linux/drivers/gpu/drm/hisilicon/kirin/dw_drm_dsi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * DesignWare MIPI DSI Host Controller v1.02 driver
   4 *
   5 * Copyright (c) 2016 Linaro Limited.
   6 * Copyright (c) 2014-2016 HiSilicon Limited.
   7 *
   8 * Author:
   9 *      Xinliang Liu <z.liuxinliang@hisilicon.com>
  10 *      Xinliang Liu <xinliang.liu@linaro.org>
  11 *      Xinwei Kong <kong.kongxinwei@hisilicon.com>
  12 */
  13
  14#include <linux/clk.h>
  15#include <linux/component.h>
  16#include <linux/delay.h>
  17#include <linux/module.h>
  18#include <linux/platform_device.h>
  19
  20#include <drm/drm_atomic_helper.h>
  21#include <drm/drm_bridge.h>
  22#include <drm/drm_device.h>
  23#include <drm/drm_mipi_dsi.h>
  24#include <drm/drm_of.h>
  25#include <drm/drm_print.h>
  26#include <drm/drm_probe_helper.h>
  27#include <drm/drm_simple_kms_helper.h>
  28
  29#include "dw_dsi_reg.h"
  30
  31#define MAX_TX_ESC_CLK          10
  32#define ROUND(x, y)             ((x) / (y) + \
  33                                ((x) % (y) * 10 / (y) >= 5 ? 1 : 0))
  34#define PHY_REF_CLK_RATE        19200000
  35#define PHY_REF_CLK_PERIOD_PS   (1000000000 / (PHY_REF_CLK_RATE / 1000))
  36
  37#define encoder_to_dsi(encoder) \
  38        container_of(encoder, struct dw_dsi, encoder)
  39#define host_to_dsi(host) \
  40        container_of(host, struct dw_dsi, host)
  41
  42struct mipi_phy_params {
  43        u32 clk_t_lpx;
  44        u32 clk_t_hs_prepare;
  45        u32 clk_t_hs_zero;
  46        u32 clk_t_hs_trial;
  47        u32 clk_t_wakeup;
  48        u32 data_t_lpx;
  49        u32 data_t_hs_prepare;
  50        u32 data_t_hs_zero;
  51        u32 data_t_hs_trial;
  52        u32 data_t_ta_go;
  53        u32 data_t_ta_get;
  54        u32 data_t_wakeup;
  55        u32 hstx_ckg_sel;
  56        u32 pll_fbd_div5f;
  57        u32 pll_fbd_div1f;
  58        u32 pll_fbd_2p;
  59        u32 pll_enbwt;
  60        u32 pll_fbd_p;
  61        u32 pll_fbd_s;
  62        u32 pll_pre_div1p;
  63        u32 pll_pre_p;
  64        u32 pll_vco_750M;
  65        u32 pll_lpf_rs;
  66        u32 pll_lpf_cs;
  67        u32 clklp2hs_time;
  68        u32 clkhs2lp_time;
  69        u32 lp2hs_time;
  70        u32 hs2lp_time;
  71        u32 clk_to_data_delay;
  72        u32 data_to_clk_delay;
  73        u32 lane_byte_clk_kHz;
  74        u32 clk_division;
  75};
  76
  77struct dsi_hw_ctx {
  78        void __iomem *base;
  79        struct clk *pclk;
  80};
  81
  82struct dw_dsi {
  83        struct drm_encoder encoder;
  84        struct drm_bridge *bridge;
  85        struct mipi_dsi_host host;
  86        struct drm_display_mode cur_mode;
  87        struct dsi_hw_ctx *ctx;
  88        struct mipi_phy_params phy;
  89
  90        u32 lanes;
  91        enum mipi_dsi_pixel_format format;
  92        unsigned long mode_flags;
  93        bool enable;
  94};
  95
  96struct dsi_data {
  97        struct dw_dsi dsi;
  98        struct dsi_hw_ctx ctx;
  99};
 100
 101struct dsi_phy_range {
 102        u32 min_range_kHz;
 103        u32 max_range_kHz;
 104        u32 pll_vco_750M;
 105        u32 hstx_ckg_sel;
 106};
 107
 108static const struct dsi_phy_range dphy_range_info[] = {
 109        {   46875,    62500,   1,    7 },
 110        {   62500,    93750,   0,    7 },
 111        {   93750,   125000,   1,    6 },
 112        {  125000,   187500,   0,    6 },
 113        {  187500,   250000,   1,    5 },
 114        {  250000,   375000,   0,    5 },
 115        {  375000,   500000,   1,    4 },
 116        {  500000,   750000,   0,    4 },
 117        {  750000,  1000000,   1,    0 },
 118        { 1000000,  1500000,   0,    0 }
 119};
 120
 121static u32 dsi_calc_phy_rate(u32 req_kHz, struct mipi_phy_params *phy)
 122{
 123        u32 ref_clk_ps = PHY_REF_CLK_PERIOD_PS;
 124        u32 tmp_kHz = req_kHz;
 125        u32 i = 0;
 126        u32 q_pll = 1;
 127        u32 m_pll = 0;
 128        u32 n_pll = 0;
 129        u32 r_pll = 1;
 130        u32 m_n = 0;
 131        u32 m_n_int = 0;
 132        u32 f_kHz = 0;
 133        u64 temp;
 134
 135        /*
 136         * Find a rate >= req_kHz.
