linux/drivers/gpu/drm/i915/gt/intel_execlists_submission.c
<<
>>
Prefs
   1// SPDX-License-Identifier: MIT
   2/*
   3 * Copyright © 2014 Intel Corporation
   4 */
   5
   6/**
   7 * DOC: Logical Rings, Logical Ring Contexts and Execlists
   8 *
   9 * Motivation:
  10 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
  11 * These expanded contexts enable a number of new abilities, especially
  12 * "Execlists" (also implemented in this file).
  13 *
  14 * One of the main differences with the legacy HW contexts is that logical
  15 * ring contexts incorporate many more things to the context's state, like
  16 * PDPs or ringbuffer control registers:
  17 *
  18 * The reason why PDPs are included in the context is straightforward: as
  19 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
  20 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
  21 * instead, the GPU will do it for you on the context switch.
  22 *
  23 * But, what about the ringbuffer control registers (head, tail, etc..)?
  24 * shouldn't we just need a set of those per engine command streamer? This is
  25 * where the name "Logical Rings" starts to make sense: by virtualizing the
  26 * rings, the engine cs shifts to a new "ring buffer" with every context
  27 * switch. When you want to submit a workload to the GPU you: A) choose your
  28 * context, B) find its appropriate virtualized ring, C) write commands to it
  29 * and then, finally, D) tell the GPU to switch to that context.
  30 *
  31 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
  32 * to a contexts is via a context execution list, ergo "Execlists".
  33 *
  34 * LRC implementation:
  35 * Regarding the creation of contexts, we have:
  36 *
  37 * - One global default context.
  38 * - One local default context for each opened fd.
  39 * - One local extra context for each context create ioctl call.
  40 *
  41 * Now that ringbuffers belong per-context (and not per-engine, like before)
  42 * and that contexts are uniquely tied to a given engine (and not reusable,
  43 * like before) we need:
  44 *
  45 * - One ringbuffer per-engine inside each context.
  46 * - One backing object per-engine inside each context.
  47 *
  48 * The global default context starts its life with these new objects fully
  49 * allocated and populated. The local default context for each opened fd is
  50 * more complex, because we don't know at creation time which engine is going
  51 * to use them. To handle this, we have implemented a deferred creation of LR
  52 * contexts:
  53 *
  54 * The local context starts its life as a hollow or blank holder, that only
  55 * gets populated for a given engine once we receive an execbuffer. If later
  56 * on we receive another execbuffer ioctl for the same context but a different
  57 * engine, we allocate/populate a new ringbuffer and context backing object and
  58 * so on.
  59 *
  60 * Finally, regarding local contexts created using the ioctl call: as they are
  61 * only allowed with the render ring, we can allocate & populate them right
  62 * away (no need to defer anything, at least for now).
  63 *
  64 * Execlists implementation:
  65 * Execlists are the new method by which, on gen8+ hardware, workloads are
  66 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
  67 * This method works as follows:
  68 *
  69 * When a request is committed, its commands (the BB start and any leading or
  70 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
  71 * for the appropriate context. The tail pointer in the hardware context is not
  72 * updated at this time, but instead, kept by the driver in the ringbuffer
  73 * structure. A structure representing this request is added to a request queue
  74 * for the appropriate engine: this structure contains a copy of the context's
  75 * tail after the request was written to the ring buffer and a pointer to the
  76 * context itself.
  77 *
  78 * If the engine's request queue was empty before the request was added, the
  79 * queue is processed immediately. Otherwise the queue will be processed during
  80 * a context switch interrupt. In any case, elements on the queue will get sent
  81 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
  82 * globally unique 20-bits submission ID.
  83 *
  84 * When execution of a request completes, the GPU updates the context status
  85 * buffer with a context complete event and generates a context switch interrupt.
  86 * During the interrupt handling, the driver examines the events in the buffer:
  87 * for each context complete event, if the announced ID matches that on the head
  88 * of the request queue, then that request is retired and removed from the queue.
  89 *
  90 * After processing, if any requests were retired and the queue is not empty
  91 * then a new execution list can be submitted. The two requests at the front of
  92 * the queue are next to be submitted but since a context may not occur twice in
  93 * an execution list, if subsequent requests have the same ID as the first then
  94 * the two requests must be combined. This is done simply by discarding requests
  95 * at the head of the queue until either only one requests is left (in which case
  96 * we use a NULL second context) or the first two requests have unique IDs.
  97 *
  98 * By always executing the first two requests in the queue the driver ensures
  99 * that the GPU is kept as busy as possible. In the case where a single context
 100 * completes but a second context is still executing, the request for this second
 101 * context will be at the head of the queue when we remove the first one. This
 102 * request will then be resubmitted along with a new request for a different context,
 103 * which will cause the hardware to continue executing the second request and queue
 104 * the new request (the GPU detects the condition of a context getting preempted
 105 * with the same context and optimizes the context switch flow by not doing
 106 * preemption, but just sampling the new tail pointer).
 107 *
 108 */
 109#include <linux/interrupt.h>
 110
 111#include "i915_drv.h"
 112#include "i915_trace.h"
 113#include "i915_vgpu.h"
 114#include "gen8_engine_cs.h"
 115#include "intel_breadcrumbs.h"
 116#include "intel_context.h"
 117#include "intel_engine_heartbeat.h"
 118#include "intel_engine_pm.h"
 119#include "intel_engine_stats.h"
 120#include "intel_execlists_submission.h"
 121#include "intel_gt.h"
 122#include "intel_gt_irq.h"
 123#include "intel_gt_pm.h"
 124#include "intel_gt_requests.h"
 125#include "intel_lrc.h"
 126#include "intel_lrc_reg.h"
 127#include "intel_mocs.h"
 128#include "intel_reset.h"
 129#include "intel_ring.h"
 130#include "intel_workarounds.h"
 131#include "shmem_utils.h"
 132
 133#define RING_EXECLIST_QFULL             (1 << 0x2)
 134#define RING_EXECLIST1_VALID            (1 << 0x3)
 135#define RING_EXECLIST0_VALID            (1 << 0x4)
 136#define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
 137#define RING_EXECLIST1_ACTIVE           (1 << 0x11)
 138#define RING_EXECLIST0_ACTIVE           (1 << 0x12)
 139
 140#define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
 141#define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
 142#define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
 143#define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
 144#define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
 145#define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
 146
 147#define GEN8_CTX_STATUS_COMPLETED_MASK \
 148         (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
 149
 150#define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE  (0x1) /* lower csb dword */
 151#define GEN12_CTX_SWITCH_DETAIL(csb_dw) ((csb_dw) & 0xF) /* upper csb dword */
 152#define GEN12_CSB_SW_CTX_ID_MASK                GENMASK(25, 15)
 153#define GEN12_IDLE_CTX_ID               0x7FF
 154#define GEN12_CSB_CTX_VALID(csb_dw) \
 155        (FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
 156
 157#define XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE   BIT(1) /* upper csb dword */
 158#define XEHP_CSB_SW_CTX_ID_MASK                 GENMASK(31, 10)
 159#define XEHP_IDLE_CTX_ID                        0xFFFF
 160#define XEHP_CSB_CTX_VALID(csb_dw) \
 161        (FIELD_GET(XEHP_CSB_SW_CTX_ID_MASK, csb_dw) != XEHP_IDLE_CTX_ID)
 162
 163/* Typical size of the average request (2 pipecontrols and a MI_BB) */
 164#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
 165
 166struct virtual_engine {
 167        struct intel_engine_cs base;
 168        struct intel_context context;
 169        struct rcu_work rcu;
 170
 171        /*
 172         * We allow only a single request through the virtual engine at a time
 173         * (each request in the timeline waits for the completion fence of
 174         * the previous before being submitted). By restricting ourselves to
 175         * only submitting a single request, each request is placed on to a
 176         * physical to maximise load spreading (by virtue of the late greedy
 177         * scheduling -- each real engine takes the next available request
 178         * upon idling).
 179         */
 180        struct i915_request *request;
 181
 182        /*
 183         * We keep a rbtree of available virtual engines inside each physical
 184         * engine, sorted by priority. Here we preallocate the nodes we need
 185         * for the virtual engine, indexed by physical_engine->id.
 186         */
 187        struct ve_node {
 188                struct rb_node rb;
 189                int prio;
 190        } nodes[I915_NUM_ENGINES];
 191
 192        /* And finally, which physical engines this virtual engine maps onto. */
 193        unsigned int num_siblings;
 194        struct intel_engine_cs *siblings[];
 195};
 196
 197static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
 198{
 199        GEM_BUG_ON(!intel_engine_is_virtual(engine));
 200        return container_of(engine, struct virtual_engine, base);
 201}
 202
 203static struct intel_context *
 204execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count);
 205
 206static struct i915_request *
 207__active_request(const struct intel_timeline * const tl,
 208                 struct i915_request *rq,
 209                 int error)
 210{
 211        struct i915_request *active = rq;
 212
 213        list_for_each_entry_from_reverse(rq, &tl->requests, link) {
 214                if (__i915_request_is_complete(rq))
 215                        break;
 216
 217                if (error) {
 218                        i915_request_set_error_once(rq, error);
 219                        __i915_request_skip(rq);
 220                }
 221                active = rq;
 222        }
 223
 224        return active;
 225}
 226
 227static struct i915_request *
 228active_request(const struct intel_timeline * const tl, struct i915_request *rq)
 229{
 230        return __active_request(tl, rq, 0);
 231}
 232
 233static void ring_set_paused(const struct intel_engine_cs *engine, int state)
 234{
 235        /*
 236         * We inspect HWS_PREEMPT with a semaphore inside
 237         * engine->emit_fini_breadcrumb. If the dword is true,
 238         * the ring is paused as the semaphore will busywait
 239         * until the dword is false.
 240         */
 241        engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
 242        if (state)
 243                wmb();
 244}
 245
 246static struct i915_priolist *to_priolist(struct rb_node *rb)
 247{
 248        return rb_entry(rb, struct i915_priolist, node);
 249}
 250
 251static int rq_prio(const struct i915_request *rq)
 252{
 253        return READ_ONCE(rq->sched.attr.priority);
 254}
 255
 256static int effective_prio(const struct i915_request *rq)
 257{
 258        int prio = rq_prio(rq);
 259
 260        /*
 261         * If this request is special and must not be interrupted at any
 262         * cost, so be it. Note we are only checking the most recent request
 263         * in the context and so may be masking an earlier vip request. It
 264         * is hoped that under the conditions where nopreempt is used, this
 265         * will not matter (i.e. all requests to that context will be
 266         * nopreempt for as long as desired).
 267         */
 268        if (i915_request_has_nopreempt(rq))
 269                prio = I915_PRIORITY_UNPREEMPTABLE;
 270
 271        return prio;
 272}
 273
 274static int queue_prio(const struct i915_sched_engine *sched_engine)
 275{
 276        struct rb_node *rb;
 277
 278        rb = rb_first_cached(&sched_engine->queue);
 279        if (!rb)
 280                return INT_MIN;
 281
 282        return to_priolist(rb)->priority;
 283}
 284
 285static int virtual_prio(const struct intel_engine_execlists *el)
 286{
 287        struct rb_node *rb = rb_first_cached(&el->virtual);
 288
 289        return rb ? rb_entry(rb, struct ve_node, rb)->prio : INT_MIN;
 290}
 291
 292static bool need_preempt(const struct intel_engine_cs *engine,
 293                         const struct i915_request *rq)
 294{
 295        int last_prio;
 296
 297        if (!intel_engine_has_semaphores(engine))
 298                return false;
 299
 300        /*
 301         * Check if the current priority hint merits a preemption attempt.
 302         *
 303         * We record the highest value priority we saw during rescheduling
 304         * prior to this dequeue, therefore we know that if it is strictly
 305         * less than the current tail of ESLP[0], we do not need to force
 306         * a preempt-to-idle cycle.
 307         *
 308         * However, the priority hint is a mere hint that we may need to
 309         * preempt. If that hint is stale or we may be trying to preempt
 310         * ourselves, ignore the request.
 311         *
 312         * More naturally we would write
 313         *      prio >= max(0, last);
 314         * except that we wish to prevent triggering preemption at the same
 315         * priority level: the task that is running should remain running
 316         * to preserve FIFO ordering of dependencies.
 317         */
 318        last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
 319        if (engine->sched_engine->queue_priority_hint <= last_prio)
 320                return false;
 321
 322        /*
 323         * Check against the first request in ELSP[1], it will, thanks to the
 324         * power of PI, be the highest priority of that context.
 325         */
 326        if (!list_is_last(&rq->sched.link, &engine->sched_engine->requests) &&
 327            rq_prio(list_next_entry(rq, sched.link)) > last_prio)
 328                return true;
 329
 330        /*
 331         * If the inflight context did not trigger the preemption, then maybe
 332         * it was the set of queued requests? Pick the highest priority in
 333         * the queue (the first active priolist) and see if it deserves to be
 334         * running instead of ELSP[0].
 335         *
 336         * The highest priority request in the queue can not be either
 337         * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
 338         * context, it's priority would not exceed ELSP[0] aka last_prio.
 339         */
 340        return max(virtual_prio(&engine->execlists),
 341                   queue_prio(engine->sched_engine)) > last_prio;
 342}
 343
 344__maybe_unused static bool
 345assert_priority_queue(const struct i915_request *prev,
 346                      const struct i915_request *next)
 347{
 348        /*
 349         * Without preemption, the prev may refer to the still active element
 350         * which we refuse to let go.
 351         *
 352         * Even with preemption, there are times when we think it is better not
 353         * to preempt and leave an ostensibly lower priority request in flight.
 354         */
 355        if (i915_request_is_active(prev))
 356                return true;
 357
 358        return rq_prio(prev) >= rq_prio(next);
 359}
 360
 361static struct i915_request *
 362__unwind_incomplete_requests(struct intel_engine_cs *engine)
 363{
 364        struct i915_request *rq, *rn, *active = NULL;
 365        struct list_head *pl;
 366        int prio = I915_PRIORITY_INVALID;
 367
 368        lockdep_assert_held(&engine->sched_engine->lock);
 369
 370        list_for_each_entry_safe_reverse(rq, rn,
 371                                         &engine->sched_engine->requests,
 372                                         sched.link) {
 373                if (__i915_request_is_complete(rq)) {
 374                        list_del_init(&rq->sched.link);
 375                        continue;
 376                }
 377
 378                __i915_request_unsubmit(rq);
 379
 380                GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
 381                if (rq_prio(rq) != prio) {
 382                        prio = rq_prio(rq);
 383                        pl = i915_sched_lookup_priolist(engine->sched_engine,
 384                                                        prio);
 385                }
 386                GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
 387
 388                list_move(&rq->sched.link, pl);
 389                set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
 390
 391                /* Check in case we rollback so far we wrap [size/2] */
 392                if (intel_ring_direction(rq->ring,
 393                                         rq->tail,
 394                                         rq->ring->tail + 8) > 0)
 395                        rq->context->lrc.desc |= CTX_DESC_FORCE_RESTORE;
 396
 397                active = rq;
 398        }
 399
 400        return active;
 401}
 402
 403struct i915_request *
 404execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
 405{
 406        struct intel_engine_cs *engine =
 407                container_of(execlists, typeof(*engine), execlists);
 408
 409        return __unwind_incomplete_requests(engine);
 410}
 411
 412static void
 413execlists_context_status_change(struct i915_request *rq, unsigned long status)
 414{
 415        /*
 416         * Only used when GVT-g is enabled now. When GVT-g is disabled,
 417         * The compiler should eliminate this function as dead-code.
 418         */
 419        if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
 420                return;
 421
 422        atomic_notifier_call_chain(&rq->engine->context_status_notifier,
 423                                   status, rq);
 424}
 425
 426static void reset_active(struct i915_request *rq,
 427                         struct intel_engine_cs *engine)
 428{
 429        struct intel_context * const ce = rq->context;
 430        u32 head;
 431
 432        /*
 433         * The executing context has been cancelled. We want to prevent
 434         * further execution along this context and propagate the error on
 435         * to anything depending on its results.
 436         *
 437         * In __i915_request_submit(), we apply the -EIO and remove the
 438         * requests' payloads for any banned requests. But first, we must
 439         * rewind the context back to the start of the incomplete request so
 440         * that we do not jump back into the middle of the batch.
 441         *
 442         * We preserve the breadcrumbs and semaphores of the incomplete
 443         * requests so that inter-timeline dependencies (i.e other timelines)
 444         * remain correctly ordered. And we defer to __i915_request_submit()
 445         * so that all asynchronous waits are correctly handled.
