic_name = "vangogh",
 560        .gfx_target_version = 100303,
 561        .max_pasid_bits = 16,
 562        .max_no_of_hqd  = 24,
 563        .doorbell_size  = 8,
 564        .ih_ring_entry_size = 8 * sizeof(uint32_t),
 565        .event_interrupt_class = &event_interrupt_class_v9,
 566        .num_of_watch_points = 4,
 567        .mqd_size_aligned = MQD_SIZE_ALIGNED,
 568        .needs_iommu_device = false,
 569        .supports_cwsr = true,
 570        .needs_pci_atomics = true,
 571        .no_atomic_fw_version = 92,
 572        .num_sdma_engines = 1,
 573        .num_xgmi_sdma_engines = 0,
 574        .num_sdma_queues_per_engine = 2,
 575};
 576
 577static const struct kfd_device_info dimgrey_cavefish_device_info = {
 578        .asic_family = CHIP_DIMGREY_CAVEFISH,
 579        .asic_name = "dimgrey_cavefish",
 580        .gfx_target_version = 100302,
 581        .max_pasid_bits = 16,
 582        .max_no_of_hqd  = 24,
 583        .doorbell_size  = 8,
 584        .ih_ring_entry_size = 8 * sizeof(uint32_t),
 585        .event_interrupt_class = &event_interrupt_class_v9,
 586        .num_of_watch_points = 4,
 587        .mqd_size_aligned = MQD_SIZE_ALIGNED,
 588        .needs_iommu_device = false,
 589        .supports_cwsr = true,
 590        .needs_pci_atomics = true,
 591        .no_atomic_fw_version = 92,
 592        .num_sdma_engines = 2,
 593        .num_xgmi_sdma_engines = 0,
 594        .num_sdma_queues_per_engine = 8,
 595};
 596
 597static const struct kfd_device_info beige_goby_device_info = {
 598        .asic_family = CHIP_BEIGE_GOBY,
 599        .asic_name = "beige_goby",
 600        .gfx_target_version = 100304,
 601        .max_pasid_bits = 16,
 602        .max_no_of_hqd  = 24,
 603        .doorbell_size  = 8,
 604        .ih_ring_entry_size = 8 * sizeof(uint32_t),
 605        .event_interrupt_class = &event_interrupt_class_v9,
 606        .num_of_watch_points = 4,
 607        .mqd_size_aligned = MQD_SIZE_ALIGNED,
 608        .needs_iommu_device = false,
 609        .supports_cwsr = true,
 610        .needs_pci_atomics = true,
 611        .no_atomic_fw_version = 92,
 612        .num_sdma_engines = 1,
 613        .num_xgmi_sdma_engines = 0,
 614        .num_sdma_queues_per_engine = 8,
 615};
 616
 617static const struct kfd_device_info yellow_carp_device_info = {
 618        .asic_family = CHIP_YELLOW_CARP,
 619        .asic_name = "yellow_carp",
 620        .gfx_target_version = 100305,
 621        .max_pasid_bits = 16,
 622        .max_no_of_hqd  = 24,
 623        .doorbell_size  = 8,
 624        .ih_ring_entry_size = 8 * sizeof(uint32_t),
 625        .event_interrupt_class = &event_interrupt_class_v9,
 626        .num_of_watch_points = 4,
 627        .mqd_size_aligned = MQD_SIZE_ALIGNED,
 628        .needs_iommu_device = false,
 629        .supports_cwsr = true,
 630        .needs_pci_atomics = true,
 631        .no_atomic_fw_version = 92,
 632        .num_sdma_engines = 1,
 633        .num_xgmi_sdma_engines = 0,
 634        .num_sdma_queues_per_engine = 2,
 635};
 636
 637static const struct kfd_device_info cyan_skillfish_device_info = {
 638        .asic_family = CHIP_CYAN_SKILLFISH,
 639        .asic_name = "cyan_skillfish",
 640        .gfx_target_version = 100103,
 641        .max_pasid_bits = 16,
 642        .max_no_of_hqd  = 24,
 643        .doorbell_size  = 8,
 644        .ih_ring_entry_size = 8 * sizeof(uint32_t),
 645        .event_interrupt_class = &event_interrupt_class_v9,
 646        .num_of_watch_points = 4,
 647        .mqd_size_aligned = MQD_SIZE_ALIGNED,
 648        .needs_iommu_device = false,
 649        .supports_cwsr = true,
 650        .needs_pci_atomics = true,
 651        .num_sdma_engines = 2,
 652        .num_xgmi_sdma_engines = 0,
 653        .num_sdma_queues_per_engine = 8,
 654};
 655
 656/* For each entry, [0] is regular and [1] is virtualisation device. */
 657static const struct kfd_device_info *kfd_supported_devices[][2] = {
 658#ifdef KFD_SUPPORT_IOMMU_V2
