linux/drivers/gpu/drm/i915/gt/uc/intel_guc_ct.c
<<
>>
Prefs
   1// SPDX-License-Identifier: MIT
   2/*
   3 * Copyright © 2016-2019 Intel Corporation
   4 */
   5
   6#include <linux/circ_buf.h>
   7#include <linux/ktime.h>
   8#include <linux/time64.h>
   9#include <linux/timekeeping.h>
  10
  11#include "i915_drv.h"
  12#include "intel_guc_ct.h"
  13#include "gt/intel_gt.h"
  14
  15static inline struct intel_guc *ct_to_guc(struct intel_guc_ct *ct)
  16{
  17        return container_of(ct, struct intel_guc, ct);
  18}
  19
  20static inline struct intel_gt *ct_to_gt(struct intel_guc_ct *ct)
  21{
  22        return guc_to_gt(ct_to_guc(ct));
  23}
  24
  25static inline struct drm_i915_private *ct_to_i915(struct intel_guc_ct *ct)
  26{
  27        return ct_to_gt(ct)->i915;
  28}
  29
  30static inline struct drm_device *ct_to_drm(struct intel_guc_ct *ct)
  31{
  32        return &ct_to_i915(ct)->drm;
  33}
  34
  35#define CT_ERROR(_ct, _fmt, ...) \
  36        drm_err(ct_to_drm(_ct), "CT: " _fmt, ##__VA_ARGS__)
  37#ifdef CONFIG_DRM_I915_DEBUG_GUC
  38#define CT_DEBUG(_ct, _fmt, ...) \
  39        drm_dbg(ct_to_drm(_ct), "CT: " _fmt, ##__VA_ARGS__)
  40#else
  41#define CT_DEBUG(...)   do { } while (0)
  42#endif
  43#define CT_PROBE_ERROR(_ct, _fmt, ...) \
  44        i915_probe_error(ct_to_i915(ct), "CT: " _fmt, ##__VA_ARGS__)
  45
  46/**
  47 * DOC: CTB Blob
  48 *
  49 * We allocate single blob to hold both CTB descriptors and buffers:
  50 *
  51 *      +--------+-----------------------------------------------+------+
  52 *      | offset | contents                                      | size |
  53 *      +========+===============================================+======+
  54 *      | 0x0000 | H2G `CTB Descriptor`_ (send)                  |      |
  55 *      +--------+-----------------------------------------------+  4K  |
  56 *      | 0x0800 | G2H `CTB Descriptor`_ (recv)                  |      |
  57 *      +--------+-----------------------------------------------+------+
  58 *      | 0x1000 | H2G `CT Buffer`_ (send)                       | n*4K |
  59 *      |        |                                               |      |
  60 *      +--------+-----------------------------------------------+------+
  61 *      | 0x1000 | G2H `CT Buffer`_ (recv)                       | m*4K |
  62 *      | + n*4K |                                               |      |
  63 *      +--------+-----------------------------------------------+------+
  64 *
  65 * Size of each `CT Buffer`_ must be multiple of 4K.
  66 * We don't expect too many messages in flight at any time, unless we are
  67 * using the GuC submission. In that case each request requires a minimum
  68 * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this
  69 * enough space to avoid backpressure on the driver. We increase the size
  70 * of the receive buffer (relative to the send) to ensure a G2H response
  71 * CTB has a landing spot.
  72 */
  73#define CTB_DESC_SIZE           ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K)
  74#define CTB_H2G_BUFFER_SIZE     (SZ_4K)
  75#define CTB_G2H_BUFFER_SIZE     (4 * CTB_H2G_BUFFER_SIZE)
  76#define G2H_ROOM_BUFFER_SIZE    (CTB_G2H_BUFFER_SIZE / 4)
  77
  78struct ct_request {
  79        struct list_head link;
  80        u32 fence;
  81        u32 status;
  82        u32 response_len;
  83        u32 *response_buf;
  84};
  85
  86struct ct_incoming_msg {
  87        struct list_head link;
  88        u32 size;
  89        u32 msg[];
  90};
  91
  92enum { CTB_SEND = 0, CTB_RECV = 1 };
  93
  94enum { CTB_OWNER_HOST = 0 };
  95
  96static void ct_receive_tasklet_func(struct tasklet_struct *t);
  97static void ct_incoming_request_worker_func(struct work_struct *w);
  98
  99/**
 100 * intel_guc_ct_init_early - Initialize CT state without requiring device access
 101 * @ct: pointer to CT struct
 102 */
 103void intel_guc_ct_init_early(struct intel_guc_ct *ct)
 104{
 105        spin_lock_init(&ct->ctbs.send.lock);
 106        spin_lock_init(&ct->ctbs.recv.lock);
 107        spin_lock_init(&ct->requests.lock);
 108        INIT_LIST_HEAD(&ct->requests.pending);
 109        INIT_LIST_HEAD(&ct->requests.incoming);
 110        INIT_WORK(&ct->requests.worker, ct_incoming_request_worker_func);
 111        tasklet_setup(&ct->receive_tasklet, ct_receive_tasklet_func);
 112        init_waitqueue_head(&ct->wq);
 113}
 114
 115static inline const char *guc_ct_buffer_type_to_str(u32 type)
 116{
 117        switch (type) {
 118        case GUC_CTB_TYPE_HOST2GUC:
 119                return "SEND";
 120        case GUC_CTB_TYPE_GUC2HOST:
 121                return "RECV";
 122        default:
 123                return "<invalid>";
 124        }
 125}
 126
 127static void guc_ct_buffer_desc_init(struct guc_ct_buffer_desc *desc)
 128{
 129        memset(desc, 0, sizeof(*desc));
 130}
 131
 132static void guc_ct_buffer_reset(struct intel_guc_ct_buffer *ctb)
 133{
 134        u32 space;
 135
 136        ctb->broken = false;
 137        ctb->tail = 0;
 138        ctb->head = 0;
 139        space = CIRC_SPACE(ctb->tail, ctb->head, ctb->size) - ctb->resv_space;
 140        atomic_set(&ctb->space, space);
 141
 142        guc_ct_buffer_desc_init(ctb->desc);
 143}
 144
 145static void guc_ct_buffer_init(struct intel_guc_ct_buffer *ctb,
 146                               struct guc_ct_buffer_desc *desc,
 147                               u32 *cmds, u32 size_in_bytes, u32 resv_space)
 148{
 149        GEM_BUG_ON(size_in_bytes % 4);
 150
 151        ctb->desc = desc;
