linux/drivers/gpu/drm/amd/amdkfd/kfd_priv.h
<<
>>
Prefs
   1/*
   2 * Copyright 2014 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 */
  22
  23#ifndef KFD_PRIV_H_INCLUDED
  24#define KFD_PRIV_H_INCLUDED
  25
  26#include <linux/hashtable.h>
  27#include <linux/mmu_notifier.h>
  28#include <linux/mutex.h>
  29#include <linux/types.h>
  30#include <linux/atomic.h>
  31#include <linux/workqueue.h>
  32#include <linux/spinlock.h>
  33#include <linux/kfd_ioctl.h>
  34#include <linux/idr.h>
  35#include <linux/kfifo.h>
  36#include <linux/seq_file.h>
  37#include <linux/kref.h>
  38#include <linux/sysfs.h>
  39#include <linux/device_cgroup.h>
  40#include <drm/drm_file.h>
  41#include <drm/drm_drv.h>
  42#include <drm/drm_device.h>
  43#include <drm/drm_ioctl.h>
  44#include <kgd_kfd_interface.h>
  45#include <linux/swap.h>
  46
  47#include "amd_shared.h"
  48#include "amdgpu.h"
  49
  50#define KFD_MAX_RING_ENTRY_SIZE 8
  51
  52#define KFD_SYSFS_FILE_MODE 0444
  53
  54/* GPU ID hash width in bits */
  55#define KFD_GPU_ID_HASH_WIDTH 16
  56
  57/* Use upper bits of mmap offset to store KFD driver specific information.
  58 * BITS[63:62] - Encode MMAP type
  59 * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
  60 * BITS[45:0]  - MMAP offset value
  61 *
  62 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
  63 *  defines are w.r.t to PAGE_SIZE
  64 */
  65#define KFD_MMAP_TYPE_SHIFT     62
  66#define KFD_MMAP_TYPE_MASK      (0x3ULL << KFD_MMAP_TYPE_SHIFT)
  67#define KFD_MMAP_TYPE_DOORBELL  (0x3ULL << KFD_MMAP_TYPE_SHIFT)
  68#define KFD_MMAP_TYPE_EVENTS    (0x2ULL << KFD_MMAP_TYPE_SHIFT)
  69#define KFD_MMAP_TYPE_RESERVED_MEM      (0x1ULL << KFD_MMAP_TYPE_SHIFT)
  70#define KFD_MMAP_TYPE_MMIO      (0x0ULL << KFD_MMAP_TYPE_SHIFT)
  71
  72#define KFD_MMAP_GPU_ID_SHIFT 46
  73#define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
  74                                << KFD_MMAP_GPU_ID_SHIFT)
  75#define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
  76                                & KFD_MMAP_GPU_ID_MASK)
  77#define KFD_MMAP_GET_GPU_ID(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
  78                                >> KFD_MMAP_GPU_ID_SHIFT)
  79
  80/*
  81 * When working with cp scheduler we should assign the HIQ manually or via
  82 * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
  83 * definitions for Kaveri. In Kaveri only the first ME queues participates
  84 * in the cp scheduling taking that in mind we set the HIQ slot in the
  85 * second ME.
  86 */
  87#define KFD_CIK_HIQ_PIPE 4
  88#define KFD_CIK_HIQ_QUEUE 0
  89
  90/* Macro for allocating structures */
  91#define kfd_alloc_struct(ptr_to_struct) \
  92        ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
  93
  94#define KFD_MAX_NUM_OF_PROCESSES 512
  95#define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
  96
  97/*
  98 * Size of the per-process TBA+TMA buffer: 2 pages
  99 *
 100 * The first page is the TBA used for the CWSR ISA code. The second
 101 * page is used as TMA for user-mode trap handler setup in daisy-chain mode.
 102 */
 103#define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
 104#define KFD_CWSR_TMA_OFFSET PAGE_SIZE
 105
 106#define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE                \
 107        (KFD_MAX_NUM_OF_PROCESSES *                     \
 108                        KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
 109
 110#define KFD_KERNEL_QUEUE_SIZE 2048
 111
 112#define KFD_UNMAP_LATENCY_MS    (4000)
 113
 114/*
 115 * 512 = 0x200
 116 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
 117 * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
 118 * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
 119 * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
 120 * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
 121 */
 122#define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
 123
 124
 125/*
 126 * Kernel module parameter to specify maximum number of supported queues per
 127 * device
 128 */
 129extern int max_num_of_queues_per_device;
 130
 131
 132/* Kernel module parameter to specify the scheduling policy */
 133extern int sched_policy;
 134
 135/*
 136 * Kernel module parameter to specify the maximum process
 137 * number per HW scheduler
 138 */
 139extern int hws_max_conc_proc;
 140
 141extern int cwsr_enable;
 142
 143/*
 144 * Kernel module parameter to specify whether to send sigterm to HSA process on
 145 * unhandled exception
 146 */
 147extern int send_sigterm;
 148
 149/*
 150 * This kernel module is used to simulate large bar machine on non-large bar
 151 * enabled machines.
