linux/drivers/gpu/drm/rcar-du/rcar_du_crtc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * rcar_du_crtc.c  --  R-Car Display Unit CRTCs
   4 *
   5 * Copyright (C) 2013-2015 Renesas Electronics Corporation
   6 *
   7 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
   8 */
   9
  10#include <linux/clk.h>
  11#include <linux/mutex.h>
  12#include <linux/platform_device.h>
  13#include <linux/sys_soc.h>
  14
  15#include <drm/drm_atomic.h>
  16#include <drm/drm_atomic_helper.h>
  17#include <drm/drm_bridge.h>
  18#include <drm/drm_crtc.h>
  19#include <drm/drm_device.h>
  20#include <drm/drm_fb_cma_helper.h>
  21#include <drm/drm_gem_cma_helper.h>
  22#include <drm/drm_plane_helper.h>
  23#include <drm/drm_vblank.h>
  24
  25#include "rcar_cmm.h"
  26#include "rcar_du_crtc.h"
  27#include "rcar_du_drv.h"
  28#include "rcar_du_encoder.h"
  29#include "rcar_du_kms.h"
  30#include "rcar_du_plane.h"
  31#include "rcar_du_regs.h"
  32#include "rcar_du_vsp.h"
  33#include "rcar_lvds.h"
  34
  35static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
  36{
  37        struct rcar_du_device *rcdu = rcrtc->dev;
  38
  39        return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
  40}
  41
  42static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
  43{
  44        struct rcar_du_device *rcdu = rcrtc->dev;
  45
  46        rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
  47}
  48
  49static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
  50{
  51        struct rcar_du_device *rcdu = rcrtc->dev;
  52
  53        rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
  54                      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
  55}
  56
  57static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
  58{
  59        struct rcar_du_device *rcdu = rcrtc->dev;
  60
  61        rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
  62                      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
  63}
  64
  65void rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc *rcrtc, u32 clr, u32 set)
  66{
  67        struct rcar_du_device *rcdu = rcrtc->dev;
  68
  69        rcrtc->dsysr = (rcrtc->dsysr & ~clr) | set;
  70        rcar_du_write(rcdu, rcrtc->mmio_offset + DSYSR, rcrtc->dsysr);
  71}
  72
  73/* -----------------------------------------------------------------------------
  74 * Hardware Setup
  75 */
  76
  77struct dpll_info {
  78        unsigned int output;
  79        unsigned int fdpll;
  80        unsigned int n;
  81        unsigned int m;
  82};
  83
  84static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc,
  85                                 struct dpll_info *dpll,
  86                                 unsigned long input,
  87                                 unsigned long target)
  88{
  89        unsigned long best_diff = (unsigned long)-1;
  90        unsigned long diff;
  91        unsigned int fdpll;
  92        unsigned int m;
  93        unsigned int n;
  94
  95        /*
  96         *   fin                                 fvco        fout       fclkout
  97         * in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out
  98         *              +-> |  |                             |
  99         *              |                                    |
 100         *              +---------------- [1/N] <------------+
 101         *
 102         *      fclkout = fvco / P / FDPLL -- (1)
 103         *
 104         * fin/M = fvco/P/N
 105         *
 106         *      fvco = fin * P *  N / M -- (2)
 107         *
 108         * (1) + (2) indicates
 109         *
 110         *      fclkout = fin * N / M / FDPLL
 111         *
 112         * NOTES
 113         *      N       : (n + 1)
 114         *      M       : (m + 1)
 115         *      FDPLL   : (fdpll + 1)
 116         *      P       : 2
 117         *      2kHz < fvco < 4096MHz
 118         *
 119         * To minimize the jitter,
 120         * N : as large as possible
 121         * M : as small as possible
 122         */
 123        for (m = 0; m < 4; m++) {
 124                for (n = 119; n > 38; n--) {
 125                        /*
 126                         * This code only runs on 64-bit architectures, the
 127                         * unsigned long type can thus be used for 64-bit
 128                         * computation. It will still compile without any
 129                         * warning on 32-bit architectures.
 130                         *
 131                         * To optimize calculations, use fout instead of fvco
 132                         * to verify the VCO frequency constraint.
 133                         */
 134                        unsigned long fout = input * (n + 1) / (m + 1);
 135
 136                        if (fout < 1000 || fout > 2048 * 1000 * 1000U)
 137                                continue;
 138
 139                        for (fdpll = 1; fdpll < 32; fdpll++) {
 140                                unsigned long output;
 141
 142                                output = fout / (fdpll + 1);
 143                                if (output >= 400 * 1000 * 1000)
 144                                        continue;
 145
 146                                diff = abs((long)output - (long)target);
 147                                if (best_diff > diff) {
 148                                        best_diff = diff;
 149                                        dpll->n = n;
 150                                        dpll->m = m;
 151                                        dpll->fdpll = fdpll;
 152                                        dpll->output = output;
 153                                }
 154
 155                                if (diff == 0)
 156                                        goto done;
 157                        }
 158                }
 159        }
 160
 161done:
 162        dev_dbg(rcrtc->dev->dev,
 163                "output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n",
 164                 dpll->output, dpll->fdpll, dpll->n, dpll->m, best_diff);
 165}
 166
 167struct du_clk_params {
 168        struct clk *clk;
 169        unsigned long rate;
 170        unsigned long diff;
 171        u32 escr;
 172};
 173
 174static void rcar_du_escr_divider(struct clk *clk, unsigned long target,
 175                                 u32 escr, struct du_clk_params *params)
 176{
 177        unsigned long rate;
 178        unsigned long diff;
 179        u32 div;
 180
 181        /*
 182         * If the target rate has already been achieved perfectly we can't do
 183         * better.
