linux/drivers/gpu/drm/i915/i915_active.c
<<
>>
Prefs
   1/*
   2 * SPDX-License-Identifier: MIT
   3 *
   4 * Copyright © 2019 Intel Corporation
   5 */
   6
   7#include <linux/debugobjects.h>
   8
   9#include "gt/intel_context.h"
  10#include "gt/intel_engine_heartbeat.h"
  11#include "gt/intel_engine_pm.h"
  12#include "gt/intel_ring.h"
  13
  14#include "i915_drv.h"
  15#include "i915_active.h"
  16
  17/*
  18 * Active refs memory management
  19 *
  20 * To be more economical with memory, we reap all the i915_active trees as
  21 * they idle (when we know the active requests are inactive) and allocate the
  22 * nodes from a local slab cache to hopefully reduce the fragmentation.
  23 */
  24static struct kmem_cache *slab_cache;
  25
  26struct active_node {
  27        struct rb_node node;
  28        struct i915_active_fence base;
  29        struct i915_active *ref;
  30        u64 timeline;
  31};
  32
  33#define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node)
  34
  35static inline struct active_node *
  36node_from_active(struct i915_active_fence *active)
  37{
  38        return container_of(active, struct active_node, base);
  39}
  40
  41#define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
  42
  43static inline bool is_barrier(const struct i915_active_fence *active)
  44{
  45        return IS_ERR(rcu_access_pointer(active->fence));
  46}
  47
  48static inline struct llist_node *barrier_to_ll(struct active_node *node)
  49{
  50        GEM_BUG_ON(!is_barrier(&node->base));
  51        return (struct llist_node *)&node->base.cb.node;
  52}
  53
  54static inline struct intel_engine_cs *
  55__barrier_to_engine(struct active_node *node)
  56{
  57        return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
  58}
  59
  60static inline struct intel_engine_cs *
  61barrier_to_engine(struct active_node *node)
  62{
  63        GEM_BUG_ON(!is_barrier(&node->base));
  64        return __barrier_to_engine(node);
  65}
  66
  67static inline struct active_node *barrier_from_ll(struct llist_node *x)
  68{
  69        return container_of((struct list_head *)x,
  70                            struct active_node, base.cb.node);
  71}
  72
  73#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
  74
  75static void *active_debug_hint(void *addr)
  76{
  77        struct i915_active *ref = addr;
  78
  79        return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
  80}
  81
  82static const struct debug_obj_descr active_debug_desc = {
  83        .name = "i915_active",
  84        .debug_hint = active_debug_hint,
  85};
  86
  87static void debug_active_init(struct i915_active *ref)
  88{
  89        debug_object_init(ref, &active_debug_desc);
  90}
  91
  92static void debug_active_activate(struct i915_active *ref)
  93{
  94        lockdep_assert_held(&ref->tree_lock);
  95        if (!atomic_read(&ref->count)) /* before the first inc */
  96                debug_object_activate(ref, &active_debug_desc);
  97}
  98
  99static void debug_active_deactivate(struct i915_active *ref)
 100{
 101        lockdep_assert_held(&ref->tree_lock);
 102        if (!atomic_read(&ref->count)) /* after the last dec */
 103                debug_object_deactivate(ref, &active_debug_desc);
 104}
 105
 106static void debug_active_fini(struct i915_active *ref)
 107{
 108        debug_object_free(ref, &active_debug_desc);
 109}
 110
 111static void debug_active_assert(struct i915_active *ref)
 112{
 113        debug_object_assert_init(ref, &active_debug_desc);
 114}
 115
 116#else
 117
 118static inline void debug_active_init(struct i915_active *ref) { }
 119static inline void debug_active_activate(struct i915_active *ref) { }
 120static inline void debug_active_deactivate(struct i915_active *ref) { }
 121static inline void debug_active_fini(struct i915_active *ref) { }
 122static inline void debug_active_assert(struct i915_active *ref) { }
 123
 124#endif
 125
 126static void
 127__active_retire(struct i915_active *ref)
 128{
 129        struct rb_root root = RB_ROOT;
 130        struct active_node *it, *n;
 131        unsigned long flags;
 132
 133        GEM_BUG_ON(i915_active_is_idle(ref));
 134
 135        /* return the unused nodes to our slabcache -- flushing the allocator */
 136        if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
 137                return;
 138
 139        GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
 140        debug_active_deactivate(ref);
 141
 142        /* Even if we have not used the cache, we may still have a barrier */
 143        if (!ref->cache)
 144                ref->cache = fetch_node(ref->tree.rb_node);
 145
 146        /* Keep the MRU cached node for reuse */
 147        if (ref->cache) {
 148                /* Discard all other nodes in the tree */
 149                rb_erase(&ref->cache->node, &ref->tree);
 150                root = ref->tree;
 151
 152                /* Rebuild the tree with only the cached node */
 153                rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node);
 154                rb_insert_color(&ref->cache->node, &ref->tree);
 155                GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node);
 156
 157                /* Make the cached node available for reuse with any timeline */
 158                ref->cache->timeline = 0; /* needs cmpxchg(u64) */
 159        }
 160
 161        spin_unlock_irqrestore(&ref->tree_lock, flags);
 162
 163        /* After the final retire, the entire struct may be freed */