 152 */
 153extern int debug_largebar;
 154
 155/*
 156 * Ignore CRAT table during KFD initialization, can be used to work around
 157 * broken CRAT tables on some AMD systems
 158 */
 159extern int ignore_crat;
 160
 161/* Set sh_mem_config.retry_disable on GFX v9 */
 162extern int amdgpu_noretry;
 163
 164/* Halt if HWS hang is detected */
 165extern int halt_if_hws_hang;
 166
 167/* Whether MEC FW support GWS barriers */
 168extern bool hws_gws_support;
 169
 170/* Queue preemption timeout in ms */
 171extern int queue_preemption_timeout_ms;
 172
 173/*
 174 * Don't evict process queues on vm fault
 175 */
 176extern int amdgpu_no_queue_eviction_on_vm_fault;
 177
 178/* Enable eviction debug messages */
 179extern bool debug_evictions;
 180
 181enum cache_policy {
 182        cache_policy_coherent,
 183        cache_policy_noncoherent
 184};
 185
 186#define KFD_IS_SOC15(chip) ((chip) >= CHIP_VEGA10)
 187
 188struct kfd_event_interrupt_class {
 189        bool (*interrupt_isr)(struct kfd_dev *dev,
 190                        const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
 191                        bool *patched_flag);
 192        void (*interrupt_wq)(struct kfd_dev *dev,
 193                        const uint32_t *ih_ring_entry);
 194};
 195
 196struct kfd_device_info {
 197        enum amd_asic_type asic_family;
 198        const char *asic_name;
 199        uint32_t gfx_target_version;
 200        const struct kfd_event_interrupt_class *event_interrupt_class;
 201        unsigned int max_pasid_bits;
 202        unsigned int max_no_of_hqd;
 203        unsigned int doorbell_size;
 204        size_t ih_ring_entry_size;
 205        uint8_t num_of_watch_points;
 206        uint16_t mqd_size_aligned;
 207        bool supports_cwsr;
 208        bool needs_iommu_device;
 209        bool needs_pci_atomics;
 210        uint32_t no_atomic_fw_version;
 211        unsigned int num_sdma_engines;
 212        unsigned int num_xgmi_sdma_engines;
 213        unsigned int num_sdma_queues_per_engine;
 214};
 215
 216struct kfd_mem_obj {
 217        uint32_t range_start;
 218        uint32_t range_end;
 219        uint64_t gpu_addr;
 220        uint32_t *cpu_ptr;
 221        void *gtt_mem;
 222};
 223
 224struct kfd_vmid_info {
 225        uint32_t first_vmid_kfd;
 226        uint32_t last_vmid_kfd;
 227        uint32_t vmid_num_kfd;
 228};
 229
 230struct kfd_dev {
 231        struct kgd_dev *kgd;
 232
 233        const struct kfd_device_info *device_info;
 234        struct pci_dev *pdev;
 235        struct drm_device *ddev;
 236
 237        unsigned int id;                /* topology stub index */
 238
 239        phys_addr_t doorbell_base;      /* Start of actual doorbells used by
 240                                         * KFD. It is aligned for mapping
 241                                         * into user mode
 242                                         */
 243        size_t doorbell_base_dw_offset; /* Offset from the start of the PCI
 244                                         * doorbell BAR to the first KFD
 245                                         * doorbell in dwords. GFX reserves
 246                                         * the segment before this offset.
 247                                         */
 248        u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
 249                                           * page used by kernel queue
 250                                           */
 251
 252        struct kgd2kfd_shared_resources shared_resources;
 253        struct kfd_vmid_info vm_info;
 254
 255        const struct kfd2kgd_calls *kfd2kgd;
 256        struct mutex doorbell_mutex;
 257        DECLARE_BITMAP(doorbell_available_index,
 258                        KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
 259
 260        void *gtt_mem;
 261        uint64_t gtt_start_gpu_addr;
 262        void *gtt_start_cpu_ptr;
 263        void *gtt_sa_bitmap;
 264        struct mutex gtt_sa_lock;
 265        unsigned int gtt_sa_chunk_size;
 266        unsigned int gtt_sa_num_of_chunks;
 267
 268        /* Interrupts */
 269        struct kfifo ih_fifo;
 270        struct workqueue_struct *ih_wq;
 271        struct work_struct interrupt_work;
 272        spinlock_t interrupt_lock;
 273
 274        /* QCM Device instance */
 275        struct device_queue_manager *dqm;
 276
 277        bool init_complete;
 278        /*
 279         * Interrupts of interest to KFD are copied
 280         * from the HW ring into a SW ring.
