linux/drivers/gpu/drm/drm_managed.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2020 Intel
   4 *
   5 * Based on drivers/base/devres.c
   6 */
   7
   8#include <drm/drm_managed.h>
   9
  10#include <linux/list.h>
  11#include <linux/slab.h>
  12#include <linux/spinlock.h>
  13
  14#include <drm/drm_device.h>
  15#include <drm/drm_print.h>
  16
  17#include "drm_internal.h"
  18
  19/**
  20 * DOC: managed resources
  21 *
  22 * Inspired by struct &device managed resources, but tied to the lifetime of
  23 * struct &drm_device, which can outlive the underlying physical device, usually
  24 * when userspace has some open files and other handles to resources still open.
  25 *
  26 * Release actions can be added with drmm_add_action(), memory allocations can
  27 * be done directly with drmm_kmalloc() and the related functions. Everything
  28 * will be released on the final drm_dev_put() in reverse order of how the
  29 * release actions have been added and memory has been allocated since driver
  30 * loading started with devm_drm_dev_alloc().
  31 *
  32 * Note that release actions and managed memory can also be added and removed
  33 * during the lifetime of the driver, all the functions are fully concurrent
  34 * safe. But it is recommended to use managed resources only for resources that
  35 * change rarely, if ever, during the lifetime of the &drm_device instance.
  36 */
  37
  38struct drmres_node {
  39        struct list_head        entry;
  40        drmres_release_t        release;
  41        const char              *name;
  42        size_t                  size;
  43};
  44
  45struct drmres {
  46        struct drmres_node              node;
  47        /*
  48         * Some archs want to perform DMA into kmalloc caches
  49         * and need a guaranteed alignment larger than
  50         * the alignment of a 64-bit integer.
  51         * Thus we use ARCH_KMALLOC_MINALIGN here and get exactly the same
  52         * buffer alignment as if it was allocated by plain kmalloc().
  53         */
  54        u8 __aligned(ARCH_KMALLOC_MINALIGN) data[];
  55};
  56
  57static void free_dr(struct drmres *dr)
  58{
  59        kfree_const(dr->node.name);
  60        kfree(dr);
  61}
  62
  63void drm_managed_release(struct drm_device *dev)
  64{
  65        struct drmres *dr, *tmp;
  66
  67        drm_dbg_drmres(dev, "drmres release begin\n");
  68        list_for_each_entry_safe(dr, tmp, &dev->managed.resources, node.entry) {
  69                drm_dbg_drmres(dev, "REL %p %s (%zu bytes)\n",
  70                               dr, dr->node.name, dr->node.size);
  71
  72                if (dr->node.release)
  73                        dr->node.release(dev, dr->node.size ? *(void **)&dr->data : NULL);
  74
  75                list_del(&dr->node.entry);
  76                free_dr(dr);
  77        }
  78        drm_dbg_drmres(dev, "drmres release end\n");
  79}
  80
  81/*
  82 * Always inline so that kmalloc_track_caller tracks the actual interesting
  83 * caller outside of drm_managed.c.
  84 */
  85static __always_inline struct drmres * alloc_dr(drmres_release_t release,
  86                                                size_t size, gfp_t gfp, int nid)
  87{
  88        size_t tot_size;
  89        struct drmres *dr;
  90
  91        /* We must catch any near-SIZE_MAX cases that could overflow. */
  92        if (unlikely(check_add_overflow(sizeof(*dr), size, &tot_size)))
  93                return NULL;
  94
  95        dr = kmalloc_node_track_caller(tot_size, gfp, nid);
  96        if (unlikely(!dr))
  97                return NULL;
  98
  99        memset(dr, 0, offsetof(struct drmres, data));
 100
 101        INIT_LIST_HEAD(&dr->node.entry);
 102        dr->node.release = release;
 103        dr->node.size = size;
 104
 105        return dr;
 106}
 107
 108static void del_dr(struct drm_device *dev, struct drmres *dr)
 109{
 110        list_del_init(&dr->node.entry);
 111
 112        drm_dbg_drmres(dev, "DEL %p %s (%lu bytes)\n",
 113                       dr, dr->node.name, (unsigned long) dr->node.size);
 114}
 115
 116static void add_dr(struct drm_device *dev, struct drmres *dr)
 117{
 118        unsigned long flags;
 119
 120        spin_lock_irqsave(&dev->managed.lock, flags);
 121        list_add(&dr->node.entry, &dev->managed.resources);
 122        spin_unlock_irqrestore(&dev->managed.lock, flags);
 123
 124        drm_dbg_drmres(dev, "ADD %p %s (%lu bytes)\n",
 125                       dr, dr->node.name, (unsigned long) dr->node.size);