 659        [CHIP_KAVERI] = {&kaveri_device_info, NULL},
 660        [CHIP_CARRIZO] = {&carrizo_device_info, NULL},
 661#endif
 662        [CHIP_RAVEN] = {&raven_device_info, NULL},
 663        [CHIP_HAWAII] = {&hawaii_device_info, NULL},
 664        [CHIP_TONGA] = {&tonga_device_info, NULL},
 665        [CHIP_FIJI] = {&fiji_device_info, &fiji_vf_device_info},
 666        [CHIP_POLARIS10] = {&polaris10_device_info, &polaris10_vf_device_info},
 667        [CHIP_POLARIS11] = {&polaris11_device_info, NULL},
 668        [CHIP_POLARIS12] = {&polaris12_device_info, NULL},
 669        [CHIP_VEGAM] = {&vegam_device_info, NULL},
 670        [CHIP_VEGA10] = {&vega10_device_info, &vega10_vf_device_info},
 671        [CHIP_VEGA12] = {&vega12_device_info, NULL},
 672        [CHIP_VEGA20] = {&vega20_device_info, NULL},
 673        [CHIP_RENOIR] = {&renoir_device_info, NULL},
 674        [CHIP_ARCTURUS] = {&arcturus_device_info, &arcturus_device_info},
 675        [CHIP_ALDEBARAN] = {&aldebaran_device_info, &aldebaran_device_info},
 676        [CHIP_NAVI10] = {&navi10_device_info, NULL},
 677        [CHIP_NAVI12] = {&navi12_device_info, &navi12_device_info},
 678        [CHIP_NAVI14] = {&navi14_device_info, NULL},
 679        [CHIP_SIENNA_CICHLID] = {&sienna_cichlid_device_info, &sienna_cichlid_device_info},
 680        [CHIP_NAVY_FLOUNDER] = {&navy_flounder_device_info, &navy_flounder_device_info},
 681        [CHIP_VANGOGH] = {&vangogh_device_info, NULL},
 682        [CHIP_DIMGREY_CAVEFISH] = {&dimgrey_cavefish_device_info, &dimgrey_cavefish_device_info},
 683        [CHIP_BEIGE_GOBY] = {&beige_goby_device_info, &beige_goby_device_info},
 684        [CHIP_YELLOW_CARP] = {&yellow_carp_device_info, NULL},
 685        [CHIP_CYAN_SKILLFISH] = {&cyan_skillfish_device_info, NULL},
 686};
 687
 688static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
 689                                unsigned int chunk_size);
 690static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
 691
 692static int kfd_resume(struct kfd_dev *kfd);
 693
 694struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
 695        struct pci_dev *pdev, unsigned int asic_type, bool vf)
 696{
 697        struct kfd_dev *kfd;
 698        const struct kfd_device_info *device_info;
 699        const struct kfd2kgd_calls *f2g;
 700
 701        if (asic_type >= sizeof(kfd_supported_devices) / (sizeof(void *) * 2)
 702                || asic_type >= sizeof(kfd2kgd_funcs) / sizeof(void *)) {
 703                dev_err(kfd_device, "asic_type %d out of range\n", asic_type);
 704                return NULL; /* asic_type out of range */
 705        }
 706
 707        device_info = kfd_supported_devices[asic_type][vf];
 708        f2g = kfd2kgd_funcs[asic_type];
 709
 710        if (!device_info || !f2g) {
 711                dev_err(kfd_device, "%s %s not supported in kfd\n",
 712                        amdgpu_asic_name[asic_type], vf ? "VF" : "");
 713                return NULL;
 714        }
 715
 716        kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
 717        if (!kfd)
 718                return NULL;
 719
 720        kfd->kgd = kgd;
 721        kfd->device_info = device_info;
 722        kfd->pdev = pdev;
 723        kfd->init_complete = false;
 724        kfd->kfd2kgd = f2g;
 725        atomic_set(&kfd->compute_profile, 0);
 726
 727        mutex_init(&kfd->doorbell_mutex);
 728        memset(&kfd->doorbell_available_index, 0,
 729                sizeof(kfd->doorbell_available_index));
 730
 731        atomic_set(&kfd->sram_ecc_flag, 0);
 732
 733        ida_init(&kfd->doorbell_ida);
 734
 735        return kfd;
 736}
 737
 738static void kfd_cwsr_init(struct kfd_dev *kfd)
 739{
 740        if (cwsr_enable && kfd->device_info->supports_cwsr) {
 741                if (kfd->device_info->asic_family < CHIP_VEGA10) {
 742                        BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
 743                        kfd->cwsr_isa = cwsr_trap_gfx8_hex;