 184         */
 185        if (params->diff == 0)
 186                return;
 187
 188        /*
 189         * Compute the input clock rate and internal divisor values to obtain
 190         * the clock rate closest to the target frequency.
 191         */
 192        rate = clk_round_rate(clk, target);
 193        div = clamp(DIV_ROUND_CLOSEST(rate, target), 1UL, 64UL) - 1;
 194        diff = abs(rate / (div + 1) - target);
 195
 196        /*
 197         * Store the parameters if the resulting frequency is better than any
 198         * previously calculated value.
 199         */
 200        if (diff < params->diff) {
 201                params->clk = clk;
 202                params->rate = rate;
 203                params->diff = diff;
 204                params->escr = escr | div;
 205        }
 206}
 207
 208static const struct soc_device_attribute rcar_du_r8a7795_es1[] = {
 209        { .soc_id = "r8a7795", .revision = "ES1.*" },
 210        { /* sentinel */ }
 211};
 212
 213static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
 214{
 215        const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
 216        struct rcar_du_device *rcdu = rcrtc->dev;
 217        unsigned long mode_clock = mode->clock * 1000;
 218        u32 dsmr;
 219        u32 escr;
 220
 221        if (rcdu->info->dpll_mask & (1 << rcrtc->index)) {
 222                unsigned long target = mode_clock;
 223                struct dpll_info dpll = { 0 };
 224                unsigned long extclk;
 225                u32 dpllcr;
 226                u32 div = 0;
 227
 228                /*
 229                 * DU channels that have a display PLL can't use the internal
 230                 * system clock, and have no internal clock divider.
 231                 */
 232
 233                /*
 234                 * The H3 ES1.x exhibits dot clock duty cycle stability issues.
 235                 * We can work around them by configuring the DPLL to twice the
 236                 * desired frequency, coupled with a /2 post-divider. Restrict
 237                 * the workaround to H3 ES1.x as ES2.0 and all other SoCs have
 238                 * no post-divider when a display PLL is present (as shown by
 239                 * the workaround breaking HDMI output on M3-W during testing).
 240                 */
 241                if (soc_device_match(rcar_du_r8a7795_es1)) {
 242                        target *= 2;
 243                        div = 1;
 244                }
 245
 246                extclk = clk_get_rate(rcrtc->extclock);
 247                rcar_du_dpll_divider(rcrtc, &dpll, extclk, target);
 248
 249                dpllcr = DPLLCR_CODE | DPLLCR_CLKE
 250                       | DPLLCR_FDPLL(dpll.fdpll)
 251                       | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m)
 252                       | DPLLCR_STBY;
 253
 254                if (rcrtc->index == 1)
 255                        dpllcr |= DPLLCR_PLCS1
 256                               |  DPLLCR_INCS_DOTCLKIN1;
 257                else
 258                        dpllcr |= DPLLCR_PLCS0
 259                               |  DPLLCR_INCS_DOTCLKIN0;
 260
 261                rcar_du_group_write(rcrtc->group, DPLLCR, dpllcr);
 262
 263                escr = ESCR_DCLKSEL_DCLKIN | div;
 264        } else if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) {
 265                /*
 266                 * Use the LVDS PLL output as the dot clock when outputting to
 267                 * the LVDS encoder on an SoC that supports this clock routing
 268                 * option. We use the clock directly in that case, without any
 269                 * additional divider.
 270                 */
 271                escr = ESCR_DCLKSEL_DCLKIN;
 272        } else {
 273                struct du_clk_params params = { .diff = (unsigned long)-1 };
 274
 275                rcar_du_escr_divider(rcrtc->clock, mode_clock,
 276                                     ESCR_DCLKSEL_CLKS, &params);
 277                if (rcrtc->extclock)
 278                        rcar_du_escr_divider(rcrtc->extclock, mode_clock,
 279                                             ESCR_DCLKSEL_DCLKIN, &params);
 280
 281                dev_dbg(rcrtc->dev->dev, "mode clock %lu %s rate %lu\n",
 282                        mode_clock, params.clk == rcrtc->clock ? "cpg" : "ext",
 283                        params.rate);
 284
 285                clk_set_rate(params.clk, params.rate);
 286                escr = params.escr;
 287        }
 288
 289        dev_dbg(rcrtc->dev->dev, "%s: ESCR 0x%08x\n", __func__, escr);
 290
 291        rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? ESCR13 : ESCR02, escr);
 292        rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? OTAR13 : OTAR02, 0);
 293
 294        /* Signal polarities */
 295        dsmr = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
 296             | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
 297             | ((mode->flags & DRM_MODE_FLAG_INTERLACE) ? DSMR_ODEV : 0)
 298             | DSMR_DIPM_DISP | DSMR_CSPM;
 299        rcar_du_crtc_write(rcrtc, DSMR, dsmr);
 300
 301        /* Display timings */
 302        rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
 303        rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
 304                                        mode->hdisplay - 19);
 305        rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
 306                                        mode->hsync_start - 1);
 307        rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);
 308
 309        rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
 310                                        mode->crtc_vsync_end - 2);
 311        rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
 312                                        mode->crtc_vsync_end +
 313                                        mode->crtc_vdisplay - 2);
 314        rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
 315                                        mode->crtc_vsync_end +
 316                                        mode->crtc_vsync_start - 1);