 281         */
 282        bool interrupts_active;
 283
 284        /* Debug manager */
 285        struct kfd_dbgmgr *dbgmgr;
 286
 287        /* Firmware versions */
 288        uint16_t mec_fw_version;
 289        uint16_t mec2_fw_version;
 290        uint16_t sdma_fw_version;
 291
 292        /* Maximum process number mapped to HW scheduler */
 293        unsigned int max_proc_per_quantum;
 294
 295        /* CWSR */
 296        bool cwsr_enabled;
 297        const void *cwsr_isa;
 298        unsigned int cwsr_isa_size;
 299
 300        /* xGMI */
 301        uint64_t hive_id;
 302
 303        bool pci_atomic_requested;
 304
 305        /* Use IOMMU v2 flag */
 306        bool use_iommu_v2;
 307
 308        /* SRAM ECC flag */
 309        atomic_t sram_ecc_flag;
 310
 311        /* Compute Profile ref. count */
 312        atomic_t compute_profile;
 313
 314        /* Global GWS resource shared between processes */
 315        void *gws;
 316
 317        /* Clients watching SMI events */
 318        struct list_head smi_clients;
 319        spinlock_t smi_lock;
 320
 321        uint32_t reset_seq_num;
 322
 323        struct ida doorbell_ida;
 324        unsigned int max_doorbell_slices;
 325
 326        int noretry;
 327
 328        /* HMM page migration MEMORY_DEVICE_PRIVATE mapping */
 329        struct dev_pagemap pgmap;
 330};
 331
 332enum kfd_mempool {
 333        KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
 334        KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
 335        KFD_MEMPOOL_FRAMEBUFFER = 3,
 336};
 337
 338/* Character device interface */
 339int kfd_chardev_init(void);
 340void kfd_chardev_exit(void);
 341struct device *kfd_chardev(void);
 342
 343/**
 344 * enum kfd_unmap_queues_filter - Enum for queue filters.
 345 *
 346 * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue.
 347 *
 348 * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
 349 *                                              running queues list.
 350 *
 351 * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
 352 *                                              specific process.
 353 *
 354 */
 355enum kfd_unmap_queues_filter {
 356        KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE,
 357        KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
 358        KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
 359        KFD_UNMAP_QUEUES_FILTER_BY_PASID
 360};
 361
 362/**
 363 * enum kfd_queue_type - Enum for various queue types.
 364 *
 365 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
 366 *
 367 * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type.
 368 *
 369 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
 370 *
 371 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
 372 *
 373 * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface.
 374 */
 375enum kfd_queue_type  {
 376        KFD_QUEUE_TYPE_COMPUTE,
 377        KFD_QUEUE_TYPE_SDMA,
 378        KFD_QUEUE_TYPE_HIQ,
 379        KFD_QUEUE_TYPE_DIQ,
 380        KFD_QUEUE_TYPE_SDMA_XGMI
 381};
 382
 383enum kfd_queue_format {
 384        KFD_QUEUE_FORMAT_PM4,
 385        KFD_QUEUE_FORMAT_AQL
 386};
 387
 388enum KFD_QUEUE_PRIORITY {
 389        KFD_QUEUE_PRIORITY_MINIMUM = 0,
 390        KFD_QUEUE_PRIORITY_MAXIMUM = 15
 391};
 392
 393/**
 394 * struct queue_properties
 395 *
 396 * @type: The queue type.
 397 *
 398 * @queue_id: Queue identifier.
 399 *
 400 * @queue_address: Queue ring buffer address.
 401 *
 402 * @queue_size: Queue ring buffer size.
 403 *
 404 * @priority: Defines the queue priority relative to other queues in the
 405 * process.
 406 * This is just an indication and HW scheduling may override the priority as
 407 * necessary while keeping the relative prioritization.
 408 * the priority granularity is from 0 to f which f is the highest priority.
 409 * currently all queues are initialized with the highest priority.
 410 *
 411 * @queue_percent: This field is partially implemented and currently a zero in
 412 * this field defines that the queue is non active.
 413 *
 414 * @read_ptr: User space address which points to the number of dwords the
 415 * cp read from the ring buffer. This field updates automatically by the H/W.
 416 *
 417 * @write_ptr: Defines the number of dwords written to the ring buffer.
 418 *
 419 * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring
 420 * buffer. This field should be similar to write_ptr and the user should
 421 * update this field after updating the write_ptr.
 422 *
 423 * @doorbell_off: The doorbell offset in the doorbell pci-bar.
 424 *
 425 * @is_interop: Defines if this is a interop queue. Interop queue means that
 426 * the queue can access both graphics and compute resources.
 427 *
 428 * @is_evicted: Defines if the queue is evicted. Only active queues
 429 * are evicted, rendering them inactive.
 430 *
 431 * @is_active: Defines if the queue is active or not. @is_active and
 432 * @is_evicted are protected by the DQM lock.
 433 *
 434 * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
 435 * @is_gws should be protected by the DQM lock, since changing it can yield the
 436 * possibility of updating DQM state on number of GWS queues.
 437 *
 438 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
 439 * of the queue.
 440 *
 441 * This structure represents the queue properties for each queue no matter if
 442 * it's user mode or kernel mode queue.