 744                        kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
 745                } else if (kfd->device_info->asic_family == CHIP_ARCTURUS) {
 746                        BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE);
 747                        kfd->cwsr_isa = cwsr_trap_arcturus_hex;
 748                        kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
 749                } else if (kfd->device_info->asic_family == CHIP_ALDEBARAN) {
 750                        BUILD_BUG_ON(sizeof(cwsr_trap_aldebaran_hex) > PAGE_SIZE);
 751                        kfd->cwsr_isa = cwsr_trap_aldebaran_hex;
 752                        kfd->cwsr_isa_size = sizeof(cwsr_trap_aldebaran_hex);
 753                } else if (kfd->device_info->asic_family < CHIP_NAVI10) {
 754                        BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
 755                        kfd->cwsr_isa = cwsr_trap_gfx9_hex;
 756                        kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
 757                } else if (kfd->device_info->asic_family < CHIP_SIENNA_CICHLID) {
 758                        BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex) > PAGE_SIZE);
 759                        kfd->cwsr_isa = cwsr_trap_nv1x_hex;
 760                        kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex);
 761                } else {
 762                        BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE);
 763                        kfd->cwsr_isa = cwsr_trap_gfx10_hex;
 764                        kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
 765                }
 766
 767                kfd->cwsr_enabled = true;
 768        }
 769}
 770
 771static int kfd_gws_init(struct kfd_dev *kfd)
 772{
 773        int ret = 0;
 774
 775        if (kfd->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
 776                return 0;
 777
 778        if (hws_gws_support
 779                || (kfd->device_info->asic_family == CHIP_VEGA10
 780                        && kfd->mec2_fw_version >= 0x81b3)
 781                || (kfd->device_info->asic_family >= CHIP_VEGA12
 782                        && kfd->device_info->asic_family <= CHIP_RAVEN
 783                        && kfd->mec2_fw_version >= 0x1b3)
 784                || (kfd->device_info->asic_family == CHIP_ARCTURUS
 785                        && kfd->mec2_fw_version >= 0x30)
 786                || (kfd->device_info->asic_family == CHIP_ALDEBARAN
 787                        && kfd->mec2_fw_version >= 0x28))
 788                ret = amdgpu_amdkfd_alloc_gws(kfd->kgd,
 789                                amdgpu_amdkfd_get_num_gws(kfd->kgd), &kfd->gws);
 790
 791        return ret;
 792}
 793
 794static void kfd_smi_init(struct kfd_dev *dev) {
 795        INIT_LIST_HEAD(&dev->smi_clients);
 796        spin_lock_init(&dev->smi_lock);
 797}
 798
 799bool kgd2kfd_device_init(struct kfd_dev *kfd,
 800                         struct drm_device *ddev,
 801                         const struct kgd2kfd_shared_resources *gpu_resources)
 802{
 803        unsigned int size, map_process_packet_size;
 804
 805        kfd->ddev = ddev;
 806        kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
 807                        KGD_ENGINE_MEC1);
 808        kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
 809                        KGD_ENGINE_MEC2);
 810        kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
 811                        KGD_ENGINE_SDMA1);
 812        kfd->shared_resources = *gpu_resources;
 813
 814        kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
 815        kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
 816        kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
 817                        - kfd->vm_info.first_vmid_kfd + 1;
 818
 819        /* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
 820         * 32 and 64-bit requests are possible and must be
 821         * supported.