 137         */
 138        do {
 139                f_kHz = tmp_kHz;
 140
 141                for (i = 0; i < ARRAY_SIZE(dphy_range_info); i++)
 142                        if (f_kHz >= dphy_range_info[i].min_range_kHz &&
 143                            f_kHz <= dphy_range_info[i].max_range_kHz)
 144                                break;
 145
 146                if (i == ARRAY_SIZE(dphy_range_info)) {
 147                        DRM_ERROR("%dkHz out of range\n", f_kHz);
 148                        return 0;
 149                }
 150
 151                phy->pll_vco_750M = dphy_range_info[i].pll_vco_750M;
 152                phy->hstx_ckg_sel = dphy_range_info[i].hstx_ckg_sel;
 153
 154                if (phy->hstx_ckg_sel <= 7 &&
 155                    phy->hstx_ckg_sel >= 4)
 156                        q_pll = 0x10 >> (7 - phy->hstx_ckg_sel);
 157
 158                temp = f_kHz * (u64)q_pll * (u64)ref_clk_ps;
 159                m_n_int = temp / (u64)1000000000;
 160                m_n = (temp % (u64)1000000000) / (u64)100000000;
 161
 162                if (m_n_int % 2 == 0) {
 163                        if (m_n * 6 >= 50) {
 164                                n_pll = 2;
 165                                m_pll = (m_n_int + 1) * n_pll;
 166                        } else if (m_n * 6 >= 30) {
 167                                n_pll = 3;
 168                                m_pll = m_n_int * n_pll + 2;
 169                        } else {
 170                                n_pll = 1;
 171                                m_pll = m_n_int * n_pll;
 172                        }
 173                } else {
 174                        if (m_n * 6 >= 50) {
 175                                n_pll = 1;
 176                                m_pll = (m_n_int + 1) * n_pll;
 177                        } else if (m_n * 6 >= 30) {
 178                                n_pll = 1;
 179                                m_pll = (m_n_int + 1) * n_pll;
 180                        } else if (m_n * 6 >= 10) {
 181                                n_pll = 3;
 182                                m_pll = m_n_int * n_pll + 1;
 183                        } else {
 184                                n_pll = 2;
 185                                m_pll = m_n_int * n_pll;
 186                        }
 187                }
 188
 189                if (n_pll == 1) {
 190                        phy->pll_fbd_p = 0;
 191                        phy->pll_pre_div1p = 1;
 192                } else {
 193                        phy->pll_fbd_p = n_pll;
 194                        phy->pll_pre_div1p = 0;
 195                }
 196
 197                if (phy->pll_fbd_2p <= 7 && phy->pll_fbd_2p >= 4)
 198                        r_pll = 0x10 >> (7 - phy->pll_fbd_2p);
 199
 200                if (m_pll == 2) {
 201                        phy->pll_pre_p = 0;
 202                        phy->pll_fbd_s = 0;
 203                        phy->pll_fbd_div1f = 0;
 204                        phy->pll_fbd_div5f = 1;
 205                } else if (m_pll >= 2 * 2 * r_pll && m_pll <= 2 * 4 * r_pll) {
 206                        phy->pll_pre_p = m_pll / (2 * r_pll);
 207                        phy->pll_fbd_s = 0;
 208                        phy->pll_fbd_div1f = 1;
 209                        phy->pll_fbd_div5f = 0;
 210                } else if (m_pll >= 2 * 5 * r_pll && m_pll <= 2 * 150 * r_pll) {
 211                        if (((m_pll / (2 * r_pll)) % 2) == 0) {
 212                                phy->pll_pre_p =
 213                                        (m_pll / (2 * r_pll)) / 2 - 1;
 214                                phy->pll_fbd_s =
 215                                        (m_pll / (2 * r_pll)) % 2 + 2;
 216                        } else {
 217                                phy->pll_pre_p =
 218                                        (m_pll / (2 * r_pll)) / 2;
 219                                phy->pll_fbd_s =