 317        rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
 318
 319        rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start - 1);
 320        rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
 321}
 322
 323static unsigned int plane_zpos(struct rcar_du_plane *plane)
 324{
 325        return plane->plane.state->normalized_zpos;
 326}
 327
 328static const struct rcar_du_format_info *
 329plane_format(struct rcar_du_plane *plane)
 330{
 331        return to_rcar_plane_state(plane->plane.state)->format;
 332}
 333
 334static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
 335{
 336        struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
 337        struct rcar_du_device *rcdu = rcrtc->dev;
 338        unsigned int num_planes = 0;
 339        unsigned int dptsr_planes;
 340        unsigned int hwplanes = 0;
 341        unsigned int prio = 0;
 342        unsigned int i;
 343        u32 dspr = 0;
 344
 345        for (i = 0; i < rcrtc->group->num_planes; ++i) {
 346                struct rcar_du_plane *plane = &rcrtc->group->planes[i];
 347                unsigned int j;
 348
 349                if (plane->plane.state->crtc != &rcrtc->crtc ||
 350                    !plane->plane.state->visible)
 351                        continue;
 352
 353                /* Insert the plane in the sorted planes array. */
 354                for (j = num_planes++; j > 0; --j) {
 355                        if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
 356                                break;
 357                        planes[j] = planes[j-1];
 358                }
 359
 360                planes[j] = plane;
 361                prio += plane_format(plane)->planes * 4;
 362        }
 363
 364        for (i = 0; i < num_planes; ++i) {
 365                struct rcar_du_plane *plane = planes[i];
 366                struct drm_plane_state *state = plane->plane.state;
 367                unsigned int index = to_rcar_plane_state(state)->hwindex;
 368
 369                prio -= 4;
 370                dspr |= (index + 1) << prio;
 371                hwplanes |= 1 << index;
 372
 373                if (plane_format(plane)->planes == 2) {
 374                        index = (index + 1) % 8;
 375
 376                        prio -= 4;
 377                        dspr |= (index + 1) << prio;
 378                        hwplanes |= 1 << index;
 379                }
 380        }
 381
 382        /* If VSP+DU integration is enabled the plane assignment is fixed. */
 383        if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) {
 384                if (rcdu->info->gen < 3) {
 385                        dspr = (rcrtc->index % 2) + 1;
 386                        hwplanes = 1 << (rcrtc->index % 2);
 387                } else {
 388                        dspr = (rcrtc->index % 2) ? 3 : 1;
 389                        hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0);
 390                }
 391        }
 392
 393        /*
 394         * Update the planes to display timing and dot clock generator
 395         * associations.
 396         *
 397         * Updating the DPTSR register requires restarting the CRTC group,
 398         * resulting in visible flicker. To mitigate the issue only update the
 399         * association if needed by enabled planes. Planes being disabled will
 400         * keep their current association.
 401         */
 402        mutex_lock(&rcrtc->group->lock);
 403
 404        dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
 405                     : rcrtc->group->dptsr_planes & ~hwplanes;
 406
 407        if (dptsr_planes != rcrtc->group->dptsr_planes) {
 408                rcar_du_group_write(rcrtc->group, DPTSR,
 409                                    (dptsr_planes << 16) | dptsr_planes);
 410                rcrtc->group->dptsr_planes = dptsr_planes;
 411
 412                if (rcrtc->group->used_crtcs)
 413                        rcar_du_group_restart(rcrtc->group);
 414        }
 415
 416        /* Restart the group if plane sources have changed. */
 417        if (rcrtc->group->need_restart)
 418                rcar_du_group_restart(rcrtc->group);
 419
 420        mutex_unlock(&rcrtc->group->lock);
 421
 422        rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
 423                            dspr);
 424}
 425
 426/* -----------------------------------------------------------------------------
 427 * Page Flip
 428 */
 429
 430void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
 431{
 432        struct drm_pending_vblank_event *event;
 433        struct drm_device *dev = rcrtc->crtc.dev;
 434        unsigned long flags;
 435
 436        spin_lock_irqsave(&dev->event_lock, flags);
 437        event = rcrtc->event;
 438        rcrtc->event = NULL;
 439        spin_unlock_irqrestore(&dev->event_lock, flags);
 440
 441        if (event == NULL)
 442                return;
 443
 444        spin_lock_irqsave(&dev->event_lock, flags);
 445        drm_crtc_send_vblank_event(&rcrtc->crtc, event);
 446        wake_up(&rcrtc->flip_wait);
 447        spin_unlock_irqrestore(&dev->event_lock, flags);
 448
 449        drm_crtc_vblank_put(&rcrtc->crtc);
 450}
 451
 452static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
 453{
 454        struct drm_device *dev = rcrtc->crtc.dev;
 455        unsigned long flags;
 456        bool pending;
 457
 458        spin_lock_irqsave(&dev->event_lock, flags);
 459        pending = rcrtc->event != NULL;
 460        spin_unlock_irqrestore(&dev->event_lock, flags);
 461
 462        return pending;
 463}
 464
 465static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
 466{
 467        struct rcar_du_device *rcdu = rcrtc->dev;
 468
 469        if (wait_event_timeout(rcrtc->flip_wait,
 470                               !rcar_du_crtc_page_flip_pending(rcrtc),
 471                               msecs_to_jiffies(50)))
 472                return;
 473
 474        dev_warn(rcdu->dev, "page flip timeout\n");
 475
 476        rcar_du_crtc_finish_page_flip(rcrtc);
 477}
 478
 479/* -----------------------------------------------------------------------------