 822         */
 823        kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kfd->kgd);
 824        if (!kfd->pci_atomic_requested &&
 825            kfd->device_info->needs_pci_atomics &&
 826            (!kfd->device_info->no_atomic_fw_version ||
 827             kfd->mec_fw_version < kfd->device_info->no_atomic_fw_version)) {
 828                dev_info(kfd_device,
 829                         "skipped device %x:%x, PCI rejects atomics %d<%d\n",
 830                         kfd->pdev->vendor, kfd->pdev->device,
 831                         kfd->mec_fw_version,
 832                         kfd->device_info->no_atomic_fw_version);
 833                return false;
 834        }
 835
 836        /* Verify module parameters regarding mapped process number*/
 837        if ((hws_max_conc_proc < 0)
 838                        || (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
 839                dev_err(kfd_device,
 840                        "hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
 841                        hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
 842                        kfd->vm_info.vmid_num_kfd);
 843                kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
 844        } else
 845                kfd->max_proc_per_quantum = hws_max_conc_proc;
 846
 847        /* calculate max size of mqds needed for queues */
 848        size = max_num_of_queues_per_device *
 849                        kfd->device_info->mqd_size_aligned;
 850
 851        /*
 852         * calculate max size of runlist packet.
 853         * There can be only 2 packets at once
 854         */
 855        map_process_packet_size =
 856                        kfd->device_info->asic_family == CHIP_ALDEBARAN ?
 857                                sizeof(struct pm4_mes_map_process_aldebaran) :
 858                                        sizeof(struct pm4_mes_map_process);
 859        size += (KFD_MAX_NUM_OF_PROCESSES * map_process_packet_size +
 860                max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
 861                + sizeof(struct pm4_mes_runlist)) * 2;
 862
 863        /* Add size of HIQ & DIQ */
 864        size += KFD_KERNEL_QUEUE_SIZE * 2;
 865
 866        /* add another 512KB for all other allocations on gart (HPD, fences) */
 867        size += 512 * 1024;
 868
 869        if (amdgpu_amdkfd_alloc_gtt_mem(
 870                        kfd->kgd, size, &kfd->gtt_mem,
 871                        &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
 872                        false)) {
 873                dev_err(kfd_device, "Could not allocate %d bytes\n", size);
 874                goto alloc_gtt_mem_failure;
 875        }
 876
 877        dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
 878
 879        /* Initialize GTT sa with 512 byte chunk size */
 880        if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
 881                dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
 882                goto kfd_gtt_sa_init_error;
 883        }
 884
 885        if (kfd_doorbell_init(kfd)) {
 886                dev_err(kfd_device,
 887                        "Error initializing doorbell aperture\n");
 888                goto kfd_doorbell_error;
 889        }
 890
 891        kfd->hive_id = amdgpu_amdkfd_get_hive_id(kfd->kgd);
 892
 893        kfd->noretry = amdgpu_amdkfd_get_noretry(kfd->kgd);
 894
 895        if (kfd_interrupt_init(kfd)) {
 896                dev_err(kfd_device, "Error initializing interrupts\n");
 897                goto kfd_interrupt_error;
 898        }
 899