 152        ctb->cmds = cmds;
 153        ctb->size = size_in_bytes / 4;
 154        ctb->resv_space = resv_space / 4;
 155
 156        guc_ct_buffer_reset(ctb);
 157}
 158
 159static int guc_action_register_ct_buffer(struct intel_guc *guc, u32 type,
 160                                         u32 desc_addr, u32 buff_addr, u32 size)
 161{
 162        u32 request[HOST2GUC_REGISTER_CTB_REQUEST_MSG_LEN] = {
 163                FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
 164                FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
 165                FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_REGISTER_CTB),
 166                FIELD_PREP(HOST2GUC_REGISTER_CTB_REQUEST_MSG_1_SIZE, size / SZ_4K - 1) |
 167                FIELD_PREP(HOST2GUC_REGISTER_CTB_REQUEST_MSG_1_TYPE, type),
 168                FIELD_PREP(HOST2GUC_REGISTER_CTB_REQUEST_MSG_2_DESC_ADDR, desc_addr),
 169                FIELD_PREP(HOST2GUC_REGISTER_CTB_REQUEST_MSG_3_BUFF_ADDR, buff_addr),
 170        };
 171
 172        GEM_BUG_ON(type != GUC_CTB_TYPE_HOST2GUC && type != GUC_CTB_TYPE_GUC2HOST);
 173        GEM_BUG_ON(size % SZ_4K);
 174
 175        /* CT registration must go over MMIO */
 176        return intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0);
 177}
 178
 179static int ct_register_buffer(struct intel_guc_ct *ct, u32 type,
 180                              u32 desc_addr, u32 buff_addr, u32 size)
 181{
 182        int err;
 183
 184        err = i915_inject_probe_error(guc_to_gt(ct_to_guc(ct))->i915, -ENXIO);
 185        if (unlikely(err))
 186                return err;
 187
 188        err = guc_action_register_ct_buffer(ct_to_guc(ct), type,
 189                                            desc_addr, buff_addr, size);
 190        if (unlikely(err))
 191                CT_ERROR(ct, "Failed to register %s buffer (err=%d)\n",
 192                         guc_ct_buffer_type_to_str(type), err);
 193        return err;
 194}
 195
 196static int guc_action_deregister_ct_buffer(struct intel_guc *guc, u32 type)
 197{
 198        u32 request[HOST2GUC_DEREGISTER_CTB_REQUEST_MSG_LEN] = {
 199                FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
 200                FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
 201                FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_DEREGISTER_CTB),
 202                FIELD_PREP(HOST2GUC_DEREGISTER_CTB_REQUEST_MSG_1_TYPE, type),
 203        };
 204
 205        GEM_BUG_ON(type != GUC_CTB_TYPE_HOST2GUC && type != GUC_CTB_TYPE_GUC2HOST);
 206
 207        /* CT deregistration must go over MMIO */
 208        return intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0);
 209}
 210
 211static int ct_deregister_buffer(struct intel_guc_ct *ct, u32 type)
 212{
 213        int err = guc_action_deregister_ct_buffer(ct_to_guc(ct), type);
 214
 215        if (unlikely(err))
 216                CT_ERROR(ct, "Failed to deregister %s buffer (err=%d)\n",
 217                         guc_ct_buffer_type_to_str(type), err);
 218        return err;
 219}
 220
 221/**
 222 * intel_guc_ct_init - Init buffer-based communication
 223 * @ct: pointer to CT struct
 224 *
 225 * Allocate memory required for buffer-based communication.
 226 *
 227 * Return: 0 on success, a negative errno code on failure.
 228 */
 229int intel_guc_ct_init(struct intel_guc_ct *ct)
 230{
 231        struct intel_guc *guc = ct_to_guc(ct);
 232        struct guc_ct_buffer_desc *desc;
 233        u32 blob_size;
 234        u32 cmds_size;
 235        u32 resv_space;
 236        void *blob;
 237        u32 *cmds;
 238        int err;
 239
 240        err = i915_inject_probe_error(guc_to_gt(guc)->i915, -ENXIO);
 241        if (err)
 242                return err;
 243
 244        GEM_BUG_ON(ct->vma);
 245
 246        blob_size = 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE + CTB_G2H_BUFFER_SIZE;
 247        err = intel_guc_allocate_and_map_vma(guc, blob_size, &ct->vma, &blob);
 248        if (unlikely(err)) {
 249                CT_PROBE_ERROR(ct, "Failed to allocate %u for CTB data (%pe)\n",
 250                               blob_size, ERR_PTR(err));
 251                return err;
 252        }
 253
 254        CT_DEBUG(ct, "base=%#x size=%u\n", intel_guc_ggtt_offset(guc, ct->vma), blob_size);
 255
 256        /* store pointers to desc and cmds for send ctb */
 257        desc = blob;
 258        cmds = blob + 2 * CTB_DESC_SIZE;
 259        cmds_size = CTB_H2G_BUFFER_SIZE;
 260        resv_space = 0;
 261        CT_DEBUG(ct, "%s desc %#tx cmds %#tx size %u/%u\n", "send",
 262                 ptrdiff(desc, blob), ptrdiff(cmds, blob), cmds_size,
 263                 resv_space);
 264
 265        guc_ct_buffer_init(&ct->ctbs.send, desc, cmds, cmds_size, resv_space);
 266
 267        /* store pointers to desc and cmds for recv ctb */
 268        desc = blob + CTB_DESC_SIZE;
 269        cmds = blob + 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE;
 270        cmds_size = CTB_G2H_BUFFER_SIZE;
 271        resv_space = G2H_ROOM_BUFFER_SIZE;
 272        CT_DEBUG(ct, "%s desc %#tx cmds %#tx size %u/%u\n", "recv",
 273                 ptrdiff(desc, blob), ptrdiff(cmds, blob), cmds_size,
 274                 resv_space);
 275
 276        guc_ct_buffer_init(&ct->ctbs.recv, desc, cmds, cmds_size, resv_space);
 277
 278        return 0;
 279}
 280
 281/**
 282 * intel_guc_ct_fini - Fini buffer-based communication
 283 * @ct: pointer to CT struct
 284 *
 285 * Deallocate memory required for buffer-based communication.