 164        if (ref->retire)
 165                ref->retire(ref);
 166
 167        /* ... except if you wait on it, you must manage your own references! */
 168        wake_up_var(ref);
 169
 170        /* Finally free the discarded timeline tree  */
 171        rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
 172                GEM_BUG_ON(i915_active_fence_isset(&it->base));
 173                kmem_cache_free(slab_cache, it);
 174        }
 175}
 176
 177static void
 178active_work(struct work_struct *wrk)
 179{
 180        struct i915_active *ref = container_of(wrk, typeof(*ref), work);
 181
 182        GEM_BUG_ON(!atomic_read(&ref->count));
 183        if (atomic_add_unless(&ref->count, -1, 1))
 184                return;
 185
 186        __active_retire(ref);
 187}
 188
 189static void
 190active_retire(struct i915_active *ref)
 191{
 192        GEM_BUG_ON(!atomic_read(&ref->count));
 193        if (atomic_add_unless(&ref->count, -1, 1))
 194                return;
 195
 196        if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
 197                queue_work(system_unbound_wq, &ref->work);
 198                return;
 199        }
 200
 201        __active_retire(ref);
 202}
 203
 204static inline struct dma_fence **
 205__active_fence_slot(struct i915_active_fence *active)
 206{
 207        return (struct dma_fence ** __force)&active->fence;
 208}
 209
 210static inline bool
 211active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
 212{
 213        struct i915_active_fence *active =
 214                container_of(cb, typeof(*active), cb);
 215
 216        return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
 217}
 218
 219static void
 220node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
 221{
 222        if (active_fence_cb(fence, cb))
 223                active_retire(container_of(cb, struct active_node, base.cb)->ref);
 224}
 225
 226static void
 227excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
 228{
 229        if (active_fence_cb(fence, cb))
 230                active_retire(container_of(cb, struct i915_active, excl.cb));
 231}
 232
 233static struct active_node *__active_lookup(struct i915_active *ref, u64 idx)
 234{
 235        struct active_node *it;
 236
 237        GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */
 238
 239        /*
 240         * We track the most recently used timeline to skip a rbtree search
 241         * for the common case, under typical loads we never need the rbtree
 242         * at all. We can reuse the last slot if it is empty, that is
 243         * after the previous activity has been retired, or if it matches the
 244         * current timeline.
 245         */
 246        it = READ_ONCE(ref->cache);
 247        if (it) {
 248                u64 cached = READ_ONCE(it->timeline);
 249
 250                /* Once claimed, this slot will only belong to this idx */
 251                if (cached == idx)
 252                        return it;
 253
 254                /*
 255                 * An unclaimed cache [.timeline=0] can only be claimed once.
 256                 *
 257                 * If the value is already non-zero, some other thread has
 258                 * claimed the cache and we know that is does not match our
 259                 * idx. If, and only if, the timeline is currently zero is it
 260                 * worth competing to claim it atomically for ourselves (for
 261                 * only the winner of that race will cmpxchg return the old
 262                 * value of 0).
 263                 */
 264                if (!cached && !cmpxchg64(&it->timeline, 0, idx))
 265                        return it;
 266        }
 267
 268        BUILD_BUG_ON(offsetof(typeof(*it), node));
 269
 270        /* While active, the tree can only be built; not destroyed */
 271        GEM_BUG_ON(i915_active_is_idle(ref));
 272
 273        it = fetch_node(ref->tree.rb_node);
 274        while (it) {
 275                if (it->timeline < idx) {
 276                        it = fetch_node(it->node.rb_right);
 277                } else if (it->timeline > idx) {
 278                        it = fetch_node(it->node.rb_left);
 279                } else {
 280                        WRITE_ONCE(ref->cache, it);
 281                        break;
 282                }
 283        }
 284
 285        /* NB: If the tree rotated beneath us, we may miss our target. */
 286        return it;
 287}
 288
 289static struct i915_active_fence *
 290active_instance(struct i915_active *ref, u64 idx)
 291{
 292        struct active_node *node;
 293        struct rb_node **p, *parent;
 294
 295        node = __active_lookup(ref, idx);
 296        if (likely(node))
 297                return &node->base;
 298
 299        spin_lock_irq(&ref->tree_lock);
 300        GEM_BUG_ON(i915_active_is_idle(ref));
 301
 302        parent = NULL;
 303        p = &ref->tree.rb_node;
 304        while (*p) {
 305                parent = *p;
 306
 307                node = rb_entry(parent, struct active_node, node);
 308                if (node->timeline == idx)
 309                        goto out;
 310
 311                if (node->timeline < idx)
 312                        p = &parent->rb_right;
 313                else
 314                        p = &parent->rb_left;
 315        }
 316
 317        /*
 318         * XXX: We should preallocate this before i915_active_ref() is ever
 319         *  called, but we cannot call into fs_reclaim() anyway, so use GFP_ATOMIC.