 900        kfd->dqm = device_queue_manager_init(kfd);
 901        if (!kfd->dqm) {
 902                dev_err(kfd_device, "Error initializing queue manager\n");
 903                goto device_queue_manager_error;
 904        }
 905
 906        /* If supported on this device, allocate global GWS that is shared
 907         * by all KFD processes
 908         */
 909        if (kfd_gws_init(kfd)) {
 910                dev_err(kfd_device, "Could not allocate %d gws\n",
 911                        amdgpu_amdkfd_get_num_gws(kfd->kgd));
 912                goto gws_error;
 913        }
 914
 915        /* If CRAT is broken, won't set iommu enabled */
 916        kfd_double_confirm_iommu_support(kfd);
 917
 918        if (kfd_iommu_device_init(kfd)) {
 919                dev_err(kfd_device, "Error initializing iommuv2\n");
 920                goto device_iommu_error;
 921        }
 922
 923        kfd_cwsr_init(kfd);
 924
 925        svm_migrate_init((struct amdgpu_device *)kfd->kgd);
 926
 927        if (kfd_resume(kfd))
 928                goto kfd_resume_error;
 929
 930        kfd->dbgmgr = NULL;
 931
 932        if (kfd_topology_add_device(kfd)) {
 933                dev_err(kfd_device, "Error adding device to topology\n");
 934                goto kfd_topology_add_device_error;
 935        }
 936
 937        kfd_smi_init(kfd);
 938
 939        kfd->init_complete = true;
 940        dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
 941                 kfd->pdev->device);
 942
 943        pr_debug("Starting kfd with the following scheduling policy %d\n",
 944                kfd->dqm->sched_policy);
 945
 946        goto out;
 947
 948kfd_topology_add_device_error:
 949kfd_resume_error:
 950device_iommu_error:
 951gws_error:
 952        device_queue_manager_uninit(kfd->dqm);
 953device_queue_manager_error:
 954        kfd_interrupt_exit(kfd);
 955kfd_interrupt_error:
 956        kfd_doorbell_fini(kfd);
 957kfd_doorbell_error:
 958        kfd_gtt_sa_fini(kfd);
 959kfd_gtt_sa_init_error:
 960        amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
 961alloc_gtt_mem_failure:
 962        if (kfd->gws)
 963                amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
 964        dev_err(kfd_device,
 965                "device %x:%x NOT added due to errors\n",
 966                kfd->pdev->vendor, kfd->pdev->device);
 967out:
 968        return kfd->init_complete;
 969}
 970
 971void kgd2kfd_device_exit(struct kfd_dev *kfd)
 972{
 973        if (kfd->init_complete) {
 974                device_queue_manager_uninit(kfd->dqm);
 975                kfd_interrupt_exit(kfd);
 976                kfd_topology_remove_device(kfd);
 977                kfd_doorbell_fini(kfd);
 978                ida_destroy(&kfd->doorbell_ida);
 979                kfd_gtt_sa_fini(kfd);
 980                amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
 981                if (kfd->gws)
 982                        amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
 983        }
 984
 985        kfree(kfd);
 986}
 987
 988int kgd2kfd_pre_reset(struct kfd_dev *kfd)
 989{
 990        if (!kfd->init_complete)
 991                return 0;
 992
 993        kfd_smi_event_update_gpu_reset(kfd, false);
 994
 995        kfd->dqm->ops.pre_reset(kfd->dqm);
 996
 997        kgd2kfd_suspend(kfd, false);
 998
 999        kfd_signal_reset_event(kfd);
1000        return 0;
1001}
1002
1003/*
1004 * Fix me. KFD won't be able to resume existing process for now.
1005 * We will keep all existing process in a evicted state and
1006 * wait the process to be terminated.