 480 * Color Management Module (CMM)
 481 */
 482
 483static int rcar_du_cmm_check(struct drm_crtc *crtc,
 484                             struct drm_crtc_state *state)
 485{
 486        struct drm_property_blob *drm_lut = state->gamma_lut;
 487        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 488        struct device *dev = rcrtc->dev->dev;
 489
 490        if (!drm_lut)
 491                return 0;
 492
 493        /* We only accept fully populated LUT tables. */
 494        if (drm_color_lut_size(drm_lut) != CM2_LUT_SIZE) {
 495                dev_err(dev, "invalid gamma lut size: %zu bytes\n",
 496                        drm_lut->length);
 497                return -EINVAL;
 498        }
 499
 500        return 0;
 501}
 502
 503static void rcar_du_cmm_setup(struct drm_crtc *crtc)
 504{
 505        struct drm_property_blob *drm_lut = crtc->state->gamma_lut;
 506        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 507        struct rcar_cmm_config cmm_config = {};
 508
 509        if (!rcrtc->cmm)
 510                return;
 511
 512        if (drm_lut)
 513                cmm_config.lut.table = (struct drm_color_lut *)drm_lut->data;
 514
 515        rcar_cmm_setup(rcrtc->cmm, &cmm_config);
 516}
 517
 518/* -----------------------------------------------------------------------------
 519 * Start/Stop and Suspend/Resume
 520 */
 521
 522static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc)
 523{
 524        /* Set display off and background to black */
 525        rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
 526        rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
 527
 528        /* Configure display timings and output routing */
 529        rcar_du_crtc_set_display_timing(rcrtc);
 530        rcar_du_group_set_routing(rcrtc->group);
 531
 532        /* Start with all planes disabled. */
 533        rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
 534
 535        /* Enable the VSP compositor. */
 536        if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
 537                rcar_du_vsp_enable(rcrtc);
 538
 539        /* Turn vertical blanking interrupt reporting on. */
 540        drm_crtc_vblank_on(&rcrtc->crtc);
 541}
 542
 543static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
 544{
 545        int ret;
 546
 547        /*
 548         * Guard against double-get, as the function is called from both the
 549         * .atomic_enable() and .atomic_begin() handlers.
 550         */
 551        if (rcrtc->initialized)
 552                return 0;
 553
 554        ret = clk_prepare_enable(rcrtc->clock);
 555        if (ret < 0)
 556                return ret;
 557
 558        ret = clk_prepare_enable(rcrtc->extclock);
 559        if (ret < 0)
 560                goto error_clock;
 561
 562        ret = rcar_du_group_get(rcrtc->group);
 563        if (ret < 0)
 564                goto error_group;
 565
 566        rcar_du_crtc_setup(rcrtc);
 567        rcrtc->initialized = true;
 568
 569        return 0;
 570
 571error_group:
 572        clk_disable_unprepare(rcrtc->extclock);
 573error_clock:
 574        clk_disable_unprepare(rcrtc->clock);
 575        return ret;
 576}
 577
 578static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
 579{
 580        rcar_du_group_put(rcrtc->group);
 581
 582        clk_disable_unprepare(rcrtc->extclock);
 583        clk_disable_unprepare(rcrtc->clock);
 584
 585        rcrtc->initialized = false;
 586}
 587
 588static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
 589{
 590        bool interlaced;
 591
 592        /*
 593         * Select master sync mode. This enables display operation in master
 594         * sync mode (with the HSYNC and VSYNC signals configured as outputs and
 595         * actively driven).
 596         */
 597        interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
 598        rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
 599                                   (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
 600                                   DSYSR_TVM_MASTER);
 601
 602        rcar_du_group_start_stop(rcrtc->group, true);
 603}
 604
 605static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc)
 606{
 607        struct rcar_du_device *rcdu = rcrtc->dev;
 608        struct drm_crtc *crtc = &rcrtc->crtc;
 609        u32 status;
 610
 611        /* Make sure vblank interrupts are enabled. */
 612        drm_crtc_vblank_get(crtc);
 613
 614        /*
 615         * Disable planes and calculate how many vertical blanking interrupts we
 616         * have to wait for. If a vertical blanking interrupt has been triggered
 617         * but not processed yet, we don't know whether it occurred before or
 618         * after the planes got disabled. We thus have to wait for two vblank
 619         * interrupts in that case.
 620         */
 621        spin_lock_irq(&rcrtc->vblank_lock);
 622        rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
 623        status = rcar_du_crtc_read(rcrtc, DSSR);
 624        rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1;
 625        spin_unlock_irq(&rcrtc->vblank_lock);
 626
 627        if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0,
 628                                msecs_to_jiffies(100)))
 629                dev_warn(rcdu->dev, "vertical blanking timeout\n");
 630
 631        drm_crtc_vblank_put(crtc);
 632}
 633
 634static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
 635{
 636        struct drm_crtc *crtc = &rcrtc->crtc;
 637
 638        /*
 639         * Disable all planes and wait for the change to take effect. This is
 640         * required as the plane enable registers are updated on vblank, and no
 641         * vblank will occur once the CRTC is stopped. Disabling planes when
 642         * starting the CRTC thus wouldn't be enough as it would start scanning
 643         * out immediately from old frame buffers until the next vblank.
 644         *
 645         * This increases the CRTC stop delay, especially when multiple CRTCs
 646         * are stopped in one operation as we now wait for one vblank per CRTC.