 286 */
 287void intel_guc_ct_fini(struct intel_guc_ct *ct)
 288{
 289        GEM_BUG_ON(ct->enabled);
 290
 291        tasklet_kill(&ct->receive_tasklet);
 292        i915_vma_unpin_and_release(&ct->vma, I915_VMA_RELEASE_MAP);
 293        memset(ct, 0, sizeof(*ct));
 294}
 295
 296/**
 297 * intel_guc_ct_enable - Enable buffer based command transport.
 298 * @ct: pointer to CT struct
 299 *
 300 * Return: 0 on success, a negative errno code on failure.
 301 */
 302int intel_guc_ct_enable(struct intel_guc_ct *ct)
 303{
 304        struct intel_guc *guc = ct_to_guc(ct);
 305        u32 base, desc, cmds;
 306        void *blob;
 307        int err;
 308
 309        GEM_BUG_ON(ct->enabled);
 310
 311        /* vma should be already allocated and map'ed */
 312        GEM_BUG_ON(!ct->vma);
 313        GEM_BUG_ON(!i915_gem_object_has_pinned_pages(ct->vma->obj));
 314        base = intel_guc_ggtt_offset(guc, ct->vma);
 315
 316        /* blob should start with send descriptor */
 317        blob = __px_vaddr(ct->vma->obj);
 318        GEM_BUG_ON(blob != ct->ctbs.send.desc);
 319
 320        /* (re)initialize descriptors */
 321        guc_ct_buffer_reset(&ct->ctbs.send);
 322        guc_ct_buffer_reset(&ct->ctbs.recv);
 323
 324        /*
 325         * Register both CT buffers starting with RECV buffer.
 326         * Descriptors are in first half of the blob.
 327         */
 328        desc = base + ptrdiff(ct->ctbs.recv.desc, blob);
 329        cmds = base + ptrdiff(ct->ctbs.recv.cmds, blob);
 330        err = ct_register_buffer(ct, GUC_CTB_TYPE_GUC2HOST,
 331                                 desc, cmds, ct->ctbs.recv.size * 4);
 332
 333        if (unlikely(err))
 334                goto err_out;
 335
 336        desc = base + ptrdiff(ct->ctbs.send.desc, blob);
 337        cmds = base + ptrdiff(ct->ctbs.send.cmds, blob);
 338        err = ct_register_buffer(ct, GUC_CTB_TYPE_HOST2GUC,
 339                                 desc, cmds, ct->ctbs.send.size * 4);
 340
 341        if (unlikely(err))
 342                goto err_deregister;
 343
 344        ct->enabled = true;
 345        ct->stall_time = KTIME_MAX;
 346
 347        return 0;
 348
 349err_deregister:
 350        ct_deregister_buffer(ct, GUC_CTB_TYPE_GUC2HOST);
 351err_out:
 352        CT_PROBE_ERROR(ct, "Failed to enable CTB (%pe)\n", ERR_PTR(err));
 353        return err;
 354}
 355
 356/**
 357 * intel_guc_ct_disable - Disable buffer based command transport.
 358 * @ct: pointer to CT struct
 359 */
 360void intel_guc_ct_disable(struct intel_guc_ct *ct)
 361{
 362        struct intel_guc *guc = ct_to_guc(ct);
 363
 364        GEM_BUG_ON(!ct->enabled);
 365
 366        ct->enabled = false;
 367
 368        if (intel_guc_is_fw_running(guc)) {
 369                ct_deregister_buffer(ct, GUC_CTB_TYPE_HOST2GUC);
 370                ct_deregister_buffer(ct, GUC_CTB_TYPE_GUC2HOST);
 371        }
 372}
 373
 374static u32 ct_get_next_fence(struct intel_guc_ct *ct)
 375{
 376        /* For now it's trivial */
 377        return ++ct->requests.last_fence;
 378}
 379
 380static void write_barrier(struct intel_guc_ct *ct)
 381{
 382        struct intel_guc *guc = ct_to_guc(ct);
 383        struct intel_gt *gt = guc_to_gt(guc);
 384
 385        if (i915_gem_object_is_lmem(guc->ct.vma->obj)) {
 386                GEM_BUG_ON(guc->send_regs.fw_domains);
 387                /*
 388                 * This register is used by the i915 and GuC for MMIO based
 389                 * communication. Once we are in this code CTBs are the only
 390                 * method the i915 uses to communicate with the GuC so it is
 391                 * safe to write to this register (a value of 0 is NOP for MMIO
 392                 * communication). If we ever start mixing CTBs and MMIOs a new
 393                 * register will have to be chosen.