 320         */
 321        node = kmem_cache_alloc(slab_cache, GFP_ATOMIC);
 322        if (!node)
 323                goto out;
 324
 325        __i915_active_fence_init(&node->base, NULL, node_retire);
 326        node->ref = ref;
 327        node->timeline = idx;
 328
 329        rb_link_node(&node->node, parent, p);
 330        rb_insert_color(&node->node, &ref->tree);
 331
 332out:
 333        WRITE_ONCE(ref->cache, node);
 334        spin_unlock_irq(&ref->tree_lock);
 335
 336        return &node->base;
 337}
 338
 339void __i915_active_init(struct i915_active *ref,
 340                        int (*active)(struct i915_active *ref),
 341                        void (*retire)(struct i915_active *ref),
 342                        unsigned long flags,
 343                        struct lock_class_key *mkey,
 344                        struct lock_class_key *wkey)
 345{
 346        debug_active_init(ref);
 347
 348        ref->flags = flags;
 349        ref->active = active;
 350        ref->retire = retire;
 351
 352        spin_lock_init(&ref->tree_lock);
 353        ref->tree = RB_ROOT;
 354        ref->cache = NULL;
 355
 356        init_llist_head(&ref->preallocated_barriers);
 357        atomic_set(&ref->count, 0);
 358        __mutex_init(&ref->mutex, "i915_active", mkey);
 359        __i915_active_fence_init(&ref->excl, NULL, excl_retire);
 360        INIT_WORK(&ref->work, active_work);
 361#if IS_ENABLED(CONFIG_LOCKDEP)
 362        lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
 363#endif
 364}
 365
 366static bool ____active_del_barrier(struct i915_active *ref,
 367                                   struct active_node *node,
 368                                   struct intel_engine_cs *engine)
 369
 370{
 371        struct llist_node *head = NULL, *tail = NULL;
 372        struct llist_node *pos, *next;
 373
 374        GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
 375
 376        /*
 377         * Rebuild the llist excluding our node. We may perform this
 378         * outside of the kernel_context timeline mutex and so someone
 379         * else may be manipulating the engine->barrier_tasks, in
 380         * which case either we or they will be upset :)
 381         *
 382         * A second __active_del_barrier() will report failure to claim
 383         * the active_node and the caller will just shrug and know not to
 384         * claim ownership of its node.
 385         *
 386         * A concurrent i915_request_add_active_barriers() will miss adding
 387         * any of the tasks, but we will try again on the next -- and since
 388         * we are actively using the barrier, we know that there will be
 389         * at least another opportunity when we idle.
 390         */
 391        llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
 392                if (node == barrier_from_ll(pos)) {
 393                        node = NULL;
 394                        continue;
 395                }
 396
 397                pos->next = head;
 398                head = pos;
 399                if (!tail)
 400                        tail = pos;
 401        }
 402        if (head)
 403                llist_add_batch(head, tail, &engine->barrier_tasks);
 404
 405        return !node;
 406}
 407
 408static bool
 409__active_del_barrier(struct i915_active *ref, struct active_node *node)
 410{
 411        return ____active_del_barrier(ref, node, barrier_to_engine(node));
 412}
 413
 414static bool
 415replace_barrier(struct i915_active *ref, struct i915_active_fence *active)
 416{
 417        if (!is_barrier(active)) /* proto-node used by our idle barrier? */
 418                return false;
 419
 420        /*
 421         * This request is on the kernel_context timeline, and so
 422         * we can use it to substitute for the pending idle-barrer
 423         * request that we want to emit on the kernel_context.