 647         * Whether this can be improved needs to be researched.
 648         */
 649        rcar_du_crtc_disable_planes(rcrtc);
 650
 651        /*
 652         * Disable vertical blanking interrupt reporting. We first need to wait
 653         * for page flip completion before stopping the CRTC as userspace
 654         * expects page flips to eventually complete.
 655         */
 656        rcar_du_crtc_wait_page_flip(rcrtc);
 657        drm_crtc_vblank_off(crtc);
 658
 659        /* Disable the VSP compositor. */
 660        if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
 661                rcar_du_vsp_disable(rcrtc);
 662
 663        if (rcrtc->cmm)
 664                rcar_cmm_disable(rcrtc->cmm);
 665
 666        /*
 667         * Select switch sync mode. This stops display operation and configures
 668         * the HSYNC and VSYNC signals as inputs.
 669         *
 670         * TODO: Find another way to stop the display for DUs that don't support
 671         * TVM sync.
 672         */
 673        if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_TVM_SYNC))
 674                rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK,
 675                                           DSYSR_TVM_SWITCH);
 676
 677        rcar_du_group_start_stop(rcrtc->group, false);
 678}
 679
 680/* -----------------------------------------------------------------------------
 681 * CRTC Functions
 682 */
 683
 684static int rcar_du_crtc_atomic_check(struct drm_crtc *crtc,
 685                                     struct drm_atomic_state *state)
 686{
 687        struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
 688                                                                          crtc);
 689        struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc_state);
 690        struct drm_encoder *encoder;
 691        int ret;
 692
 693        ret = rcar_du_cmm_check(crtc, crtc_state);
 694        if (ret)
 695                return ret;
 696
 697        /* Store the routes from the CRTC output to the DU outputs. */
 698        rstate->outputs = 0;
 699
 700        drm_for_each_encoder_mask(encoder, crtc->dev,
 701                                  crtc_state->encoder_mask) {
 702                struct rcar_du_encoder *renc;
 703
 704                /* Skip the writeback encoder. */
 705                if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
 706                        continue;
 707
 708                renc = to_rcar_encoder(encoder);
 709                rstate->outputs |= BIT(renc->output);
 710        }
 711
 712        return 0;
 713}
 714
 715static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc,
 716                                       struct drm_atomic_state *state)
 717{
 718        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 719        struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc->state);
 720        struct rcar_du_device *rcdu = rcrtc->dev;
 721
 722        if (rcrtc->cmm)
 723                rcar_cmm_enable(rcrtc->cmm);
 724        rcar_du_crtc_get(rcrtc);
 725
 726        /*
 727         * On D3/E3 the dot clock is provided by the LVDS encoder attached to
 728         * the DU channel. We need to enable its clock output explicitly if
 729         * the LVDS output is disabled.
 730         */
 731        if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
 732            rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
 733                struct drm_bridge *bridge = rcdu->lvds[rcrtc->index];
 734                const struct drm_display_mode *mode =
 735                        &crtc->state->adjusted_mode;
 736
 737                rcar_lvds_clk_enable(bridge, mode->clock * 1000);
 738        }
 739
 740        rcar_du_crtc_start(rcrtc);
 741
 742        /*
 743         * TODO: The chip manual indicates that CMM tables should be written
 744         * after the DU channel has been activated. Investigate the impact
 745         * of this restriction on the first displayed frame.
 746         */
 747        rcar_du_cmm_setup(crtc);
 748}
 749
 750static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc,
 751                                        struct drm_atomic_state *state)
 752{
 753        struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
 754                                                                         crtc);
 755        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 756        struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(old_state);
 757        struct rcar_du_device *rcdu = rcrtc->dev;
 758
 759        rcar_du_crtc_stop(rcrtc);
 760        rcar_du_crtc_put(rcrtc);
 761
 762        if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
 763            rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
 764                struct drm_bridge *bridge = rcdu->lvds[rcrtc->index];
 765
 766                /*
 767                 * Disable the LVDS clock output, see
 768                 * rcar_du_crtc_atomic_enable().
 769                 */
 770                rcar_lvds_clk_disable(bridge);
 771        }
 772
 773        spin_lock_irq(&crtc->dev->event_lock);
 774        if (crtc->state->event) {
 775                drm_crtc_send_vblank_event(crtc, crtc->state->event);
 776                crtc->state->event = NULL;
 777        }
 778        spin_unlock_irq(&crtc->dev->event_lock);
 779}
 780
 781static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
 782                                      struct drm_atomic_state *state)
 783{
 784        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 785
 786        WARN_ON(!crtc->state->enable);
 787
 788        /*
 789         * If a mode set is in progress we can be called with the CRTC disabled.
 790         * We thus need to first get and setup the CRTC in order to configure
 791         * planes. We must *not* put the CRTC in .atomic_flush(), as it must be
 792         * kept awake until the .atomic_enable() call that will follow. The get
 793         * operation in .atomic_enable() will in that case be a no-op, and the
 794         * CRTC will be put later in .atomic_disable().
 795         *
 796         * If a mode set is not in progress the CRTC is enabled, and the
 797         * following get call will be a no-op. There is thus no need to balance
 798         * it in .atomic_flush() either.