 394                 */
 395                intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0);
 396        } else {
 397                /* wmb() sufficient for a barrier if in smem */
 398                wmb();
 399        }
 400}
 401
 402static int ct_write(struct intel_guc_ct *ct,
 403                    const u32 *action,
 404                    u32 len /* in dwords */,
 405                    u32 fence, u32 flags)
 406{
 407        struct intel_guc_ct_buffer *ctb = &ct->ctbs.send;
 408        struct guc_ct_buffer_desc *desc = ctb->desc;
 409        u32 tail = ctb->tail;
 410        u32 size = ctb->size;
 411        u32 header;
 412        u32 hxg;
 413        u32 type;
 414        u32 *cmds = ctb->cmds;
 415        unsigned int i;
 416
 417        if (unlikely(desc->status))
 418                goto corrupted;
 419
 420        GEM_BUG_ON(tail > size);
 421
 422#ifdef CONFIG_DRM_I915_DEBUG_GUC
 423        if (unlikely(tail != READ_ONCE(desc->tail))) {
 424                CT_ERROR(ct, "Tail was modified %u != %u\n",
 425                         desc->tail, tail);
 426                desc->status |= GUC_CTB_STATUS_MISMATCH;
 427                goto corrupted;
 428        }
 429        if (unlikely(READ_ONCE(desc->head) >= size)) {
 430                CT_ERROR(ct, "Invalid head offset %u >= %u)\n",
 431                         desc->head, size);
 432                desc->status |= GUC_CTB_STATUS_OVERFLOW;
 433                goto corrupted;
 434        }
 435#endif
 436
 437        /*
 438         * dw0: CT header (including fence)
 439         * dw1: HXG header (including action code)
 440         * dw2+: action data
 441         */
 442        header = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) |
 443                 FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) |
 444                 FIELD_PREP(GUC_CTB_MSG_0_FENCE, fence);
 445
 446        type = (flags & INTEL_GUC_CT_SEND_NB) ? GUC_HXG_TYPE_EVENT :
 447                GUC_HXG_TYPE_REQUEST;
 448        hxg = FIELD_PREP(GUC_HXG_MSG_0_TYPE, type) |
 449                FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
 450                           GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
 451
 452        CT_DEBUG(ct, "writing (tail %u) %*ph %*ph %*ph\n",
 453                 tail, 4, &header, 4, &hxg, 4 * (len - 1), &action[1]);
 454
 455        cmds[tail] = header;
 456        tail = (tail + 1) % size;
 457
 458        cmds[tail] = hxg;
 459        tail = (tail + 1) % size;
 460
 461        for (i = 1; i < len; i++) {
 462                cmds[tail] = action[i];
 463                tail = (tail + 1) % size;
 464        }
 465        GEM_BUG_ON(tail > size);
 466
 467        /*
 468         * make sure H2G buffer update and LRC tail update (if this triggering a
 469         * submission) are visible before updating the descriptor tail
 470         */
 471        write_barrier(ct);
 472
 473        /* update local copies */
 474        ctb->tail = tail;
 475        GEM_BUG_ON(atomic_read(&ctb->space) < len + GUC_CTB_HDR_LEN);
 476        atomic_sub(len + GUC_CTB_HDR_LEN, &ctb->space);
 477
 478        /* now update descriptor */
 479        WRITE_ONCE(desc->tail, tail);
 480
 481        return 0;
 482
 483corrupted:
 484        CT_ERROR(ct, "Corrupted descriptor head=%u tail=%u status=%#x\n",
 485                 desc->head, desc->tail, desc->status);
 486        ctb->broken = true;
 487        return -EPIPE;
 488}
 489
 490/**
 491 * wait_for_ct_request_update - Wait for CT request state update.
 492 * @req:        pointer to pending request
 493 * @status:     placeholder for status
 494 *
 495 * For each sent request, GuC shall send back CT response message.
 496 * Our message handler will update status of tracked request once
 497 * response message with given fence is received. Wait here and
 498 * check for valid response status value.
 499 *
 500 * Return:
 501 * *    0 response received (status is valid)
 502 * *    -ETIMEDOUT no response within hardcoded timeout
 503 */
 504static int wait_for_ct_request_update(struct ct_request *req, u32 *status)
 505{
 506        int err;
 507
 508        /*
 509         * Fast commands should complete in less than 10us, so sample quickly
 510         * up to that length of time, then switch to a slower sleep-wait loop.
 511         * No GuC command should ever take longer than 10ms but many GuC
 512         * commands can be inflight at time, so use a 1s timeout on the slower
 513         * sleep-wait loop.
 514         */
 515#define GUC_CTB_RESPONSE_TIMEOUT_SHORT_MS 10
 516#define GUC_CTB_RESPONSE_TIMEOUT_LONG_MS 1000
 517#define done \
 518        (FIELD_GET(GUC_HXG_MSG_0_ORIGIN, READ_ONCE(req->status)) == \
 519         GUC_HXG_ORIGIN_GUC)
 520        err = wait_for_us(done, GUC_CTB_RESPONSE_TIMEOUT_SHORT_MS);
 521        if (err)
 522                err = wait_for(done, GUC_CTB_RESPONSE_TIMEOUT_LONG_MS);
 523#undef done
 524
 525        if (unlikely(err))
 526                DRM_ERROR("CT: fence %u err %d\n", req->fence, err);
 527
 528        *status = req->status;
 529        return err;
 530}
 531
 532#define GUC_CTB_TIMEOUT_MS      1500
 533static inline bool ct_deadlocked(struct intel_guc_ct *ct)
 534{
 535        long timeout = GUC_CTB_TIMEOUT_MS;
 536        bool ret = ktime_ms_delta(ktime_get(), ct->stall_time) > timeout;
 537
 538        if (unlikely(ret)) {
 539                struct guc_ct_buffer_desc *send = ct->ctbs.send.desc;
 540                struct guc_ct_buffer_desc *recv = ct->ctbs.send.desc;
 541
 542                CT_ERROR(ct, "Communication stalled for %lld ms, desc status=%#x,%#x\n",
 543                         ktime_ms_delta(ktime_get(), ct->stall_time),
 544                         send->status, recv->status);
 545                ct->ctbs.send.broken = true;
 546        }
 547
 548        return ret;
 549}
 550
 551static inline bool g2h_has_room(struct intel_guc_ct *ct, u32 g2h_len_dw)
 552{
 553        struct intel_guc_ct_buffer *ctb = &ct->ctbs.recv;
 554
 555        /*
 556         * We leave a certain amount of space in the G2H CTB buffer for
 557         * unexpected G2H CTBs (e.g. logging, engine hang, etc...)