 220                                        (m_pll / (2 * r_pll)) % 2;
 221                        }
 222                        phy->pll_fbd_div1f = 0;
 223                        phy->pll_fbd_div5f = 0;
 224                } else {
 225                        phy->pll_pre_p = 0;
 226                        phy->pll_fbd_s = 0;
 227                        phy->pll_fbd_div1f = 0;
 228                        phy->pll_fbd_div5f = 1;
 229                }
 230
 231                f_kHz = (u64)1000000000 * (u64)m_pll /
 232                        ((u64)ref_clk_ps * (u64)n_pll * (u64)q_pll);
 233
 234                if (f_kHz >= req_kHz)
 235                        break;
 236
 237                tmp_kHz += 10;
 238
 239        } while (true);
 240
 241        return f_kHz;
 242}
 243
 244static void dsi_get_phy_params(u32 phy_req_kHz,
 245                               struct mipi_phy_params *phy)
 246{
 247        u32 ref_clk_ps = PHY_REF_CLK_PERIOD_PS;
 248        u32 phy_rate_kHz;
 249        u32 ui;
 250
 251        memset(phy, 0, sizeof(*phy));
 252
 253        phy_rate_kHz = dsi_calc_phy_rate(phy_req_kHz, phy);
 254        if (!phy_rate_kHz)
 255                return;
 256
 257        ui = 1000000 / phy_rate_kHz;
 258
 259        phy->clk_t_lpx = ROUND(50, 8 * ui);
 260        phy->clk_t_hs_prepare = ROUND(133, 16 * ui) - 1;
 261
 262        phy->clk_t_hs_zero = ROUND(262, 8 * ui);
 263        phy->clk_t_hs_trial = 2 * (ROUND(60, 8 * ui) - 1);
 264        phy->clk_t_wakeup = ROUND(1000000, (ref_clk_ps / 1000) - 1);
 265        if (phy->clk_t_wakeup > 0xff)
 266                phy->clk_t_wakeup = 0xff;
 267        phy->data_t_wakeup = phy->clk_t_wakeup;
 268        phy->data_t_lpx = phy->clk_t_lpx;
 269        phy->data_t_hs_prepare = ROUND(125 + 10 * ui, 16 * ui) - 1;
 270        phy->data_t_hs_zero = ROUND(105 + 6 * ui, 8 * ui);
 271        phy->data_t_hs_trial = 2 * (ROUND(60 + 4 * ui, 8 * ui) - 1);
 272        phy->data_t_ta_go = 3;
 273        phy->data_t_ta_get = 4;
 274
 275        phy->pll_enbwt = 1;
 276        phy->clklp2hs_time = ROUND(407, 8 * ui) + 12;
 277        phy->clkhs2lp_time = ROUND(105 + 12 * ui, 8 * ui);
 278        phy->lp2hs_time = ROUND(240 + 12 * ui, 8 * ui) + 1;
 279        phy->hs2lp_time = phy->clkhs2lp_time;
 280        phy->clk_to_data_delay = 1 + phy->clklp2hs_time;
 281        phy->data_to_clk_delay = ROUND(60 + 52 * ui, 8 * ui) +
 282                                phy->clkhs2lp_time;
 283
 284        phy->lane_byte_clk_kHz = phy_rate_kHz / 8;
 285        phy->clk_division =
 286                DIV_ROUND_UP(phy->lane_byte_clk_kHz, MAX_TX_ESC_CLK);
 287}
 288
 289static u32 dsi_get_dpi_color_coding(enum mipi_dsi_pixel_format format)
 290{
 291        u32 val;
 292
 293        /*
 294         * TODO: only support RGB888 now, to support more
 295         */
 296        switch (format) {
 297        case MIPI_DSI_FMT_RGB888:
 298                val = DSI_24BITS_1;
 299                break;
 300        default:
 301                val = DSI_24BITS_1;
 302                break;
 303        }
 304
 305        return val;
 306}
 307
 308/*
 309 * dsi phy reg write function
 310 */
 311static void dsi_phy_tst_set(void __iomem *base, u32 reg, u32 val)
 312{
 313        u32 reg_write = 0x10000 + reg;
 314
 315        /*
 316         * latch reg first
 317         */
 318        writel(reg_write, base + PHY_TST_CTRL1);
 319        writel(0x02, base + PHY_TST_CTRL0);
 320        writel(0x00, base + PHY_TST_CTRL0);
 321
 322        /*
 323         * then latch value
 324         */
 325        writel(val, base + PHY_TST_CTRL1);
 326        writel(0x02, base + PHY_TST_CTRL0);
 327        writel(0x00, base + PHY_TST_CTRL0);
 328}
 329
 330static void dsi_set_phy_timer(void __iomem *base,
 331                              struct mipi_phy_params *phy,
 332                              u32 lanes)
 333{
 334        u32 val;
 335
 336        /*
 337         * Set lane value and phy stop wait time.