 443 *
 444 */
 445struct queue_properties {
 446        enum kfd_queue_type type;
 447        enum kfd_queue_format format;
 448        unsigned int queue_id;
 449        uint64_t queue_address;
 450        uint64_t  queue_size;
 451        uint32_t priority;
 452        uint32_t queue_percent;
 453        uint32_t *read_ptr;
 454        uint32_t *write_ptr;
 455        void __iomem *doorbell_ptr;
 456        uint32_t doorbell_off;
 457        bool is_interop;
 458        bool is_evicted;
 459        bool is_active;
 460        bool is_gws;
 461        /* Not relevant for user mode queues in cp scheduling */
 462        unsigned int vmid;
 463        /* Relevant only for sdma queues*/
 464        uint32_t sdma_engine_id;
 465        uint32_t sdma_queue_id;
 466        uint32_t sdma_vm_addr;
 467        /* Relevant only for VI */
 468        uint64_t eop_ring_buffer_address;
 469        uint32_t eop_ring_buffer_size;
 470        uint64_t ctx_save_restore_area_address;
 471        uint32_t ctx_save_restore_area_size;
 472        uint32_t ctl_stack_size;
 473        uint64_t tba_addr;
 474        uint64_t tma_addr;
 475        /* Relevant for CU */
 476        uint32_t cu_mask_count; /* Must be a multiple of 32 */
 477        uint32_t *cu_mask;
 478};
 479
 480#define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&       \
 481                            (q).queue_address != 0 &&   \
 482                            (q).queue_percent > 0 &&    \
 483                            !(q).is_evicted)
 484
 485/**
 486 * struct queue
 487 *
 488 * @list: Queue linked list.
 489 *
 490 * @mqd: The queue MQD (memory queue descriptor).
 491 *
 492 * @mqd_mem_obj: The MQD local gpu memory object.
 493 *
 494 * @gart_mqd_addr: The MQD gart mc address.
 495 *
 496 * @properties: The queue properties.
 497 *
 498 * @mec: Used only in no cp scheduling mode and identifies to micro engine id
 499 *       that the queue should be executed on.
 500 *
 501 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
 502 *        id.
 503 *
 504 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
 505 *
 506 * @process: The kfd process that created this queue.
 507 *
 508 * @device: The kfd device that created this queue.
 509 *
 510 * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
 511 * otherwise.
 512 *
 513 * This structure represents user mode compute queues.
 514 * It contains all the necessary data to handle such queues.
 515 *
 516 */
 517
 518struct queue {
 519        struct list_head list;
 520        void *mqd;
 521        struct kfd_mem_obj *mqd_mem_obj;
 522        uint64_t gart_mqd_addr;
 523        struct queue_properties properties;
 524
 525        uint32_t mec;
 526        uint32_t pipe;
 527        uint32_t queue;
 528
 529        unsigned int sdma_id;
 530        unsigned int doorbell_id;
 531
 532        struct kfd_process      *process;
 533        struct kfd_dev          *device;
 534        void *gws;
 535
 536        /* procfs */
 537        struct kobject kobj;
 538};
 539
 540enum KFD_MQD_TYPE {
 541        KFD_MQD_TYPE_HIQ = 0,           /* for hiq */
 542        KFD_MQD_TYPE_CP,                /* for cp queues and diq */
 543        KFD_MQD_TYPE_SDMA,              /* for sdma queues */
 544        KFD_MQD_TYPE_DIQ,               /* for diq */
 545        KFD_MQD_TYPE_MAX
 546};
 547
 548enum KFD_PIPE_PRIORITY {
 549        KFD_PIPE_PRIORITY_CS_LOW = 0,
 550        KFD_PIPE_PRIORITY_CS_MEDIUM,
 551        KFD_PIPE_PRIORITY_CS_HIGH
 552};
 553
 554struct scheduling_resources {
 555        unsigned int vmid_mask;
 556        enum kfd_queue_type type;
 557        uint64_t queue_mask;
 558        uint64_t gws_mask;
 559        uint32_t oac_mask;
 560        uint32_t gds_heap_base;
 561        uint32_t gds_heap_size;
 562};
 563
 564struct process_queue_manager {
 565        /* data */
 566        struct kfd_process      *process;
 567        struct list_head        queues;
 568        unsigned long           *queue_slot_bitmap;
 569};
 570
 571struct qcm_process_device {
 572        /* The Device Queue Manager that owns this data */
 573        struct device_queue_manager *dqm;
 574        struct process_queue_manager *pqm;
 575        /* Queues list */
 576        struct list_head queues_list;
 577        struct list_head priv_queue_list;
 578
 579        unsigned int queue_count;
 580        unsigned int vmid;
 581        bool is_debug;
 582        unsigned int evicted; /* eviction counter, 0=active */
 583
 584        /* This flag tells if we should reset all wavefronts on
 585         * process termination
 586         */
 587        bool reset_wavefronts;
 588
 589        /* This flag tells us if this process has a GWS-capable
 590         * queue that will be mapped into the runlist. It's
 591         * possible to request a GWS BO, but not have the queue
 592         * currently mapped, and this changes how the MAP_PROCESS
 593         * PM4 packet is configured.