 424         */
 425        __active_del_barrier(ref, node_from_active(active));
 426        return true;
 427}
 428
 429int i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
 430{
 431        struct i915_active_fence *active;
 432        int err;
 433
 434        /* Prevent reaping in case we malloc/wait while building the tree */
 435        err = i915_active_acquire(ref);
 436        if (err)
 437                return err;
 438
 439        active = active_instance(ref, idx);
 440        if (!active) {
 441                err = -ENOMEM;
 442                goto out;
 443        }
 444
 445        if (replace_barrier(ref, active)) {
 446                RCU_INIT_POINTER(active->fence, NULL);
 447                atomic_dec(&ref->count);
 448        }
 449        if (!__i915_active_fence_set(active, fence))
 450                __i915_active_acquire(ref);
 451
 452out:
 453        i915_active_release(ref);
 454        return err;
 455}
 456
 457static struct dma_fence *
 458__i915_active_set_fence(struct i915_active *ref,
 459                        struct i915_active_fence *active,
 460                        struct dma_fence *fence)
 461{
 462        struct dma_fence *prev;
 463
 464        if (replace_barrier(ref, active)) {
 465                RCU_INIT_POINTER(active->fence, fence);
 466                return NULL;
 467        }
 468
 469        rcu_read_lock();
 470        prev = __i915_active_fence_set(active, fence);
 471        if (prev)
 472                prev = dma_fence_get_rcu(prev);
 473        else
 474                __i915_active_acquire(ref);
 475        rcu_read_unlock();
 476
 477        return prev;
 478}
 479
 480static struct i915_active_fence *
 481__active_fence(struct i915_active *ref, u64 idx)
 482{
 483        struct active_node *it;
 484
 485        it = __active_lookup(ref, idx);
 486        if (unlikely(!it)) { /* Contention with parallel tree builders! */
 487                spin_lock_irq(&ref->tree_lock);
 488                it = __active_lookup(ref, idx);
 489                spin_unlock_irq(&ref->tree_lock);
 490        }
 491        GEM_BUG_ON(!it); /* slot must be preallocated */
 492
 493        return &it->base;
 494}
 495
 496struct dma_fence *
 497__i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
 498{
 499        /* Only valid while active, see i915_active_acquire_for_context() */
 500        return __i915_active_set_fence(ref, __active_fence(ref, idx), fence);
 501}
 502
 503struct dma_fence *
 504i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
 505{
 506        /* We expect the caller to manage the exclusive timeline ordering */
 507        return __i915_active_set_fence(ref, &ref->excl, f);
 508}
 509
 510bool i915_active_acquire_if_busy(struct i915_active *ref)
 511{
 512        debug_active_assert(ref);
 513        return atomic_add_unless(&ref->count, 1, 0);
 514}
 515
 516static void __i915_active_activate(struct i915_active *ref)
 517{
 518        spin_lock_irq(&ref->tree_lock); /* __active_retire() */
 519        if (!atomic_fetch_inc(&ref->count))
 520                debug_active_activate(ref);
 521        spin_unlock_irq(&ref->tree_lock);
 522}
 523
 524int i915_active_acquire(struct i915_active *ref)
 525{
 526        int err;
 527
 528        if (i915_active_acquire_if_busy(ref))
 529                return 0;
 530
 531        if (!ref->active) {
 532                __i915_active_activate(ref);
 533                return 0;
 534        }
 535
 536        err = mutex_lock_interruptible(&ref->mutex);
 537        if (err)
 538                return err;
 539
 540        if (likely(!i915_active_acquire_if_busy(ref))) {
 541                err = ref->active(ref);
 542                if (!err)
 543                        __i915_active_activate(ref);
 544        }
 545
 546        mutex_unlock(&ref->mutex);
 547
 548        return err;
 549}
 550
 551int i915_active_acquire_for_context(struct i915_active *ref, u64 idx)
 552{
 553        struct i915_active_fence *active;
 554        int err;
 555
 556        err = i915_active_acquire(ref);
 557        if (err)
 558                return err;
 559
 560        active = active_instance(ref, idx);
 561        if (!active) {
 562                i915_active_release(ref);
 563                return -ENOMEM;
 564        }
 565
 566        return 0; /* return with active ref */
 567}
 568
 569void i915_active_release(struct i915_active *ref)
 570{
 571        debug_active_assert(ref);
 572        active_retire(ref);
 573}
 574
 575static void enable_signaling(struct i915_active_fence *active)
 576{
 577        struct dma_fence *fence;
 578
 579        if (unlikely(is_barrier(active)))
 580                return;
 581
 582        fence = i915_active_fence_get(active);
 583        if (!fence)
 584                return;
 585
 586        dma_fence_enable_sw_signaling(fence);
 587        dma_fence_put(fence);
 588}
 589
 590static int flush_barrier(struct active_node *it)
 591{
 592        struct intel_engine_cs *engine;
 593
 594        if (likely(!is_barrier(&it->base)))
 595                return 0;
 596
 597        engine = __barrier_to_engine(it);
 598        smp_rmb(); /* serialise with add_active_barriers */
 599        if (!is_barrier(&it->base))
 600                return 0;
 601
 602        return intel_engine_flush_barriers(engine);
 603}
 604
 605static int flush_lazy_signals(struct i915_active *ref)
 606{
 607        struct active_node *it, *n;
 608        int err = 0;
 609
 610        enable_signaling(&ref->excl);
 611        rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
 612                err = flush_barrier(it); /* unconnected idle barrier? */
 613                if (err)
 614                        break;
 615
 616                enable_signaling(&it->base);
 617        }
 618
 619        return err;
 620}
 621
 622int __i915_active_wait(struct i915_active *ref, int state)
 623{
 624        might_sleep();
 625
 626        /* Any fence added after the wait begins will not be auto-signaled */
 627        if (i915_active_acquire_if_busy(ref)) {
 628                int err;
 629
 630                err = flush_lazy_signals(ref);
 631                i915_active_release(ref);
 632                if (err)
 633                        return err;
 634
 635                if (___wait_var_event(ref, i915_active_is_idle(ref),
 636                                      state, 0, 0, schedule()))
 637                        return -EINTR;
 638        }
 639
 640        /*
 641         * After the wait is complete, the caller may free the active.