 338         */
 339        val = (lanes - 1) | (PHY_STOP_WAIT_TIME << 8);
 340        writel(val, base + PHY_IF_CFG);
 341
 342        /*
 343         * Set phy clk division.
 344         */
 345        val = readl(base + CLKMGR_CFG) | phy->clk_division;
 346        writel(val, base + CLKMGR_CFG);
 347
 348        /*
 349         * Set lp and hs switching params.
 350         */
 351        dw_update_bits(base + PHY_TMR_CFG, 24, MASK(8), phy->hs2lp_time);
 352        dw_update_bits(base + PHY_TMR_CFG, 16, MASK(8), phy->lp2hs_time);
 353        dw_update_bits(base + PHY_TMR_LPCLK_CFG, 16, MASK(10),
 354                       phy->clkhs2lp_time);
 355        dw_update_bits(base + PHY_TMR_LPCLK_CFG, 0, MASK(10),
 356                       phy->clklp2hs_time);
 357        dw_update_bits(base + CLK_DATA_TMR_CFG, 8, MASK(8),
 358                       phy->data_to_clk_delay);
 359        dw_update_bits(base + CLK_DATA_TMR_CFG, 0, MASK(8),
 360                       phy->clk_to_data_delay);
 361}
 362
 363static void dsi_set_mipi_phy(void __iomem *base,
 364                             struct mipi_phy_params *phy,
 365                             u32 lanes)
 366{
 367        u32 delay_count;
 368        u32 val;
 369        u32 i;
 370
 371        /* phy timer setting */
 372        dsi_set_phy_timer(base, phy, lanes);
 373
 374        /*
 375         * Reset to clean up phy tst params.
 376         */
 377        writel(0, base + PHY_RSTZ);
 378        writel(0, base + PHY_TST_CTRL0);
 379        writel(1, base + PHY_TST_CTRL0);
 380        writel(0, base + PHY_TST_CTRL0);
 381
 382        /*
 383         * Clock lane timing control setting: TLPX, THS-PREPARE,
 384         * THS-ZERO, THS-TRAIL, TWAKEUP.
 385         */
 386        dsi_phy_tst_set(base, CLK_TLPX, phy->clk_t_lpx);
 387        dsi_phy_tst_set(base, CLK_THS_PREPARE, phy->clk_t_hs_prepare);
 388        dsi_phy_tst_set(base, CLK_THS_ZERO, phy->clk_t_hs_zero);
 389        dsi_phy_tst_set(base, CLK_THS_TRAIL, phy->clk_t_hs_trial);
 390        dsi_phy_tst_set(base, CLK_TWAKEUP, phy->clk_t_wakeup);
 391
 392        /*
 393         * Data lane timing control setting: TLPX, THS-PREPARE,
 394         * THS-ZERO, THS-TRAIL, TTA-GO, TTA-GET, TWAKEUP.
 395         */
 396        for (i = 0; i < lanes; i++) {
 397                dsi_phy_tst_set(base, DATA_TLPX(i), phy->data_t_lpx);
 398                dsi_phy_tst_set(base, DATA_THS_PREPARE(i),
 399                                phy->data_t_hs_prepare);
 400                dsi_phy_tst_set(base, DATA_THS_ZERO(i), phy->data_t_hs_zero);
 401                dsi_phy_tst_set(base, DATA_THS_TRAIL(i), phy->data_t_hs_trial);
 402                dsi_phy_tst_set(base, DATA_TTA_GO(i), phy->data_t_ta_go);
 403                dsi_phy_tst_set(base, DATA_TTA_GET(i), phy->data_t_ta_get);
 404                dsi_phy_tst_set(base, DATA_TWAKEUP(i), phy->data_t_wakeup);
 405        }
 406
 407        /*
 408         * physical configuration: I, pll I, pll II, pll III,
 409         * pll IV, pll V.