 594         */
 595        bool mapped_gws_queue;
 596
 597        /* All the memory management data should be here too */
 598        uint64_t gds_context_area;
 599        /* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
 600        uint64_t page_table_base;
 601        uint32_t sh_mem_config;
 602        uint32_t sh_mem_bases;
 603        uint32_t sh_mem_ape1_base;
 604        uint32_t sh_mem_ape1_limit;
 605        uint32_t gds_size;
 606        uint32_t num_gws;
 607        uint32_t num_oac;
 608        uint32_t sh_hidden_private_base;
 609
 610        /* CWSR memory */
 611        void *cwsr_kaddr;
 612        uint64_t cwsr_base;
 613        uint64_t tba_addr;
 614        uint64_t tma_addr;
 615
 616        /* IB memory */
 617        uint64_t ib_base;
 618        void *ib_kaddr;
 619
 620        /* doorbell resources per process per device */
 621        unsigned long *doorbell_bitmap;
 622};
 623
 624/* KFD Memory Eviction */
 625
 626/* Approx. wait time before attempting to restore evicted BOs */
 627#define PROCESS_RESTORE_TIME_MS 100
 628/* Approx. back off time if restore fails due to lack of memory */
 629#define PROCESS_BACK_OFF_TIME_MS 100
 630/* Approx. time before evicting the process again */
 631#define PROCESS_ACTIVE_TIME_MS 10
 632
 633/* 8 byte handle containing GPU ID in the most significant 4 bytes and
 634 * idr_handle in the least significant 4 bytes
 635 */
 636#define MAKE_HANDLE(gpu_id, idr_handle) \
 637        (((uint64_t)(gpu_id) << 32) + idr_handle)
 638#define GET_GPU_ID(handle) (handle >> 32)
 639#define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
 640
 641enum kfd_pdd_bound {
 642        PDD_UNBOUND = 0,
 643        PDD_BOUND,
 644        PDD_BOUND_SUSPENDED,
 645};
 646
 647#define MAX_SYSFS_FILENAME_LEN 15
 648
 649/*
 650 * SDMA counter runs at 100MHz frequency.
 651 * We display SDMA activity in microsecond granularity in sysfs.
 652 * As a result, the divisor is 100.
 653 */
 654#define SDMA_ACTIVITY_DIVISOR  100
 655
 656/* Data that is per-process-per device. */
 657struct kfd_process_device {
 658        /* The device that owns this data. */
 659        struct kfd_dev *dev;
 660
 661        /* The process that owns this kfd_process_device. */
 662        struct kfd_process *process;
 663
 664        /* per-process-per device QCM data structure */
 665        struct qcm_process_device qpd;
 666
 667        /*Apertures*/
 668        uint64_t lds_base;
 669        uint64_t lds_limit;
 670        uint64_t gpuvm_base;
 671        uint64_t gpuvm_limit;
 672        uint64_t scratch_base;
 673        uint64_t scratch_limit;
 674
 675        /* VM context for GPUVM allocations */
 676        struct file *drm_file;
 677        void *drm_priv;
 678
 679        /* GPUVM allocations storage */
 680        struct idr alloc_idr;
 681
 682        /* Flag used to tell the pdd has dequeued from the dqm.
 683         * This is used to prevent dev->dqm->ops.process_termination() from
 684         * being called twice when it is already called in IOMMU callback
 685         * function.
 686         */
 687        bool already_dequeued;
 688        bool runtime_inuse;
 689
 690        /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
 691        enum kfd_pdd_bound bound;
 692
 693        /* VRAM usage */
 694        uint64_t vram_usage;
 695        struct attribute attr_vram;
 696        char vram_filename[MAX_SYSFS_FILENAME_LEN];
 697
 698        /* SDMA activity tracking */
 699        uint64_t sdma_past_activity_counter;
 700        struct attribute attr_sdma;
 701        char sdma_filename[MAX_SYSFS_FILENAME_LEN];
 702
 703        /* Eviction activity tracking */
 704        uint64_t last_evict_timestamp;
 705        atomic64_t evict_duration_counter;
 706        struct attribute attr_evict;
 707
 708        struct kobject *kobj_stats;
 709        unsigned int doorbell_index;
 710
 711        /*
 712         * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process
 713         * that is associated with device encoded by "this" struct instance. The
 714         * value reflects CU usage by all of the waves launched by this process
 715         * on this device. A very important property of occupancy parameter is
 716         * that its value is a snapshot of current use.
 717         *
 718         * Following is to be noted regarding how this parameter is reported:
 719         *
 720         *  The number of waves that a CU can launch is limited by couple of
 721         *  parameters. These are encoded by struct amdgpu_cu_info instance
 722         *  that is part of every device definition. For GFX9 devices this
 723         *  translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves
 724         *  do not use scratch memory and 32 waves (max_scratch_slots_per_cu)
 725         *  when they do use scratch memory. This could change for future
 726         *  devices and therefore this example should be considered as a guide.
 727         *
 728         *  All CU's of a device are available for the process. This may not be true
 729         *  under certain conditions - e.g. CU masking.
 730         *
 731         *  Finally number of CU's that are occupied by a process is affected by both
 732         *  number of CU's a device has along with number of other competing processes
 733         */
 734        struct attribute attr_cu_occupancy;
 735
 736        /* sysfs counters for GPU retry fault and page migration tracking */
 737        struct kobject *kobj_counters;
 738        struct attribute attr_faults;
 739        struct attribute attr_page_in;
 740        struct attribute attr_page_out;
 741        uint64_t faults;
 742        uint64_t page_in;
 743        uint64_t page_out;
 744};
 745
 746#define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
 747
 748struct svm_range_list {
 749        struct mutex                    lock;
 750        struct rb_root_cached           objects;
 751        struct list_head                list;
 752        struct work_struct              deferred_list_work;
 753        struct list_head                deferred_range_list;
 754        spinlock_t                      deferred_list_lock;
 755        atomic_t                        evicted_ranges;
 756        struct delayed_work             restore_work;
 757        DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE);
 758};
 759
 760/* Process data */
 761struct kfd_process {
 762        /*
 763         * kfd_process are stored in an mm_struct*->kfd_process*
 764         * hash table (kfd_processes in kfd_process.c)
 765         */
 766        struct hlist_node kfd_processes;
 767
 768        /*
 769         * Opaque pointer to mm_struct. We don't hold a reference to
 770         * it so it should never be dereferenced from here. This is
 771         * only used for looking up processes by their mm.