 558         */
 559        return !g2h_len_dw || atomic_read(&ctb->space) >= g2h_len_dw;
 560}
 561
 562static inline void g2h_reserve_space(struct intel_guc_ct *ct, u32 g2h_len_dw)
 563{
 564        lockdep_assert_held(&ct->ctbs.send.lock);
 565
 566        GEM_BUG_ON(!g2h_has_room(ct, g2h_len_dw));
 567
 568        if (g2h_len_dw)
 569                atomic_sub(g2h_len_dw, &ct->ctbs.recv.space);
 570}
 571
 572static inline void g2h_release_space(struct intel_guc_ct *ct, u32 g2h_len_dw)
 573{
 574        atomic_add(g2h_len_dw, &ct->ctbs.recv.space);
 575}
 576
 577static inline bool h2g_has_room(struct intel_guc_ct *ct, u32 len_dw)
 578{
 579        struct intel_guc_ct_buffer *ctb = &ct->ctbs.send;
 580        struct guc_ct_buffer_desc *desc = ctb->desc;
 581        u32 head;
 582        u32 space;
 583
 584        if (atomic_read(&ctb->space) >= len_dw)
 585                return true;
 586
 587        head = READ_ONCE(desc->head);
 588        if (unlikely(head > ctb->size)) {
 589                CT_ERROR(ct, "Invalid head offset %u >= %u)\n",
 590                         head, ctb->size);
 591                desc->status |= GUC_CTB_STATUS_OVERFLOW;
 592                ctb->broken = true;
 593                return false;
 594        }
 595
 596        space = CIRC_SPACE(ctb->tail, head, ctb->size);
 597        atomic_set(&ctb->space, space);
 598
 599        return space >= len_dw;
 600}
 601
 602static int has_room_nb(struct intel_guc_ct *ct, u32 h2g_dw, u32 g2h_dw)
 603{
 604        lockdep_assert_held(&ct->ctbs.send.lock);
 605
 606        if (unlikely(!h2g_has_room(ct, h2g_dw) || !g2h_has_room(ct, g2h_dw))) {
 607                if (ct->stall_time == KTIME_MAX)
 608                        ct->stall_time = ktime_get();
 609
 610                if (unlikely(ct_deadlocked(ct)))
 611                        return -EPIPE;
 612                else
 613                        return -EBUSY;
 614        }
 615
 616        ct->stall_time = KTIME_MAX;
 617        return 0;
 618}
 619
 620#define G2H_LEN_DW(f) ({ \
 621        typeof(f) f_ = (f); \
 622        FIELD_GET(INTEL_GUC_CT_SEND_G2H_DW_MASK, f_) ? \
 623        FIELD_GET(INTEL_GUC_CT_SEND_G2H_DW_MASK, f_) + \
 624        GUC_CTB_HXG_MSG_MIN_LEN : 0; \
 625})
 626static int ct_send_nb(struct intel_guc_ct *ct,
 627                      const u32 *action,
 628                      u32 len,
 629                      u32 flags)
 630{
 631        struct intel_guc_ct_buffer *ctb = &ct->ctbs.send;
 632        unsigned long spin_flags;
 633        u32 g2h_len_dw = G2H_LEN_DW(flags);
 634        u32 fence;
 635        int ret;
 636
 637        spin_lock_irqsave(&ctb->lock, spin_flags);
 638
 639        ret = has_room_nb(ct, len + GUC_CTB_HDR_LEN, g2h_len_dw);
 640        if (unlikely(ret))
 641                goto out;
 642
 643        fence = ct_get_next_fence(ct);
 644        ret = ct_write(ct, action, len, fence, flags);
 645        if (unlikely(ret))
 646                goto out;
 647
 648        g2h_reserve_space(ct, g2h_len_dw);
 649        intel_guc_notify(ct_to_guc(ct));
 650
 651out:
 652        spin_unlock_irqrestore(&ctb->lock, spin_flags);
 653
 654        return ret;
 655}
 656
 657static int ct_send(struct intel_guc_ct *ct,
 658                   const u32 *action,
 659                   u32 len,
 660                   u32 *response_buf,
 661                   u32 response_buf_size,
 662                   u32 *status)
 663{
 664        struct intel_guc_ct_buffer *ctb = &ct->ctbs.send;
 665        struct ct_request request;
 666        unsigned long flags;
 667        unsigned int sleep_period_ms = 1;
 668        u32 fence;
 669        int err;
 670
 671        GEM_BUG_ON(!ct->enabled);
 672        GEM_BUG_ON(!len);
 673        GEM_BUG_ON(len & ~GUC_CT_MSG_LEN_MASK);
 674        GEM_BUG_ON(!response_buf && response_buf_size);
 675        might_sleep();
 676
 677        /*
 678         * We use a lazy spin wait loop here as we believe that if the CT
 679         * buffers are sized correctly the flow control condition should be
 680         * rare. Reserving the maximum size in the G2H credits as we don't know
 681         * how big the response is going to be.
 682         */
 683retry:
 684        spin_lock_irqsave(&ctb->lock, flags);
 685        if (unlikely(!h2g_has_room(ct, len + GUC_CTB_HDR_LEN) ||
 686                     !g2h_has_room(ct, GUC_CTB_HXG_MSG_MAX_LEN))) {
 687                if (ct->stall_time == KTIME_MAX)
 688                        ct->stall_time = ktime_get();
 689                spin_unlock_irqrestore(&ctb->lock, flags);
 690
 691                if (unlikely(ct_deadlocked(ct)))
 692                        return -EPIPE;
 693
 694                if (msleep_interruptible(sleep_period_ms))
 695                        return -EINTR;
 696                sleep_period_ms = sleep_period_ms << 1;
 697
 698                goto retry;
 699        }
 700
 701        ct->stall_time = KTIME_MAX;
 702
 703        fence = ct_get_next_fence(ct);
 704        request.fence = fence;
 705        request.status = 0;
 706        request.response_len = response_buf_size;
 707        request.response_buf = response_buf;
 708
 709        spin_lock(&ct->requests.lock);
 710        list_add_tail(&request.link, &ct->requests.pending);
 711        spin_unlock(&ct->requests.lock);
 712
 713        err = ct_write(ct, action, len, fence, 0);
 714        g2h_reserve_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
 715
 716        spin_unlock_irqrestore(&ctb->lock, flags);
 717
 718        if (unlikely(err))
 719                goto unlink;
 720
 721        intel_guc_notify(ct_to_guc(ct));
 722
 723        err = wait_for_ct_request_update(&request, status);
 724        g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
 725        if (unlikely(err))
 726                goto unlink;
 727
 728        if (FIELD_GET(GUC_HXG_MSG_0_TYPE, *status) != GUC_HXG_TYPE_RESPONSE_SUCCESS) {
 729                err = -EIO;
 730                goto unlink;
 731        }
 732
 733        if (response_buf) {
 734                /* There shall be no data in the status */
 735                WARN_ON(FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, request.status));
 736                /* Return actual response len */
 737                err = request.response_len;
 738        } else {
 739                /* There shall be no response payload */
 740                WARN_ON(request.response_len);
 741                /* Return data decoded from the status dword */
 742                err = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, *status);
 743        }
 744
 745unlink:
 746        spin_lock_irqsave(&ct->requests.lock, flags);
 747        list_del(&request.link);
 748        spin_unlock_irqrestore(&ct->requests.lock, flags);
 749
 750        return err;
 751}
 752
 753/*
 754 * Command Transport (CT) buffer based GuC send function.