 410         */
 411        dsi_phy_tst_set(base, PHY_CFG_I, phy->hstx_ckg_sel);
 412        val = (phy->pll_fbd_div5f << 5) + (phy->pll_fbd_div1f << 4) +
 413                                (phy->pll_fbd_2p << 1) + phy->pll_enbwt;
 414        dsi_phy_tst_set(base, PHY_CFG_PLL_I, val);
 415        dsi_phy_tst_set(base, PHY_CFG_PLL_II, phy->pll_fbd_p);
 416        dsi_phy_tst_set(base, PHY_CFG_PLL_III, phy->pll_fbd_s);
 417        val = (phy->pll_pre_div1p << 7) + phy->pll_pre_p;
 418        dsi_phy_tst_set(base, PHY_CFG_PLL_IV, val);
 419        val = (5 << 5) + (phy->pll_vco_750M << 4) + (phy->pll_lpf_rs << 2) +
 420                phy->pll_lpf_cs;
 421        dsi_phy_tst_set(base, PHY_CFG_PLL_V, val);
 422
 423        writel(PHY_ENABLECLK, base + PHY_RSTZ);
 424        udelay(1);
 425        writel(PHY_ENABLECLK | PHY_UNSHUTDOWNZ, base + PHY_RSTZ);
 426        udelay(1);
 427        writel(PHY_ENABLECLK | PHY_UNRSTZ | PHY_UNSHUTDOWNZ, base + PHY_RSTZ);
 428        usleep_range(1000, 1500);
 429
 430        /*
 431         * wait for phy's clock ready
 432         */
 433        delay_count = 100;
 434        while (delay_count) {
 435                val = readl(base +  PHY_STATUS);
 436                if ((BIT(0) | BIT(2)) & val)
 437                        break;
 438
 439                udelay(1);
 440                delay_count--;
 441        }
 442
 443        if (!delay_count)
 444                DRM_INFO("phylock and phystopstateclklane is not ready.\n");
 445}
 446
 447static void dsi_set_mode_timing(void __iomem *base,
 448                                u32 lane_byte_clk_kHz,
 449                                struct drm_display_mode *mode,
 450                                enum mipi_dsi_pixel_format format)
 451{
 452        u32 hfp, hbp, hsw, vfp, vbp, vsw;
 453        u32 hline_time;
 454        u32 hsa_time;
 455        u32 hbp_time;
 456        u32 pixel_clk_kHz;
 457        int htot, vtot;
 458        u32 val;
 459        u64 tmp;
 460
 461        val = dsi_get_dpi_color_coding(format);
 462        writel(val, base + DPI_COLOR_CODING);
 463
 464        val = (mode->flags & DRM_MODE_FLAG_NHSYNC ? 1 : 0) << 2;
 465        val |= (mode->flags & DRM_MODE_FLAG_NVSYNC ? 1 : 0) << 1;
 466        writel(val, base +  DPI_CFG_POL);
 467
 468        /*
 469         * The DSI IP accepts vertical timing using lines as normal,
 470         * but horizontal timing is a mixture of pixel-clocks for the
 471         * active region and byte-lane clocks for the blanking-related
 472         * timings.  hfp is specified as the total hline_time in byte-
 473         * lane clocks minus hsa, hbp and active.
 474         */
 475        pixel_clk_kHz = mode->clock;
 476        htot = mode->htotal;
 477        vtot = mode->vtotal;
 478        hfp = mode->hsync_start - mode->hdisplay;
 479        hbp = mode->htotal - mode->hsync_end;
 480        hsw = mode->hsync_end - mode->hsync_start;
 481        vfp = mode->vsync_start - mode->vdisplay;
 482        vbp = mode->vtotal - mode->vsync_end;
 483        vsw = mode->vsync_end - mode->vsync_start;
 484        if (vsw > 15) {
 485                DRM_DEBUG_DRIVER("vsw exceeded 15\n");
 486                vsw = 15;
 487        }
 488
 489        hsa_time = (hsw * lane_byte_clk_kHz) / pixel_clk_kHz;
 490        hbp_time = (hbp * lane_byte_clk_kHz) / pixel_clk_kHz;
 491        tmp = (u64)htot * (u64)lane_byte_clk_kHz;
 492        hline_time = DIV_ROUND_UP(tmp, pixel_clk_kHz);
 493
 494        /* all specified in byte-lane clocks */
 495        writel(hsa_time, base + VID_HSA_TIME);
 496        writel(hbp_time, base + VID_HBP_TIME);
 497        writel(hline_time, base + VID_HLINE_TIME);
 498
 499        writel(vsw, base + VID_VSA_LINES);
 500        writel(vbp, base + VID_VBP_LINES);
 501        writel(vfp, base + VID_VFP_LINES);
 502        writel(mode->vdisplay, base + VID_VACTIVE_LINES);
 503        writel(mode->hdisplay, base + VID_PKT_SIZE);
 504
 505        DRM_DEBUG_DRIVER("htot=%d, hfp=%d, hbp=%d, hsw=%d\n",
 506                         htot, hfp, hbp, hsw);
 507        DRM_DEBUG_DRIVER("vtol=%d, vfp=%d, vbp=%d, vsw=%d\n",
 508                         vtot, vfp, vbp, vsw);
 509        DRM_DEBUG_DRIVER("hsa_time=%d, hbp_time=%d, hline_time=%d\n",
 510                         hsa_time, hbp_time, hline_time);
 511}
 512
 513static void dsi_set_video_mode(void __iomem *base, unsigned long flags)
 514{
 515        u32 val;
 516        u32 mode_mask = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_BURST |
 517                MIPI_DSI_MODE_VIDEO_SYNC_PULSE;
 518        u32 non_burst_sync_pulse = MIPI_DSI_MODE_VIDEO |
 519                MIPI_DSI_MODE_VIDEO_SYNC_PULSE;
 520        u32 non_burst_sync_event = MIPI_DSI_MODE_VIDEO;