 772         */
 773        void *mm;
 774
 775        struct kref ref;
 776        struct work_struct release_work;
 777
 778        struct mutex mutex;
 779
 780        /*
 781         * In any process, the thread that started main() is the lead
 782         * thread and outlives the rest.
 783         * It is here because amd_iommu_bind_pasid wants a task_struct.
 784         * It can also be used for safely getting a reference to the
 785         * mm_struct of the process.
 786         */
 787        struct task_struct *lead_thread;
 788
 789        /* We want to receive a notification when the mm_struct is destroyed */
 790        struct mmu_notifier mmu_notifier;
 791
 792        u32 pasid;
 793
 794        /*
 795         * Array of kfd_process_device pointers,
 796         * one for each device the process is using.
 797         */
 798        struct kfd_process_device *pdds[MAX_GPU_INSTANCE];
 799        uint32_t n_pdds;
 800
 801        struct process_queue_manager pqm;
 802
 803        /*Is the user space process 32 bit?*/
 804        bool is_32bit_user_mode;
 805
 806        /* Event-related data */
 807        struct mutex event_mutex;
 808        /* Event ID allocator and lookup */
 809        struct idr event_idr;
 810        /* Event page */
 811        struct kfd_signal_page *signal_page;
 812        size_t signal_mapped_size;
 813        size_t signal_event_count;
 814        bool signal_event_limit_reached;
 815
 816        /* Information used for memory eviction */
 817        void *kgd_process_info;
 818        /* Eviction fence that is attached to all the BOs of this process. The
 819         * fence will be triggered during eviction and new one will be created
 820         * during restore
 821         */
 822        struct dma_fence *ef;
 823
 824        /* Work items for evicting and restoring BOs */
 825        struct delayed_work eviction_work;
 826        struct delayed_work restore_work;
 827        /* seqno of the last scheduled eviction */
 828        unsigned int last_eviction_seqno;
 829        /* Approx. the last timestamp (in jiffies) when the process was
 830         * restored after an eviction
 831         */
 832        unsigned long last_restore_timestamp;
 833
 834        /* Kobj for our procfs */
 835        struct kobject *kobj;
 836        struct kobject *kobj_queues;
 837        struct attribute attr_pasid;
 838
 839        /* shared virtual memory registered by this process */
 840        struct svm_range_list svms;
 841
 842        bool xnack_enabled;
 843};
 844
 845#define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
 846extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
 847extern struct srcu_struct kfd_processes_srcu;
 848
 849/**
 850 * typedef amdkfd_ioctl_t - typedef for ioctl function pointer.
 851 *
 852 * @filep: pointer to file structure.
 853 * @p: amdkfd process pointer.
 854 * @data: pointer to arg that was copied from user.
 855 *
 856 * Return: returns ioctl completion code.
 857 */
 858typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
 859                                void *data);
 860
 861struct amdkfd_ioctl_desc {
 862        unsigned int cmd;
 863        int flags;
 864        amdkfd_ioctl_t *func;
 865        unsigned int cmd_drv;
 866        const char *name;
 867};
 868bool kfd_dev_is_large_bar(struct kfd_dev *dev);
 869
 870int kfd_process_create_wq(void);
 871void kfd_process_destroy_wq(void);
 872struct kfd_process *kfd_create_process(struct file *filep);
 873struct kfd_process *kfd_get_process(const struct task_struct *);
 874struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid);
 875struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
 876
 877int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id);
 878int kfd_process_gpuid_from_kgd(struct kfd_process *p,
 879                               struct amdgpu_device *adev, uint32_t *gpuid,
 880                               uint32_t *gpuidx);
 881static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p,
 882                                uint32_t gpuidx, uint32_t *gpuid) {
 883        return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL;
 884}
 885static inline struct kfd_process_device *kfd_process_device_from_gpuidx(
 886                                struct kfd_process *p, uint32_t gpuidx) {
 887        return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL;
 888}
 889
 890void kfd_unref_process(struct kfd_process *p);
 891int kfd_process_evict_queues(struct kfd_process *p);
 892int kfd_process_restore_queues(struct kfd_process *p);
 893void kfd_suspend_all_processes(void);
 894int kfd_resume_all_processes(void);
 895
 896int kfd_process_device_init_vm(struct kfd_process_device *pdd,
 897                               struct file *drm_file);
 898struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
 899                                                struct kfd_process *p);
 900struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
 901                                                        struct kfd_process *p);
 902struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
 903                                                        struct kfd_process *p);
 904
 905bool kfd_process_xnack_mode(struct kfd_process *p, bool supported);
 906
 907int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
 908                          struct vm_area_struct *vma);
 909
 910/* KFD process API for creating and translating handles */
 911int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
 912                                        void *mem);
 913void *kfd_process_device_translate_handle(struct kfd_process_device *p,
 914                                        int handle);
 915void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
 916                                        int handle);
 917
 918/* PASIDs */
 919int kfd_pasid_init(void);
 920void kfd_pasid_exit(void);
 921bool kfd_set_pasid_limit(unsigned int new_limit);
 922unsigned int kfd_get_pasid_limit(void);
 923u32 kfd_pasid_alloc(void);
 924void kfd_pasid_free(u32 pasid);
 925
 926/* Doorbells */
 927size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
 928int kfd_doorbell_init(struct kfd_dev *kfd);
 929void kfd_doorbell_fini(struct kfd_dev *kfd);
