linux/drivers/gpu/drm/vc4/vc4_dsi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2016 Broadcom
   4 */
   5
   6/**
   7 * DOC: VC4 DSI0/DSI1 module
   8 *
   9 * BCM2835 contains two DSI modules, DSI0 and DSI1.  DSI0 is a
  10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
  11 * controller.
  12 *
  13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
  14 * while the compute module brings both DSI0 and DSI1 out.
  15 *
  16 * This driver has been tested for DSI1 video-mode display only
  17 * currently, with most of the information necessary for DSI0
  18 * hopefully present.
  19 */
  20
  21#include <linux/clk-provider.h>
  22#include <linux/clk.h>
  23#include <linux/completion.h>
  24#include <linux/component.h>
  25#include <linux/dma-mapping.h>
  26#include <linux/dmaengine.h>
  27#include <linux/i2c.h>
  28#include <linux/io.h>
  29#include <linux/of_address.h>
  30#include <linux/of_platform.h>
  31#include <linux/pm_runtime.h>
  32
  33#include <drm/drm_atomic_helper.h>
  34#include <drm/drm_bridge.h>
  35#include <drm/drm_edid.h>
  36#include <drm/drm_mipi_dsi.h>
  37#include <drm/drm_of.h>
  38#include <drm/drm_panel.h>
  39#include <drm/drm_probe_helper.h>
  40#include <drm/drm_simple_kms_helper.h>
  41
  42#include "vc4_drv.h"
  43#include "vc4_regs.h"
  44
  45#define DSI_CMD_FIFO_DEPTH  16
  46#define DSI_PIX_FIFO_DEPTH 256
  47#define DSI_PIX_FIFO_WIDTH   4
  48
  49#define DSI0_CTRL               0x00
  50
  51/* Command packet control. */
  52#define DSI0_TXPKT1C            0x04 /* AKA PKTC */
  53#define DSI1_TXPKT1C            0x04
  54# define DSI_TXPKT1C_TRIG_CMD_MASK      VC4_MASK(31, 24)
  55# define DSI_TXPKT1C_TRIG_CMD_SHIFT     24
  56# define DSI_TXPKT1C_CMD_REPEAT_MASK    VC4_MASK(23, 10)
  57# define DSI_TXPKT1C_CMD_REPEAT_SHIFT   10
  58
  59# define DSI_TXPKT1C_DISPLAY_NO_MASK    VC4_MASK(9, 8)
  60# define DSI_TXPKT1C_DISPLAY_NO_SHIFT   8
  61/* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
  62# define DSI_TXPKT1C_DISPLAY_NO_SHORT           0
  63/* Primary display where cmdfifo provides part of the payload and
  64 * pixelvalve the rest.
  65 */
  66# define DSI_TXPKT1C_DISPLAY_NO_PRIMARY         1
  67/* Secondary display where cmdfifo provides part of the payload and
  68 * pixfifo the rest.
  69 */
  70# define DSI_TXPKT1C_DISPLAY_NO_SECONDARY       2
  71
  72# define DSI_TXPKT1C_CMD_TX_TIME_MASK   VC4_MASK(7, 6)
  73# define DSI_TXPKT1C_CMD_TX_TIME_SHIFT  6
  74
  75# define DSI_TXPKT1C_CMD_CTRL_MASK      VC4_MASK(5, 4)
  76# define DSI_TXPKT1C_CMD_CTRL_SHIFT     4
  77/* Command only.  Uses TXPKT1H and DISPLAY_NO */
  78# define DSI_TXPKT1C_CMD_CTRL_TX        0
  79/* Command with BTA for either ack or read data. */
  80# define DSI_TXPKT1C_CMD_CTRL_RX        1
  81/* Trigger according to TRIG_CMD */
  82# define DSI_TXPKT1C_CMD_CTRL_TRIG      2
  83/* BTA alone for getting error status after a command, or a TE trigger
  84 * without a previous command.