 521
 522        /*
 523         * choose video mode type
 524         */
 525        if ((flags & mode_mask) == non_burst_sync_pulse)
 526                val = DSI_NON_BURST_SYNC_PULSES;
 527        else if ((flags & mode_mask) == non_burst_sync_event)
 528                val = DSI_NON_BURST_SYNC_EVENTS;
 529        else
 530                val = DSI_BURST_SYNC_PULSES_1;
 531        writel(val, base + VID_MODE_CFG);
 532
 533        writel(PHY_TXREQUESTCLKHS, base + LPCLK_CTRL);
 534        writel(DSI_VIDEO_MODE, base + MODE_CFG);
 535}
 536
 537static void dsi_mipi_init(struct dw_dsi *dsi)
 538{
 539        struct dsi_hw_ctx *ctx = dsi->ctx;
 540        struct mipi_phy_params *phy = &dsi->phy;
 541        struct drm_display_mode *mode = &dsi->cur_mode;
 542        u32 bpp = mipi_dsi_pixel_format_to_bpp(dsi->format);
 543        void __iomem *base = ctx->base;
 544        u32 dphy_req_kHz;
 545
 546        /*
 547         * count phy params
 548         */
 549        dphy_req_kHz = mode->clock * bpp / dsi->lanes;
 550        dsi_get_phy_params(dphy_req_kHz, phy);
 551
 552        /* reset Core */
 553        writel(RESET, base + PWR_UP);
 554
 555        /* set dsi phy params */
 556        dsi_set_mipi_phy(base, phy, dsi->lanes);
 557
 558        /* set dsi mode timing */
 559        dsi_set_mode_timing(base, phy->lane_byte_clk_kHz, mode, dsi->format);
 560
 561        /* set dsi video mode */
 562        dsi_set_video_mode(base, dsi->mode_flags);
 563
 564        /* dsi wake up */
 565        writel(POWERUP, base + PWR_UP);
 566
 567        DRM_DEBUG_DRIVER("lanes=%d, pixel_clk=%d kHz, bytes_freq=%d kHz\n",
 568                         dsi->lanes, mode->clock, phy->lane_byte_clk_kHz);
 569}
 570
 571static void dsi_encoder_disable(struct drm_encoder *encoder)
 572{
 573        struct dw_dsi *dsi = encoder_to_dsi(encoder);
 574        struct dsi_hw_ctx *ctx = dsi->ctx;
 575        void __iomem *base = ctx->base;
 576
 577        if (!dsi->enable)
 578                return;
 579
 580        writel(0, base + PWR_UP);
 581        writel(0, base + LPCLK_CTRL);
 582        writel(0, base + PHY_RSTZ);
 583        clk_disable_unprepare(ctx->pclk);
 584
 585        dsi->enable = false;
 586}
 587
 588static void dsi_encoder_enable(struct drm_encoder *encoder)
 589{
 590        struct dw_dsi *dsi = encoder_to_dsi(encoder);
 591        struct dsi_hw_ctx *ctx = dsi->ctx;
 592        int ret;
 593
 594        if (dsi->enable)
 595                return;
 596
 597        ret = clk_prepare_enable(ctx->pclk);
 598        if (ret) {
 599                DRM_ERROR("fail to enable pclk: %d\n", ret);
 600                return;
 601        }
 602
 603        dsi_mipi_init(dsi);
 604
 605        dsi->enable = true;
 606}
 607
 608static enum drm_mode_status dsi_encoder_phy_mode_valid(
 609                                        struct drm_encoder *encoder,
 610                                        const struct drm_display_mode *mode)
 611{
 612        struct dw_dsi *dsi = encoder_to_dsi(encoder);
 613        struct mipi_phy_params phy;
 614        u32 bpp = mipi_dsi_pixel_format_to_bpp(dsi->format);
 615        u32 req_kHz, act_kHz, lane_byte_clk_kHz;
 616
 617        /* Calculate the lane byte clk using the adjusted mode clk */
 618        memset(&phy, 0, sizeof(phy));
 619        req_kHz = mode->clock * bpp / dsi->lanes;
 620        act_kHz = dsi_calc_phy_rate(req_kHz, &phy);
 621        lane_byte_clk_kHz = act_kHz / 8;
 622
 623        DRM_DEBUG_DRIVER("Checking mode %ix%i-%i@%i clock: %i...",
 624                        mode->hdisplay, mode->vdisplay, bpp,
 625                        drm_mode_vrefresh(mode), mode->clock);
 626
 627        /*
 628         * Make sure the adjusted mode clock and the lane byte clk
 629         * have a common denominator base frequency
 630         */
 631        if (mode->clock/dsi->lanes == lane_byte_clk_kHz/3) {
 632                DRM_DEBUG_DRIVER("OK!\n");
 633                return MODE_OK;
 634        }
 635
 636        DRM_DEBUG_DRIVER("BAD!\n");
 637        return MODE_BAD;
 638}
 639
 640static enum drm_mode_status dsi_encoder_mode_valid(struct drm_encoder *encoder,
 641                                        const struct drm_display_mode *mode)
 642
 643{
 644        const struct drm_crtc_helper_funcs *crtc_funcs = NULL;
 645        struct drm_crtc *crtc = NULL;
 646        struct drm_display_mode adj_mode;
 647        enum drm_mode_status ret;
 648
 649        /*
 650         * The crtc might adjust the mode, so go through the
 651         * possible crtcs (technically just one) and call
 652         * mode_fixup to figure out the adjusted mode before we
 653         * validate it.