1007 */
1008
1009int kgd2kfd_post_reset(struct kfd_dev *kfd)
1010{
1011        int ret;
1012
1013        if (!kfd->init_complete)
1014                return 0;
1015
1016        ret = kfd_resume(kfd);
1017        if (ret)
1018                return ret;
1019        atomic_dec(&kfd_locked);
1020
1021        atomic_set(&kfd->sram_ecc_flag, 0);
1022
1023        kfd_smi_event_update_gpu_reset(kfd, true);
1024
1025        return 0;
1026}
1027
1028bool kfd_is_locked(void)
1029{
1030        return  (atomic_read(&kfd_locked) > 0);
1031}
1032
1033void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm)
1034{
1035        if (!kfd->init_complete)
1036                return;
1037
1038        /* for runtime suspend, skip locking kfd */
1039        if (!run_pm) {
1040                /* For first KFD device suspend all the KFD processes */
1041                if (atomic_inc_return(&kfd_locked) == 1)
1042                        kfd_suspend_all_processes();
1043        }
1044
1045        kfd->dqm->ops.stop(kfd->dqm);
1046        kfd_iommu_suspend(kfd);
1047}
1048
1049int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm)
1050{
1051        int ret, count;
1052
1053        if (!kfd->init_complete)
1054                return 0;
1055
1056        ret = kfd_resume(kfd);
1057        if (ret)
1058                return ret;
1059
1060        /* for runtime resume, skip unlocking kfd */
1061        if (!run_pm) {
1062                count = atomic_dec_return(&kfd_locked);
1063                WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
1064                if (count == 0)
1065                        ret = kfd_resume_all_processes();
1066        }
1067
1068        return ret;
1069}
1070
1071int kgd2kfd_resume_iommu(struct kfd_dev *kfd)
1072{
1073        int err = 0;
1074
1075        err = kfd_iommu_resume(kfd);
1076        if (err)
1077                dev_err(kfd_device,
1078                        "Failed to resume IOMMU for device %x:%x\n",
1079                        kfd->pdev->vendor, kfd->pdev->device);
1080        return err;
1081}
1082
1083static int kfd_resume(struct kfd_dev *kfd)
1084{
1085        int err = 0;
1086
1087        err = kfd->dqm->ops.start(kfd->dqm);
1088        if (err)
1089                dev_err(kfd_device,
1090                        "Error starting queue manager for device %x:%x\n",
1091                        kfd->pdev->vendor, kfd->pdev->device);
1092
1093        return err;
1094}
1095
1096static inline void kfd_queue_work(struct workqueue_struct *wq,
1097                                  struct work_struct *work)
1098{
1099        int cpu, new_cpu;
1100
1101        cpu = new_cpu = smp_processor_id();
1102        do {
1103                new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids;
1104                if (cpu_to_node(new_cpu) == numa_node_id())
1105                        break;
1106        } while (cpu != new_cpu);
1107
1108        queue_work_on(new_cpu, wq, work);
1109}
1110
1111/* This is called directly from KGD at ISR. */
1112void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
1113{
1114        uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
1115        bool is_patched = false;
1116        unsigned long flags;
1117
1118        if (!kfd->init_complete)
1119                return;
1120
1121        if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
1122                dev_err_once(kfd_device, "Ring entry too small\n");
1123                return;
1124        }
1125
1126        spin_lock_irqsave(&kfd->interrupt_lock, flags);
1127
1128        if (kfd->interrupts_active
1129            && interrupt_is_wanted(kfd, ih_ring_entry,
1130                                   patched_ihre, &is_patched)
1131            && enqueue_ih_ring_entry(kfd,
1132                                     is_patched ? patched_ihre : ih_ring_entry))
1133                kfd_queue_work(kfd->ih_wq, &kfd->interrupt_work);
1134
1135        spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
1136}
1137
1138int kgd2kfd_quiesce_mm(struct mm_struct *mm)
1139{
1140        struct kfd_process *p;
1141        int r;
1142
1143        /* Because we are called from arbitrary context (workqueue) as opposed
1144         * to process context, kfd_process could attempt to exit while we are
1145         * running so the lookup function increments the process ref count.
1146         */
1147        p = kfd_lookup_process_by_mm(mm);
1148        if (!p)
1149                return -ESRCH;
1150
1151        WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
1152        r = kfd_process_evict_queues(p);
1153
1154        kfd_unref_process(p);
1155        return r;
1156}
1157
1158int kgd2kfd_resume_mm(struct mm_struct *mm)
1159{
1160        struct kfd_process *p;
1161        int r;
1162
1163        /* Because we are called from arbitrary context (workqueue) as opposed
1164         * to process context, kfd_process could attempt to exit while we are
1165         * running so the lookup function increments the process ref count.
1166         */
1167        p = kfd_lookup_process_by_mm(mm);
1168        if (!p)
1169                return -ESRCH;
1170
1171        r = kfd_process_restore_queues(p);
1172
1173        kfd_unref_process(p);
1174        return r;
1175}
1176
1177/** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
1178 *   prepare for safe eviction of KFD BOs that belong to the specified
1179 *   process.