 755 */
 756int intel_guc_ct_send(struct intel_guc_ct *ct, const u32 *action, u32 len,
 757                      u32 *response_buf, u32 response_buf_size, u32 flags)
 758{
 759        u32 status = ~0; /* undefined */
 760        int ret;
 761
 762        if (unlikely(!ct->enabled)) {
 763                struct intel_guc *guc = ct_to_guc(ct);
 764                struct intel_uc *uc = container_of(guc, struct intel_uc, guc);
 765
 766                WARN(!uc->reset_in_progress, "Unexpected send: action=%#x\n", *action);
 767                return -ENODEV;
 768        }
 769
 770        if (unlikely(ct->ctbs.send.broken))
 771                return -EPIPE;
 772
 773        if (flags & INTEL_GUC_CT_SEND_NB)
 774                return ct_send_nb(ct, action, len, flags);
 775
 776        ret = ct_send(ct, action, len, response_buf, response_buf_size, &status);
 777        if (unlikely(ret < 0)) {
 778                CT_ERROR(ct, "Sending action %#x failed (err=%d status=%#X)\n",
 779                         action[0], ret, status);
 780        } else if (unlikely(ret)) {
 781                CT_DEBUG(ct, "send action %#x returned %d (%#x)\n",
 782                         action[0], ret, ret);
 783        }
 784
 785        return ret;
 786}
 787
 788static struct ct_incoming_msg *ct_alloc_msg(u32 num_dwords)
 789{
 790        struct ct_incoming_msg *msg;
 791
 792        msg = kmalloc(sizeof(*msg) + sizeof(u32) * num_dwords, GFP_ATOMIC);
 793        if (msg)
 794                msg->size = num_dwords;
 795        return msg;
 796}
 797
 798static void ct_free_msg(struct ct_incoming_msg *msg)
 799{
 800        kfree(msg);
 801}
 802
 803/*
 804 * Return: number available remaining dwords to read (0 if empty)
 805 *         or a negative error code on failure
 806 */
 807static int ct_read(struct intel_guc_ct *ct, struct ct_incoming_msg **msg)
 808{
 809        struct intel_guc_ct_buffer *ctb = &ct->ctbs.recv;
 810        struct guc_ct_buffer_desc *desc = ctb->desc;
 811        u32 head = ctb->head;
 812        u32 tail = READ_ONCE(desc->tail);
 813        u32 size = ctb->size;
 814        u32 *cmds = ctb->cmds;
 815        s32 available;
 816        unsigned int len;
 817        unsigned int i;
 818        u32 header;
 819
 820        if (unlikely(ctb->broken))
 821                return -EPIPE;
 822
 823        if (unlikely(desc->status))
 824                goto corrupted;
 825
 826        GEM_BUG_ON(head > size);
 827
 828#ifdef CONFIG_DRM_I915_DEBUG_GUC
 829        if (unlikely(head != READ_ONCE(desc->head))) {
 830                CT_ERROR(ct, "Head was modified %u != %u\n",
 831                         desc->head, head);
 832                desc->status |= GUC_CTB_STATUS_MISMATCH;
 833                goto corrupted;
 834        }
 835#endif
 836        if (unlikely(tail >= size)) {
 837                CT_ERROR(ct, "Invalid tail offset %u >= %u)\n",
 838                         tail, size);
 839                desc->status |= GUC_CTB_STATUS_OVERFLOW;
 840                goto corrupted;
 841        }
 842
 843        /* tail == head condition indicates empty */
 844        available = tail - head;
 845        if (unlikely(available == 0)) {
 846                *msg = NULL;
 847                return 0;
 848        }
 849
 850        /* beware of buffer wrap case */
 851        if (unlikely(available < 0))
 852                available += size;
 853        CT_DEBUG(ct, "available %d (%u:%u:%u)\n", available, head, tail, size);
 854        GEM_BUG_ON(available < 0);
 855
 856        header = cmds[head];
 857        head = (head + 1) % size;
 858
 859        /* message len with header */
 860        len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, header) + GUC_CTB_MSG_MIN_LEN;
 861        if (unlikely(len > (u32)available)) {
 862                CT_ERROR(ct, "Incomplete message %*ph %*ph %*ph\n",
 863                         4, &header,
 864                         4 * (head + available - 1 > size ?
 865                              size - head : available - 1), &cmds[head],
 866                         4 * (head + available - 1 > size ?
 867                              available - 1 - size + head : 0), &cmds[0]);
 868                desc->status |= GUC_CTB_STATUS_UNDERFLOW;
 869                goto corrupted;
 870        }
 871
 872        *msg = ct_alloc_msg(len);
 873        if (!*msg) {
 874                CT_ERROR(ct, "No memory for message %*ph %*ph %*ph\n",
 875                         4, &header,
 876                         4 * (head + available - 1 > size ?
 877                              size - head : available - 1), &cmds[head],
 878                         4 * (head + available - 1 > size ?