 654         */
 655        drm_for_each_crtc(crtc, encoder->dev) {
 656                /*
 657                 * reset adj_mode to the mode value each time,
 658                 * so we don't adjust the mode twice
 659                 */
 660                drm_mode_copy(&adj_mode, mode);
 661
 662                crtc_funcs = crtc->helper_private;
 663                if (crtc_funcs && crtc_funcs->mode_fixup)
 664                        if (!crtc_funcs->mode_fixup(crtc, mode, &adj_mode))
 665                                return MODE_BAD;
 666
 667                ret = dsi_encoder_phy_mode_valid(encoder, &adj_mode);
 668                if (ret != MODE_OK)
 669                        return ret;
 670        }
 671        return MODE_OK;
 672}
 673
 674static void dsi_encoder_mode_set(struct drm_encoder *encoder,
 675                                 struct drm_display_mode *mode,
 676                                 struct drm_display_mode *adj_mode)
 677{
 678        struct dw_dsi *dsi = encoder_to_dsi(encoder);
 679
 680        drm_mode_copy(&dsi->cur_mode, adj_mode);
 681}
 682
 683static int dsi_encoder_atomic_check(struct drm_encoder *encoder,
 684                                    struct drm_crtc_state *crtc_state,
 685                                    struct drm_connector_state *conn_state)
 686{
 687        /* do nothing */
 688        return 0;
 689}
 690
 691static const struct drm_encoder_helper_funcs dw_encoder_helper_funcs = {
 692        .atomic_check   = dsi_encoder_atomic_check,
 693        .mode_valid     = dsi_encoder_mode_valid,
 694        .mode_set       = dsi_encoder_mode_set,
 695        .enable         = dsi_encoder_enable,
 696        .disable        = dsi_encoder_disable
 697};
 698
 699static int dw_drm_encoder_init(struct device *dev,
 700                               struct drm_device *drm_dev,
 701                               struct drm_encoder *encoder)
 702{
 703        int ret;
 704        u32 crtc_mask = drm_of_find_possible_crtcs(drm_dev, dev->of_node);
 705
 706        if (!crtc_mask) {
 707                DRM_ERROR("failed to find crtc mask\n");
 708                return -EINVAL;
 709        }
 710
 711        encoder->possible_crtcs = crtc_mask;
 712        ret = drm_simple_encoder_init(drm_dev, encoder, DRM_MODE_ENCODER_DSI);
 713        if (ret) {
 714                DRM_ERROR("failed to init dsi encoder\n");
 715                return ret;
 716        }
 717
 718        drm_encoder_helper_add(encoder, &dw_encoder_helper_funcs);
 719
 720        return 0;
 721}
 722
 723static int dsi_host_attach(struct mipi_dsi_host *host,
 724                           struct mipi_dsi_device *mdsi)
 725{
 726        struct dw_dsi *dsi = host_to_dsi(host);
 727
 728        if (mdsi->lanes < 1 || mdsi->lanes > 4) {
 729                DRM_ERROR("dsi device params invalid\n");
 730                return -EINVAL;
 731        }
 732
 733        dsi->lanes = mdsi->lanes;
 734        dsi->format = mdsi->format;
 735        dsi->mode_flags = mdsi->mode_flags;
 736
 737        return 0;
 738}
 739
 740static int dsi_host_detach(struct mipi_dsi_host *host,
 741                           struct mipi_dsi_device *mdsi)
 742{
 743        /* do nothing */
 744        return 0;
 745}
 746
 747static const struct mipi_dsi_host_ops dsi_host_ops = {
 748        .attach = dsi_host_attach,
 749        .detach = dsi_host_detach,
 750};
 751
 752static int dsi_host_init(struct device *dev, struct dw_dsi *dsi)
 753{
 754        struct mipi_dsi_host *host = &dsi->host;
 755        int ret;
 756
 757        host->dev = dev;
 758        host->ops = &dsi_host_ops;
 759        ret = mipi_dsi_host_register(host);
 760        if (ret) {
 761                DRM_ERROR("failed to register dsi host\n");
 762                return ret;
 763        }
 764
 765        return 0;
 766}
 767
 768static int dsi_bridge_init(struct drm_device *dev, struct dw_dsi *dsi)