 799         */
 800        rcar_du_crtc_get(rcrtc);
 801
 802        /* If the active state changed, we let .atomic_enable handle CMM. */
 803        if (crtc->state->color_mgmt_changed && !crtc->state->active_changed)
 804                rcar_du_cmm_setup(crtc);
 805
 806        if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
 807                rcar_du_vsp_atomic_begin(rcrtc);
 808}
 809
 810static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
 811                                      struct drm_atomic_state *state)
 812{
 813        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 814        struct drm_device *dev = rcrtc->crtc.dev;
 815        unsigned long flags;
 816
 817        rcar_du_crtc_update_planes(rcrtc);
 818
 819        if (crtc->state->event) {
 820                WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 821
 822                spin_lock_irqsave(&dev->event_lock, flags);
 823                rcrtc->event = crtc->state->event;
 824                crtc->state->event = NULL;
 825                spin_unlock_irqrestore(&dev->event_lock, flags);
 826        }
 827
 828        if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
 829                rcar_du_vsp_atomic_flush(rcrtc);
 830}
 831
 832static enum drm_mode_status
 833rcar_du_crtc_mode_valid(struct drm_crtc *crtc,
 834                        const struct drm_display_mode *mode)
 835{
 836        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 837        struct rcar_du_device *rcdu = rcrtc->dev;
 838        bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
 839        unsigned int vbp;
 840
 841        if (interlaced && !rcar_du_has(rcdu, RCAR_DU_FEATURE_INTERLACED))
 842                return MODE_NO_INTERLACE;
 843
 844        /*
 845         * The hardware requires a minimum combined horizontal sync and back
 846         * porch of 20 pixels and a minimum vertical back porch of 3 lines.
 847         */
 848        if (mode->htotal - mode->hsync_start < 20)
 849                return MODE_HBLANK_NARROW;
 850
 851        vbp = (mode->vtotal - mode->vsync_end) / (interlaced ? 2 : 1);
 852        if (vbp < 3)
 853                return MODE_VBLANK_NARROW;
 854
 855        return MODE_OK;
 856}
 857
 858static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
 859        .atomic_check = rcar_du_crtc_atomic_check,
 860        .atomic_begin = rcar_du_crtc_atomic_begin,
 861        .atomic_flush = rcar_du_crtc_atomic_flush,
 862        .atomic_enable = rcar_du_crtc_atomic_enable,
 863        .atomic_disable = rcar_du_crtc_atomic_disable,
 864        .mode_valid = rcar_du_crtc_mode_valid,
 865};
 866
 867static void rcar_du_crtc_crc_init(struct rcar_du_crtc *rcrtc)
 868{
 869        struct rcar_du_device *rcdu = rcrtc->dev;
 870        const char **sources;
 871        unsigned int count;
 872        int i = -1;
 873
 874        /* CRC available only on Gen3 HW. */
 875        if (rcdu->info->gen < 3)
 876                return;
 877
 878        /* Reserve 1 for "auto" source. */
 879        count = rcrtc->vsp->num_planes + 1;
 880
 881        sources = kmalloc_array(count, sizeof(*sources), GFP_KERNEL);
 882        if (!sources)
 883                return;
 884
 885        sources[0] = kstrdup("auto", GFP_KERNEL);
 886        if (!sources[0])
 887                goto error;
 888
 889        for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
 890                struct drm_plane *plane = &rcrtc->vsp->planes[i].plane;
 891                char name[16];
 892
 893                sprintf(name, "plane%u", plane->base.id);
 894                sources[i + 1] = kstrdup(name, GFP_KERNEL);
 895                if (!sources[i + 1])
 896                        goto error;
 897        }
 898
 899        rcrtc->sources = sources;
 900        rcrtc->sources_count = count;
 901        return;
 902
 903error:
 904        while (i >= 0) {
 905                kfree(sources[i]);
 906                i--;
 907        }
 908        kfree(sources);
 909}
 910
 911static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc *rcrtc)
 912{
 913        unsigned int i;
 914
 915        if (!rcrtc->sources)
 916                return;
 917
 918        for (i = 0; i < rcrtc->sources_count; i++)
 919                kfree(rcrtc->sources[i]);
 920        kfree(rcrtc->sources);
 921
 922        rcrtc->sources = NULL;
 923        rcrtc->sources_count = 0;
 924}
 925
 926static struct drm_crtc_state *
 927rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
 928{
 929        struct rcar_du_crtc_state *state;
 930        struct rcar_du_crtc_state *copy;
 931
 932        if (WARN_ON(!crtc->state))
 933                return NULL;
 934
 935        state = to_rcar_crtc_state(crtc->state);
 936        copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
 937        if (copy == NULL)
 938                return NULL;
 939
 940        __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->state);
 941
 942        return &copy->state;
 943}
 944
 945static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc,
 946                                              struct drm_crtc_state *state)
 947{
 948        __drm_atomic_helper_crtc_destroy_state(state);
 949        kfree(to_rcar_crtc_state(state));
 950}
 951
 952static void rcar_du_crtc_cleanup(struct drm_crtc *crtc)
 953{
 954        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 955
 956        rcar_du_crtc_crc_cleanup(rcrtc);
 957
 958        return drm_crtc_cleanup(crtc);
 959}
 960
 961static void rcar_du_crtc_reset(struct drm_crtc *crtc)
 962{
 963        struct rcar_du_crtc_state *state;
 964
 965        if (crtc->state) {
 966                rcar_du_crtc_atomic_destroy_state(crtc, crtc->state);
 967                crtc->state = NULL;
 968        }
 969
 970        state = kzalloc(sizeof(*state), GFP_KERNEL);
 971        if (state == NULL)
 972                return;
 973
 974        state->crc.source = VSP1_DU_CRC_NONE;
 975        state->crc.index = 0;
 976
 977        __drm_atomic_helper_crtc_reset(crtc, &state->state);
 978}
 979
 980static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc)
 981{
 982        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 983
 984        rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
 985        rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
 986        rcrtc->vblank_enable = true;
 987
 988        return 0;
 989}
 990
 991static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc)
 992{
 993        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 994
 995        rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
 996        rcrtc->vblank_enable = false;
 997}
 998
 999static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc *rcrtc,
1000                                         const char *source_name,
1001                                         enum vsp1_du_crc_source *source)
1002{
1003        unsigned int index;
1004        int ret;
1005
1006        /*
1007         * Parse the source name. Supported values are "plane%u" to compute the
1008         * CRC on an input plane (%u is the plane ID), and "auto" to compute the
1009         * CRC on the composer (VSP) output.