 879                              available - 1 - size + head : 0), &cmds[0]);
 880                return available;
 881        }
 882
 883        (*msg)->msg[0] = header;
 884
 885        for (i = 1; i < len; i++) {
 886                (*msg)->msg[i] = cmds[head];
 887                head = (head + 1) % size;
 888        }
 889        CT_DEBUG(ct, "received %*ph\n", 4 * len, (*msg)->msg);
 890
 891        /* update local copies */
 892        ctb->head = head;
 893
 894        /* now update descriptor */
 895        WRITE_ONCE(desc->head, head);
 896
 897        return available - len;
 898
 899corrupted:
 900        CT_ERROR(ct, "Corrupted descriptor head=%u tail=%u status=%#x\n",
 901                 desc->head, desc->tail, desc->status);
 902        ctb->broken = true;
 903        return -EPIPE;
 904}
 905
 906static int ct_handle_response(struct intel_guc_ct *ct, struct ct_incoming_msg *response)
 907{
 908        u32 len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, response->msg[0]);
 909        u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, response->msg[0]);
 910        const u32 *hxg = &response->msg[GUC_CTB_MSG_MIN_LEN];
 911        const u32 *data = &hxg[GUC_HXG_MSG_MIN_LEN];
 912        u32 datalen = len - GUC_HXG_MSG_MIN_LEN;
 913        struct ct_request *req;
 914        unsigned long flags;
 915        bool found = false;
 916        int err = 0;
 917
 918        GEM_BUG_ON(len < GUC_HXG_MSG_MIN_LEN);
 919        GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]) != GUC_HXG_ORIGIN_GUC);
 920        GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_RESPONSE_SUCCESS &&
 921                   FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_RESPONSE_FAILURE);
 922
 923        CT_DEBUG(ct, "response fence %u status %#x\n", fence, hxg[0]);
 924
 925        spin_lock_irqsave(&ct->requests.lock, flags);
 926        list_for_each_entry(req, &ct->requests.pending, link) {
 927                if (unlikely(fence != req->fence)) {
 928                        CT_DEBUG(ct, "request %u awaits response\n",
 929                                 req->fence);
 930                        continue;
 931                }
 932                if (unlikely(datalen > req->response_len)) {
 933                        CT_ERROR(ct, "Response %u too long (datalen %u > %u)\n",
 934                                 req->fence, datalen, req->response_len);
 935                        datalen = min(datalen, req->response_len);
 936                        err = -EMSGSIZE;
 937                }
 938                if (datalen)
 939                        memcpy(req->response_buf, data, 4 * datalen);
 940                req->response_len = datalen;
 941                WRITE_ONCE(req->status, hxg[0]);
 942                found = true;
 943                break;
 944        }
 945        if (!found) {
 946                CT_ERROR(ct, "Unsolicited response (fence %u)\n", fence);
 947                CT_ERROR(ct, "Could not find fence=%u, last_fence=%u\n", fence,
 948                         ct->requests.last_fence);
 949                list_for_each_entry(req, &ct->requests.pending, link)
 950                        CT_ERROR(ct, "request %u awaits response\n",
 951                                 req->fence);
 952                err = -ENOKEY;
 953        }
 954        spin_unlock_irqrestore(&ct->requests.lock, flags);
 955
 956        if (unlikely(err))
 957                return err;
 958
 959        ct_free_msg(response);
 960        return 0;
 961}
 962
 963static int ct_process_request(struct intel_guc_ct *ct, struct ct_incoming_msg *request)
 964{
 965        struct intel_guc *guc = ct_to_guc(ct);
 966        const u32 *hxg;
 967        const u32 *payload;
 968        u32 hxg_len, action, len;
 969        int ret;
 970
 971        hxg = &request->msg[GUC_CTB_MSG_MIN_LEN];
 972        hxg_len = request->size - GUC_CTB_MSG_MIN_LEN;
 973        payload = &hxg[GUC_HXG_MSG_MIN_LEN];
 974        action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
 975        len = hxg_len - GUC_HXG_MSG_MIN_LEN;
 976
 977        CT_DEBUG(ct, "request %x %*ph\n", action, 4 * len, payload);
 978
 979        switch (action) {
 980        case INTEL_GUC_ACTION_DEFAULT:
 981                ret = intel_guc_to_host_process_recv_msg(guc, payload, len);
 982                break;
 983        case INTEL_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
 984                ret = intel_guc_deregister_done_process_msg(guc, payload,
 985                                                            len);
 986                break;
 987        case INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
 988                ret = intel_guc_sched_done_process_msg(guc, payload, len);
 989                break;
 990        case INTEL_GUC_ACTION_CONTEXT_RESET_NOTIFICATION:
 991                ret = intel_guc_context_reset_process_msg(guc, payload, len);
 992                break;
 993        case INTEL_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION:
 994                ret = intel_guc_engine_failure_process_msg(guc, payload, len);
 995                break;
 996        default:
 997                ret = -EOPNOTSUPP;
 998                break;
 999        }
1000
1001        if (unlikely(ret)) {
1002                CT_ERROR(ct, "Failed to process request %04x (%pe)\n",
1003                         action, ERR_PTR(ret));
1004                return ret;
1005        }
1006
1007        ct_free_msg(request);
1008        return 0;
1009}
1010
1011static bool ct_process_incoming_requests(struct intel_guc_ct *ct)
1012{
1013        unsigned long flags;
1014        struct ct_incoming_msg *request;
1015        bool done;
1016        int err;
1017
1018        spin_lock_irqsave(&ct->requests.lock, flags);
1019        request = list_first_entry_or_null(&ct->requests.incoming,
1020                                           struct ct_incoming_msg, link);
1021        if (request)
1022                list_del(&request->link);
1023        done = !!list_empty(&ct->requests.incoming);
1024        spin_unlock_irqrestore(&ct->requests.lock, flags);
1025
1026        if (!request)
1027                return true;
1028
1029        err = ct_process_request(ct, request);
1030        if (unlikely(err)) {
1031                CT_ERROR(ct, "Failed to process CT message (%pe) %*ph\n",
1032                         ERR_PTR(err), 4 * request->size, request->msg);
1033                ct_free_msg(request);
1034        }
1035
1036        return done;
1037}
1038
1039static void ct_incoming_request_worker_func(struct work_struct *w)
1040{
1041        struct intel_guc_ct *ct =
1042                container_of(w, struct intel_guc_ct, requests.worker);
1043        bool done;
1044
1045        done = ct_process_incoming_requests(ct);
1046        if (!done)
1047                queue_work(system_unbound_wq, &ct->requests.worker);
1048}
1049
1050static int ct_handle_event(struct intel_guc_ct *ct, struct ct_incoming_msg *request)
1051{
1052        const u32 *hxg = &request->msg[GUC_CTB_MSG_MIN_LEN];
1053        u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1054        unsigned long flags;
1055
1056        GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT);
1057
1058        /*
1059         * Adjusting the space must be done in IRQ or deadlock can occur as the
1060         * CTB processing in the below workqueue can send CTBs which creates a
1061         * circular dependency if the space was returned there.