 930int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process,
 931                      struct vm_area_struct *vma);
 932void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
 933                                        unsigned int *doorbell_off);
 934void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
 935u32 read_kernel_doorbell(u32 __iomem *db);
 936void write_kernel_doorbell(void __iomem *db, u32 value);
 937void write_kernel_doorbell64(void __iomem *db, u64 value);
 938unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
 939                                        struct kfd_process_device *pdd,
 940                                        unsigned int doorbell_id);
 941phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd);
 942int kfd_alloc_process_doorbells(struct kfd_dev *kfd,
 943                                unsigned int *doorbell_index);
 944void kfd_free_process_doorbells(struct kfd_dev *kfd,
 945                                unsigned int doorbell_index);
 946/* GTT Sub-Allocator */
 947
 948int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
 949                        struct kfd_mem_obj **mem_obj);
 950
 951int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
 952
 953extern struct device *kfd_device;
 954
 955/* KFD's procfs */
 956void kfd_procfs_init(void);
 957void kfd_procfs_shutdown(void);
 958int kfd_procfs_add_queue(struct queue *q);
 959void kfd_procfs_del_queue(struct queue *q);
 960
 961/* Topology */
 962int kfd_topology_init(void);
 963void kfd_topology_shutdown(void);
 964int kfd_topology_add_device(struct kfd_dev *gpu);
 965int kfd_topology_remove_device(struct kfd_dev *gpu);
 966struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
 967                                                uint32_t proximity_domain);
 968struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
 969struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
 970struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
 971struct kfd_dev *kfd_device_by_kgd(const struct kgd_dev *kgd);
 972int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev);
 973int kfd_numa_node_to_apic_id(int numa_node_id);
 974void kfd_double_confirm_iommu_support(struct kfd_dev *gpu);
 975
 976/* Interrupts */
 977int kfd_interrupt_init(struct kfd_dev *dev);
 978void kfd_interrupt_exit(struct kfd_dev *dev);
 979bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry);
 980bool interrupt_is_wanted(struct kfd_dev *dev,
 981                                const uint32_t *ih_ring_entry,
 982                                uint32_t *patched_ihre, bool *flag);
 983
 984/* amdkfd Apertures */
 985int kfd_init_apertures(struct kfd_process *process);
 986
 987void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
 988                                  uint64_t tba_addr,
 989                                  uint64_t tma_addr);
 990
 991/* Queue Context Management */
 992int init_queue(struct queue **q, const struct queue_properties *properties);
 993void uninit_queue(struct queue *q);
 994void print_queue_properties(struct queue_properties *q);
 995void print_queue(struct queue *q);
 996
 997struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
 998                struct kfd_dev *dev);
 999struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
1000                struct kfd_dev *dev);
1001struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
1002                struct kfd_dev *dev);
1003struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
1004                struct kfd_dev *dev);
1005struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
1006                struct kfd_dev *dev);
1007struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
1008                struct kfd_dev *dev);
1009struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
1010void device_queue_manager_uninit(struct device_queue_manager *dqm);
1011struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
1012                                        enum kfd_queue_type type);
1013void kernel_queue_uninit(struct kernel_queue *kq, bool hanging);
1014int kfd_process_vm_fault(struct device_queue_manager *dqm, u32 pasid);
1015
1016/* Process Queue Manager */
1017struct process_queue_node {
1018        struct queue *q;
1019        struct kernel_queue *kq;
1020        struct list_head process_queue_list;
1021};
1022
1023void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
1024void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
1025int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
1026void pqm_uninit(struct process_queue_manager *pqm);
1027int pqm_create_queue(struct process_queue_manager *pqm,
1028                            struct kfd_dev *dev,
1029                            struct file *f,
1030                            struct queue_properties *properties,
1031                            unsigned int *qid,
1032                            uint32_t *p_doorbell_offset_in_process);
1033int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
1034int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid,
1035                        struct queue_properties *p);
1036int pqm_set_cu_mask(struct process_queue_manager *pqm, unsigned int qid,
1037                        struct queue_properties *p);
1038int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
1039                        void *gws);
1040struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
1041                                                unsigned int qid);
1042struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
1043                                                unsigned int qid);
1044int pqm_get_wave_state(struct process_queue_manager *pqm,
1045                       unsigned int qid,
1046                       void __user *ctl_stack,
1047                       u32 *ctl_stack_used_size,
1048                       u32 *save_area_used_size);
1049
1050int amdkfd_fence_wait_timeout(uint64_t *fence_addr,
1051                              uint64_t fence_value,
1052                              unsigned int timeout_ms);
1053
1054/* Packet Manager */
1055
1056#define KFD_FENCE_COMPLETED (100)
1057#define KFD_FENCE_INIT   (10)
1058
1059struct packet_manager {
1060        struct device_queue_manager *dqm;
1061        struct kernel_queue *priv_queue;
1062        struct mutex lock;