 769{
 770        struct drm_encoder *encoder = &dsi->encoder;
 771        struct drm_bridge *bridge = dsi->bridge;
 772
 773        /* associate the bridge to dsi encoder */
 774        return drm_bridge_attach(encoder, bridge, NULL, 0);
 775}
 776
 777static int dsi_bind(struct device *dev, struct device *master, void *data)
 778{
 779        struct dsi_data *ddata = dev_get_drvdata(dev);
 780        struct dw_dsi *dsi = &ddata->dsi;
 781        struct drm_device *drm_dev = data;
 782        int ret;
 783
 784        ret = dw_drm_encoder_init(dev, drm_dev, &dsi->encoder);
 785        if (ret)
 786                return ret;
 787
 788        ret = dsi_host_init(dev, dsi);
 789        if (ret)
 790                return ret;
 791
 792        ret = dsi_bridge_init(drm_dev, dsi);
 793        if (ret)
 794                return ret;
 795
 796        return 0;
 797}
 798
 799static void dsi_unbind(struct device *dev, struct device *master, void *data)
 800{
 801        /* do nothing */
 802}
 803
 804static const struct component_ops dsi_ops = {
 805        .bind   = dsi_bind,
 806        .unbind = dsi_unbind,
 807};
 808
 809static int dsi_parse_dt(struct platform_device *pdev, struct dw_dsi *dsi)
 810{
 811        struct dsi_hw_ctx *ctx = dsi->ctx;
 812        struct device_node *np = pdev->dev.of_node;
 813        struct resource *res;
 814        int ret;
 815
 816        /*
 817         * Get the endpoint node. In our case, dsi has one output port1
 818         * to which the external HDMI bridge is connected.
 819         */
 820        ret = drm_of_find_panel_or_bridge(np, 1, 0, NULL, &dsi->bridge);
 821        if (ret)
 822                return ret;
 823
 824        ctx->pclk = devm_clk_get(&pdev->dev, "pclk");
 825        if (IS_ERR(ctx->pclk)) {
 826                DRM_ERROR("failed to get pclk clock\n");
 827                return PTR_ERR(ctx->pclk);
 828        }
 829
 830        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 831        ctx->base = devm_ioremap_resource(&pdev->dev, res);
 832        if (IS_ERR(ctx->base)) {
 833                DRM_ERROR("failed to remap dsi io region\n");
 834                return PTR_ERR(ctx->base);
 835        }
 836
 837        return 0;
 838}
 839
 840static int dsi_probe(struct platform_device *pdev)
 841{
 842        struct dsi_data *data;
 843        struct dw_dsi *dsi;
 844        struct dsi_hw_ctx *ctx;
 845        int ret;
 846
 847        data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
 848        if (!data) {
 849                DRM_ERROR("failed to allocate dsi data.\n");
 850                return -ENOMEM;
 851        }
 852        dsi = &data->dsi;
 853        ctx = &data->ctx;
 854        dsi->ctx = ctx;
 855
 856        ret = dsi_parse_dt(pdev, dsi);
 857        if (ret)
 858                return ret;
 859
 860        platform_set_drvdata(pdev, data);
 861
 862        return component_add(&pdev->dev, &dsi_ops);
 863}
 864
 865static int dsi_remove(struct platform_device *pdev)
 866{
 867        component_del(&pdev->dev, &dsi_ops);
 868
 869        return 0;
 870}
 871
 872static const struct of_device_id dsi_of_match[] = {
 873        {.compatible = "hisilicon,hi6220-dsi"},
 874        { }
 875};
 876MODULE_DEVICE_TABLE(of, dsi_of_match);
 877
 878static struct platform_driver dsi_driver = {
 879        .probe = dsi_probe,
 880        .remove = dsi_remove,
 881        .driver = {
 882                .name = "dw-dsi",
 883                .of_match_table = dsi_of_match,
 884        },
 885};
 886
 887module_platform_driver(dsi_driver);
 888
 889MODULE_AUTHOR("Xinliang Liu <xinliang.liu@linaro.org>");
 890MODULE_AUTHOR("Xinliang Liu <z.liuxinliang@hisilicon.com>");
 891MODULE_AUTHOR("Xinwei Kong <kong.kongxinwei@hisilicon.com>");
 892MODULE_DESCRIPTION("DesignWare MIPI DSI Host Controller v1.02 driver");
 893MODULE_LICENSE("GPL v2");
 894