  85 */
  86# define DSI_TXPKT1C_CMD_CTRL_BTA       3
  87
  88# define DSI_TXPKT1C_CMD_MODE_LP        BIT(3)
  89# define DSI_TXPKT1C_CMD_TYPE_LONG      BIT(2)
  90# define DSI_TXPKT1C_CMD_TE_EN          BIT(1)
  91# define DSI_TXPKT1C_CMD_EN             BIT(0)
  92
  93/* Command packet header. */
  94#define DSI0_TXPKT1H            0x08 /* AKA PKTH */
  95#define DSI1_TXPKT1H            0x08
  96# define DSI_TXPKT1H_BC_CMDFIFO_MASK    VC4_MASK(31, 24)
  97# define DSI_TXPKT1H_BC_CMDFIFO_SHIFT   24
  98# define DSI_TXPKT1H_BC_PARAM_MASK      VC4_MASK(23, 8)
  99# define DSI_TXPKT1H_BC_PARAM_SHIFT     8
 100# define DSI_TXPKT1H_BC_DT_MASK         VC4_MASK(7, 0)
 101# define DSI_TXPKT1H_BC_DT_SHIFT        0
 102
 103#define DSI0_RXPKT1H            0x0c /* AKA RX1_PKTH */
 104#define DSI1_RXPKT1H            0x14
 105# define DSI_RXPKT1H_CRC_ERR            BIT(31)
 106# define DSI_RXPKT1H_DET_ERR            BIT(30)
 107# define DSI_RXPKT1H_ECC_ERR            BIT(29)
 108# define DSI_RXPKT1H_COR_ERR            BIT(28)
 109# define DSI_RXPKT1H_INCOMP_PKT         BIT(25)
 110# define DSI_RXPKT1H_PKT_TYPE_LONG      BIT(24)
 111/* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
 112# define DSI_RXPKT1H_BC_PARAM_MASK      VC4_MASK(23, 8)
 113# define DSI_RXPKT1H_BC_PARAM_SHIFT     8
 114/* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
 115# define DSI_RXPKT1H_SHORT_1_MASK       VC4_MASK(23, 16)
 116# define DSI_RXPKT1H_SHORT_1_SHIFT      16
 117# define DSI_RXPKT1H_SHORT_0_MASK       VC4_MASK(15, 8)
 118# define DSI_RXPKT1H_SHORT_0_SHIFT      8
 119# define DSI_RXPKT1H_DT_LP_CMD_MASK     VC4_MASK(7, 0)
 120# define DSI_RXPKT1H_DT_LP_CMD_SHIFT    0
 121
 122#define DSI0_RXPKT2H            0x10 /* AKA RX2_PKTH */
 123#define DSI1_RXPKT2H            0x18
 124# define DSI_RXPKT1H_DET_ERR            BIT(30)
 125# define DSI_RXPKT1H_ECC_ERR            BIT(29)
 126# define DSI_RXPKT1H_COR_ERR            BIT(28)
 127# define DSI_RXPKT1H_INCOMP_PKT         BIT(25)
 128# define DSI_RXPKT1H_BC_PARAM_MASK      VC4_MASK(23, 8)
 129# define DSI_RXPKT1H_BC_PARAM_SHIFT     8
 130# define DSI_RXPKT1H_DT_MASK            VC4_MASK(7, 0)
 131# define DSI_RXPKT1H_DT_SHIFT           0
 132
 133#define DSI0_TXPKT_CMD_FIFO     0x14 /* AKA CMD_DATAF */
 134#define DSI1_TXPKT_CMD_FIFO     0x1c
 135
 136#define DSI0_DISP0_CTRL         0x18
 137# define DSI_DISP0_PIX_CLK_DIV_MASK     VC4_MASK(21, 13)
 138# define DSI_DISP0_PIX_CLK_DIV_SHIFT    13
 139# define DSI_DISP0_LP_STOP_CTRL_MASK    VC4_MASK(12, 11)
 140# define DSI_DISP0_LP_STOP_CTRL_SHIFT   11
 141# define DSI_DISP0_LP_STOP_DISABLE      0
 142# define DSI_DISP0_LP_STOP_PERLINE      1
 143# define DSI_DISP0_LP_STOP_PERFRAME     2
 144
 145/* Transmit RGB pixels and null packets only during HACTIVE, instead
 146 * of going to LP-STOP.