 446         */
 447        ENGINE_TRACE(engine, "{ reset rq=%llx:%lld }\n",
 448                     rq->fence.context, rq->fence.seqno);
 449
 450        /* On resubmission of the active request, payload will be scrubbed */
 451        if (__i915_request_is_complete(rq))
 452                head = rq->tail;
 453        else
 454                head = __active_request(ce->timeline, rq, -EIO)->head;
 455        head = intel_ring_wrap(ce->ring, head);
 456
 457        /* Scrub the context image to prevent replaying the previous batch */
 458        lrc_init_regs(ce, engine, true);
 459
 460        /* We've switched away, so this should be a no-op, but intent matters */
 461        ce->lrc.lrca = lrc_update_regs(ce, engine, head);
 462}
 463
 464static bool bad_request(const struct i915_request *rq)
 465{
 466        return rq->fence.error && i915_request_started(rq);
 467}
 468
 469static struct intel_engine_cs *
 470__execlists_schedule_in(struct i915_request *rq)
 471{
 472        struct intel_engine_cs * const engine = rq->engine;
 473        struct intel_context * const ce = rq->context;
 474
 475        intel_context_get(ce);
 476
 477        if (unlikely(intel_context_is_closed(ce) &&
 478                     !intel_engine_has_heartbeat(engine)))
 479                intel_context_set_banned(ce);
 480
 481        if (unlikely(intel_context_is_banned(ce) || bad_request(rq)))
 482                reset_active(rq, engine);
 483
 484        if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
 485                lrc_check_regs(ce, engine, "before");
 486
 487        if (ce->tag) {
 488                /* Use a fixed tag for OA and friends */
 489                GEM_BUG_ON(ce->tag <= BITS_PER_LONG);
 490                ce->lrc.ccid = ce->tag;
 491        } else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
 492                /* We don't need a strict matching tag, just different values */
 493                unsigned int tag = ffs(READ_ONCE(engine->context_tag));
 494
 495                GEM_BUG_ON(tag == 0 || tag >= BITS_PER_LONG);
 496                clear_bit(tag - 1, &engine->context_tag);
 497                ce->lrc.ccid = tag << (XEHP_SW_CTX_ID_SHIFT - 32);
 498
 499                BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
 500
 501        } else {
 502                /* We don't need a strict matching tag, just different values */
 503                unsigned int tag = __ffs(engine->context_tag);
 504
 505                GEM_BUG_ON(tag >= BITS_PER_LONG);
 506                __clear_bit(tag, &engine->context_tag);
 507                ce->lrc.ccid = (1 + tag) << (GEN11_SW_CTX_ID_SHIFT - 32);
 508
 509                BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
 510        }
 511
 512        ce->lrc.ccid |= engine->execlists.ccid;
 513
 514        __intel_gt_pm_get(engine->gt);
 515        if (engine->fw_domain && !engine->fw_active++)
 516                intel_uncore_forcewake_get(engine->uncore, engine->fw_domain);
 517        execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
 518        intel_engine_context_in(engine);
 519
 520        CE_TRACE(ce, "schedule-in, ccid:%x\n", ce->lrc.ccid);
 521
 522        return engine;
 523}
 524
 525static void execlists_schedule_in(struct i915_request *rq, int idx)
 526{
 527        struct intel_context * const ce = rq->context;
 528        struct intel_engine_cs *old;
 529
 530        GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
 531        trace_i915_request_in(rq, idx);
 532
 533        old = ce->inflight;
 534        if (!old)
 535                old = __execlists_schedule_in(rq);
 536        WRITE_ONCE(ce->inflight, ptr_inc(old));
 537
 538        GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
 539}
 540
 541static void
 542resubmit_virtual_request(struct i915_request *rq, struct virtual_engine *ve)
 543{
 544        struct intel_engine_cs *engine = rq->engine;
 545
 546        spin_lock_irq(&engine->sched_engine->lock);
 547
 548        clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
 549        WRITE_ONCE(rq->engine, &ve->base);
 550        ve->base.submit_request(rq);
 551
 552        spin_unlock_irq(&engine->sched_engine->lock);
 553}
 554
 555static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
 556{
 557        struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
 558        struct intel_engine_cs *engine = rq->engine;
 559
 560        /*
 561         * After this point, the rq may be transferred to a new sibling, so
 562         * before we clear ce->inflight make sure that the context has been
 563         * removed from the b->signalers and furthermore we need to make sure
 564         * that the concurrent iterator in signal_irq_work is no longer
 565         * following ce->signal_link.
 566         */
 567        if (!list_empty(&ce->signals))
 568                intel_context_remove_breadcrumbs(ce, engine->breadcrumbs);
 569
 570        /*
 571         * This engine is now too busy to run this virtual request, so
 572         * see if we can find an alternative engine for it to execute on.
 573         * Once a request has become bonded to this engine, we treat it the
 574         * same as other native request.
 575         */
 576        if (i915_request_in_priority_queue(rq) &&
 577            rq->execution_mask != engine->mask)
 578                resubmit_virtual_request(rq, ve);
 579
 580        if (READ_ONCE(ve->request))
 581                tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
 582}
 583
 584static void __execlists_schedule_out(struct i915_request * const rq,
 585                                     struct intel_context * const ce)
 586{
 587        struct intel_engine_cs * const engine = rq->engine;
 588        unsigned int ccid;
 589
 590        /*
 591         * NB process_csb() is not under the engine->sched_engine->lock and hence
 592         * schedule_out can race with schedule_in meaning that we should
 593         * refrain from doing non-trivial work here.
 594         */
 595
 596        CE_TRACE(ce, "schedule-out, ccid:%x\n", ce->lrc.ccid);
 597        GEM_BUG_ON(ce->inflight != engine);
 598
 599        if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
 600                lrc_check_regs(ce, engine, "after");
 601
 602        /*
 603         * If we have just completed this context, the engine may now be
 604         * idle and we want to re-enter powersaving.
 605         */
 606        if (intel_timeline_is_last(ce->timeline, rq) &&
 607            __i915_request_is_complete(rq))
 608                intel_engine_add_retire(engine, ce->timeline);
 609
 610        ccid = ce->lrc.ccid;
 611        if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
 612                ccid >>= XEHP_SW_CTX_ID_SHIFT - 32;
 613                ccid &= XEHP_MAX_CONTEXT_HW_ID;
 614        } else {
 615                ccid >>= GEN11_SW_CTX_ID_SHIFT - 32;
 616                ccid &= GEN12_MAX_CONTEXT_HW_ID;
 617        }
 618
 619        if (ccid < BITS_PER_LONG) {
 620                GEM_BUG_ON(ccid == 0);
 621                GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag));
 622                __set_bit(ccid - 1, &engine->context_tag);
 623        }
 624
 625        lrc_update_runtime(ce);
 626        intel_engine_context_out(engine);
 627        execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
 628        if (engine->fw_domain && !--engine->fw_active)
 629                intel_uncore_forcewake_put(engine->uncore, engine->fw_domain);
 630        intel_gt_pm_put_async(engine->gt);
 631
 632        /*
 633         * If this is part of a virtual engine, its next request may
 634         * have been blocked waiting for access to the active context.
 635         * We have to kick all the siblings again in case we need to
 636         * switch (e.g. the next request is not runnable on this
 637         * engine). Hopefully, we will already have submitted the next
 638         * request before the tasklet runs and do not need to rebuild
 639         * each virtual tree and kick everyone again.
 640         */
 641        if (ce->engine != engine)
 642                kick_siblings(rq, ce);
 643
 644        WRITE_ONCE(ce->inflight, NULL);
 645        intel_context_put(ce);
 646}
 647
 648static inline void execlists_schedule_out(struct i915_request *rq)
 649{
 650        struct intel_context * const ce = rq->context;
 651
 652        trace_i915_request_out(rq);
 653
 654        GEM_BUG_ON(!ce->inflight);
 655        ce->inflight = ptr_dec(ce->inflight);
 656        if (!__intel_context_inflight_count(ce->inflight))
 657                __execlists_schedule_out(rq, ce);
 658
 659        i915_request_put(rq);
 660}
 661
 662static u64 execlists_update_context(struct i915_request *rq)
 663{
 664        struct intel_context *ce = rq->context;
 665        u64 desc = ce->lrc.desc;
 666        u32 tail, prev;
 667
 668        /*
 669         * WaIdleLiteRestore:bdw,skl
 670         *
 671         * We should never submit the context with the same RING_TAIL twice
 672         * just in case we submit an empty ring, which confuses the HW.
 673         *
 674         * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
 675         * the normal request to be able to always advance the RING_TAIL on
 676         * subsequent resubmissions (for lite restore). Should that fail us,
 677         * and we try and submit the same tail again, force the context
 678         * reload.
 679         *
 680         * If we need to return to a preempted context, we need to skip the
 681         * lite-restore and force it to reload the RING_TAIL. Otherwise, the
 682         * HW has a tendency to ignore us rewinding the TAIL to the end of
 683         * an earlier request.
 684         */
 685        GEM_BUG_ON(ce->lrc_reg_state[CTX_RING_TAIL] != rq->ring->tail);
 686        prev = rq->ring->tail;
 687        tail = intel_ring_set_tail(rq->ring, rq->tail);
 688        if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0))
 689                desc |= CTX_DESC_FORCE_RESTORE;
 690        ce->lrc_reg_state[CTX_RING_TAIL] = tail;
 691        rq->tail = rq->wa_tail;
 692
 693        /*
 694         * Make sure the context image is complete before we submit it to HW.
 695         *
 696         * Ostensibly, writes (including the WCB) should be flushed prior to
 697         * an uncached write such as our mmio register access, the empirical
 698         * evidence (esp. on Braswell) suggests that the WC write into memory
 699         * may not be visible to the HW prior to the completion of the UC
 700         * register write and that we may begin execution from the context
 701         * before its image is complete leading to invalid PD chasing.
 702         */
 703        wmb();
 704
 705        ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE;
 706        return desc;
 707}
 708
 709static void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
 710{
 711        if (execlists->ctrl_reg) {
 712                writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
 713                writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
 714        } else {
 715                writel(upper_32_bits(desc), execlists->submit_reg);
 716                writel(lower_32_bits(desc), execlists->submit_reg);
 717        }
 718}
 719
 720static __maybe_unused char *
 721dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq)
 722{
 723        if (!rq)
 724                return "";
 725
 726        snprintf(buf, buflen, "%sccid:%x %llx:%lld%s prio %d",
 727                 prefix,
 728                 rq->context->lrc.ccid,
 729                 rq->fence.context, rq->fence.seqno,
 730                 __i915_request_is_complete(rq) ? "!" :
 731                 __i915_request_has_started(rq) ? "*" :
 732                 "",
 733                 rq_prio(rq));
 734
 735        return buf;
 736}
 737
 738static __maybe_unused noinline void
 739trace_ports(const struct intel_engine_execlists *execlists,
 740            const char *msg,
 741            struct i915_request * const *ports)
 742{
 743        const struct intel_engine_cs *engine =
 744                container_of(execlists, typeof(*engine), execlists);
 745        char __maybe_unused p0[40], p1[40];
 746
 747        if (!ports[0])
 748                return;
 749
 750        ENGINE_TRACE(engine, "%s { %s%s }\n", msg,
 751                     dump_port(p0, sizeof(p0), "", ports[0]),
 752                     dump_port(p1, sizeof(p1), ", ", ports[1]));
 753}
 754
 755static bool
 756reset_in_progress(const struct intel_engine_cs *engine)
 757{
 758        return unlikely(!__tasklet_is_enabled(&engine->sched_engine->tasklet));
 759}
 760
 761static __maybe_unused noinline bool
 762assert_pending_valid(const struct intel_engine_execlists *execlists,
 763                     const char *msg)
 764{
 765        struct intel_engine_cs *engine =
 766                container_of(execlists, typeof(*engine), execlists);
 767        struct i915_request * const *port, *rq, *prev = NULL;
 768        struct intel_context *ce = NULL;
 769        u32 ccid = -1;
 770
 771        trace_ports(execlists, msg, execlists->pending);
 772
 773        /* We may be messing around with the lists during reset, lalala */
 774        if (reset_in_progress(engine))
 775                return true;
 776
 777        if (!execlists->pending[0]) {
 778                GEM_TRACE_ERR("%s: Nothing pending for promotion!\n",
 779                              engine->name);
 780                return false;
 781        }
 782
 783        if (execlists->pending[execlists_num_ports(execlists)]) {
 784                GEM_TRACE_ERR("%s: Excess pending[%d] for promotion!\n",
 785                              engine->name, execlists_num_ports(execlists));
 786                return false;
 787        }
 788
 789        for (port = execlists->pending; (rq = *port); port++) {
 790                unsigned long flags;
 791                bool ok = true;
 792
 793                GEM_BUG_ON(!kref_read(&rq->fence.refcount));
 794                GEM_BUG_ON(!i915_request_is_active(rq));
 795
 796                if (ce == rq->context) {
 797                        GEM_TRACE_ERR("%s: Dup context:%llx in pending[%zd]\n",
 798                                      engine->name,
 799                                      ce->timeline->fence_context,
 800                                      port - execlists->pending);
 801                        return false;
 802                }
 803                ce = rq->context;
 804
 805                if (ccid == ce->lrc.ccid) {
 806                        GEM_TRACE_ERR("%s: Dup ccid:%x context:%llx in pending[%zd]\n",
 807                                      engine->name,
 808                                      ccid, ce->timeline->fence_context,
 809                                      port - execlists->pending);
 810                        return false;
 811                }
 812                ccid = ce->lrc.ccid;
 813
 814                /*
 815                 * Sentinels are supposed to be the last request so they flush
 816                 * the current execution off the HW. Check that they are the only
 817                 * request in the pending submission.
 818                 *
 819                 * NB: Due to the async nature of preempt-to-busy and request
 820                 * cancellation we need to handle the case where request
 821                 * becomes a sentinel in parallel to CSB processing.
 822                 */
 823                if (prev && i915_request_has_sentinel(prev) &&
 824                    !READ_ONCE(prev->fence.error)) {
 825                        GEM_TRACE_ERR("%s: context:%llx after sentinel in pending[%zd]\n",
 826                                      engine->name,
 827                                      ce->timeline->fence_context,
 828                                      port - execlists->pending);
 829                        return false;
 830                }
 831                prev = rq;
 832
 833                /*
 834                 * We want virtual requests to only be in the first slot so
 835                 * that they are never stuck behind a hog and can be immediately
 836                 * transferred onto the next idle engine.
 837                 */
 838                if (rq->execution_mask != engine->mask &&
 839                    port != execlists->pending) {
 840                        GEM_TRACE_ERR("%s: virtual engine:%llx not in prime position[%zd]\n",
 841                                      engine->name,
 842                                      ce->timeline->fence_context,
 843                                      port - execlists->pending);
 844                        return false;
 845                }
 846
 847                /* Hold tightly onto the lock to prevent concurrent retires! */
 848                if (!spin_trylock_irqsave(&rq->lock, flags))
 849                        continue;
 850
 851                if (__i915_request_is_complete(rq))
 852                        goto unlock;
 853
 854                if (i915_active_is_idle(&ce->active) &&
 855                    !intel_context_is_barrier(ce)) {
 856                        GEM_TRACE_ERR("%s: Inactive context:%llx in pending[%zd]\n",
 857                                      engine->name,
 858                                      ce->timeline->fence_context,
 859                                      port - execlists->pending);
 860                        ok = false;
 861                        goto unlock;
 862                }
 863
 864                if (!i915_vma_is_pinned(ce->state)) {
 865                        GEM_TRACE_ERR("%s: Unpinned context:%llx in pending[%zd]\n",
 866                                      engine->name,
 867                                      ce->timeline->fence_context,
 868                                      port - execlists->pending);
 869                        ok = false;
 870                        goto unlock;
 871                }
 872
 873                if (!i915_vma_is_pinned(ce->ring->vma)) {
 874                        GEM_TRACE_ERR("%s: Unpinned ring:%llx in pending[%zd]\n",
 875                                      engine->name,
 876                                      ce->timeline->fence_context,
 877                                      port - execlists->pending);
 878                        ok = false;
 879                        goto unlock;
 880                }
 881
 882unlock:
 883                spin_unlock_irqrestore(&rq->lock, flags);
 884                if (!ok)
 885                        return false;
 886        }
 887
 888        return ce;
 889}
 890
 891static void execlists_submit_ports(struct intel_engine_cs *engine)
 892{
 893        struct intel_engine_execlists *execlists = &engine->execlists;
 894        unsigned int n;
 895
 896        GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
 897
 898        /*
 899         * We can skip acquiring intel_runtime_pm_get() here as it was taken
 900         * on our behalf by the request (see i915_gem_mark_busy()) and it will
 901         * not be relinquished until the device is idle (see
 902         * i915_gem_idle_work_handler()). As a precaution, we make sure
 903         * that all ELSP are drained i.e. we have processed the CSB,
 904         * before allowing ourselves to idle and calling intel_runtime_pm_put().
 905         */
 906        GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
 907
 908        /*
 909         * ELSQ note: the submit queue is not cleared after being submitted
 910         * to the HW so we need to make sure we always clean it up. This is
 911         * currently ensured by the fact that we always write the same number
 912         * of elsq entries, keep this in mind before changing the loop below.
 913         */
 914        for (n = execlists_num_ports(execlists); n--; ) {
 915                struct i915_request *rq = execlists->pending[n];
 916
 917                write_desc(execlists,
 918                           rq ? execlists_update_context(rq) : 0,
 919                           n);
 920        }
 921
 922        /* we need to manually load the submit queue */
 923        if (execlists->ctrl_reg)
 924                writel(EL_CTRL_LOAD, execlists->ctrl_reg);
 925}
 926
 927static bool ctx_single_port_submission(const struct intel_context *ce)
 928{
 929        return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
 930                intel_context_force_single_submission(ce));
 931}
 932
 933static bool can_merge_ctx(const struct intel_context *prev,
 934                          const struct intel_context *next)
 935{
 936        if (prev != next)
 937                return false;
 938
 939        if (ctx_single_port_submission(prev))
 940                return false;
 941
 942        return true;
 943}
 944
 945static unsigned long i915_request_flags(const struct i915_request *rq)
 946{
 947        return READ_ONCE(rq->fence.flags);
 948}
 949
 950static bool can_merge_rq(const struct i915_request *prev,
 951                         const struct i915_request *next)
 952{
 953        GEM_BUG_ON(prev == next);
 954        GEM_BUG_ON(!assert_priority_queue(prev, next));
 955
 956        /*
 957         * We do not submit known completed requests. Therefore if the next
 958         * request is already completed, we can pretend to merge it in
 959         * with the previous context (and we will skip updating the ELSP
 960         * and tracking). Thus hopefully keeping the ELSP full with active
 961         * contexts, despite the best efforts of preempt-to-busy to confuse
 962         * us.