1180 *
1181 * @mm: mm_struct that identifies the specified KFD process
1182 * @fence: eviction fence attached to KFD process BOs
1183 *
1184 */
1185int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
1186                                               struct dma_fence *fence)
1187{
1188        struct kfd_process *p;
1189        unsigned long active_time;
1190        unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
1191
1192        if (!fence)
1193                return -EINVAL;
1194
1195        if (dma_fence_is_signaled(fence))
1196                return 0;
1197
1198        p = kfd_lookup_process_by_mm(mm);
1199        if (!p)
1200                return -ENODEV;
1201
1202        if (fence->seqno == p->last_eviction_seqno)
1203                goto out;
1204
1205        p->last_eviction_seqno = fence->seqno;
1206
1207        /* Avoid KFD process starvation. Wait for at least
1208         * PROCESS_ACTIVE_TIME_MS before evicting the process again
1209         */
1210        active_time = get_jiffies_64() - p->last_restore_timestamp;
1211        if (delay_jiffies > active_time)
1212                delay_jiffies -= active_time;
1213        else
1214                delay_jiffies = 0;
1215
1216        /* During process initialization eviction_work.dwork is initialized
1217         * to kfd_evict_bo_worker
1218         */
1219        WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies",
1220             p->lead_thread->pid, delay_jiffies);
1221        schedule_delayed_work(&p->eviction_work, delay_jiffies);
1222out:
1223        kfd_unref_process(p);
1224        return 0;
1225}
1226
1227static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
1228                                unsigned int chunk_size)
1229{
1230        unsigned int num_of_longs;
1231
1232        if (WARN_ON(buf_size < chunk_size))
1233                return -EINVAL;
1234        if (WARN_ON(buf_size == 0))
1235                return -EINVAL;
1236        if (WARN_ON(chunk_size == 0))
1237                return -EINVAL;
1238
1239        kfd->gtt_sa_chunk_size = chunk_size;
1240        kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
1241
1242        num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
1243                BITS_PER_LONG;
1244
1245        kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
1246
1247        if (!kfd->gtt_sa_bitmap)
1248                return -ENOMEM;
1249
1250        pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
1251                        kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
1252
1253        mutex_init(&kfd->gtt_sa_lock);
1254
1255        return 0;
1256
1257}
1258
1259static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
1260{
1261        mutex_destroy(&kfd->gtt_sa_lock);
1262        kfree(kfd->gtt_sa_bitmap);
1263}
1264
1265static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1266                                                unsigned int bit_num,
1267                                                unsigned int chunk_size)
1268{
1269        return start_addr + bit_num * chunk_size;
1270}
1271
1272static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1273                                                unsigned int bit_num,
1274                                                unsigned int chunk_size)
1275{
1276        return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1277}
1278
1279int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
1280                        struct kfd_mem_obj **mem_obj)
1281{
1282        unsigned int found, start_search, cur_size;
1283
1284        if (size == 0)
1285                return -EINVAL;
1286
1287        if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1288                return -ENOMEM;
1289
1290        *mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1291        if (!(*mem_obj))
1292                return -ENOMEM;
1293
1294        pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1295
1296        start_search = 0;
1297
1298        mutex_lock(&kfd->gtt_sa_lock);
1299
1300kfd_gtt_restart_search:
1301        /* Find the first chunk that is free */
1302        found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1303                                        kfd->gtt_sa_num_of_chunks,
1304                                        start_search);
1305
1306        pr_debug("Found = %d\n", found);
1307
1308        /* If there wasn't any free chunk, bail out */
1309        if (found == kfd->gtt_sa_num_of_chunks)
1310                goto kfd_gtt_no_free_chunk;
1311
1312        /* Update fields of mem_obj */
1313        (*mem_obj)->range_start = found;
1314        (*mem_obj)->range_end = found;
1315        (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1316                                        kfd->gtt_start_gpu_addr,
1317                                        found,