 147 */
 148# define DSI_DISP_HACTIVE_NULL          BIT(10)
 149/* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
 150# define DSI_DISP_VBLP_CTRL             BIT(9)
 151/* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
 152# define DSI_DISP_HFP_CTRL              BIT(8)
 153/* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
 154# define DSI_DISP_HBP_CTRL              BIT(7)
 155# define DSI_DISP0_CHANNEL_MASK         VC4_MASK(6, 5)
 156# define DSI_DISP0_CHANNEL_SHIFT        5
 157/* Enables end events for HSYNC/VSYNC, not just start events. */
 158# define DSI_DISP0_ST_END               BIT(4)
 159# define DSI_DISP0_PFORMAT_MASK         VC4_MASK(3, 2)
 160# define DSI_DISP0_PFORMAT_SHIFT        2
 161# define DSI_PFORMAT_RGB565             0
 162# define DSI_PFORMAT_RGB666_PACKED      1
 163# define DSI_PFORMAT_RGB666             2
 164# define DSI_PFORMAT_RGB888             3
 165/* Default is VIDEO mode. */
 166# define DSI_DISP0_COMMAND_MODE         BIT(1)
 167# define DSI_DISP0_ENABLE               BIT(0)
 168
 169#define DSI0_DISP1_CTRL         0x1c
 170#define DSI1_DISP1_CTRL         0x2c
 171/* Format of the data written to TXPKT_PIX_FIFO. */
 172# define DSI_DISP1_PFORMAT_MASK         VC4_MASK(2, 1)
 173# define DSI_DISP1_PFORMAT_SHIFT        1
 174# define DSI_DISP1_PFORMAT_16BIT        0
 175# define DSI_DISP1_PFORMAT_24BIT        1
 176# define DSI_DISP1_PFORMAT_32BIT_LE     2
 177# define DSI_DISP1_PFORMAT_32BIT_BE     3
 178
 179/* DISP1 is always command mode. */
 180# define DSI_DISP1_ENABLE               BIT(0)
 181
 182#define DSI0_TXPKT_PIX_FIFO             0x20 /* AKA PIX_FIFO */
 183
 184#define DSI0_INT_STAT           0x24
 185#define DSI0_INT_EN             0x28
 186# define DSI1_INT_PHY_D3_ULPS           BIT(30)
 187# define DSI1_INT_PHY_D3_STOP           BIT(29)
 188# define DSI1_INT_PHY_D2_ULPS           BIT(28)
 189# define DSI1_INT_PHY_D2_STOP           BIT(27)
 190# define DSI1_INT_PHY_D1_ULPS           BIT(26)
 191# define DSI1_INT_PHY_D1_STOP           BIT(25)
 192# define DSI1_INT_PHY_D0_ULPS           BIT(24)
 193# define DSI1_INT_PHY_D0_STOP           BIT(23)
 194# define DSI1_INT_FIFO_ERR              BIT(22)
 195# define DSI1_INT_PHY_DIR_RTF           BIT(21)
 196# define DSI1_INT_PHY_RXLPDT            BIT(20)
 197# define DSI1_INT_PHY_RXTRIG            BIT(19)
 198# define DSI1_INT_PHY_D0_LPDT           BIT(18)
 199# define DSI1_INT_PHY_DIR_FTR           BIT(17)
 200
 201/* Signaled when the clock lane enters the given state. */
 202# define DSI1_INT_PHY_CLOCK_ULPS        BIT(16)
 203# define DSI1_INT_PHY_CLOCK_HS          BIT(15)
 204# define DSI1_INT_PHY_CLOCK_STOP        BIT(14)
 205
 206/* Signaled on timeouts */
 207# define DSI1_INT_PR_TO                 BIT(13)
 208# define DSI1_INT_TA_TO                 BIT(12)
 209# define DSI1_INT_LPRX_TO               BIT(11)
 210# define DSI1_INT_HSTX_TO               BIT(10)
 211
 212/* Contention on a line when trying to drive the line low */
 213# define DSI1_INT_ERR_CONT_LP1          BIT(9)
 214# define DSI1_INT_ERR_CONT_LP0          BIT(8)
 215
 216/* Control error: incorrect line state sequence on data lane 0. */
 217# define DSI1_INT_ERR_CONTROL           BIT(7)
 218/* LPDT synchronization error (bits received not a multiple of 8. */
 219
 220# define DSI1_INT_ERR_SYNC_ESC          BIT(6)
 221/* Signaled after receiving an error packet from the display in
 222 * response to a read.