 642         * We have to flush any concurrent retirement before returning.
 643         */
 644        flush_work(&ref->work);
 645        return 0;
 646}
 647
 648static int __await_active(struct i915_active_fence *active,
 649                          int (*fn)(void *arg, struct dma_fence *fence),
 650                          void *arg)
 651{
 652        struct dma_fence *fence;
 653
 654        if (is_barrier(active)) /* XXX flush the barrier? */
 655                return 0;
 656
 657        fence = i915_active_fence_get(active);
 658        if (fence) {
 659                int err;
 660
 661                err = fn(arg, fence);
 662                dma_fence_put(fence);
 663                if (err < 0)
 664                        return err;
 665        }
 666
 667        return 0;
 668}
 669
 670struct wait_barrier {
 671        struct wait_queue_entry base;
 672        struct i915_active *ref;
 673};
 674
 675static int
 676barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key)
 677{
 678        struct wait_barrier *wb = container_of(wq, typeof(*wb), base);
 679
 680        if (i915_active_is_idle(wb->ref)) {
 681                list_del(&wq->entry);
 682                i915_sw_fence_complete(wq->private);
 683                kfree(wq);
 684        }
 685
 686        return 0;
 687}
 688
 689static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence)
 690{
 691        struct wait_barrier *wb;
 692
 693        wb = kmalloc(sizeof(*wb), GFP_KERNEL);
 694        if (unlikely(!wb))
 695                return -ENOMEM;
 696
 697        GEM_BUG_ON(i915_active_is_idle(ref));
 698        if (!i915_sw_fence_await(fence)) {
 699                kfree(wb);
 700                return -EINVAL;
 701        }
 702
 703        wb->base.flags = 0;
 704        wb->base.func = barrier_wake;
 705        wb->base.private = fence;
 706        wb->ref = ref;
 707
 708        add_wait_queue(__var_waitqueue(ref), &wb->base);
 709        return 0;
 710}
 711
 712static int await_active(struct i915_active *ref,
 713                        unsigned int flags,
 714                        int (*fn)(void *arg, struct dma_fence *fence),
 715                        void *arg, struct i915_sw_fence *barrier)
 716{
 717        int err = 0;
 718
 719        if (!i915_active_acquire_if_busy(ref))
 720                return 0;
 721
 722        if (flags & I915_ACTIVE_AWAIT_EXCL &&
 723            rcu_access_pointer(ref->excl.fence)) {
 724                err = __await_active(&ref->excl, fn, arg);
 725                if (err)
 726                        goto out;
 727        }
 728
 729        if (flags & I915_ACTIVE_AWAIT_ACTIVE) {
 730                struct active_node *it, *n;
 731
 732                rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
 733                        err = __await_active(&it->base, fn, arg);
 734                        if (err)
 735                                goto out;
 736                }
 737        }
 738
 739        if (flags & I915_ACTIVE_AWAIT_BARRIER) {
 740                err = flush_lazy_signals(ref);
 741                if (err)
 742                        goto out;
 743
 744                err = __await_barrier(ref, barrier);
 745                if (err)
 746                        goto out;
 747        }
 748
 749out:
 750        i915_active_release(ref);
 751        return err;
 752}
 753
 754static int rq_await_fence(void *arg, struct dma_fence *fence)
 755{
 756        return i915_request_await_dma_fence(arg, fence);
 757}
 758
 759int i915_request_await_active(struct i915_request *rq,
 760                              struct i915_active *ref,
 761                              unsigned int flags)
 762{
 763        return await_active(ref, flags, rq_await_fence, rq, &rq->submit);
 764}
 765
 766static int sw_await_fence(void *arg, struct dma_fence *fence)
 767{
 768        return i915_sw_fence_await_dma_fence(arg, fence, 0,
 769                                             GFP_NOWAIT | __GFP_NOWARN);
 770}
 771
 772int i915_sw_fence_await_active(struct i915_sw_fence *fence,
 773                               struct i915_active *ref,
 774                               unsigned int flags)
 775{
 776        return await_active(ref, flags, sw_await_fence, fence, fence);
 777}
 778
 779void i915_active_fini(struct i915_active *ref)
 780{