 963         */
 964        if (__i915_request_is_complete(next))
 965                return true;
 966
 967        if (unlikely((i915_request_flags(prev) | i915_request_flags(next)) &
 968                     (BIT(I915_FENCE_FLAG_NOPREEMPT) |
 969                      BIT(I915_FENCE_FLAG_SENTINEL))))
 970                return false;
 971
 972        if (!can_merge_ctx(prev->context, next->context))
 973                return false;
 974
 975        GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno));
 976        return true;
 977}
 978
 979static bool virtual_matches(const struct virtual_engine *ve,
 980                            const struct i915_request *rq,
 981                            const struct intel_engine_cs *engine)
 982{
 983        const struct intel_engine_cs *inflight;
 984
 985        if (!rq)
 986                return false;
 987
 988        if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
 989                return false;
 990
 991        /*
 992         * We track when the HW has completed saving the context image
 993         * (i.e. when we have seen the final CS event switching out of
 994         * the context) and must not overwrite the context image before
 995         * then. This restricts us to only using the active engine
 996         * while the previous virtualized request is inflight (so
 997         * we reuse the register offsets). This is a very small
 998         * hystersis on the greedy seelction algorithm.
 999         */
1000        inflight = intel_context_inflight(&ve->context);
1001        if (inflight && inflight != engine)
1002                return false;
1003
1004        return true;
1005}
1006
1007static struct virtual_engine *
1008first_virtual_engine(struct intel_engine_cs *engine)
1009{
1010        struct intel_engine_execlists *el = &engine->execlists;
1011        struct rb_node *rb = rb_first_cached(&el->virtual);
1012
1013        while (rb) {
1014                struct virtual_engine *ve =
1015                        rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1016                struct i915_request *rq = READ_ONCE(ve->request);
1017
1018                /* lazily cleanup after another engine handled rq */
1019                if (!rq || !virtual_matches(ve, rq, engine)) {
1020                        rb_erase_cached(rb, &el->virtual);
1021                        RB_CLEAR_NODE(rb);
1022                        rb = rb_first_cached(&el->virtual);
1023                        continue;
1024                }
1025
1026                return ve;
1027        }
1028
1029        return NULL;
1030}
1031
1032static void virtual_xfer_context(struct virtual_engine *ve,
1033                                 struct intel_engine_cs *engine)
1034{
1035        unsigned int n;
1036
1037        if (likely(engine == ve->siblings[0]))
1038                return;
1039
1040        GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1041        if (!intel_engine_has_relative_mmio(engine))
1042                lrc_update_offsets(&ve->context, engine);
1043
1044        /*
1045         * Move the bound engine to the top of the list for
1046         * future execution. We then kick this tasklet first
1047         * before checking others, so that we preferentially
1048         * reuse this set of bound registers.
1049         */
1050        for (n = 1; n < ve->num_siblings; n++) {
1051                if (ve->siblings[n] == engine) {
1052                        swap(ve->siblings[n], ve->siblings[0]);
1053                        break;
1054                }
1055        }
1056}
1057
1058static void defer_request(struct i915_request *rq, struct list_head * const pl)
1059{
1060        LIST_HEAD(list);
1061
1062        /*
1063         * We want to move the interrupted request to the back of
1064         * the round-robin list (i.e. its priority level), but
1065         * in doing so, we must then move all requests that were in
1066         * flight and were waiting for the interrupted request to
1067         * be run after it again.
1068         */
1069        do {
1070                struct i915_dependency *p;
1071
1072                GEM_BUG_ON(i915_request_is_active(rq));
1073                list_move_tail(&rq->sched.link, pl);
1074
1075                for_each_waiter(p, rq) {
1076                        struct i915_request *w =
1077                                container_of(p->waiter, typeof(*w), sched);
1078
1079                        if (p->flags & I915_DEPENDENCY_WEAK)
1080                                continue;
1081
1082                        /* Leave semaphores spinning on the other engines */
1083                        if (w->engine != rq->engine)
1084                                continue;
1085
1086                        /* No waiter should start before its signaler */
1087                        GEM_BUG_ON(i915_request_has_initial_breadcrumb(w) &&
1088                                   __i915_request_has_started(w) &&
1089                                   !__i915_request_is_complete(rq));
1090
1091                        if (!i915_request_is_ready(w))
1092                                continue;
1093
1094                        if (rq_prio(w) < rq_prio(rq))
1095                                continue;
1096
1097                        GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
1098                        GEM_BUG_ON(i915_request_is_active(w));
1099                        list_move_tail(&w->sched.link, &list);
1100                }
1101
1102                rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
1103        } while (rq);
1104}
1105
1106static void defer_active(struct intel_engine_cs *engine)
1107{
1108        struct i915_request *rq;
1109
1110        rq = __unwind_incomplete_requests(engine);
1111        if (!rq)
1112                return;
1113
1114        defer_request(rq, i915_sched_lookup_priolist(engine->sched_engine,
1115                                                     rq_prio(rq)));
1116}
1117
1118static bool
1119timeslice_yield(const struct intel_engine_execlists *el,
1120                const struct i915_request *rq)
1121{
1122        /*
1123         * Once bitten, forever smitten!
1124         *
1125         * If the active context ever busy-waited on a semaphore,
1126         * it will be treated as a hog until the end of its timeslice (i.e.
1127         * until it is scheduled out and replaced by a new submission,
1128         * possibly even its own lite-restore). The HW only sends an interrupt
1129         * on the first miss, and we do know if that semaphore has been
1130         * signaled, or even if it is now stuck on another semaphore. Play
1131         * safe, yield if it might be stuck -- it will be given a fresh
1132         * timeslice in the near future.
1133         */
1134        return rq->context->lrc.ccid == READ_ONCE(el->yield);
1135}
1136
1137static bool needs_timeslice(const struct intel_engine_cs *engine,
1138                            const struct i915_request *rq)
1139{
1140        if (!intel_engine_has_timeslices(engine))
1141                return false;
1142
1143        /* If not currently active, or about to switch, wait for next event */
1144        if (!rq || __i915_request_is_complete(rq))
1145                return false;
1146
1147        /* We do not need to start the timeslice until after the ACK */
1148        if (READ_ONCE(engine->execlists.pending[0]))
1149                return false;
1150
1151        /* If ELSP[1] is occupied, always check to see if worth slicing */
1152        if (!list_is_last_rcu(&rq->sched.link,
1153                              &engine->sched_engine->requests)) {
1154                ENGINE_TRACE(engine, "timeslice required for second inflight context\n");
1155                return true;
1156        }
1157
1158        /* Otherwise, ELSP[0] is by itself, but may be waiting in the queue */
1159        if (!i915_sched_engine_is_empty(engine->sched_engine)) {
1160                ENGINE_TRACE(engine, "timeslice required for queue\n");
1161                return true;
1162        }
1163
1164        if (!RB_EMPTY_ROOT(&engine->execlists.virtual.rb_root)) {
1165                ENGINE_TRACE(engine, "timeslice required for virtual\n");
1166                return true;
1167        }
1168
1169        return false;
1170}
1171
1172static bool
1173timeslice_expired(struct intel_engine_cs *engine, const struct i915_request *rq)
1174{
1175        const struct intel_engine_execlists *el = &engine->execlists;
1176
1177        if (i915_request_has_nopreempt(rq) && __i915_request_has_started(rq))
1178                return false;
1179
1180        if (!needs_timeslice(engine, rq))
1181                return false;
1182
1183        return timer_expired(&el->timer) || timeslice_yield(el, rq);
1184}
1185
1186static unsigned long timeslice(const struct intel_engine_cs *engine)
1187{
1188        return READ_ONCE(engine->props.timeslice_duration_ms);
1189}
1190
1191static void start_timeslice(struct intel_engine_cs *engine)
1192{
1193        struct intel_engine_execlists *el = &engine->execlists;
1194        unsigned long duration;
1195
1196        /* Disable the timer if there is nothing to switch to */
1197        duration = 0;
1198        if (needs_timeslice(engine, *el->active)) {
1199                /* Avoid continually prolonging an active timeslice */
1200                if (timer_active(&el->timer)) {
1201                        /*
1202                         * If we just submitted a new ELSP after an old
1203                         * context, that context may have already consumed
1204                         * its timeslice, so recheck.
1205                         */
1206                        if (!timer_pending(&el->timer))
1207                                tasklet_hi_schedule(&engine->sched_engine->tasklet);
1208                        return;
1209                }
1210
1211                duration = timeslice(engine);
1212        }
1213
1214        set_timer_ms(&el->timer, duration);
1215}
1216
1217static void record_preemption(struct intel_engine_execlists *execlists)
1218{
1219        (void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
1220}
1221
1222static unsigned long active_preempt_timeout(struct intel_engine_cs *engine,
1223                                            const struct i915_request *rq)
1224{
1225        if (!rq)
1226                return 0;
1227
1228        /* Force a fast reset for terminated contexts (ignoring sysfs!) */
1229        if (unlikely(intel_context_is_banned(rq->context) || bad_request(rq)))
1230                return 1;
1231
1232        return READ_ONCE(engine->props.preempt_timeout_ms);
1233}
1234
1235static void set_preempt_timeout(struct intel_engine_cs *engine,
1236                                const struct i915_request *rq)
1237{
1238        if (!intel_engine_has_preempt_reset(engine))
1239                return;
1240
1241        set_timer_ms(&engine->execlists.preempt,
1242                     active_preempt_timeout(engine, rq));
1243}
1244
1245static bool completed(const struct i915_request *rq)
1246{
1247        if (i915_request_has_sentinel(rq))
1248                return false;
1249
1250        return __i915_request_is_complete(rq);
1251}
1252
1253static void execlists_dequeue(struct intel_engine_cs *engine)
1254{
1255        struct intel_engine_execlists * const execlists = &engine->execlists;
1256        struct i915_sched_engine * const sched_engine = engine->sched_engine;
1257        struct i915_request **port = execlists->pending;
1258        struct i915_request ** const last_port = port + execlists->port_mask;
1259        struct i915_request *last, * const *active;
1260        struct virtual_engine *ve;
1261        struct rb_node *rb;
1262        bool submit = false;
1263
1264        /*
1265         * Hardware submission is through 2 ports. Conceptually each port
1266         * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
1267         * static for a context, and unique to each, so we only execute
1268         * requests belonging to a single context from each ring. RING_HEAD
1269         * is maintained by the CS in the context image, it marks the place
1270         * where it got up to last time, and through RING_TAIL we tell the CS
1271         * where we want to execute up to this time.
1272         *
1273         * In this list the requests are in order of execution. Consecutive
1274         * requests from the same context are adjacent in the ringbuffer. We
1275         * can combine these requests into a single RING_TAIL update:
1276         *
1277         *              RING_HEAD...req1...req2
1278         *                                    ^- RING_TAIL
1279         * since to execute req2 the CS must first execute req1.
1280         *
1281         * Our goal then is to point each port to the end of a consecutive
1282         * sequence of requests as being the most optimal (fewest wake ups
1283         * and context switches) submission.
1284         */
1285
1286        spin_lock(&sched_engine->lock);
1287
1288        /*
1289         * If the queue is higher priority than the last
1290         * request in the currently active context, submit afresh.
1291         * We will resubmit again afterwards in case we need to split
1292         * the active context to interject the preemption request,
1293         * i.e. we will retrigger preemption following the ack in case
1294         * of trouble.
1295         *
1296         */
1297        active = execlists->active;
1298        while ((last = *active) && completed(last))
1299                active++;
1300
1301        if (last) {
1302                if (need_preempt(engine, last)) {
1303                        ENGINE_TRACE(engine,
1304                                     "preempting last=%llx:%lld, prio=%d, hint=%d\n",
1305                                     last->fence.context,
1306                                     last->fence.seqno,
1307                                     last->sched.attr.priority,
1308                                     sched_engine->queue_priority_hint);
1309                        record_preemption(execlists);
1310
1311                        /*
1312                         * Don't let the RING_HEAD advance past the breadcrumb
1313                         * as we unwind (and until we resubmit) so that we do
1314                         * not accidentally tell it to go backwards.
1315                         */
1316                        ring_set_paused(engine, 1);
1317
1318                        /*
1319                         * Note that we have not stopped the GPU at this point,
1320                         * so we are unwinding the incomplete requests as they
1321                         * remain inflight and so by the time we do complete
1322                         * the preemption, some of the unwound requests may
1323                         * complete!
1324                         */
1325                        __unwind_incomplete_requests(engine);
1326
1327                        last = NULL;
1328                } else if (timeslice_expired(engine, last)) {
1329                        ENGINE_TRACE(engine,
1330                                     "expired:%s last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n",
1331                                     yesno(timer_expired(&execlists->timer)),
1332                                     last->fence.context, last->fence.seqno,
1333                                     rq_prio(last),
1334                                     sched_engine->queue_priority_hint,
1335                                     yesno(timeslice_yield(execlists, last)));
1336
1337                        /*
1338                         * Consume this timeslice; ensure we start a new one.
1339                         *
1340                         * The timeslice expired, and we will unwind the
1341                         * running contexts and recompute the next ELSP.
1342                         * If that submit will be the same pair of contexts
1343                         * (due to dependency ordering), we will skip the
1344                         * submission. If we don't cancel the timer now,
1345                         * we will see that the timer has expired and
1346                         * reschedule the tasklet; continually until the
1347                         * next context switch or other preeemption event.
1348                         *
1349                         * Since we have decided to reschedule based on
1350                         * consumption of this timeslice, if we submit the
1351                         * same context again, grant it a full timeslice.
1352                         */
1353                        cancel_timer(&execlists->timer);
1354                        ring_set_paused(engine, 1);
1355                        defer_active(engine);
1356
1357                        /*
1358                         * Unlike for preemption, if we rewind and continue
1359                         * executing the same context as previously active,
1360                         * the order of execution will remain the same and
1361                         * the tail will only advance. We do not need to
1362                         * force a full context restore, as a lite-restore
1363                         * is sufficient to resample the monotonic TAIL.
1364                         *
1365                         * If we switch to any other context, similarly we
1366                         * will not rewind TAIL of current context, and
1367                         * normal save/restore will preserve state and allow
1368                         * us to later continue executing the same request.
1369                         */
1370                        last = NULL;
1371                } else {
1372                        /*
1373                         * Otherwise if we already have a request pending
1374                         * for execution after the current one, we can
1375                         * just wait until the next CS event before
1376                         * queuing more. In either case we will force a
1377                         * lite-restore preemption event, but if we wait
1378                         * we hopefully coalesce several updates into a single
1379                         * submission.
1380                         */
1381                        if (active[1]) {
1382                                /*
1383                                 * Even if ELSP[1] is occupied and not worthy
1384                                 * of timeslices, our queue might be.
1385                                 */
1386                                spin_unlock(&sched_engine->lock);
1387                                return;
1388                        }
1389                }
1390        }
1391
1392        /* XXX virtual is always taking precedence */
1393        while ((ve = first_virtual_engine(engine))) {
1394                struct i915_request *rq;
1395
1396                spin_lock(&ve->base.sched_engine->lock);
1397
1398                rq = ve->request;
1399                if (unlikely(!virtual_matches(ve, rq, engine)))
1400                        goto unlock; /* lost the race to a sibling */
1401
1402                GEM_BUG_ON(rq->engine != &ve->base);
1403                GEM_BUG_ON(rq->context != &ve->context);
1404
1405                if (unlikely(rq_prio(rq) < queue_prio(sched_engine))) {
1406                        spin_unlock(&ve->base.sched_engine->lock);
1407                        break;
1408                }
1409
1410                if (last && !can_merge_rq(last, rq)) {
1411                        spin_unlock(&ve->base.sched_engine->lock);
1412                        spin_unlock(&engine->sched_engine->lock);
1413                        return; /* leave this for another sibling */
1414                }
1415
1416                ENGINE_TRACE(engine,
1417                             "virtual rq=%llx:%lld%s, new engine? %s\n",
1418                             rq->fence.context,
1419                             rq->fence.seqno,
1420                             __i915_request_is_complete(rq) ? "!" :
1421                             __i915_request_has_started(rq) ? "*" :
1422                             "",
1423                             yesno(engine != ve->siblings[0]));
1424
1425                WRITE_ONCE(ve->request, NULL);
1426                WRITE_ONCE(ve->base.sched_engine->queue_priority_hint, INT_MIN);
1427
1428                rb = &ve->nodes[engine->id].rb;
1429                rb_erase_cached(rb, &execlists->virtual);
1430                RB_CLEAR_NODE(rb);
1431
1432                GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1433                WRITE_ONCE(rq->engine, engine);
1434
1435                if (__i915_request_submit(rq)) {
1436                        /*
1437                         * Only after we confirm that we will submit
1438                         * this request (i.e. it has not already
1439                         * completed), do we want to update the context.
1440                         *
1441                         * This serves two purposes. It avoids
1442                         * unnecessary work if we are resubmitting an
1443                         * already completed request after timeslicing.
1444                         * But more importantly, it prevents us altering
1445                         * ve->siblings[] on an idle context, where
1446                         * we may be using ve->siblings[] in
1447                         * virtual_context_enter / virtual_context_exit.
1448                         */
1449                        virtual_xfer_context(ve, engine);
1450                        GEM_BUG_ON(ve->siblings[0] != engine);
1451
1452                        submit = true;
1453                        last = rq;
1454                }
1455
1456                i915_request_put(rq);
1457unlock:
1458                spin_unlock(&ve->base.sched_engine->lock);
1459
1460                /*
1461                 * Hmm, we have a bunch of virtual engine requests,
1462                 * but the first one was already completed (thanks
1463                 * preempt-to-busy!). Keep looking at the veng queue
1464                 * until we have no more relevant requests (i.e.
1465                 * the normal submit queue has higher priority).
1466                 */
1467                if (submit)
1468                        break;
1469        }
1470
1471        while ((rb = rb_first_cached(&sched_engine->queue))) {
1472                struct i915_priolist *p = to_priolist(rb);
1473                struct i915_request *rq, *rn;
1474
1475                priolist_for_each_request_consume(rq, rn, p) {
1476                        bool merge = true;
1477
1478                        /*
1479                         * Can we combine this request with the current port?