 126}
 127
 128void drmm_add_final_kfree(struct drm_device *dev, void *container)
 129{
 130        WARN_ON(dev->managed.final_kfree);
 131        WARN_ON(dev < (struct drm_device *) container);
 132        WARN_ON(dev + 1 > (struct drm_device *) (container + ksize(container)));
 133        dev->managed.final_kfree = container;
 134}
 135
 136int __drmm_add_action(struct drm_device *dev,
 137                      drmres_release_t action,
 138                      void *data, const char *name)
 139{
 140        struct drmres *dr;
 141        void **void_ptr;
 142
 143        dr = alloc_dr(action, data ? sizeof(void*) : 0,
 144                      GFP_KERNEL | __GFP_ZERO,
 145                      dev_to_node(dev->dev));
 146        if (!dr) {
 147                drm_dbg_drmres(dev, "failed to add action %s for %p\n",
 148                               name, data);
 149                return -ENOMEM;
 150        }
 151
 152        dr->node.name = kstrdup_const(name, GFP_KERNEL);
 153        if (data) {
 154                void_ptr = (void **)&dr->data;
 155                *void_ptr = data;
 156        }
 157
 158        add_dr(dev, dr);
 159
 160        return 0;
 161}
 162EXPORT_SYMBOL(__drmm_add_action);
 163
 164int __drmm_add_action_or_reset(struct drm_device *dev,
 165                               drmres_release_t action,
 166                               void *data, const char *name)
 167{
 168        int ret;
 169
 170        ret = __drmm_add_action(dev, action, data, name);
 171        if (ret)
 172                action(dev, data);
 173
 174        return ret;
 175}
 176EXPORT_SYMBOL(__drmm_add_action_or_reset);
 177
 178/**
 179 * drmm_kmalloc - &drm_device managed kmalloc()
 180 * @dev: DRM device
 181 * @size: size of the memory allocation
 182 * @gfp: GFP allocation flags
 183 *
 184 * This is a &drm_device managed version of kmalloc(). The allocated memory is
 185 * automatically freed on the final drm_dev_put(). Memory can also be freed
 186 * before the final drm_dev_put() by calling drmm_kfree().
 187 */
 188void *drmm_kmalloc(struct drm_device *dev, size_t size, gfp_t gfp)
 189{
 190        struct drmres *dr;
 191
 192        dr = alloc_dr(NULL, size, gfp, dev_to_node(dev->dev));
 193        if (!dr) {
 194                drm_dbg_drmres(dev, "failed to allocate %zu bytes, %u flags\n",
 195                               size, gfp);
 196                return NULL;
 197        }
 198        dr->node.name = kstrdup_const("kmalloc", GFP_KERNEL);
 199
 200        add_dr(dev, dr);
 201
 202        return dr->data;
 203}
 204EXPORT_SYMBOL(drmm_kmalloc);
 205
 206/**
 207 * drmm_kstrdup - &drm_device managed kstrdup()
 208 * @dev: DRM device
 209 * @s: 0-terminated string to be duplicated
 210 * @gfp: GFP allocation flags
 211 *
 212 * This is a &drm_device managed version of kstrdup(). The allocated memory is
 213 * automatically freed on the final drm_dev_put() and works exactly like a
 214 * memory allocation obtained by drmm_kmalloc().
 215 */
 216char *drmm_kstrdup(struct drm_device *dev, const char *s, gfp_t gfp)
 217{
 218        size_t size;
 219        char *buf;
 220
 221        if (!s)
 222                return NULL;
 223
 224        size = strlen(s) + 1;
 225        buf = drmm_kmalloc(dev, size, gfp);
 226        if (buf)
 227                memcpy(buf, s, size);
 228        return buf;
 229}
 230EXPORT_SYMBOL_GPL(drmm_kstrdup);
 231
 232/**
 233 * drmm_kfree - &drm_device managed kfree()
 234 * @dev: DRM device
 235 * @data: memory allocation to be freed
 236 *
 237 * This is a &drm_device managed version of kfree() which can be used to
 238 * release memory allocated through drmm_kmalloc() or any of its related
 239 * functions before the final drm_dev_put() of @dev.
 240 */
 241void drmm_kfree(struct drm_device *dev, void *data)
 242{
 243        struct drmres *dr_match = NULL, *dr;
 244        unsigned long flags;
 245
 246        if (!data)
 247                return;
 248
 249        spin_lock_irqsave(&dev->managed.lock, flags);
 250        list_for_each_entry(dr, &dev->managed.resources, node.entry) {
 251                if (dr->data == data) {
 252                        dr_match = dr;
 253                        del_dr(dev, dr_match);
 254                        break;
 255                }
 256        }
 257        spin_unlock_irqrestore(&dev->managed.lock, flags);
 258
 259        if (WARN_ON(!dr_match))
 260                return;
 261
 262        free_dr(dr_match);
 263}
 264EXPORT_SYMBOL(drmm_kfree);
 265