1010         */
1011
1012        if (!source_name) {
1013                *source = VSP1_DU_CRC_NONE;
1014                return 0;
1015        } else if (!strcmp(source_name, "auto")) {
1016                *source = VSP1_DU_CRC_OUTPUT;
1017                return 0;
1018        } else if (strstarts(source_name, "plane")) {
1019                unsigned int i;
1020
1021                *source = VSP1_DU_CRC_PLANE;
1022
1023                ret = kstrtouint(source_name + strlen("plane"), 10, &index);
1024                if (ret < 0)
1025                        return ret;
1026
1027                for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
1028                        if (index == rcrtc->vsp->planes[i].plane.base.id)
1029                                return i;
1030                }
1031        }
1032
1033        return -EINVAL;
1034}
1035
1036static int rcar_du_crtc_verify_crc_source(struct drm_crtc *crtc,
1037                                          const char *source_name,
1038                                          size_t *values_cnt)
1039{
1040        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1041        enum vsp1_du_crc_source source;
1042
1043        if (rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source) < 0) {
1044                DRM_DEBUG_DRIVER("unknown source %s\n", source_name);
1045                return -EINVAL;
1046        }
1047
1048        *values_cnt = 1;
1049        return 0;
1050}
1051
1052static const char *const *
1053rcar_du_crtc_get_crc_sources(struct drm_crtc *crtc, size_t *count)
1054{
1055        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1056
1057        *count = rcrtc->sources_count;
1058        return rcrtc->sources;
1059}
1060
1061static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc,
1062                                       const char *source_name)
1063{
1064        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1065        struct drm_modeset_acquire_ctx ctx;
1066        struct drm_crtc_state *crtc_state;
1067        struct drm_atomic_state *state;
1068        enum vsp1_du_crc_source source;
1069        unsigned int index;
1070        int ret;
1071
1072        ret = rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source);
1073        if (ret < 0)
1074                return ret;
1075
1076        index = ret;
1077
1078        /* Perform an atomic commit to set the CRC source. */
1079        drm_modeset_acquire_init(&ctx, 0);
1080
1081        state = drm_atomic_state_alloc(crtc->dev);
1082        if (!state) {
1083                ret = -ENOMEM;
1084                goto unlock;
1085        }
1086
1087        state->acquire_ctx = &ctx;
1088
1089retry:
1090        crtc_state = drm_atomic_get_crtc_state(state, crtc);
1091        if (!IS_ERR(crtc_state)) {
1092                struct rcar_du_crtc_state *rcrtc_state;
1093
1094                rcrtc_state = to_rcar_crtc_state(crtc_state);
1095                rcrtc_state->crc.source = source;
1096                rcrtc_state->crc.index = index;
1097
1098                ret = drm_atomic_commit(state);
1099        } else {
1100                ret = PTR_ERR(crtc_state);
1101        }
1102
1103        if (ret == -EDEADLK) {
1104                drm_atomic_state_clear(state);
1105                drm_modeset_backoff(&ctx);
1106                goto retry;
1107        }
1108
1109        drm_atomic_state_put(state);
1110
1111unlock:
1112        drm_modeset_drop_locks(&ctx);
1113        drm_modeset_acquire_fini(&ctx);
1114
1115        return ret;
1116}
1117
1118static const struct drm_crtc_funcs crtc_funcs_gen2 = {
1119        .reset = rcar_du_crtc_reset,
1120        .destroy = drm_crtc_cleanup,
1121        .set_config = drm_atomic_helper_set_config,
1122        .page_flip = drm_atomic_helper_page_flip,
1123        .atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1124        .atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1125        .enable_vblank = rcar_du_crtc_enable_vblank,
1126        .disable_vblank = rcar_du_crtc_disable_vblank,
1127};
1128
1129static const struct drm_crtc_funcs crtc_funcs_gen3 = {
1130        .reset = rcar_du_crtc_reset,
1131        .destroy = rcar_du_crtc_cleanup,
1132        .set_config = drm_atomic_helper_set_config,
1133        .page_flip = drm_atomic_helper_page_flip,
1134        .atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1135        .atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1136        .enable_vblank = rcar_du_crtc_enable_vblank,
1137        .disable_vblank = rcar_du_crtc_disable_vblank,
1138        .set_crc_source = rcar_du_crtc_set_crc_source,
1139        .verify_crc_source = rcar_du_crtc_verify_crc_source,
1140        .get_crc_sources = rcar_du_crtc_get_crc_sources,
1141};
1142
1143/* -----------------------------------------------------------------------------
1144 * Interrupt Handling
1145 */
1146
1147static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
1148{
1149        struct rcar_du_crtc *rcrtc = arg;
1150        struct rcar_du_device *rcdu = rcrtc->dev;
1151        irqreturn_t ret = IRQ_NONE;
1152        u32 status;
1153
1154        spin_lock(&rcrtc->vblank_lock);
1155
1156        status = rcar_du_crtc_read(rcrtc, DSSR);
1157        rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
1158
1159        if (status & DSSR_VBK) {
1160                /*
1161                 * Wake up the vblank wait if the counter reaches 0. This must
1162                 * be protected by the vblank_lock to avoid races in
1163                 * rcar_du_crtc_disable_planes().