1480                         * It has to be the same context/ringbuffer and not
1481                         * have any exceptions (e.g. GVT saying never to
1482                         * combine contexts).
1483                         *
1484                         * If we can combine the requests, we can execute both
1485                         * by updating the RING_TAIL to point to the end of the
1486                         * second request, and so we never need to tell the
1487                         * hardware about the first.
1488                         */
1489                        if (last && !can_merge_rq(last, rq)) {
1490                                /*
1491                                 * If we are on the second port and cannot
1492                                 * combine this request with the last, then we
1493                                 * are done.
1494                                 */
1495                                if (port == last_port)
1496                                        goto done;
1497
1498                                /*
1499                                 * We must not populate both ELSP[] with the
1500                                 * same LRCA, i.e. we must submit 2 different
1501                                 * contexts if we submit 2 ELSP.
1502                                 */
1503                                if (last->context == rq->context)
1504                                        goto done;
1505
1506                                if (i915_request_has_sentinel(last))
1507                                        goto done;
1508
1509                                /*
1510                                 * We avoid submitting virtual requests into
1511                                 * the secondary ports so that we can migrate
1512                                 * the request immediately to another engine
1513                                 * rather than wait for the primary request.
1514                                 */
1515                                if (rq->execution_mask != engine->mask)
1516                                        goto done;
1517
1518                                /*
1519                                 * If GVT overrides us we only ever submit
1520                                 * port[0], leaving port[1] empty. Note that we
1521                                 * also have to be careful that we don't queue
1522                                 * the same context (even though a different
1523                                 * request) to the second port.
1524                                 */
1525                                if (ctx_single_port_submission(last->context) ||
1526                                    ctx_single_port_submission(rq->context))
1527                                        goto done;
1528
1529                                merge = false;
1530                        }
1531
1532                        if (__i915_request_submit(rq)) {
1533                                if (!merge) {
1534                                        *port++ = i915_request_get(last);
1535                                        last = NULL;
1536                                }
1537
1538                                GEM_BUG_ON(last &&
1539                                           !can_merge_ctx(last->context,
1540                                                          rq->context));
1541                                GEM_BUG_ON(last &&
1542                                           i915_seqno_passed(last->fence.seqno,
1543                                                             rq->fence.seqno));
1544
1545                                submit = true;
1546                                last = rq;
1547                        }
1548                }
1549
1550                rb_erase_cached(&p->node, &sched_engine->queue);
1551                i915_priolist_free(p);
1552        }
1553done:
1554        *port++ = i915_request_get(last);
1555
1556        /*
1557         * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1558         *
1559         * We choose the priority hint such that if we add a request of greater
1560         * priority than this, we kick the submission tasklet to decide on
1561         * the right order of submitting the requests to hardware. We must
1562         * also be prepared to reorder requests as they are in-flight on the
1563         * HW. We derive the priority hint then as the first "hole" in
1564         * the HW submission ports and if there are no available slots,
1565         * the priority of the lowest executing request, i.e. last.
1566         *
1567         * When we do receive a higher priority request ready to run from the
1568         * user, see queue_request(), the priority hint is bumped to that
1569         * request triggering preemption on the next dequeue (or subsequent
1570         * interrupt for secondary ports).
1571         */
1572        sched_engine->queue_priority_hint = queue_prio(sched_engine);
1573        i915_sched_engine_reset_on_empty(sched_engine);
1574        spin_unlock(&sched_engine->lock);
1575
1576        /*
1577         * We can skip poking the HW if we ended up with exactly the same set
1578         * of requests as currently running, e.g. trying to timeslice a pair
1579         * of ordered contexts.
1580         */
1581        if (submit &&
1582            memcmp(active,
1583                   execlists->pending,
1584                   (port - execlists->pending) * sizeof(*port))) {
1585                *port = NULL;
1586                while (port-- != execlists->pending)
1587                        execlists_schedule_in(*port, port - execlists->pending);
1588
1589                WRITE_ONCE(execlists->yield, -1);
1590                set_preempt_timeout(engine, *active);
1591                execlists_submit_ports(engine);
1592        } else {
1593                ring_set_paused(engine, 0);
1594                while (port-- != execlists->pending)
1595                        i915_request_put(*port);
1596                *execlists->pending = NULL;
1597        }
1598}
1599
1600static void execlists_dequeue_irq(struct intel_engine_cs *engine)
1601{
1602        local_irq_disable(); /* Suspend interrupts across request submission */
1603        execlists_dequeue(engine);
1604        local_irq_enable(); /* flush irq_work (e.g. breadcrumb enabling) */
1605}
1606
1607static void clear_ports(struct i915_request **ports, int count)
1608{
1609        memset_p((void **)ports, NULL, count);
1610}
1611
1612static void
1613copy_ports(struct i915_request **dst, struct i915_request **src, int count)
1614{
1615        /* A memcpy_p() would be very useful here! */
1616        while (count--)
1617                WRITE_ONCE(*dst++, *src++); /* avoid write tearing */
1618}
1619
1620static struct i915_request **
1621cancel_port_requests(struct intel_engine_execlists * const execlists,
1622                     struct i915_request **inactive)
1623{
1624        struct i915_request * const *port;
1625
1626        for (port = execlists->pending; *port; port++)
1627                *inactive++ = *port;
1628        clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending));
1629
1630        /* Mark the end of active before we overwrite *active */
1631        for (port = xchg(&execlists->active, execlists->pending); *port; port++)
1632                *inactive++ = *port;
1633        clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight));
1634
1635        smp_wmb(); /* complete the seqlock for execlists_active() */
1636        WRITE_ONCE(execlists->active, execlists->inflight);
1637
1638        /* Having cancelled all outstanding process_csb(), stop their timers */
1639        GEM_BUG_ON(execlists->pending[0]);
1640        cancel_timer(&execlists->timer);
1641        cancel_timer(&execlists->preempt);
1642
1643        return inactive;
1644}
1645
1646static void invalidate_csb_entries(const u64 *first, const u64 *last)
1647{
1648        clflush((void *)first);
1649        clflush((void *)last);
1650}
1651
1652/*
1653 * Starting with Gen12, the status has a new format:
1654 *
1655 *     bit  0:     switched to new queue
1656 *     bit  1:     reserved
1657 *     bit  2:     semaphore wait mode (poll or signal), only valid when
1658 *                 switch detail is set to "wait on semaphore"
1659 *     bits 3-5:   engine class
1660 *     bits 6-11:  engine instance
1661 *     bits 12-14: reserved
1662 *     bits 15-25: sw context id of the lrc the GT switched to
1663 *     bits 26-31: sw counter of the lrc the GT switched to
1664 *     bits 32-35: context switch detail
1665 *                  - 0: ctx complete
1666 *                  - 1: wait on sync flip
1667 *                  - 2: wait on vblank
1668 *                  - 3: wait on scanline
1669 *                  - 4: wait on semaphore
1670 *                  - 5: context preempted (not on SEMAPHORE_WAIT or
1671 *                       WAIT_FOR_EVENT)
1672 *     bit  36:    reserved
1673 *     bits 37-43: wait detail (for switch detail 1 to 4)
1674 *     bits 44-46: reserved
1675 *     bits 47-57: sw context id of the lrc the GT switched away from
1676 *     bits 58-63: sw counter of the lrc the GT switched away from
1677 *
1678 * Xe_HP csb shuffles things around compared to TGL:
1679 *
1680 *     bits 0-3:   context switch detail (same possible values as TGL)
1681 *     bits 4-9:   engine instance
1682 *     bits 10-25: sw context id of the lrc the GT switched to
1683 *     bits 26-31: sw counter of the lrc the GT switched to
1684 *     bit  32:    semaphore wait mode (poll or signal), Only valid when
1685 *                 switch detail is set to "wait on semaphore"
1686 *     bit  33:    switched to new queue
1687 *     bits 34-41: wait detail (for switch detail 1 to 4)
1688 *     bits 42-57: sw context id of the lrc the GT switched away from
1689 *     bits 58-63: sw counter of the lrc the GT switched away from
1690 */
1691static inline bool
1692__gen12_csb_parse(bool ctx_to_valid, bool ctx_away_valid, bool new_queue,
1693                  u8 switch_detail)
1694{
1695        /*
1696         * The context switch detail is not guaranteed to be 5 when a preemption
1697         * occurs, so we can't just check for that. The check below works for
1698         * all the cases we care about, including preemptions of WAIT
1699         * instructions and lite-restore. Preempt-to-idle via the CTRL register
1700         * would require some extra handling, but we don't support that.
1701         */
1702        if (!ctx_away_valid || new_queue) {
1703                GEM_BUG_ON(!ctx_to_valid);
1704                return true;
1705        }
1706
1707        /*
1708         * switch detail = 5 is covered by the case above and we do not expect a
1709         * context switch on an unsuccessful wait instruction since we always
1710         * use polling mode.
1711         */
1712        GEM_BUG_ON(switch_detail);
1713        return false;
1714}
1715
1716static bool xehp_csb_parse(const u64 csb)
1717{
1718        return __gen12_csb_parse(XEHP_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1719                                 XEHP_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1720                                 upper_32_bits(csb) & XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1721                                 GEN12_CTX_SWITCH_DETAIL(lower_32_bits(csb)));
1722}
1723
1724static bool gen12_csb_parse(const u64 csb)
1725{
1726        return __gen12_csb_parse(GEN12_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1727                                 GEN12_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1728                                 lower_32_bits(csb) & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1729                                 GEN12_CTX_SWITCH_DETAIL(upper_32_bits(csb)));
1730}
1731
1732static bool gen8_csb_parse(const u64 csb)
1733{
1734        return csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
1735}
1736
1737static noinline u64
1738wa_csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1739{
1740        u64 entry;
1741
1742        /*
1743         * Reading from the HWSP has one particular advantage: we can detect
1744         * a stale entry. Since the write into HWSP is broken, we have no reason
1745         * to trust the HW at all, the mmio entry may equally be unordered, so
1746         * we prefer the path that is self-checking and as a last resort,
1747         * return the mmio value.
1748         *
1749         * tgl,dg1:HSDES#22011327657
1750         */
1751        preempt_disable();
1752        if (wait_for_atomic_us((entry = READ_ONCE(*csb)) != -1, 10)) {
1753                int idx = csb - engine->execlists.csb_status;
1754                int status;
1755
1756                status = GEN8_EXECLISTS_STATUS_BUF;
1757                if (idx >= 6) {
1758                        status = GEN11_EXECLISTS_STATUS_BUF2;
1759                        idx -= 6;
1760                }
1761                status += sizeof(u64) * idx;
1762
1763                entry = intel_uncore_read64(engine->uncore,
1764                                            _MMIO(engine->mmio_base + status));
1765        }
1766        preempt_enable();
1767
1768        return entry;
1769}
1770
1771static u64 csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1772{
1773        u64 entry = READ_ONCE(*csb);
1774
1775        /*
1776         * Unfortunately, the GPU does not always serialise its write
1777         * of the CSB entries before its write of the CSB pointer, at least
1778         * from the perspective of the CPU, using what is known as a Global
1779         * Observation Point. We may read a new CSB tail pointer, but then
1780         * read the stale CSB entries, causing us to misinterpret the
1781         * context-switch events, and eventually declare the GPU hung.
1782         *
1783         * icl:HSDES#1806554093
1784         * tgl:HSDES#22011248461
1785         */
1786        if (unlikely(entry == -1))
1787                entry = wa_csb_read(engine, csb);
1788
1789        /* Consume this entry so that we can spot its future reuse. */
1790        WRITE_ONCE(*csb, -1);
1791
1792        /* ELSP is an implicit wmb() before the GPU wraps and overwrites csb */
1793        return entry;
1794}
1795
1796static void new_timeslice(struct intel_engine_execlists *el)
1797{
1798        /* By cancelling, we will start afresh in start_timeslice() */
1799        cancel_timer(&el->timer);
1800}
1801
1802static struct i915_request **
1803process_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
1804{
1805        struct intel_engine_execlists * const execlists = &engine->execlists;
1806        u64 * const buf = execlists->csb_status;
1807        const u8 num_entries = execlists->csb_size;
1808        struct i915_request **prev;
1809        u8 head, tail;
1810
1811        /*
1812         * As we modify our execlists state tracking we require exclusive
1813         * access. Either we are inside the tasklet, or the tasklet is disabled
1814         * and we assume that is only inside the reset paths and so serialised.
1815         */
1816        GEM_BUG_ON(!tasklet_is_locked(&engine->sched_engine->tasklet) &&
1817                   !reset_in_progress(engine));
1818
1819        /*
1820         * Note that csb_write, csb_status may be either in HWSP or mmio.
1821         * When reading from the csb_write mmio register, we have to be
1822         * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1823         * the low 4bits. As it happens we know the next 4bits are always
1824         * zero and so we can simply masked off the low u8 of the register
1825         * and treat it identically to reading from the HWSP (without having
1826         * to use explicit shifting and masking, and probably bifurcating
1827         * the code to handle the legacy mmio read).
1828         */
1829        head = execlists->csb_head;
1830        tail = READ_ONCE(*execlists->csb_write);
1831        if (unlikely(head == tail))
1832                return inactive;
1833
1834        /*
1835         * We will consume all events from HW, or at least pretend to.
1836         *
1837         * The sequence of events from the HW is deterministic, and derived
1838         * from our writes to the ELSP, with a smidgen of variability for
1839         * the arrival of the asynchronous requests wrt to the inflight
1840         * execution. If the HW sends an event that does not correspond with
1841         * the one we are expecting, we have to abandon all hope as we lose
1842         * all tracking of what the engine is actually executing. We will
1843         * only detect we are out of sequence with the HW when we get an
1844         * 'impossible' event because we have already drained our own
1845         * preemption/promotion queue. If this occurs, we know that we likely
1846         * lost track of execution earlier and must unwind and restart, the
1847         * simplest way is by stop processing the event queue and force the
1848         * engine to reset.
1849         */
1850        execlists->csb_head = tail;
1851        ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);
1852
1853        /*
1854         * Hopefully paired with a wmb() in HW!
1855         *
1856         * We must complete the read of the write pointer before any reads
1857         * from the CSB, so that we do not see stale values. Without an rmb
1858         * (lfence) the HW may speculatively perform the CSB[] reads *before*
1859         * we perform the READ_ONCE(*csb_write).
1860         */
1861        rmb();
1862
1863        /* Remember who was last running under the timer */
1864        prev = inactive;
1865        *prev = NULL;
1866
1867        do {
1868                bool promote;
1869                u64 csb;
1870
1871                if (++head == num_entries)
1872                        head = 0;
1873
1874                /*
1875                 * We are flying near dragons again.
1876                 *
1877                 * We hold a reference to the request in execlist_port[]
1878                 * but no more than that. We are operating in softirq
1879                 * context and so cannot hold any mutex or sleep. That
1880                 * prevents us stopping the requests we are processing
1881                 * in port[] from being retired simultaneously (the
1882                 * breadcrumb will be complete before we see the
1883                 * context-switch). As we only hold the reference to the
1884                 * request, any pointer chasing underneath the request
1885                 * is subject to a potential use-after-free. Thus we
1886                 * store all of the bookkeeping within port[] as
1887                 * required, and avoid using unguarded pointers beneath
1888                 * request itself. The same applies to the atomic
1889                 * status notifier.
1890                 */
1891
1892                csb = csb_read(engine, buf + head);
1893                ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
1894                             head, upper_32_bits(csb), lower_32_bits(csb));
1895
1896                if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
1897                        promote = xehp_csb_parse(csb);
1898                else if (GRAPHICS_VER(engine->i915) >= 12)
1899                        promote = gen12_csb_parse(csb);
1900                else
1901                        promote = gen8_csb_parse(csb);
1902                if (promote) {
1903                        struct i915_request * const *old = execlists->active;
1904
1905                        if (GEM_WARN_ON(!*execlists->pending)) {
1906                                execlists->error_interrupt |= ERROR_CSB;
1907                                break;
1908                        }
1909
1910                        ring_set_paused(engine, 0);
1911
1912                        /* Point active to the new ELSP; prevent overwriting */
1913                        WRITE_ONCE(execlists->active, execlists->pending);
1914                        smp_wmb(); /* notify execlists_active() */
1915
1916                        /* cancel old inflight, prepare for switch */
1917                        trace_ports(execlists, "preempted", old);
1918                        while (*old)
1919                                *inactive++ = *old++;
1920
1921                        /* switch pending to inflight */
1922                        GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
1923                        copy_ports(execlists->inflight,
1924                                   execlists->pending,
1925                                   execlists_num_ports(execlists));
1926                        smp_wmb(); /* complete the seqlock */
1927                        WRITE_ONCE(execlists->active, execlists->inflight);
1928
1929                        /* XXX Magic delay for tgl */
1930                        ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
1931
1932                        WRITE_ONCE(execlists->pending[0], NULL);
1933                } else {
1934                        if (GEM_WARN_ON(!*execlists->active)) {
1935                                execlists->error_interrupt |= ERROR_CSB;
1936                                break;
1937                        }
1938
1939                        /* port0 completed, advanced to port1 */
1940                        trace_ports(execlists, "completed", execlists->active);
1941
1942                        /*
1943                         * We rely on the hardware being strongly
1944                         * ordered, that the breadcrumb write is
1945                         * coherent (visible from the CPU) before the
1946                         * user interrupt is processed. One might assume
1947                         * that the breadcrumb write being before the
1948                         * user interrupt and the CS event for the context
1949                         * switch would therefore be before the CS event
1950                         * itself...