 781        debug_active_fini(ref);
 782        GEM_BUG_ON(atomic_read(&ref->count));
 783        GEM_BUG_ON(work_pending(&ref->work));
 784        mutex_destroy(&ref->mutex);
 785
 786        if (ref->cache)
 787                kmem_cache_free(slab_cache, ref->cache);
 788}
 789
 790static inline bool is_idle_barrier(struct active_node *node, u64 idx)
 791{
 792        return node->timeline == idx && !i915_active_fence_isset(&node->base);
 793}
 794
 795static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
 796{
 797        struct rb_node *prev, *p;
 798
 799        if (RB_EMPTY_ROOT(&ref->tree))
 800                return NULL;
 801
 802        GEM_BUG_ON(i915_active_is_idle(ref));
 803
 804        /*
 805         * Try to reuse any existing barrier nodes already allocated for this
 806         * i915_active, due to overlapping active phases there is likely a
 807         * node kept alive (as we reuse before parking). We prefer to reuse
 808         * completely idle barriers (less hassle in manipulating the llists),
 809         * but otherwise any will do.
 810         */
 811        if (ref->cache && is_idle_barrier(ref->cache, idx)) {
 812                p = &ref->cache->node;
 813                goto match;
 814        }
 815
 816        prev = NULL;
 817        p = ref->tree.rb_node;
 818        while (p) {
 819                struct active_node *node =
 820                        rb_entry(p, struct active_node, node);
 821
 822                if (is_idle_barrier(node, idx))
 823                        goto match;
 824
 825                prev = p;
 826                if (node->timeline < idx)
 827                        p = READ_ONCE(p->rb_right);
 828                else
 829                        p = READ_ONCE(p->rb_left);
 830        }
 831
 832        /*
 833         * No quick match, but we did find the leftmost rb_node for the
 834         * kernel_context. Walk the rb_tree in-order to see if there were
 835         * any idle-barriers on this timeline that we missed, or just use
 836         * the first pending barrier.
 837         */
 838        for (p = prev; p; p = rb_next(p)) {
 839                struct active_node *node =
 840                        rb_entry(p, struct active_node, node);
 841                struct intel_engine_cs *engine;
 842
 843                if (node->timeline > idx)
 844                        break;
 845
 846                if (node->timeline < idx)
 847                        continue;
 848
 849                if (is_idle_barrier(node, idx))
 850                        goto match;
 851
 852                /*
 853                 * The list of pending barriers is protected by the
 854                 * kernel_context timeline, which notably we do not hold
 855                 * here. i915_request_add_active_barriers() may consume
 856                 * the barrier before we claim it, so we have to check
 857                 * for success.
 858                 */
 859                engine = __barrier_to_engine(node);
 860                smp_rmb(); /* serialise with add_active_barriers */
 861                if (is_barrier(&node->base) &&
 862                    ____active_del_barrier(ref, node, engine))
 863                        goto match;
 864        }
 865
 866        return NULL;
 867
 868match:
 869        spin_lock_irq(&ref->tree_lock);
 870        rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
 871        if (p == &ref->cache->node)
 872                WRITE_ONCE(ref->cache, NULL);
 873        spin_unlock_irq(&ref->tree_lock);
 874
 875        return rb_entry(p, struct active_node, node);
 876}
 877
 878int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
 879                                            struct intel_engine_cs *engine)
 880{
 881        intel_engine_mask_t tmp, mask = engine->mask;
 882        struct llist_node *first = NULL, *last = NULL;
 883        struct intel_gt *gt = engine->gt;
 884
 885        GEM_BUG_ON(i915_active_is_idle(ref));
 886
 887        /* Wait until the previous preallocation is completed */
 888        while (!llist_empty(&ref->preallocated_barriers))
 889                cond_resched();
 890
 891        /*
 892         * Preallocate a node for each physical engine supporting the target
 893         * engine (remember virtual engines have more than one sibling).