 223 */
 224# define DSI1_INT_RXPKT2                BIT(5)
 225/* Signaled after receiving a packet.  The header and optional short
 226 * response will be in RXPKT1H, and a long response will be in the
 227 * RXPKT_FIFO.
 228 */
 229# define DSI1_INT_RXPKT1                BIT(4)
 230# define DSI1_INT_TXPKT2_DONE           BIT(3)
 231# define DSI1_INT_TXPKT2_END            BIT(2)
 232/* Signaled after all repeats of TXPKT1 are transferred. */
 233# define DSI1_INT_TXPKT1_DONE           BIT(1)
 234/* Signaled after each TXPKT1 repeat is scheduled. */
 235# define DSI1_INT_TXPKT1_END            BIT(0)
 236
 237#define DSI1_INTERRUPTS_ALWAYS_ENABLED  (DSI1_INT_ERR_SYNC_ESC | \
 238                                         DSI1_INT_ERR_CONTROL |  \
 239                                         DSI1_INT_ERR_CONT_LP0 | \
 240                                         DSI1_INT_ERR_CONT_LP1 | \
 241                                         DSI1_INT_HSTX_TO |      \
 242                                         DSI1_INT_LPRX_TO |      \
 243                                         DSI1_INT_TA_TO |        \
 244                                         DSI1_INT_PR_TO)
 245
 246#define DSI0_STAT               0x2c
 247#define DSI0_HSTX_TO_CNT        0x30
 248#define DSI0_LPRX_TO_CNT        0x34
 249#define DSI0_TA_TO_CNT          0x38
 250#define DSI0_PR_TO_CNT          0x3c
 251#define DSI0_PHYC               0x40
 252# define DSI1_PHYC_ESC_CLK_LPDT_MASK    VC4_MASK(25, 20)
 253# define DSI1_PHYC_ESC_CLK_LPDT_SHIFT   20
 254# define DSI1_PHYC_HS_CLK_CONTINUOUS    BIT(18)
 255# define DSI0_PHYC_ESC_CLK_LPDT_MASK    VC4_MASK(17, 12)
 256# define DSI0_PHYC_ESC_CLK_LPDT_SHIFT   12
 257# define DSI1_PHYC_CLANE_ULPS           BIT(17)
 258# define DSI1_PHYC_CLANE_ENABLE         BIT(16)
 259# define DSI_PHYC_DLANE3_ULPS           BIT(13)
 260# define DSI_PHYC_DLANE3_ENABLE         BIT(12)
 261# define DSI0_PHYC_HS_CLK_CONTINUOUS    BIT(10)
 262# define DSI0_PHYC_CLANE_ULPS           BIT(9)
 263# define DSI_PHYC_DLANE2_ULPS           BIT(9)
 264# define DSI0_PHYC_CLANE_ENABLE         BIT(8)
 265# define DSI_PHYC_DLANE2_ENABLE         BIT(8)
 266# define DSI_PHYC_DLANE1_ULPS           BIT(5)
 267# define DSI_PHYC_DLANE1_ENABLE         BIT(4)
 268# define DSI_PHYC_DLANE0_FORCE_STOP     BIT(2)
 269# define DSI_PHYC_DLANE0_ULPS           BIT(1)
 270# define DSI_PHYC_DLANE0_ENABLE         BIT(0)
 271
 272#define DSI0_HS_CLT0            0x44
 273#define DSI0_HS_CLT1            0x48
 274#define DSI0_HS_CLT2            0x4c
 275#define DSI0_HS_DLT3            0x50
 276#define DSI0_HS_DLT4            0x54
 277#define DSI0_HS_DLT5            0x58
 278#define DSI0_HS_DLT6            0x5c