1318                                        kfd->gtt_sa_chunk_size);
1319        (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1320                                        kfd->gtt_start_cpu_ptr,
1321                                        found,
1322                                        kfd->gtt_sa_chunk_size);
1323
1324        pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1325                        (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1326
1327        /* If we need only one chunk, mark it as allocated and get out */
1328        if (size <= kfd->gtt_sa_chunk_size) {
1329                pr_debug("Single bit\n");
1330                set_bit(found, kfd->gtt_sa_bitmap);
1331                goto kfd_gtt_out;
1332        }
1333
1334        /* Otherwise, try to see if we have enough contiguous chunks */
1335        cur_size = size - kfd->gtt_sa_chunk_size;
1336        do {
1337                (*mem_obj)->range_end =
1338                        find_next_zero_bit(kfd->gtt_sa_bitmap,
1339                                        kfd->gtt_sa_num_of_chunks, ++found);
1340                /*
1341                 * If next free chunk is not contiguous than we need to
1342                 * restart our search from the last free chunk we found (which
1343                 * wasn't contiguous to the previous ones
1344                 */
1345                if ((*mem_obj)->range_end != found) {
1346                        start_search = found;
1347                        goto kfd_gtt_restart_search;
1348                }
1349
1350                /*
1351                 * If we reached end of buffer, bail out with error
1352                 */
1353                if (found == kfd->gtt_sa_num_of_chunks)
1354                        goto kfd_gtt_no_free_chunk;
1355
1356                /* Check if we don't need another chunk */
1357                if (cur_size <= kfd->gtt_sa_chunk_size)
1358                        cur_size = 0;
1359                else
1360                        cur_size -= kfd->gtt_sa_chunk_size;
1361
1362        } while (cur_size > 0);
1363
1364        pr_debug("range_start = %d, range_end = %d\n",
1365                (*mem_obj)->range_start, (*mem_obj)->range_end);
1366
1367        /* Mark the chunks as allocated */
1368        for (found = (*mem_obj)->range_start;
1369                found <= (*mem_obj)->range_end;
1370                found++)
1371                set_bit(found, kfd->gtt_sa_bitmap);
1372
1373kfd_gtt_out:
1374        mutex_unlock(&kfd->gtt_sa_lock);
1375        return 0;
1376
1377kfd_gtt_no_free_chunk:
1378        pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
1379        mutex_unlock(&kfd->gtt_sa_lock);
1380        kfree(*mem_obj);
1381        return -ENOMEM;
1382}
1383
1384int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
1385{
1386        unsigned int bit;
1387
1388        /* Act like kfree when trying to free a NULL object */
1389        if (!mem_obj)
1390                return 0;
1391
1392        pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1393                        mem_obj, mem_obj->range_start, mem_obj->range_end);
1394
1395        mutex_lock(&kfd->gtt_sa_lock);
1396
1397        /* Mark the chunks as free */
1398        for (bit = mem_obj->range_start;
1399                bit <= mem_obj->range_end;
1400                bit++)
1401                clear_bit(bit, kfd->gtt_sa_bitmap);
1402
1403        mutex_unlock(&kfd->gtt_sa_lock);
1404
1405        kfree(mem_obj);
1406        return 0;
1407}
1408
1409void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1410{
1411        if (kfd)
1412                atomic_inc(&kfd->sram_ecc_flag);
1413}
1414
1415void kfd_inc_compute_active(struct kfd_dev *kfd)
1416{
1417        if (atomic_inc_return(&kfd->compute_profile) == 1)
1418                amdgpu_amdkfd_set_compute_idle(kfd->kgd, false);
1419}
1420
1421void kfd_dec_compute_active(struct kfd_dev *kfd)
1422{
1423        int count = atomic_dec_return(&kfd->compute_profile);
1424
1425        if (count == 0)
1426                amdgpu_amdkfd_set_compute_idle(kfd->kgd, true);
1427        WARN_ONCE(count < 0, "Compute profile ref. count error");
1428}
1429
1430void kgd2kfd_smi_event_throttle(struct kfd_dev *kfd, uint64_t throttle_bitmask)
1431{
1432        if (kfd && kfd->init_complete)
1433                kfd_smi_event_update_thermal_throttling(kfd, throttle_bitmask);
1434}
1435
1436#if defined(CONFIG_DEBUG_FS)
1437
1438/* This function will send a package to HIQ to hang the HWS
1439 * which will trigger a GPU reset and bring the HWS back to normal state
1440 */
1441int kfd_debugfs_hang_hws(struct kfd_dev *dev)
1442{
1443        if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1444                pr_err("HWS is not enabled");
1445                return -EINVAL;
1446        }
1447
1448        return dqm_debugfs_hang_hws(dev->dqm);
1449}
1450
1451#endif
1452