 894         * We can then use the preallocated nodes in
 895         * i915_active_acquire_barrier()
 896         */
 897        GEM_BUG_ON(!mask);
 898        for_each_engine_masked(engine, gt, mask, tmp) {
 899                u64 idx = engine->kernel_context->timeline->fence_context;
 900                struct llist_node *prev = first;
 901                struct active_node *node;
 902
 903                rcu_read_lock();
 904                node = reuse_idle_barrier(ref, idx);
 905                rcu_read_unlock();
 906                if (!node) {
 907                        node = kmem_cache_alloc(slab_cache, GFP_KERNEL);
 908                        if (!node)
 909                                goto unwind;
 910
 911                        RCU_INIT_POINTER(node->base.fence, NULL);
 912                        node->base.cb.func = node_retire;
 913                        node->timeline = idx;
 914                        node->ref = ref;
 915                }
 916
 917                if (!i915_active_fence_isset(&node->base)) {
 918                        /*
 919                         * Mark this as being *our* unconnected proto-node.
 920                         *
 921                         * Since this node is not in any list, and we have
 922                         * decoupled it from the rbtree, we can reuse the
 923                         * request to indicate this is an idle-barrier node
 924                         * and then we can use the rb_node and list pointers
 925                         * for our tracking of the pending barrier.
 926                         */
 927                        RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
 928                        node->base.cb.node.prev = (void *)engine;
 929                        __i915_active_acquire(ref);
 930                }
 931                GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
 932
 933                GEM_BUG_ON(barrier_to_engine(node) != engine);
 934                first = barrier_to_ll(node);
 935                first->next = prev;
 936                if (!last)
 937                        last = first;
 938                intel_engine_pm_get(engine);
 939        }
 940
 941        GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
 942        llist_add_batch(first, last, &ref->preallocated_barriers);
 943
 944        return 0;
 945
 946unwind:
 947        while (first) {
 948                struct active_node *node = barrier_from_ll(first);
 949
 950                first = first->next;
 951
 952                atomic_dec(&ref->count);
 953                intel_engine_pm_put(barrier_to_engine(node));
 954
 955                kmem_cache_free(slab_cache, node);
 956        }
 957        return -ENOMEM;
 958}
 959
 960void i915_active_acquire_barrier(struct i915_active *ref)
 961{
 962        struct llist_node *pos, *next;
 963        unsigned long flags;
 964
 965        GEM_BUG_ON(i915_active_is_idle(ref));
 966
 967        /*
 968         * Transfer the list of preallocated barriers into the
 969         * i915_active rbtree, but only as proto-nodes. They will be
 970         * populated by i915_request_add_active_barriers() to point to the
 971         * request that will eventually release them.
 972         */
 973        llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
 974                struct active_node *node = barrier_from_ll(pos);
 975                struct intel_engine_cs *engine = barrier_to_engine(node);
 976                struct rb_node **p, *parent;
 977
 978                spin_lock_irqsave_nested(&ref->tree_lock, flags,
 979                                         SINGLE_DEPTH_NESTING);
 980                parent = NULL;
 981                p = &ref->tree.rb_node;
 982                while (*p) {
 983                        struct active_node *it;
 984
 985                        parent = *p;
 986
 987                        it = rb_entry(parent, struct active_node, node);
 988                        if (it->timeline < node->timeline)
 989                                p = &parent->rb_right;
 990                        else
 991                                p = &parent->rb_left;
 992                }
 993                rb_link_node(&node->node, parent, p);
 994                rb_insert_color(&node->node, &ref->tree);
 995                spin_unlock_irqrestore(&ref->tree_lock, flags);
 996
 997                GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
 998                llist_add(barrier_to_ll(node), &engine->barrier_tasks);
 999                intel_engine_pm_put_delay(engine, 1);
1000        }
1001}
1002
1003static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
1004{
1005        return __active_fence_slot(&barrier_from_ll(node)->base);
1006}
1007
1008void i915_request_add_active_barriers(struct i915_request *rq)
1009{
1010        struct intel_engine_cs *engine = rq->engine;
1011        struct llist_node *node, *next;
1012        unsigned long flags;
1013
1014        GEM_BUG_ON(!intel_context_is_barrier(rq->context));
1015        GEM_BUG_ON(intel_engine_is_virtual(engine));
1016        GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
1017
1018        node = llist_del_all(&engine->barrier_tasks);
1019        if (!node)
1020                return;
1021        /*
1022         * Attach the list of proto-fences to the in-flight request such
1023         * that the parent i915_active will be released when this request
1024         * is retired.
1025         */
1026        spin_lock_irqsave(&rq->lock, flags);
1027        llist_for_each_safe(node, next, node) {
1028                /* serialise with reuse_idle_barrier */
1029                smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
1030                list_add_tail((struct list_head *)node, &rq->fence.cb_list);
1031        }
1032        spin_unlock_irqrestore(&rq->lock, flags);
1033}
1034
1035/*
1036 * __i915_active_fence_set: Update the last active fence along its timeline
1037 * @active: the active tracker
1038 * @fence: the new fence (under construction)
1039 *
1040 * Records the new @fence as the last active fence along its timeline in
1041 * this active tracker, moving the tracking callbacks from the previous
1042 * fence onto this one. Returns the previous fence (if not already completed),
1043 * which the caller must ensure is executed before the new fence. To ensure
1044 * that the order of fences within the timeline of the i915_active_fence is
1045 * understood, it should be locked by the caller.