1951                         */
1952                        if (GEM_SHOW_DEBUG() &&
1953                            !__i915_request_is_complete(*execlists->active)) {
1954                                struct i915_request *rq = *execlists->active;
1955                                const u32 *regs __maybe_unused =
1956                                        rq->context->lrc_reg_state;
1957
1958                                ENGINE_TRACE(engine,
1959                                             "context completed before request!\n");
1960                                ENGINE_TRACE(engine,
1961                                             "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n",
1962                                             ENGINE_READ(engine, RING_START),
1963                                             ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR,
1964                                             ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR,
1965                                             ENGINE_READ(engine, RING_CTL),
1966                                             ENGINE_READ(engine, RING_MI_MODE));
1967                                ENGINE_TRACE(engine,
1968                                             "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ",
1969                                             i915_ggtt_offset(rq->ring->vma),
1970                                             rq->head, rq->tail,
1971                                             rq->fence.context,
1972                                             lower_32_bits(rq->fence.seqno),
1973                                             hwsp_seqno(rq));
1974                                ENGINE_TRACE(engine,
1975                                             "ctx:{start:%08x, head:%04x, tail:%04x}, ",
1976                                             regs[CTX_RING_START],
1977                                             regs[CTX_RING_HEAD],
1978                                             regs[CTX_RING_TAIL]);
1979                        }
1980
1981                        *inactive++ = *execlists->active++;
1982
1983                        GEM_BUG_ON(execlists->active - execlists->inflight >
1984                                   execlists_num_ports(execlists));
1985                }
1986        } while (head != tail);
1987
1988        /*
1989         * Gen11 has proven to fail wrt global observation point between
1990         * entry and tail update, failing on the ordering and thus
1991         * we see an old entry in the context status buffer.
1992         *
1993         * Forcibly evict out entries for the next gpu csb update,
1994         * to increase the odds that we get a fresh entries with non
1995         * working hardware. The cost for doing so comes out mostly with
1996         * the wash as hardware, working or not, will need to do the
1997         * invalidation before.
1998         */
1999        invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
2000
2001        /*
2002         * We assume that any event reflects a change in context flow
2003         * and merits a fresh timeslice. We reinstall the timer after
2004         * inspecting the queue to see if we need to resumbit.
2005         */
2006        if (*prev != *execlists->active) /* elide lite-restores */
2007                new_timeslice(execlists);
2008
2009        return inactive;
2010}
2011
2012static void post_process_csb(struct i915_request **port,
2013                             struct i915_request **last)
2014{
2015        while (port != last)
2016                execlists_schedule_out(*port++);
2017}
2018
2019static void __execlists_hold(struct i915_request *rq)
2020{
2021        LIST_HEAD(list);
2022
2023        do {
2024                struct i915_dependency *p;
2025
2026                if (i915_request_is_active(rq))
2027                        __i915_request_unsubmit(rq);
2028
2029                clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2030                list_move_tail(&rq->sched.link,
2031                               &rq->engine->sched_engine->hold);
2032                i915_request_set_hold(rq);
2033                RQ_TRACE(rq, "on hold\n");
2034
2035                for_each_waiter(p, rq) {
2036                        struct i915_request *w =
2037                                container_of(p->waiter, typeof(*w), sched);
2038
2039                        if (p->flags & I915_DEPENDENCY_WEAK)
2040                                continue;
2041
2042                        /* Leave semaphores spinning on the other engines */
2043                        if (w->engine != rq->engine)
2044                                continue;
2045
2046                        if (!i915_request_is_ready(w))
2047                                continue;
2048
2049                        if (__i915_request_is_complete(w))
2050                                continue;
2051
2052                        if (i915_request_on_hold(w))
2053                                continue;
2054
2055                        list_move_tail(&w->sched.link, &list);
2056                }
2057
2058                rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2059        } while (rq);
2060}
2061
2062static bool execlists_hold(struct intel_engine_cs *engine,
2063                           struct i915_request *rq)
2064{
2065        if (i915_request_on_hold(rq))
2066                return false;
2067
2068        spin_lock_irq(&engine->sched_engine->lock);
2069
2070        if (__i915_request_is_complete(rq)) { /* too late! */
2071                rq = NULL;
2072                goto unlock;
2073        }
2074
2075        /*
2076         * Transfer this request onto the hold queue to prevent it
2077         * being resumbitted to HW (and potentially completed) before we have
2078         * released it. Since we may have already submitted following
2079         * requests, we need to remove those as well.
2080         */
2081        GEM_BUG_ON(i915_request_on_hold(rq));
2082        GEM_BUG_ON(rq->engine != engine);
2083        __execlists_hold(rq);
2084        GEM_BUG_ON(list_empty(&engine->sched_engine->hold));
2085
2086unlock:
2087        spin_unlock_irq(&engine->sched_engine->lock);
2088        return rq;
2089}
2090
2091static bool hold_request(const struct i915_request *rq)
2092{
2093        struct i915_dependency *p;
2094        bool result = false;
2095
2096        /*
2097         * If one of our ancestors is on hold, we must also be on hold,
2098         * otherwise we will bypass it and execute before it.
2099         */
2100        rcu_read_lock();
2101        for_each_signaler(p, rq) {
2102                const struct i915_request *s =
2103                        container_of(p->signaler, typeof(*s), sched);
2104
2105                if (s->engine != rq->engine)
2106                        continue;
2107
2108                result = i915_request_on_hold(s);
2109                if (result)
2110                        break;
2111        }
2112        rcu_read_unlock();
2113
2114        return result;
2115}
2116
2117static void __execlists_unhold(struct i915_request *rq)
2118{
2119        LIST_HEAD(list);
2120
2121        do {
2122                struct i915_dependency *p;
2123
2124                RQ_TRACE(rq, "hold release\n");
2125
2126                GEM_BUG_ON(!i915_request_on_hold(rq));
2127                GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
2128
2129                i915_request_clear_hold(rq);
2130                list_move_tail(&rq->sched.link,
2131                               i915_sched_lookup_priolist(rq->engine->sched_engine,
2132                                                          rq_prio(rq)));
2133                set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2134
2135                /* Also release any children on this engine that are ready */
2136                for_each_waiter(p, rq) {
2137                        struct i915_request *w =
2138                                container_of(p->waiter, typeof(*w), sched);
2139
2140                        if (p->flags & I915_DEPENDENCY_WEAK)
2141                                continue;
2142
2143                        /* Propagate any change in error status */
2144                        if (rq->fence.error)
2145                                i915_request_set_error_once(w, rq->fence.error);
2146
2147                        if (w->engine != rq->engine)
2148                                continue;
2149
2150                        if (!i915_request_on_hold(w))
2151                                continue;
2152
2153                        /* Check that no other parents are also on hold */
2154                        if (hold_request(w))
2155                                continue;
2156
2157                        list_move_tail(&w->sched.link, &list);
2158                }
2159
2160                rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2161        } while (rq);
2162}
2163
2164static void execlists_unhold(struct intel_engine_cs *engine,
2165                             struct i915_request *rq)
2166{
2167        spin_lock_irq(&engine->sched_engine->lock);
2168
2169        /*
2170         * Move this request back to the priority queue, and all of its
2171         * children and grandchildren that were suspended along with it.
2172         */
2173        __execlists_unhold(rq);
2174
2175        if (rq_prio(rq) > engine->sched_engine->queue_priority_hint) {
2176                engine->sched_engine->queue_priority_hint = rq_prio(rq);
2177                tasklet_hi_schedule(&engine->sched_engine->tasklet);
2178        }
2179
2180        spin_unlock_irq(&engine->sched_engine->lock);
2181}
2182
2183struct execlists_capture {
2184        struct work_struct work;
2185        struct i915_request *rq;
2186        struct i915_gpu_coredump *error;
2187};
2188
2189static void execlists_capture_work(struct work_struct *work)
2190{
2191        struct execlists_capture *cap = container_of(work, typeof(*cap), work);
2192        const gfp_t gfp = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
2193        struct intel_engine_cs *engine = cap->rq->engine;
2194        struct intel_gt_coredump *gt = cap->error->gt;
2195        struct intel_engine_capture_vma *vma;
2196
2197        /* Compress all the objects attached to the request, slow! */
2198        vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp);
2199        if (vma) {
2200                struct i915_vma_compress *compress =
2201                        i915_vma_capture_prepare(gt);
2202
2203                intel_engine_coredump_add_vma(gt->engine, vma, compress);
2204                i915_vma_capture_finish(gt, compress);
2205        }
2206
2207        gt->simulated = gt->engine->simulated;
2208        cap->error->simulated = gt->simulated;
2209
2210        /* Publish the error state, and announce it to the world */
2211        i915_error_state_store(cap->error);
2212        i915_gpu_coredump_put(cap->error);
2213
2214        /* Return this request and all that depend upon it for signaling */
2215        execlists_unhold(engine, cap->rq);
2216        i915_request_put(cap->rq);
2217
2218        kfree(cap);
2219}
2220
2221static struct execlists_capture *capture_regs(struct intel_engine_cs *engine)
2222{
2223        const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
2224        struct execlists_capture *cap;
2225
2226        cap = kmalloc(sizeof(*cap), gfp);
2227        if (!cap)
2228                return NULL;
2229
2230        cap->error = i915_gpu_coredump_alloc(engine->i915, gfp);
2231        if (!cap->error)
2232                goto err_cap;
2233
2234        cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp);
2235        if (!cap->error->gt)
2236                goto err_gpu;
2237
2238        cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp);
2239        if (!cap->error->gt->engine)
2240                goto err_gt;
2241
2242        cap->error->gt->engine->hung = true;
2243
2244        return cap;
2245
2246err_gt:
2247        kfree(cap->error->gt);
2248err_gpu:
2249        kfree(cap->error);
2250err_cap:
2251        kfree(cap);
2252        return NULL;
2253}
2254
2255static struct i915_request *
2256active_context(struct intel_engine_cs *engine, u32 ccid)
2257{
2258        const struct intel_engine_execlists * const el = &engine->execlists;
2259        struct i915_request * const *port, *rq;
2260
2261        /*
2262         * Use the most recent result from process_csb(), but just in case
2263         * we trigger an error (via interrupt) before the first CS event has
2264         * been written, peek at the next submission.
2265         */
2266
2267        for (port = el->active; (rq = *port); port++) {
2268                if (rq->context->lrc.ccid == ccid) {
2269                        ENGINE_TRACE(engine,
2270                                     "ccid:%x found at active:%zd\n",
2271                                     ccid, port - el->active);
2272                        return rq;
2273                }
2274        }
2275
2276        for (port = el->pending; (rq = *port); port++) {
2277                if (rq->context->lrc.ccid == ccid) {
2278                        ENGINE_TRACE(engine,
2279                                     "ccid:%x found at pending:%zd\n",
2280                                     ccid, port - el->pending);
2281                        return rq;
2282                }
2283        }
2284
2285        ENGINE_TRACE(engine, "ccid:%x not found\n", ccid);
2286        return NULL;
2287}
2288
2289static u32 active_ccid(struct intel_engine_cs *engine)
2290{
2291        return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI);
2292}
2293
2294static void execlists_capture(struct intel_engine_cs *engine)
2295{
2296        struct execlists_capture *cap;
2297
2298        if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR))
2299                return;
2300
2301        /*
2302         * We need to _quickly_ capture the engine state before we reset.
2303         * We are inside an atomic section (softirq) here and we are delaying
2304         * the forced preemption event.
2305         */
2306        cap = capture_regs(engine);
2307        if (!cap)
2308                return;
2309
2310        spin_lock_irq(&engine->sched_engine->lock);
2311        cap->rq = active_context(engine, active_ccid(engine));
2312        if (cap->rq) {
2313                cap->rq = active_request(cap->rq->context->timeline, cap->rq);
2314                cap->rq = i915_request_get_rcu(cap->rq);
2315        }
2316        spin_unlock_irq(&engine->sched_engine->lock);
2317        if (!cap->rq)
2318                goto err_free;
2319
2320        /*
2321         * Remove the request from the execlists queue, and take ownership
2322         * of the request. We pass it to our worker who will _slowly_ compress
2323         * all the pages the _user_ requested for debugging their batch, after
2324         * which we return it to the queue for signaling.
2325         *
2326         * By removing them from the execlists queue, we also remove the
2327         * requests from being processed by __unwind_incomplete_requests()
2328         * during the intel_engine_reset(), and so they will *not* be replayed
2329         * afterwards.
2330         *
2331         * Note that because we have not yet reset the engine at this point,
2332         * it is possible for the request that we have identified as being
2333         * guilty, did in fact complete and we will then hit an arbitration
2334         * point allowing the outstanding preemption to succeed. The likelihood
2335         * of that is very low (as capturing of the engine registers should be
2336         * fast enough to run inside an irq-off atomic section!), so we will
2337         * simply hold that request accountable for being non-preemptible
2338         * long enough to force the reset.
2339         */
2340        if (!execlists_hold(engine, cap->rq))
2341                goto err_rq;
2342
2343        INIT_WORK(&cap->work, execlists_capture_work);
2344        schedule_work(&cap->work);
2345        return;
2346
2347err_rq:
2348        i915_request_put(cap->rq);
2349err_free:
2350        i915_gpu_coredump_put(cap->error);
2351        kfree(cap);
2352}
2353
2354static void execlists_reset(struct intel_engine_cs *engine, const char *msg)
2355{
2356        const unsigned int bit = I915_RESET_ENGINE + engine->id;
2357        unsigned long *lock = &engine->gt->reset.flags;
2358
2359        if (!intel_has_reset_engine(engine->gt))
2360                return;
2361
2362        if (test_and_set_bit(bit, lock))
2363                return;
2364
2365        ENGINE_TRACE(engine, "reset for %s\n", msg);
2366
2367        /* Mark this tasklet as disabled to avoid waiting for it to complete */
2368        tasklet_disable_nosync(&engine->sched_engine->tasklet);
2369
2370        ring_set_paused(engine, 1); /* Freeze the current request in place */
2371        execlists_capture(engine);
2372        intel_engine_reset(engine, msg);
2373
2374        tasklet_enable(&engine->sched_engine->tasklet);
2375        clear_and_wake_up_bit(bit, lock);
2376}
2377
2378static bool preempt_timeout(const struct intel_engine_cs *const engine)
2379{
2380        const struct timer_list *t = &engine->execlists.preempt;
2381
2382        if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
2383                return false;
2384
2385        if (!timer_expired(t))
2386                return false;
2387
2388        return engine->execlists.pending[0];
2389}
2390
2391/*
2392 * Check the unread Context Status Buffers and manage the submission of new
2393 * contexts to the ELSP accordingly.