1164                 */
1165                if (rcrtc->vblank_count) {
1166                        if (--rcrtc->vblank_count == 0)
1167                                wake_up(&rcrtc->vblank_wait);
1168                }
1169        }
1170
1171        spin_unlock(&rcrtc->vblank_lock);
1172
1173        if (status & DSSR_VBK) {
1174                if (rcdu->info->gen < 3) {
1175                        drm_crtc_handle_vblank(&rcrtc->crtc);
1176                        rcar_du_crtc_finish_page_flip(rcrtc);
1177                }
1178
1179                ret = IRQ_HANDLED;
1180        }
1181
1182        return ret;
1183}
1184
1185/* -----------------------------------------------------------------------------
1186 * Initialization
1187 */
1188
1189int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex,
1190                        unsigned int hwindex)
1191{
1192        static const unsigned int mmio_offsets[] = {
1193                DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET
1194        };
1195
1196        struct rcar_du_device *rcdu = rgrp->dev;
1197        struct platform_device *pdev = to_platform_device(rcdu->dev);
1198        struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex];
1199        struct drm_crtc *crtc = &rcrtc->crtc;
1200        struct drm_plane *primary;
1201        unsigned int irqflags;
1202        struct clk *clk;
1203        char clk_name[9];
1204        char *name;
1205        int irq;
1206        int ret;
1207
1208        /* Get the CRTC clock and the optional external clock. */
1209        if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
1210                sprintf(clk_name, "du.%u", hwindex);
1211                name = clk_name;
1212        } else {
1213                name = NULL;
1214        }
1215
1216        rcrtc->clock = devm_clk_get(rcdu->dev, name);
1217        if (IS_ERR(rcrtc->clock)) {
1218                dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex);
1219                return PTR_ERR(rcrtc->clock);
1220        }
1221
1222        sprintf(clk_name, "dclkin.%u", hwindex);
1223        clk = devm_clk_get(rcdu->dev, clk_name);
1224        if (!IS_ERR(clk)) {
1225                rcrtc->extclock = clk;
1226        } else if (PTR_ERR(clk) == -EPROBE_DEFER) {
1227                return -EPROBE_DEFER;
1228        } else if (rcdu->info->dpll_mask & BIT(hwindex)) {
1229                /*
1230                 * DU channels that have a display PLL can't use the internal
1231                 * system clock and thus require an external clock.
1232                 */
1233                ret = PTR_ERR(clk);
1234                dev_err(rcdu->dev, "can't get dclkin.%u: %d\n", hwindex, ret);
1235                return ret;
1236        }
1237
1238        init_waitqueue_head(&rcrtc->flip_wait);
1239        init_waitqueue_head(&rcrtc->vblank_wait);
1240        spin_lock_init(&rcrtc->vblank_lock);
1241
1242        rcrtc->dev = rcdu;
1243        rcrtc->group = rgrp;
1244        rcrtc->mmio_offset = mmio_offsets[hwindex];
1245        rcrtc->index = hwindex;
1246        rcrtc->dsysr = (rcrtc->index % 2 ? 0 : DSYSR_DRES) | DSYSR_TVM_TVSYNC;
1247
1248        if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE))
1249                primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane;
1250        else
1251                primary = &rgrp->planes[swindex % 2].plane;
1252
1253        ret = drm_crtc_init_with_planes(&rcdu->ddev, crtc, primary, NULL,
1254                                        rcdu->info->gen <= 2 ?
1255                                        &crtc_funcs_gen2 : &crtc_funcs_gen3,
1256                                        NULL);
1257        if (ret < 0)
1258                return ret;
1259
1260        /* CMM might be disabled for this CRTC. */
1261        if (rcdu->cmms[swindex]) {
1262                rcrtc->cmm = rcdu->cmms[swindex];
1263                rgrp->cmms_mask |= BIT(hwindex % 2);
1264
1265                drm_mode_crtc_set_gamma_size(crtc, CM2_LUT_SIZE);
1266                drm_crtc_enable_color_mgmt(crtc, 0, false, CM2_LUT_SIZE);
1267        }
1268
1269        drm_crtc_helper_add(crtc, &crtc_helper_funcs);
1270
1271        /* Register the interrupt handler. */
1272        if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
1273                /* The IRQ's are associated with the CRTC (sw)index. */
1274                irq = platform_get_irq(pdev, swindex);
1275                irqflags = 0;
1276        } else {
1277                irq = platform_get_irq(pdev, 0);
1278                irqflags = IRQF_SHARED;
1279        }
1280
1281        if (irq < 0) {
1282                dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex);
1283                return irq;
1284        }
1285
1286        ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
1287                               dev_name(rcdu->dev), rcrtc);
1288        if (ret < 0) {
1289                dev_err(rcdu->dev,
1290                        "failed to register IRQ for CRTC %u\n", swindex);
1291                return ret;
1292        }
1293
1294        rcar_du_crtc_crc_init(rcrtc);
1295
1296        return 0;
1297}
1298