1063        bool allocated;
1064        struct kfd_mem_obj *ib_buffer_obj;
1065        unsigned int ib_size_bytes;
1066        bool is_over_subscription;
1067
1068        const struct packet_manager_funcs *pmf;
1069};
1070
1071struct packet_manager_funcs {
1072        /* Support ASIC-specific packet formats for PM4 packets */
1073        int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
1074                        struct qcm_process_device *qpd);
1075        int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
1076                        uint64_t ib, size_t ib_size_in_dwords, bool chain);
1077        int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
1078                        struct scheduling_resources *res);
1079        int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
1080                        struct queue *q, bool is_static);
1081        int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
1082                        enum kfd_queue_type type,
1083                        enum kfd_unmap_queues_filter mode,
1084                        uint32_t filter_param, bool reset,
1085                        unsigned int sdma_engine);
1086        int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
1087                        uint64_t fence_address, uint64_t fence_value);
1088        int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
1089
1090        /* Packet sizes */
1091        int map_process_size;
1092        int runlist_size;
1093        int set_resources_size;
1094        int map_queues_size;
1095        int unmap_queues_size;
1096        int query_status_size;
1097        int release_mem_size;
1098};
1099
1100extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1101extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1102extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs;
1103
1104int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1105void pm_uninit(struct packet_manager *pm, bool hanging);
1106int pm_send_set_resources(struct packet_manager *pm,
1107                                struct scheduling_resources *res);
1108int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1109int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1110                                uint64_t fence_value);
1111
1112int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
1113                        enum kfd_unmap_queues_filter mode,
1114                        uint32_t filter_param, bool reset,
1115                        unsigned int sdma_engine);
1116
1117void pm_release_ib(struct packet_manager *pm);
1118
1119/* Following PM funcs can be shared among VI and AI */
1120unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1121
1122uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1123
1124/* Events */
1125extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1126extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1127
1128extern const struct kfd_device_global_init_class device_global_init_class_cik;
1129
1130void kfd_event_init_process(struct kfd_process *p);
1131void kfd_event_free_process(struct kfd_process *p);
1132int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1133int kfd_wait_on_events(struct kfd_process *p,
1134                       uint32_t num_events, void __user *data,
1135                       bool all, uint32_t user_timeout_ms,
1136                       uint32_t *wait_result);
1137void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
1138                                uint32_t valid_id_bits);
1139void kfd_signal_iommu_event(struct kfd_dev *dev,
1140                            u32 pasid, unsigned long address,
1141                            bool is_write_requested, bool is_execute_requested);
1142void kfd_signal_hw_exception_event(u32 pasid);
1143int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1144int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1145int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
1146                       uint64_t size);
1147int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1148                     uint32_t event_type, bool auto_reset, uint32_t node_id,
1149                     uint32_t *event_id, uint32_t *event_trigger_data,
1150                     uint64_t *event_page_offset, uint32_t *event_slot_index);
1151int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1152
1153void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid,
1154                                struct kfd_vm_fault_info *info);
1155
1156void kfd_signal_reset_event(struct kfd_dev *dev);
1157
1158void kfd_signal_poison_consumed_event(struct kfd_dev *dev, u32 pasid);
1159
1160void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type);
1161
1162int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p);
1163
1164bool kfd_is_locked(void);
1165
1166/* Compute profile */
1167void kfd_inc_compute_active(struct kfd_dev *dev);
1168void kfd_dec_compute_active(struct kfd_dev *dev);
1169
1170/* Cgroup Support */
1171/* Check with device cgroup if @kfd device is accessible */
1172static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd)
1173{
1174#if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1175        struct drm_device *ddev = kfd->ddev;
1176
1177        return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1178                                          ddev->render->index,
1179                                          DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1180#else
1181        return 0;
1182#endif
1183}
1184
1185/* Debugfs */
1186#if defined(CONFIG_DEBUG_FS)
1187
1188void kfd_debugfs_init(void);
1189void kfd_debugfs_fini(void);
1190int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1191int pqm_debugfs_mqds(struct seq_file *m, void *data);
1192int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1193int dqm_debugfs_hqds(struct seq_file *m, void *data);
1194int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1195int pm_debugfs_runlist(struct seq_file *m, void *data);
1196
1197int kfd_debugfs_hang_hws(struct kfd_dev *dev);
1198int pm_debugfs_hang_hws(struct packet_manager *pm);
1199int dqm_debugfs_hang_hws(struct device_queue_manager *dqm);
1200
1201#else
1202
1203static inline void kfd_debugfs_init(void) {}
1204static inline void kfd_debugfs_fini(void) {}
1205
1206#endif
1207
1208#endif
1209