2394 */
2395static void execlists_submission_tasklet(struct tasklet_struct *t)
2396{
2397        struct i915_sched_engine *sched_engine =
2398                from_tasklet(sched_engine, t, tasklet);
2399        struct intel_engine_cs * const engine = sched_engine->private_data;
2400        struct i915_request *post[2 * EXECLIST_MAX_PORTS];
2401        struct i915_request **inactive;
2402
2403        rcu_read_lock();
2404        inactive = process_csb(engine, post);
2405        GEM_BUG_ON(inactive - post > ARRAY_SIZE(post));
2406
2407        if (unlikely(preempt_timeout(engine))) {
2408                cancel_timer(&engine->execlists.preempt);
2409                engine->execlists.error_interrupt |= ERROR_PREEMPT;
2410        }
2411
2412        if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) {
2413                const char *msg;
2414
2415                /* Generate the error message in priority wrt to the user! */
2416                if (engine->execlists.error_interrupt & GENMASK(15, 0))
2417                        msg = "CS error"; /* thrown by a user payload */
2418                else if (engine->execlists.error_interrupt & ERROR_CSB)
2419                        msg = "invalid CSB event";
2420                else if (engine->execlists.error_interrupt & ERROR_PREEMPT)
2421                        msg = "preemption time out";
2422                else
2423                        msg = "internal error";
2424
2425                engine->execlists.error_interrupt = 0;
2426                execlists_reset(engine, msg);
2427        }
2428
2429        if (!engine->execlists.pending[0]) {
2430                execlists_dequeue_irq(engine);
2431                start_timeslice(engine);
2432        }
2433
2434        post_process_csb(post, inactive);
2435        rcu_read_unlock();
2436}
2437
2438static void execlists_irq_handler(struct intel_engine_cs *engine, u16 iir)
2439{
2440        bool tasklet = false;
2441
2442        if (unlikely(iir & GT_CS_MASTER_ERROR_INTERRUPT)) {
2443                u32 eir;
2444
2445                /* Upper 16b are the enabling mask, rsvd for internal errors */
2446                eir = ENGINE_READ(engine, RING_EIR) & GENMASK(15, 0);
2447                ENGINE_TRACE(engine, "CS error: %x\n", eir);
2448
2449                /* Disable the error interrupt until after the reset */
2450                if (likely(eir)) {
2451                        ENGINE_WRITE(engine, RING_EMR, ~0u);
2452                        ENGINE_WRITE(engine, RING_EIR, eir);
2453                        WRITE_ONCE(engine->execlists.error_interrupt, eir);
2454                        tasklet = true;
2455                }
2456        }
2457
2458        if (iir & GT_WAIT_SEMAPHORE_INTERRUPT) {
2459                WRITE_ONCE(engine->execlists.yield,
2460                           ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI));
2461                ENGINE_TRACE(engine, "semaphore yield: %08x\n",
2462                             engine->execlists.yield);
2463                if (del_timer(&engine->execlists.timer))
2464                        tasklet = true;
2465        }
2466
2467        if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
2468                tasklet = true;
2469
2470        if (iir & GT_RENDER_USER_INTERRUPT)
2471                intel_engine_signal_breadcrumbs(engine);
2472
2473        if (tasklet)
2474                tasklet_hi_schedule(&engine->sched_engine->tasklet);
2475}
2476
2477static void __execlists_kick(struct intel_engine_execlists *execlists)
2478{
2479        struct intel_engine_cs *engine =
2480                container_of(execlists, typeof(*engine), execlists);
2481
2482        /* Kick the tasklet for some interrupt coalescing and reset handling */
2483        tasklet_hi_schedule(&engine->sched_engine->tasklet);
2484}
2485
2486#define execlists_kick(t, member) \
2487        __execlists_kick(container_of(t, struct intel_engine_execlists, member))
2488
2489static void execlists_timeslice(struct timer_list *timer)
2490{
2491        execlists_kick(timer, timer);
2492}
2493
2494static void execlists_preempt(struct timer_list *timer)
2495{
2496        execlists_kick(timer, preempt);
2497}
2498
2499static void queue_request(struct intel_engine_cs *engine,
2500                          struct i915_request *rq)
2501{
2502        GEM_BUG_ON(!list_empty(&rq->sched.link));
2503        list_add_tail(&rq->sched.link,
2504                      i915_sched_lookup_priolist(engine->sched_engine,
2505                                                 rq_prio(rq)));
2506        set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2507}
2508
2509static bool submit_queue(struct intel_engine_cs *engine,
2510                         const struct i915_request *rq)
2511{
2512        struct i915_sched_engine *sched_engine = engine->sched_engine;
2513
2514        if (rq_prio(rq) <= sched_engine->queue_priority_hint)
2515                return false;
2516
2517        sched_engine->queue_priority_hint = rq_prio(rq);
2518        return true;
2519}
2520
2521static bool ancestor_on_hold(const struct intel_engine_cs *engine,
2522                             const struct i915_request *rq)
2523{
2524        GEM_BUG_ON(i915_request_on_hold(rq));
2525        return !list_empty(&engine->sched_engine->hold) && hold_request(rq);
2526}
2527
2528static void execlists_submit_request(struct i915_request *request)
2529{
2530        struct intel_engine_cs *engine = request->engine;
2531        unsigned long flags;
2532
2533        /* Will be called from irq-context when using foreign fences. */
2534        spin_lock_irqsave(&engine->sched_engine->lock, flags);
2535
2536        if (unlikely(ancestor_on_hold(engine, request))) {
2537                RQ_TRACE(request, "ancestor on hold\n");
2538                list_add_tail(&request->sched.link,
2539                              &engine->sched_engine->hold);
2540                i915_request_set_hold(request);
2541        } else {
2542                queue_request(engine, request);
2543
2544                GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
2545                GEM_BUG_ON(list_empty(&request->sched.link));
2546
2547                if (submit_queue(engine, request))
2548                        __execlists_kick(&engine->execlists);
2549        }
2550
2551        spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2552}
2553
2554static int
2555__execlists_context_pre_pin(struct intel_context *ce,
2556                            struct intel_engine_cs *engine,
2557                            struct i915_gem_ww_ctx *ww, void **vaddr)
2558{
2559        int err;
2560
2561        err = lrc_pre_pin(ce, engine, ww, vaddr);
2562        if (err)
2563                return err;
2564
2565        if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags)) {
2566                lrc_init_state(ce, engine, *vaddr);
2567
2568                 __i915_gem_object_flush_map(ce->state->obj, 0, engine->context_size);
2569        }
2570
2571        return 0;
2572}
2573
2574static int execlists_context_pre_pin(struct intel_context *ce,
2575                                     struct i915_gem_ww_ctx *ww,
2576                                     void **vaddr)
2577{
2578        return __execlists_context_pre_pin(ce, ce->engine, ww, vaddr);
2579}
2580
2581static int execlists_context_pin(struct intel_context *ce, void *vaddr)
2582{
2583        return lrc_pin(ce, ce->engine, vaddr);
2584}
2585
2586static int execlists_context_alloc(struct intel_context *ce)
2587{
2588        return lrc_alloc(ce, ce->engine);
2589}
2590
2591static void execlists_context_cancel_request(struct intel_context *ce,
2592                                             struct i915_request *rq)
2593{
2594        struct intel_engine_cs *engine = NULL;
2595
2596        i915_request_active_engine(rq, &engine);
2597
2598        if (engine && intel_engine_pulse(engine))
2599                intel_gt_handle_error(engine->gt, engine->mask, 0,
2600                                      "request cancellation by %s",
2601                                      current->comm);
2602}
2603
2604static const struct intel_context_ops execlists_context_ops = {
2605        .flags = COPS_HAS_INFLIGHT,
2606
2607        .alloc = execlists_context_alloc,
2608
2609        .cancel_request = execlists_context_cancel_request,
2610
2611        .pre_pin = execlists_context_pre_pin,
2612        .pin = execlists_context_pin,
2613        .unpin = lrc_unpin,
2614        .post_unpin = lrc_post_unpin,
2615
2616        .enter = intel_context_enter_engine,
2617        .exit = intel_context_exit_engine,
2618
2619        .reset = lrc_reset,
2620        .destroy = lrc_destroy,
2621
2622        .create_virtual = execlists_create_virtual,
2623};
2624
2625static int emit_pdps(struct i915_request *rq)
2626{
2627        const struct intel_engine_cs * const engine = rq->engine;
2628        struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->context->vm);
2629        int err, i;
2630        u32 *cs;
2631
2632        GEM_BUG_ON(intel_vgpu_active(rq->engine->i915));
2633
2634        /*
2635         * Beware ye of the dragons, this sequence is magic!
2636         *
2637         * Small changes to this sequence can cause anything from
2638         * GPU hangs to forcewake errors and machine lockups!
2639         */
2640
2641        cs = intel_ring_begin(rq, 2);
2642        if (IS_ERR(cs))
2643                return PTR_ERR(cs);
2644
2645        *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2646        *cs++ = MI_NOOP;
2647        intel_ring_advance(rq, cs);
2648
2649        /* Flush any residual operations from the context load */
2650        err = engine->emit_flush(rq, EMIT_FLUSH);
2651        if (err)
2652                return err;
2653
2654        /* Magic required to prevent forcewake errors! */
2655        err = engine->emit_flush(rq, EMIT_INVALIDATE);
2656        if (err)
2657                return err;
2658
2659        cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
2660        if (IS_ERR(cs))
2661                return PTR_ERR(cs);
2662
2663        /* Ensure the LRI have landed before we invalidate & continue */
2664        *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
2665        for (i = GEN8_3LVL_PDPES; i--; ) {
2666                const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
2667                u32 base = engine->mmio_base;
2668
2669                *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
2670                *cs++ = upper_32_bits(pd_daddr);
2671                *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
2672                *cs++ = lower_32_bits(pd_daddr);
2673        }
2674        *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2675        intel_ring_advance(rq, cs);
2676
2677        intel_ring_advance(rq, cs);
2678
2679        return 0;
2680}
2681
2682static int execlists_request_alloc(struct i915_request *request)
2683{
2684        int ret;
2685
2686        GEM_BUG_ON(!intel_context_is_pinned(request->context));
2687
2688        /*
2689         * Flush enough space to reduce the likelihood of waiting after
2690         * we start building the request - in which case we will just
2691         * have to repeat work.
2692         */
2693        request->reserved_space += EXECLISTS_REQUEST_SIZE;
2694
2695        /*
2696         * Note that after this point, we have committed to using
2697         * this request as it is being used to both track the
2698         * state of engine initialisation and liveness of the
2699         * golden renderstate above. Think twice before you try
2700         * to cancel/unwind this request now.
2701         */
2702
2703        if (!i915_vm_is_4lvl(request->context->vm)) {
2704                ret = emit_pdps(request);
2705                if (ret)
2706                        return ret;
2707        }
2708
2709        /* Unconditionally invalidate GPU caches and TLBs. */
2710        ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
2711        if (ret)
2712                return ret;
2713
2714        request->reserved_space -= EXECLISTS_REQUEST_SIZE;
2715        return 0;
2716}
2717
2718static void reset_csb_pointers(struct intel_engine_cs *engine)
2719{
2720        struct intel_engine_execlists * const execlists = &engine->execlists;
2721        const unsigned int reset_value = execlists->csb_size - 1;
2722
2723        ring_set_paused(engine, 0);
2724
2725        /*
2726         * Sometimes Icelake forgets to reset its pointers on a GPU reset.
2727         * Bludgeon them with a mmio update to be sure.
2728         */
2729        ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2730                     0xffff << 16 | reset_value << 8 | reset_value);
2731        ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2732
2733        /*
2734         * After a reset, the HW starts writing into CSB entry [0]. We
2735         * therefore have to set our HEAD pointer back one entry so that
2736         * the *first* entry we check is entry 0. To complicate this further,
2737         * as we don't wait for the first interrupt after reset, we have to
2738         * fake the HW write to point back to the last entry so that our
2739         * inline comparison of our cached head position against the last HW
2740         * write works even before the first interrupt.
2741         */
2742        execlists->csb_head = reset_value;
2743        WRITE_ONCE(*execlists->csb_write, reset_value);
2744        wmb(); /* Make sure this is visible to HW (paranoia?) */
2745
2746        /* Check that the GPU does indeed update the CSB entries! */
2747        memset(execlists->csb_status, -1, (reset_value + 1) * sizeof(u64));
2748        invalidate_csb_entries(&execlists->csb_status[0],
2749                               &execlists->csb_status[reset_value]);
2750
2751        /* Once more for luck and our trusty paranoia */
2752        ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2753                     0xffff << 16 | reset_value << 8 | reset_value);
2754        ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2755
2756        GEM_BUG_ON(READ_ONCE(*execlists->csb_write) != reset_value);
2757}
2758
2759static void sanitize_hwsp(struct intel_engine_cs *engine)
2760{
2761        struct intel_timeline *tl;
2762
2763        list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
2764                intel_timeline_reset_seqno(tl);
2765}
2766
2767static void execlists_sanitize(struct intel_engine_cs *engine)
2768{
2769        GEM_BUG_ON(execlists_active(&engine->execlists));
2770
2771        /*
2772         * Poison residual state on resume, in case the suspend didn't!
2773         *
2774         * We have to assume that across suspend/resume (or other loss
2775         * of control) that the contents of our pinned buffers has been
2776         * lost, replaced by garbage. Since this doesn't always happen,
2777         * let's poison such state so that we more quickly spot when
2778         * we falsely assume it has been preserved.
2779         */
2780        if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
2781                memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
2782
2783        reset_csb_pointers(engine);
2784
2785        /*
2786         * The kernel_context HWSP is stored in the status_page. As above,
2787         * that may be lost on resume/initialisation, and so we need to
2788         * reset the value in the HWSP.
2789         */
2790        sanitize_hwsp(engine);
2791
2792        /* And scrub the dirty cachelines for the HWSP */
2793        clflush_cache_range(engine->status_page.addr, PAGE_SIZE);
2794}
2795
2796static void enable_error_interrupt(struct intel_engine_cs *engine)
2797{
2798        u32 status;
2799
2800        engine->execlists.error_interrupt = 0;
2801        ENGINE_WRITE(engine, RING_EMR, ~0u);
2802        ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */
2803
2804        status = ENGINE_READ(engine, RING_ESR);
2805        if (unlikely(status)) {
2806                drm_err(&engine->i915->drm,
2807                        "engine '%s' resumed still in error: %08x\n",
2808                        engine->name, status);
2809                __intel_gt_reset(engine->gt, engine->mask);
2810        }
2811
2812        /*
2813         * On current gen8+, we have 2 signals to play with
2814         *
2815         * - I915_ERROR_INSTUCTION (bit 0)
2816         *
2817         *    Generate an error if the command parser encounters an invalid
2818         *    instruction
2819         *
2820         *    This is a fatal error.
2821         *
2822         * - CP_PRIV (bit 2)
2823         *
2824         *    Generate an error on privilege violation (where the CP replaces
2825         *    the instruction with a no-op). This also fires for writes into
2826         *    read-only scratch pages.
2827         *
2828         *    This is a non-fatal error, parsing continues.
2829         *
2830         * * there are a few others defined for odd HW that we do not use
2831         *
2832         * Since CP_PRIV fires for cases where we have chosen to ignore the
2833         * error (as the HW is validating and suppressing the mistakes), we
2834         * only unmask the instruction error bit.
2835         */
2836        ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION);
2837}
2838
2839static void enable_execlists(struct intel_engine_cs *engine)
2840{
2841        u32 mode;
2842
2843        assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
2844
2845        intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2846
2847        if (GRAPHICS_VER(engine->i915) >= 11)
2848                mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
2849        else
2850                mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
2851        ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
2852
2853        ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2854
2855        ENGINE_WRITE_FW(engine,
2856                        RING_HWS_PGA,
2857                        i915_ggtt_offset(engine->status_page.vma));
2858        ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2859
2860        enable_error_interrupt(engine);
2861}
2862
2863static int execlists_resume(struct intel_engine_cs *engine)
2864{
2865        intel_mocs_init_engine(engine);
2866        intel_breadcrumbs_reset(engine->breadcrumbs);
2867
2868        enable_execlists(engine);
2869
2870        return 0;
2871}
2872
2873static void execlists_reset_prepare(struct intel_engine_cs *engine)
2874{
2875        ENGINE_TRACE(engine, "depth<-%d\n",
2876                     atomic_read(&engine->sched_engine->tasklet.count));
2877
2878        /*
2879         * Prevent request submission to the hardware until we have
2880         * completed the reset in i915_gem_reset_finish(). If a request
2881         * is completed by one engine, it may then queue a request
2882         * to a second via its execlists->tasklet *just* as we are
2883         * calling engine->resume() and also writing the ELSP.
2884         * Turning off the execlists->tasklet until the reset is over
2885         * prevents the race.
2886         */
2887        __tasklet_disable_sync_once(&engine->sched_engine->tasklet);
2888        GEM_BUG_ON(!reset_in_progress(engine));
2889
2890        /*
2891         * We stop engines, otherwise we might get failed reset and a
2892         * dead gpu (on elk). Also as modern gpu as kbl can suffer
2893         * from system hang if batchbuffer is progressing when
2894         * the reset is issued, regardless of READY_TO_RESET ack.
2895         * Thus assume it is best to stop engines on all gens
2896         * where we have a gpu reset.
2897         *
2898         * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
2899         *
2900         * FIXME: Wa for more modern gens needs to be validated
2901         */
2902        ring_set_paused(engine, 1);
2903        intel_engine_stop_cs(engine);
2904
2905        engine->execlists.reset_ccid = active_ccid(engine);
2906}
2907
2908static struct i915_request **
2909reset_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
2910{
2911        struct intel_engine_execlists * const execlists = &engine->execlists;
2912
2913        mb(); /* paranoia: read the CSB pointers from after the reset */
2914        clflush(execlists->csb_write);
2915        mb();
2916
2917        inactive = process_csb(engine, inactive); /* drain preemption events */
2918
2919        /* Following the reset, we need to reload the CSB read/write pointers */
2920        reset_csb_pointers(engine);
2921
2922        return inactive;
2923}
2924
2925static void
2926execlists_reset_active(struct intel_engine_cs *engine, bool stalled)
2927{
2928        struct intel_context *ce;
2929        struct i915_request *rq;
2930        u32 head;
2931
2932        /*
2933         * Save the currently executing context, even if we completed
2934         * its request, it was still running at the time of the
2935         * reset and will have been clobbered.
2936         */
2937        rq = active_context(engine, engine->execlists.reset_ccid);
2938        if (!rq)
2939                return;
2940
2941        ce = rq->context;
2942        GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
2943
2944        if (__i915_request_is_complete(rq)) {
2945                /* Idle context; tidy up the ring so we can restart afresh */
2946                head = intel_ring_wrap(ce->ring, rq->tail);
2947                goto out_replay;
2948        }
2949
2950        /* We still have requests in-flight; the engine should be active */
2951        GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
2952
2953        /* Context has requests still in-flight; it should not be idle! */
2954        GEM_BUG_ON(i915_active_is_idle(&ce->active));
2955
2956        rq = active_request(ce->timeline, rq);
2957        head = intel_ring_wrap(ce->ring, rq->head);
2958        GEM_BUG_ON(head == ce->ring->tail);
2959
2960        /*
2961         * If this request hasn't started yet, e.g. it is waiting on a
2962         * semaphore, we need to avoid skipping the request or else we
2963         * break the signaling chain. However, if the context is corrupt
2964         * the request will not restart and we will be stuck with a wedged
2965         * device. It is quite often the case that if we issue a reset
2966         * while the GPU is loading the context image, that the context
2967         * image becomes corrupt.
2968         *
2969         * Otherwise, if we have not started yet, the request should replay
2970         * perfectly and we do not need to flag the result as being erroneous.
2971         */
2972        if (!__i915_request_has_started(rq))
2973                goto out_replay;
2974
2975        /*
2976         * If the request was innocent, we leave the request in the ELSP
2977         * and will try to replay it on restarting. The context image may
2978         * have been corrupted by the reset, in which case we may have
2979         * to service a new GPU hang, but more likely we can continue on
2980         * without impact.
2981         *
2982         * If the request was guilty, we presume the context is corrupt
2983         * and have to at least restore the RING register in the context
2984         * image back to the expected values to skip over the guilty request.
2985         */
2986        __i915_request_reset(rq, stalled);
2987
2988        /*
2989         * We want a simple context + ring to execute the breadcrumb update.
2990         * We cannot rely on the context being intact across the GPU hang,
2991         * so clear it and rebuild just what we need for the breadcrumb.
2992         * All pending requests for this context will be zapped, and any
2993         * future request will be after userspace has had the opportunity
2994         * to recreate its own state.