1046 */
1047struct dma_fence *
1048__i915_active_fence_set(struct i915_active_fence *active,
1049                        struct dma_fence *fence)
1050{
1051        struct dma_fence *prev;
1052        unsigned long flags;
1053
1054        if (fence == rcu_access_pointer(active->fence))
1055                return fence;
1056
1057        GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
1058
1059        /*
1060         * Consider that we have two threads arriving (A and B), with
1061         * C already resident as the active->fence.
1062         *
1063         * A does the xchg first, and so it sees C or NULL depending
1064         * on the timing of the interrupt handler. If it is NULL, the
1065         * previous fence must have been signaled and we know that
1066         * we are first on the timeline. If it is still present,
1067         * we acquire the lock on that fence and serialise with the interrupt
1068         * handler, in the process removing it from any future interrupt
1069         * callback. A will then wait on C before executing (if present).
1070         *
1071         * As B is second, it sees A as the previous fence and so waits for
1072         * it to complete its transition and takes over the occupancy for
1073         * itself -- remembering that it needs to wait on A before executing.
1074         *
1075         * Note the strong ordering of the timeline also provides consistent
1076         * nesting rules for the fence->lock; the inner lock is always the
1077         * older lock.
1078         */
1079        spin_lock_irqsave(fence->lock, flags);
1080        prev = xchg(__active_fence_slot(active), fence);
1081        if (prev) {
1082                GEM_BUG_ON(prev == fence);
1083                spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
1084                __list_del_entry(&active->cb.node);
1085                spin_unlock(prev->lock); /* serialise with prev->cb_list */
1086        }
1087        list_add_tail(&active->cb.node, &fence->cb_list);
1088        spin_unlock_irqrestore(fence->lock, flags);
1089
1090        return prev;
1091}
1092
1093int i915_active_fence_set(struct i915_active_fence *active,
1094                          struct i915_request *rq)
1095{
1096        struct dma_fence *fence;
1097        int err = 0;
1098
1099        /* Must maintain timeline ordering wrt previous active requests */
1100        rcu_read_lock();
1101        fence = __i915_active_fence_set(active, &rq->fence);
1102        if (fence) /* but the previous fence may not belong to that timeline! */
1103                fence = dma_fence_get_rcu(fence);
1104        rcu_read_unlock();
1105        if (fence) {
1106                err = i915_request_await_dma_fence(rq, fence);
1107                dma_fence_put(fence);
1108        }
1109
1110        return err;
1111}
1112
1113void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
1114{
1115        active_fence_cb(fence, cb);
1116}
1117
1118struct auto_active {
1119        struct i915_active base;
1120        struct kref ref;
1121};
1122
1123struct i915_active *i915_active_get(struct i915_active *ref)
1124{
1125        struct auto_active *aa = container_of(ref, typeof(*aa), base);
1126
1127        kref_get(&aa->ref);
1128        return &aa->base;
1129}
1130
1131static void auto_release(struct kref *ref)
1132{
1133        struct auto_active *aa = container_of(ref, typeof(*aa), ref);
1134
1135        i915_active_fini(&aa->base);
1136        kfree(aa);
1137}
1138
1139void i915_active_put(struct i915_active *ref)
1140{
1141        struct auto_active *aa = container_of(ref, typeof(*aa), base);
1142
1143        kref_put(&aa->ref, auto_release);
1144}
1145
1146static int auto_active(struct i915_active *ref)
1147{
1148        i915_active_get(ref);
1149        return 0;
1150}
1151
1152static void auto_retire(struct i915_active *ref)
1153{
1154        i915_active_put(ref);
1155}
1156
1157struct i915_active *i915_active_create(void)
1158{
1159        struct auto_active *aa;
1160
1161        aa = kmalloc(sizeof(*aa), GFP_KERNEL);
1162        if (!aa)
1163                return NULL;
1164
1165        kref_init(&aa->ref);
1166        i915_active_init(&aa->base, auto_active, auto_retire, 0);
1167
1168        return &aa->base;
1169}
1170
1171#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1172#include "selftests/i915_active.c"
1173#endif
1174
1175void i915_active_module_exit(void)
1176{
1177        kmem_cache_destroy(slab_cache);
1178}
1179
1180int __init i915_active_module_init(void)
1181{
1182        slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
1183        if (!slab_cache)
1184                return -ENOMEM;
1185
1186        return 0;
1187}
1188