1062         */
1063        switch (action) {
1064        case INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
1065        case INTEL_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
1066                g2h_release_space(ct, request->size);
1067        }
1068
1069        spin_lock_irqsave(&ct->requests.lock, flags);
1070        list_add_tail(&request->link, &ct->requests.incoming);
1071        spin_unlock_irqrestore(&ct->requests.lock, flags);
1072
1073        queue_work(system_unbound_wq, &ct->requests.worker);
1074        return 0;
1075}
1076
1077static int ct_handle_hxg(struct intel_guc_ct *ct, struct ct_incoming_msg *msg)
1078{
1079        u32 origin, type;
1080        u32 *hxg;
1081        int err;
1082
1083        if (unlikely(msg->size < GUC_CTB_HXG_MSG_MIN_LEN))
1084                return -EBADMSG;
1085
1086        hxg = &msg->msg[GUC_CTB_MSG_MIN_LEN];
1087
1088        origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]);
1089        if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) {
1090                err = -EPROTO;
1091                goto failed;
1092        }
1093
1094        type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
1095        switch (type) {
1096        case GUC_HXG_TYPE_EVENT:
1097                err = ct_handle_event(ct, msg);
1098                break;
1099        case GUC_HXG_TYPE_RESPONSE_SUCCESS:
1100        case GUC_HXG_TYPE_RESPONSE_FAILURE:
1101                err = ct_handle_response(ct, msg);
1102                break;
1103        default:
1104                err = -EOPNOTSUPP;
1105        }
1106
1107        if (unlikely(err)) {
1108failed:
1109                CT_ERROR(ct, "Failed to handle HXG message (%pe) %*ph\n",
1110                         ERR_PTR(err), 4 * GUC_HXG_MSG_MIN_LEN, hxg);
1111        }
1112        return err;
1113}
1114
1115static void ct_handle_msg(struct intel_guc_ct *ct, struct ct_incoming_msg *msg)
1116{
1117        u32 format = FIELD_GET(GUC_CTB_MSG_0_FORMAT, msg->msg[0]);
1118        int err;
1119
1120        if (format == GUC_CTB_FORMAT_HXG)
1121                err = ct_handle_hxg(ct, msg);
1122        else
1123                err = -EOPNOTSUPP;
1124
1125        if (unlikely(err)) {
1126                CT_ERROR(ct, "Failed to process CT message (%pe) %*ph\n",
1127                         ERR_PTR(err), 4 * msg->size, msg->msg);
1128                ct_free_msg(msg);
1129        }
1130}
1131
1132/*
1133 * Return: number available remaining dwords to read (0 if empty)
1134 *         or a negative error code on failure
1135 */
1136static int ct_receive(struct intel_guc_ct *ct)
1137{
1138        struct ct_incoming_msg *msg = NULL;
1139        unsigned long flags;
1140        int ret;
1141
1142        spin_lock_irqsave(&ct->ctbs.recv.lock, flags);
1143        ret = ct_read(ct, &msg);
1144        spin_unlock_irqrestore(&ct->ctbs.recv.lock, flags);
1145        if (ret < 0)
1146                return ret;
1147
1148        if (msg)
1149                ct_handle_msg(ct, msg);
1150
1151        return ret;
1152}
1153
1154static void ct_try_receive_message(struct intel_guc_ct *ct)
1155{
1156        int ret;
1157
1158        if (GEM_WARN_ON(!ct->enabled))
1159                return;
1160
1161        ret = ct_receive(ct);
1162        if (ret > 0)
1163                tasklet_hi_schedule(&ct->receive_tasklet);
1164}
1165
1166static void ct_receive_tasklet_func(struct tasklet_struct *t)
1167{
1168        struct intel_guc_ct *ct = from_tasklet(ct, t, receive_tasklet);
1169
1170        ct_try_receive_message(ct);
1171}
1172
1173/*
1174 * When we're communicating with the GuC over CT, GuC uses events
1175 * to notify us about new messages being posted on the RECV buffer.
1176 */
1177void intel_guc_ct_event_handler(struct intel_guc_ct *ct)
1178{
1179        if (unlikely(!ct->enabled)) {
1180                WARN(1, "Unexpected GuC event received while CT disabled!\n");
1181                return;
1182        }
1183
1184        ct_try_receive_message(ct);
1185}
1186
1187void intel_guc_ct_print_info(struct intel_guc_ct *ct,
1188                             struct drm_printer *p)
1189{
1190        drm_printf(p, "CT %s\n", enableddisabled(ct->enabled));
1191
1192        if (!ct->enabled)
1193                return;
1194
1195        drm_printf(p, "H2G Space: %u\n",
1196                   atomic_read(&ct->ctbs.send.space) * 4);
1197        drm_printf(p, "Head: %u\n",
1198                   ct->ctbs.send.desc->head);
1199        drm_printf(p, "Tail: %u\n",
1200                   ct->ctbs.send.desc->tail);
1201        drm_printf(p, "G2H Space: %u\n",
1202                   atomic_read(&ct->ctbs.recv.space) * 4);
1203        drm_printf(p, "Head: %u\n",
1204                   ct->ctbs.recv.desc->head);
1205        drm_printf(p, "Tail: %u\n",
1206                   ct->ctbs.recv.desc->tail);
1207}
1208