2995         */
2996out_replay:
2997        ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
2998                     head, ce->ring->tail);
2999        lrc_reset_regs(ce, engine);
3000        ce->lrc.lrca = lrc_update_regs(ce, engine, head);
3001}
3002
3003static void execlists_reset_csb(struct intel_engine_cs *engine, bool stalled)
3004{
3005        struct intel_engine_execlists * const execlists = &engine->execlists;
3006        struct i915_request *post[2 * EXECLIST_MAX_PORTS];
3007        struct i915_request **inactive;
3008
3009        rcu_read_lock();
3010        inactive = reset_csb(engine, post);
3011
3012        execlists_reset_active(engine, true);
3013
3014        inactive = cancel_port_requests(execlists, inactive);
3015        post_process_csb(post, inactive);
3016        rcu_read_unlock();
3017}
3018
3019static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
3020{
3021        unsigned long flags;
3022
3023        ENGINE_TRACE(engine, "\n");
3024
3025        /* Process the csb, find the guilty context and throw away */
3026        execlists_reset_csb(engine, stalled);
3027
3028        /* Push back any incomplete requests for replay after the reset. */
3029        rcu_read_lock();
3030        spin_lock_irqsave(&engine->sched_engine->lock, flags);
3031        __unwind_incomplete_requests(engine);
3032        spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3033        rcu_read_unlock();
3034}
3035
3036static void nop_submission_tasklet(struct tasklet_struct *t)
3037{
3038        struct i915_sched_engine *sched_engine =
3039                from_tasklet(sched_engine, t, tasklet);
3040        struct intel_engine_cs * const engine = sched_engine->private_data;
3041
3042        /* The driver is wedged; don't process any more events. */
3043        WRITE_ONCE(engine->sched_engine->queue_priority_hint, INT_MIN);
3044}
3045
3046static void execlists_reset_cancel(struct intel_engine_cs *engine)
3047{
3048        struct intel_engine_execlists * const execlists = &engine->execlists;
3049        struct i915_sched_engine * const sched_engine = engine->sched_engine;
3050        struct i915_request *rq, *rn;
3051        struct rb_node *rb;
3052        unsigned long flags;
3053
3054        ENGINE_TRACE(engine, "\n");
3055
3056        /*
3057         * Before we call engine->cancel_requests(), we should have exclusive
3058         * access to the submission state. This is arranged for us by the
3059         * caller disabling the interrupt generation, the tasklet and other
3060         * threads that may then access the same state, giving us a free hand
3061         * to reset state. However, we still need to let lockdep be aware that
3062         * we know this state may be accessed in hardirq context, so we
3063         * disable the irq around this manipulation and we want to keep
3064         * the spinlock focused on its duties and not accidentally conflate
3065         * coverage to the submission's irq state. (Similarly, although we
3066         * shouldn't need to disable irq around the manipulation of the
3067         * submission's irq state, we also wish to remind ourselves that
3068         * it is irq state.)
3069         */
3070        execlists_reset_csb(engine, true);
3071
3072        rcu_read_lock();
3073        spin_lock_irqsave(&engine->sched_engine->lock, flags);
3074
3075        /* Mark all executing requests as skipped. */
3076        list_for_each_entry(rq, &engine->sched_engine->requests, sched.link)
3077                i915_request_put(i915_request_mark_eio(rq));
3078        intel_engine_signal_breadcrumbs(engine);
3079
3080        /* Flush the queued requests to the timeline list (for retiring). */
3081        while ((rb = rb_first_cached(&sched_engine->queue))) {
3082                struct i915_priolist *p = to_priolist(rb);
3083
3084                priolist_for_each_request_consume(rq, rn, p) {
3085                        if (i915_request_mark_eio(rq)) {
3086                                __i915_request_submit(rq);
3087                                i915_request_put(rq);
3088                        }
3089                }
3090
3091                rb_erase_cached(&p->node, &sched_engine->queue);
3092                i915_priolist_free(p);
3093        }
3094
3095        /* On-hold requests will be flushed to timeline upon their release */
3096        list_for_each_entry(rq, &sched_engine->hold, sched.link)
3097                i915_request_put(i915_request_mark_eio(rq));
3098
3099        /* Cancel all attached virtual engines */
3100        while ((rb = rb_first_cached(&execlists->virtual))) {
3101                struct virtual_engine *ve =
3102                        rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3103
3104                rb_erase_cached(rb, &execlists->virtual);
3105                RB_CLEAR_NODE(rb);
3106
3107                spin_lock(&ve->base.sched_engine->lock);
3108                rq = fetch_and_zero(&ve->request);
3109                if (rq) {
3110                        if (i915_request_mark_eio(rq)) {
3111                                rq->engine = engine;
3112                                __i915_request_submit(rq);
3113                                i915_request_put(rq);
3114                        }
3115                        i915_request_put(rq);
3116
3117                        ve->base.sched_engine->queue_priority_hint = INT_MIN;
3118                }
3119                spin_unlock(&ve->base.sched_engine->lock);
3120        }
3121
3122        /* Remaining _unready_ requests will be nop'ed when submitted */
3123
3124        sched_engine->queue_priority_hint = INT_MIN;
3125        sched_engine->queue = RB_ROOT_CACHED;
3126
3127        GEM_BUG_ON(__tasklet_is_enabled(&engine->sched_engine->tasklet));
3128        engine->sched_engine->tasklet.callback = nop_submission_tasklet;
3129
3130        spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3131        rcu_read_unlock();
3132}
3133
3134static void execlists_reset_finish(struct intel_engine_cs *engine)
3135{
3136        struct intel_engine_execlists * const execlists = &engine->execlists;
3137
3138        /*
3139         * After a GPU reset, we may have requests to replay. Do so now while
3140         * we still have the forcewake to be sure that the GPU is not allowed
3141         * to sleep before we restart and reload a context.
3142         *
3143         * If the GPU reset fails, the engine may still be alive with requests
3144         * inflight. We expect those to complete, or for the device to be
3145         * reset as the next level of recovery, and as a final resort we
3146         * will declare the device wedged.
3147         */
3148        GEM_BUG_ON(!reset_in_progress(engine));
3149
3150        /* And kick in case we missed a new request submission. */
3151        if (__tasklet_enable(&engine->sched_engine->tasklet))
3152                __execlists_kick(execlists);
3153
3154        ENGINE_TRACE(engine, "depth->%d\n",
3155                     atomic_read(&engine->sched_engine->tasklet.count));
3156}
3157
3158static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
3159{
3160        ENGINE_WRITE(engine, RING_IMR,
3161                     ~(engine->irq_enable_mask | engine->irq_keep_mask));
3162        ENGINE_POSTING_READ(engine, RING_IMR);
3163}
3164
3165static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
3166{
3167        ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
3168}
3169
3170static void execlists_park(struct intel_engine_cs *engine)
3171{
3172        cancel_timer(&engine->execlists.timer);
3173        cancel_timer(&engine->execlists.preempt);
3174}
3175
3176static void add_to_engine(struct i915_request *rq)
3177{
3178        lockdep_assert_held(&rq->engine->sched_engine->lock);
3179        list_move_tail(&rq->sched.link, &rq->engine->sched_engine->requests);
3180}
3181
3182static void remove_from_engine(struct i915_request *rq)
3183{
3184        struct intel_engine_cs *engine, *locked;
3185
3186        /*
3187         * Virtual engines complicate acquiring the engine timeline lock,
3188         * as their rq->engine pointer is not stable until under that
3189         * engine lock. The simple ploy we use is to take the lock then
3190         * check that the rq still belongs to the newly locked engine.
3191         */
3192        locked = READ_ONCE(rq->engine);
3193        spin_lock_irq(&locked->sched_engine->lock);
3194        while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
3195                spin_unlock(&locked->sched_engine->lock);
3196                spin_lock(&engine->sched_engine->lock);
3197                locked = engine;
3198        }
3199        list_del_init(&rq->sched.link);
3200
3201        clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3202        clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
3203
3204        /* Prevent further __await_execution() registering a cb, then flush */
3205        set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3206
3207        spin_unlock_irq(&locked->sched_engine->lock);
3208
3209        i915_request_notify_execute_cb_imm(rq);
3210}
3211
3212static bool can_preempt(struct intel_engine_cs *engine)
3213{
3214        if (GRAPHICS_VER(engine->i915) > 8)
3215                return true;
3216
3217        /* GPGPU on bdw requires extra w/a; not implemented */
3218        return engine->class != RENDER_CLASS;
3219}
3220
3221static void kick_execlists(const struct i915_request *rq, int prio)
3222{
3223        struct intel_engine_cs *engine = rq->engine;
3224        struct i915_sched_engine *sched_engine = engine->sched_engine;
3225        const struct i915_request *inflight;
3226
3227        /*
3228         * We only need to kick the tasklet once for the high priority
3229         * new context we add into the queue.
3230         */
3231        if (prio <= sched_engine->queue_priority_hint)
3232                return;
3233
3234        rcu_read_lock();
3235
3236        /* Nothing currently active? We're overdue for a submission! */
3237        inflight = execlists_active(&engine->execlists);
3238        if (!inflight)
3239                goto unlock;
3240
3241        /*
3242         * If we are already the currently executing context, don't
3243         * bother evaluating if we should preempt ourselves.
3244         */
3245        if (inflight->context == rq->context)
3246                goto unlock;
3247
3248        ENGINE_TRACE(engine,
3249                     "bumping queue-priority-hint:%d for rq:%llx:%lld, inflight:%llx:%lld prio %d\n",
3250                     prio,
3251                     rq->fence.context, rq->fence.seqno,
3252                     inflight->fence.context, inflight->fence.seqno,
3253                     inflight->sched.attr.priority);
3254
3255        sched_engine->queue_priority_hint = prio;
3256
3257        /*
3258         * Allow preemption of low -> normal -> high, but we do
3259         * not allow low priority tasks to preempt other low priority
3260         * tasks under the impression that latency for low priority
3261         * tasks does not matter (as much as background throughput),
3262         * so kiss.
3263         */
3264        if (prio >= max(I915_PRIORITY_NORMAL, rq_prio(inflight)))
3265                tasklet_hi_schedule(&sched_engine->tasklet);
3266
3267unlock:
3268        rcu_read_unlock();
3269}
3270
3271static void execlists_set_default_submission(struct intel_engine_cs *engine)
3272{
3273        engine->submit_request = execlists_submit_request;
3274        engine->sched_engine->schedule = i915_schedule;
3275        engine->sched_engine->kick_backend = kick_execlists;
3276        engine->sched_engine->tasklet.callback = execlists_submission_tasklet;
3277}
3278
3279static void execlists_shutdown(struct intel_engine_cs *engine)
3280{
3281        /* Synchronise with residual timers and any softirq they raise */
3282        del_timer_sync(&engine->execlists.timer);
3283        del_timer_sync(&engine->execlists.preempt);
3284        tasklet_kill(&engine->sched_engine->tasklet);
3285}
3286
3287static void execlists_release(struct intel_engine_cs *engine)
3288{
3289        engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
3290
3291        execlists_shutdown(engine);
3292
3293        intel_engine_cleanup_common(engine);
3294        lrc_fini_wa_ctx(engine);
3295}
3296
3297static void
3298logical_ring_default_vfuncs(struct intel_engine_cs *engine)
3299{
3300        /* Default vfuncs which can be overridden by each engine. */
3301
3302        engine->resume = execlists_resume;
3303
3304        engine->cops = &execlists_context_ops;
3305        engine->request_alloc = execlists_request_alloc;
3306        engine->add_active_request = add_to_engine;
3307        engine->remove_active_request = remove_from_engine;
3308
3309        engine->reset.prepare = execlists_reset_prepare;
3310        engine->reset.rewind = execlists_reset_rewind;
3311        engine->reset.cancel = execlists_reset_cancel;
3312        engine->reset.finish = execlists_reset_finish;
3313
3314        engine->park = execlists_park;
3315        engine->unpark = NULL;
3316
3317        engine->emit_flush = gen8_emit_flush_xcs;
3318        engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
3319        engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
3320        if (GRAPHICS_VER(engine->i915) >= 12) {
3321                engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
3322                engine->emit_flush = gen12_emit_flush_xcs;
3323        }
3324        engine->set_default_submission = execlists_set_default_submission;
3325
3326        if (GRAPHICS_VER(engine->i915) < 11) {
3327                engine->irq_enable = gen8_logical_ring_enable_irq;
3328                engine->irq_disable = gen8_logical_ring_disable_irq;
3329        } else {
3330                /*
3331                 * TODO: On Gen11 interrupt masks need to be clear
3332                 * to allow C6 entry. Keep interrupts enabled at
3333                 * and take the hit of generating extra interrupts
3334                 * until a more refined solution exists.
3335                 */
3336        }
3337        intel_engine_set_irq_handler(engine, execlists_irq_handler);
3338
3339        engine->flags |= I915_ENGINE_SUPPORTS_STATS;
3340        if (!intel_vgpu_active(engine->i915)) {
3341                engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
3342                if (can_preempt(engine)) {
3343                        engine->flags |= I915_ENGINE_HAS_PREEMPTION;
3344                        if (IS_ACTIVE(CONFIG_DRM_I915_TIMESLICE_DURATION))
3345                                engine->flags |= I915_ENGINE_HAS_TIMESLICES;
3346                }
3347        }
3348
3349        if (intel_engine_has_preemption(engine))
3350                engine->emit_bb_start = gen8_emit_bb_start;
3351        else
3352                engine->emit_bb_start = gen8_emit_bb_start_noarb;
3353}
3354
3355static void logical_ring_default_irqs(struct intel_engine_cs *engine)
3356{
3357        unsigned int shift = 0;
3358
3359        if (GRAPHICS_VER(engine->i915) < 11) {
3360                const u8 irq_shifts[] = {
3361                        [RCS0]  = GEN8_RCS_IRQ_SHIFT,
3362                        [BCS0]  = GEN8_BCS_IRQ_SHIFT,
3363                        [VCS0]  = GEN8_VCS0_IRQ_SHIFT,
3364                        [VCS1]  = GEN8_VCS1_IRQ_SHIFT,
3365                        [VECS0] = GEN8_VECS_IRQ_SHIFT,
3366                };
3367
3368                shift = irq_shifts[engine->id];
3369        }
3370
3371        engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
3372        engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
3373        engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift;
3374        engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift;
3375}
3376
3377static void rcs_submission_override(struct intel_engine_cs *engine)
3378{
3379        switch (GRAPHICS_VER(engine->i915)) {
3380        case 12:
3381                engine->emit_flush = gen12_emit_flush_rcs;
3382                engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
3383                break;
3384        case 11:
3385                engine->emit_flush = gen11_emit_flush_rcs;
3386                engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
3387                break;
3388        default:
3389                engine->emit_flush = gen8_emit_flush_rcs;
3390                engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
3391                break;
3392        }
3393}
3394
3395int intel_execlists_submission_setup(struct intel_engine_cs *engine)
3396{
3397        struct intel_engine_execlists * const execlists = &engine->execlists;
3398        struct drm_i915_private *i915 = engine->i915;
3399        struct intel_uncore *uncore = engine->uncore;
3400        u32 base = engine->mmio_base;
3401
3402        tasklet_setup(&engine->sched_engine->tasklet, execlists_submission_tasklet);
3403        timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
3404        timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
3405
3406        logical_ring_default_vfuncs(engine);
3407        logical_ring_default_irqs(engine);
3408
3409        if (engine->class == RENDER_CLASS)
3410                rcs_submission_override(engine);
3411
3412        lrc_init_wa_ctx(engine);
3413
3414        if (HAS_LOGICAL_RING_ELSQ(i915)) {
3415                execlists->submit_reg = uncore->regs +
3416                        i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
3417                execlists->ctrl_reg = uncore->regs +
3418                        i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
3419
3420                engine->fw_domain = intel_uncore_forcewake_for_reg(engine->uncore,
3421                                    RING_EXECLIST_CONTROL(engine->mmio_base),
3422                                    FW_REG_WRITE);
3423        } else {
3424                execlists->submit_reg = uncore->regs +
3425                        i915_mmio_reg_offset(RING_ELSP(base));
3426        }
3427
3428        execlists->csb_status =
3429                (u64 *)&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
3430
3431        execlists->csb_write =
3432                &engine->status_page.addr[intel_hws_csb_write_index(i915)];
3433
3434        if (GRAPHICS_VER(i915) < 11)
3435                execlists->csb_size = GEN8_CSB_ENTRIES;
3436        else
3437                execlists->csb_size = GEN11_CSB_ENTRIES;
3438
3439        engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0);
3440        if (GRAPHICS_VER(engine->i915) >= 11 &&
3441            GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 50)) {
3442                execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32);
3443                execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32);
3444        }
3445
3446        /* Finally, take ownership and responsibility for cleanup! */
3447        engine->sanitize = execlists_sanitize;
3448        engine->release = execlists_release;
3449
3450        return 0;
3451}
3452
3453static struct list_head *virtual_queue(struct virtual_engine *ve)
3454{
3455        return &ve->base.sched_engine->default_priolist.requests;
3456}
3457
3458static void rcu_virtual_context_destroy(struct work_struct *wrk)
3459{
3460        struct virtual_engine *ve =
3461                container_of(wrk, typeof(*ve), rcu.work);
3462        unsigned int n;
3463
3464        GEM_BUG_ON(ve->context.inflight);
3465
3466        /* Preempt-to-busy may leave a stale request behind. */
3467        if (unlikely(ve->request)) {
3468                struct i915_request *old;
3469
3470                spin_lock_irq(&ve->base.sched_engine->lock);
3471
3472                old = fetch_and_zero(&ve->request);
3473                if (old) {
3474                        GEM_BUG_ON(!__i915_request_is_complete(old));
3475                        __i915_request_submit(old);
3476                        i915_request_put(old);
3477                }
3478
3479                spin_unlock_irq(&ve->base.sched_engine->lock);
3480        }
3481
3482        /*
3483         * Flush the tasklet in case it is still running on another core.
3484         *
3485         * This needs to be done before we remove ourselves from the siblings'
3486         * rbtrees as in the case it is running in parallel, it may reinsert
3487         * the rb_node into a sibling.
3488         */
3489        tasklet_kill(&ve->base.sched_engine->tasklet);
3490
3491        /* Decouple ourselves from the siblings, no more access allowed. */
3492        for (n = 0; n < ve->num_siblings; n++) {
3493                struct intel_engine_cs *sibling = ve->siblings[n];
3494                struct rb_node *node = &ve->nodes[sibling->id].rb;
3495
3496                if (RB_EMPTY_NODE(node))
3497                        continue;
3498
3499                spin_lock_irq(&sibling->sched_engine->lock);
3500
3501                /* Detachment is lazily performed in the sched_engine->tasklet */
3502                if (!RB_EMPTY_NODE(node))
3503                        rb_erase_cached(node, &sibling->execlists.virtual);
3504
3505                spin_unlock_irq(&sibling->sched_engine->lock);
3506        }
3507        GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.sched_engine->tasklet));
3508        GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3509
3510        lrc_fini(&ve->context);
3511        intel_context_fini(&ve->context);
3512
3513        if (ve->base.breadcrumbs)
3514                intel_breadcrumbs_put(ve->base.breadcrumbs);
3515        if (ve->base.sched_engine)
3516                i915_sched_engine_put(ve->base.sched_engine);
3517        intel_engine_free_request_pool(&ve->base);
3518
3519        kfree(ve);
3520}
3521
3522static void virtual_context_destroy(struct kref *kref)
3523{
3524        struct virtual_engine *ve =
3525                container_of(kref, typeof(*ve), context.ref);
3526
3527        GEM_BUG_ON(!list_empty(&ve->context.signals));
3528
3529        /*
3530         * When destroying the virtual engine, we have to be aware that
3531         * it may still be in use from an hardirq/softirq context causing
3532         * the resubmission of a completed request (background completion
3533         * due to preempt-to-busy). Before we can free the engine, we need
3534         * to flush the submission code and tasklets that are still potentially
3535         * accessing the engine. Flushing the tasklets requires process context,
3536         * and since we can guard the resubmit onto the engine with an RCU read
3537         * lock, we can delegate the free of the engine to an RCU worker.
3538         */
3539        INIT_RCU_WORK(&ve->rcu, rcu_virtual_context_destroy);
3540        queue_rcu_work(system_wq, &ve->rcu);
3541}
3542
3543static void virtual_engine_initial_hint(struct virtual_engine *ve)
3544{
3545        int swp;
3546
3547        /*
3548         * Pick a random sibling on starting to help spread the load around.
3549         *
3550         * New contexts are typically created with exactly the same order
3551         * of siblings, and often started in batches. Due to the way we iterate
3552         * the array of sibling when submitting requests, sibling[0] is
3553         * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3554         * randomised across the system, we also help spread the load by the
3555         * first engine we inspect being different each time.
3556         *
3557         * NB This does not force us to execute on this engine, it will just
3558         * typically be the first we inspect for submission.
3559         */
3560        swp = prandom_u32_max(ve->num_siblings);
3561        if (swp)
3562                swap(ve->siblings[swp], ve->siblings[0]);
3563}
3564
3565static int virtual_context_alloc(struct intel_context *ce)
3566{
3567        struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3568
3569        return lrc_alloc(ce, ve->siblings[0]);
3570}
3571
3572static int virtual_context_pre_pin(struct intel_context *ce,
3573                                   struct i915_gem_ww_ctx *ww,
3574                                   void **vaddr)
3575{
3576        struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3577
3578         /* Note: we must use a real engine class for setting up reg state */
3579        return __execlists_context_pre_pin(ce, ve->siblings[0], ww, vaddr);
3580}
3581
3582static int virtual_context_pin(struct intel_context *ce, void *vaddr)
3583{
3584        struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3585
3586        return lrc_pin(ce, ve->siblings[0], vaddr);
3587}
3588
3589static void virtual_context_enter(struct intel_context *ce)
3590{
3591        struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3592        unsigned int n;
3593
3594        for (n = 0; n < ve->num_siblings; n++)
3595                intel_engine_pm_get(ve->siblings[n]);
3596
3597        intel_timeline_enter(ce->timeline);
3598}
3599
3600static void virtual_context_exit(struct intel_context *ce)
3601{
3602        struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3603        unsigned int n;
3604
3605        intel_timeline_exit(ce->timeline);
3606
3607        for (n = 0; n < ve->num_siblings; n++)
3608                intel_engine_pm_put(ve->siblings[n]);
3609}
3610
3611static struct intel_engine_cs *
3612virtual_get_sibling(struct intel_engine_cs *engine, unsigned int sibling)
3613{
3614        struct virtual_engine *ve = to_virtual_engine(engine);
3615
3616        if (sibling >= ve->num_siblings)
3617                return NULL;
3618
3619        return ve->siblings[sibling];
3620}
3621
3622static const struct intel_context_ops virtual_context_ops = {
3623        .flags = COPS_HAS_INFLIGHT,
3624
3625        .alloc = virtual_context_alloc,
3626
3627        .cancel_request = execlists_context_cancel_request,
3628
3629        .pre_pin = virtual_context_pre_pin,
3630        .pin = virtual_context_pin,
3631        .unpin = lrc_unpin,
3632        .post_unpin = lrc_post_unpin,
3633
3634        .enter = virtual_context_enter,
3635        .exit = virtual_context_exit,
3636
3637        .destroy = virtual_context_destroy,
3638
3639        .get_sibling = virtual_get_sibling,
3640};
3641
3642static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3643{
3644        struct i915_request *rq;
3645        intel_engine_mask_t mask;
3646
3647        rq = READ_ONCE(ve->request);
3648        if (!rq)
3649                return 0;
3650
3651        /* The rq is ready for submission; rq->execution_mask is now stable. */
3652        mask = rq->execution_mask;
3653        if (unlikely(!mask)) {
3654                /* Invalid selection, submit to a random engine in error */
3655                i915_request_set_error_once(rq, -ENODEV);
3656                mask = ve->siblings[0]->mask;
3657        }
3658
3659        ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
3660                     rq->fence.context, rq->fence.seqno,
3661                     mask, ve->base.sched_engine->queue_priority_hint);
3662
3663        return mask;
3664}
3665
3666static void virtual_submission_tasklet(struct tasklet_struct *t)
3667{
3668        struct i915_sched_engine *sched_engine =
3669                from_tasklet(sched_engine, t, tasklet);
3670        struct virtual_engine * const ve =
3671                (struct virtual_engine *)sched_engine->private_data;
3672        const int prio = READ_ONCE(sched_engine->queue_priority_hint);
3673        intel_engine_mask_t mask;
3674        unsigned int n;
3675
3676        rcu_read_lock();
3677        mask = virtual_submission_mask(ve);
3678        rcu_read_unlock();
3679        if (unlikely(!mask))
3680                return;
3681
3682        for (n = 0; n < ve->num_siblings; n++) {
3683                struct intel_engine_cs *sibling = READ_ONCE(ve->siblings[n]);
3684                struct ve_node * const node = &ve->nodes[sibling->id];
3685                struct rb_node **parent, *rb;
3686                bool first;
3687
3688                if (!READ_ONCE(ve->request))
3689                        break; /* already handled by a sibling's tasklet */
3690
3691                spin_lock_irq(&sibling->sched_engine->lock);
3692
3693                if (unlikely(!(mask & sibling->mask))) {
3694                        if (!RB_EMPTY_NODE(&node->rb)) {
3695                                rb_erase_cached(&node->rb,
3696                                                &sibling->execlists.virtual);
3697                                RB_CLEAR_NODE(&node->rb);
3698                        }
3699
3700                        goto unlock_engine;
3701                }
3702
3703                if (unlikely(!RB_EMPTY_NODE(&node->rb))) {
3704                        /*
3705                         * Cheat and avoid rebalancing the tree if we can
3706                         * reuse this node in situ.
3707                         */
3708                        first = rb_first_cached(&sibling->execlists.virtual) ==
3709                                &node->rb;
3710                        if (prio == node->prio || (prio > node->prio && first))
3711                                goto submit_engine;
3712
3713                        rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3714                }
3715
3716                rb = NULL;
3717                first = true;
3718                parent = &sibling->execlists.virtual.rb_root.rb_node;
3719                while (*parent) {
3720                        struct ve_node *other;
3721
3722                        rb = *parent;
3723                        other = rb_entry(rb, typeof(*other), rb);
3724                        if (prio > other->prio) {
3725                                parent = &rb->rb_left;
3726                        } else {
3727                                parent = &rb->rb_right;
3728                                first = false;
3729                        }
3730                }
3731
3732                rb_link_node(&node->rb, rb, parent);
3733                rb_insert_color_cached(&node->rb,
3734                                       &sibling->execlists.virtual,
3735                                       first);
3736
3737submit_engine:
3738                GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3739                node->prio = prio;
3740                if (first && prio > sibling->sched_engine->queue_priority_hint)
3741                        tasklet_hi_schedule(&sibling->sched_engine->tasklet);
3742
3743unlock_engine:
3744                spin_unlock_irq(&sibling->sched_engine->lock);
3745
3746                if (intel_context_inflight(&ve->context))
3747                        break;
3748        }
3749}
3750
3751static void virtual_submit_request(struct i915_request *rq)
3752{
3753        struct virtual_engine *ve = to_virtual_engine(rq->engine);
3754        unsigned long flags;
3755
3756        ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
3757                     rq->fence.context,
3758                     rq->fence.seqno);
3759
3760        GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3761
3762        spin_lock_irqsave(&ve->base.sched_engine->lock, flags);
3763
3764        /* By the time we resubmit a request, it may be completed */
3765        if (__i915_request_is_complete(rq)) {
3766                __i915_request_submit(rq);
3767                goto unlock;
3768        }
3769
3770        if (ve->request) { /* background completion from preempt-to-busy */
3771                GEM_BUG_ON(!__i915_request_is_complete(ve->request));
3772                __i915_request_submit(ve->request);
3773                i915_request_put(ve->request);
3774        }
3775
3776        ve->base.sched_engine->queue_priority_hint = rq_prio(rq);
3777        ve->request = i915_request_get(rq);
3778
3779        GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3780        list_move_tail(&rq->sched.link, virtual_queue(ve));
3781
3782        tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
3783
3784unlock:
3785        spin_unlock_irqrestore(&ve->base.sched_engine->lock, flags);
3786}
3787
3788static struct intel_context *
3789execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count)
3790{
3791        struct virtual_engine *ve;
3792        unsigned int n;
3793        int err;
3794
3795        ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3796        if (!ve)
3797                return ERR_PTR(-ENOMEM);
3798
3799        ve->base.i915 = siblings[0]->i915;
3800        ve->base.gt = siblings[0]->gt;
3801        ve->base.uncore = siblings[0]->uncore;
3802        ve->base.id = -1;
3803
3804        ve->base.class = OTHER_CLASS;
3805        ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3806        ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3807        ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3808
3809        /*
3810         * The decision on whether to submit a request using semaphores
3811         * depends on the saturated state of the engine. We only compute
3812         * this during HW submission of the request, and we need for this
3813         * state to be globally applied to all requests being submitted
3814         * to this engine. Virtual engines encompass more than one physical
3815         * engine and so we cannot accurately tell in advance if one of those
3816         * engines is already saturated and so cannot afford to use a semaphore
3817         * and be pessimized in priority for doing so -- if we are the only
3818         * context using semaphores after all other clients have stopped, we
3819         * will be starved on the saturated system. Such a global switch for
3820         * semaphores is less than ideal, but alas is the current compromise.
3821         */
3822        ve->base.saturated = ALL_ENGINES;
3823
3824        snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3825
3826        intel_engine_init_execlists(&ve->base);
3827
3828        ve->base.sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
3829        if (!ve->base.sched_engine) {
3830                err = -ENOMEM;
3831                goto err_put;
3832        }
3833        ve->base.sched_engine->private_data = &ve->base;
3834
3835        ve->base.cops = &virtual_context_ops;
3836        ve->base.request_alloc = execlists_request_alloc;
3837
3838        ve->base.sched_engine->schedule = i915_schedule;
3839        ve->base.sched_engine->kick_backend = kick_execlists;
3840        ve->base.submit_request = virtual_submit_request;
3841
3842        INIT_LIST_HEAD(virtual_queue(ve));
3843        tasklet_setup(&ve->base.sched_engine->tasklet, virtual_submission_tasklet);
3844
3845        intel_context_init(&ve->context, &ve->base);
3846
3847        ve->base.breadcrumbs = intel_breadcrumbs_create(NULL);
3848        if (!ve->base.breadcrumbs) {
3849                err = -ENOMEM;
3850                goto err_put;
3851        }
3852
3853        for (n = 0; n < count; n++) {
3854                struct intel_engine_cs *sibling = siblings[n];
3855
3856                GEM_BUG_ON(!is_power_of_2(sibling->mask));
3857                if (sibling->mask & ve->base.mask) {
3858                        DRM_DEBUG("duplicate %s entry in load balancer\n",
3859                                  sibling->name);
3860                        err = -EINVAL;
3861                        goto err_put;
3862                }
3863
3864                /*
3865                 * The virtual engine implementation is tightly coupled to
3866                 * the execlists backend -- we push out request directly
3867                 * into a tree inside each physical engine. We could support
3868                 * layering if we handle cloning of the requests and
3869                 * submitting a copy into each backend.
3870                 */
3871                if (sibling->sched_engine->tasklet.callback !=
3872                    execlists_submission_tasklet) {
3873                        err = -ENODEV;
3874                        goto err_put;
3875                }
3876
3877                GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
3878                RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
3879
3880                ve->siblings[ve->num_siblings++] = sibling;
3881                ve->base.mask |= sibling->mask;
3882
3883                /*
3884                 * All physical engines must be compatible for their emission
3885                 * functions (as we build the instructions during request
3886                 * construction and do not alter them before submission
3887                 * on the physical engine). We use the engine class as a guide
3888                 * here, although that could be refined.
3889                 */
3890                if (ve->base.class != OTHER_CLASS) {
3891                        if (ve->base.class != sibling->class) {
3892                                DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
3893                                          sibling->class, ve->base.class);
3894                                err = -EINVAL;
3895                                goto err_put;
3896                        }
3897                        continue;
3898                }
3899
3900                ve->base.class = sibling->class;
3901                ve->base.uabi_class = sibling->uabi_class;
3902                snprintf(ve->base.name, sizeof(ve->base.name),
3903                         "v%dx%d", ve->base.class, count);
3904                ve->base.context_size = sibling->context_size;
3905
3906                ve->base.add_active_request = sibling->add_active_request;
3907                ve->base.remove_active_request = sibling->remove_active_request;
3908                ve->base.emit_bb_start = sibling->emit_bb_start;
3909                ve->base.emit_flush = sibling->emit_flush;
3910                ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
3911                ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
3912                ve->base.emit_fini_breadcrumb_dw =
3913                        sibling->emit_fini_breadcrumb_dw;
3914
3915                ve->base.flags = sibling->flags;
3916        }
3917
3918        ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
3919
3920        virtual_engine_initial_hint(ve);
3921        return &ve->context;
3922
3923err_put:
3924        intel_context_put(&ve->context);
3925        return ERR_PTR(err);
3926}
3927
3928void intel_execlists_show_requests(struct intel_engine_cs *engine,
3929                                   struct drm_printer *m,
3930                                   void (*show_request)(struct drm_printer *m,
3931                                                        const struct i915_request *rq,
3932                                                        const char *prefix,
3933                                                        int indent),
3934                                   unsigned int max)
3935{
3936        const struct intel_engine_execlists *execlists = &engine->execlists;
3937        struct i915_sched_engine *sched_engine = engine->sched_engine;
3938        struct i915_request *rq, *last;
3939        unsigned long flags;
3940        unsigned int count;
3941        struct rb_node *rb;
3942
3943        spin_lock_irqsave(&sched_engine->lock, flags);
3944
3945        last = NULL;
3946        count = 0;
3947        list_for_each_entry(rq, &sched_engine->requests, sched.link) {
3948                if (count++ < max - 1)
3949                        show_request(m, rq, "\t\t", 0);
3950                else
3951                        last = rq;
3952        }
3953        if (last) {
3954                if (count > max) {
3955                        drm_printf(m,
3956                                   "\t\t...skipping %d executing requests...\n",
3957                                   count - max);
3958                }
3959                show_request(m, last, "\t\t", 0);
3960        }
3961
3962        if (sched_engine->queue_priority_hint != INT_MIN)
3963                drm_printf(m, "\t\tQueue priority hint: %d\n",
3964                           READ_ONCE(sched_engine->queue_priority_hint));
3965
3966        last = NULL;
3967        count = 0;
3968        for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
3969                struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
3970
3971                priolist_for_each_request(rq, p) {
3972                        if (count++ < max - 1)
3973                                show_request(m, rq, "\t\t", 0);
3974                        else
3975                                last = rq;
3976                }
3977        }
3978        if (last) {
3979                if (count > max) {
3980                        drm_printf(m,
3981                                   "\t\t...skipping %d queued requests...\n",
3982                                   count - max);
3983                }
3984                show_request(m, last, "\t\t", 0);
3985        }
3986
3987        last = NULL;
3988        count = 0;
3989        for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
3990                struct virtual_engine *ve =
3991                        rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3992                struct i915_request *rq = READ_ONCE(ve->request);
3993
3994                if (rq) {
3995                        if (count++ < max - 1)
3996                                show_request(m, rq, "\t\t", 0);
3997                        else
3998                                last = rq;
3999                }
4000        }
4001        if (last) {
4002                if (count > max) {
4003                        drm_printf(m,
4004                                   "\t\t...skipping %d virtual requests...\n",
4005                                   count - max);
4006                }
4007                show_request(m, last, "\t\t", 0);
4008        }
4009
4010        spin_unlock_irqrestore(&sched_engine->lock, flags);
4011}
4012
4013#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4014#include "selftest_execlists.c"
4015#endif
4016