 279#define DSI0_HS_DLT7            0x60
 280
 281#define DSI0_PHY_AFEC0          0x64
 282# define DSI0_PHY_AFEC0_DDR2CLK_EN              BIT(26)
 283# define DSI0_PHY_AFEC0_DDRCLK_EN               BIT(25)
 284# define DSI0_PHY_AFEC0_LATCH_ULPS              BIT(24)
 285# define DSI1_PHY_AFEC0_IDR_DLANE3_MASK         VC4_MASK(31, 29)
 286# define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT        29
 287# define DSI1_PHY_AFEC0_IDR_DLANE2_MASK         VC4_MASK(28, 26)
 288# define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT        26
 289# define DSI1_PHY_AFEC0_IDR_DLANE1_MASK         VC4_MASK(27, 23)
 290# define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT        23
 291# define DSI1_PHY_AFEC0_IDR_DLANE0_MASK         VC4_MASK(22, 20)
 292# define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT        20
 293# define DSI1_PHY_AFEC0_IDR_CLANE_MASK          VC4_MASK(19, 17)
 294# define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT         17
 295# define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK       VC4_MASK(23, 20)
 296# define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT      20
 297# define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK       VC4_MASK(19, 16)
 298# define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT      16
 299# define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK        VC4_MASK(15, 12)
 300# define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT       12
 301# define DSI1_PHY_AFEC0_DDR2CLK_EN              BIT(16)
 302# define DSI1_PHY_AFEC0_DDRCLK_EN               BIT(15)
 303# define DSI1_PHY_AFEC0_LATCH_ULPS              BIT(14)
 304# define DSI1_PHY_AFEC0_RESET                   BIT(13)
 305# define DSI1_PHY_AFEC0_PD                      BIT(12)
 306# define DSI0_PHY_AFEC0_RESET                   BIT(11)
 307# define DSI1_PHY_AFEC0_PD_BG                   BIT(11)
 308# define DSI0_PHY_AFEC0_PD                      BIT(10)
 309# define DSI1_PHY_AFEC0_PD_DLANE1               BIT(10)
 310# define DSI0_PHY_AFEC0_PD_BG                   BIT(9)
 311# define DSI1_PHY_AFEC0_PD_DLANE2               BIT(9)
 312# define DSI0_PHY_AFEC0_PD_DLANE1               BIT(8)
 313# define DSI1_PHY_AFEC0_PD_DLANE3               BIT(8)
 314# define DSI_PHY_AFEC0_PTATADJ_MASK             VC4_MASK(7, 4)
 315# define DSI_PHY_AFEC0_PTATADJ_SHIFT            4
 316# define DSI_PHY_AFEC0_CTATADJ_MASK             VC4_MASK(3, 0)
 317# define DSI_PHY_AFEC0_CTATADJ_SHIFT            0
 318
 319#define DSI0_PHY_AFEC1          0x68
 320# define DSI0_PHY_AFEC1_IDR_DLANE1_MASK         VC4_MASK(10, 8)
 321# define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT        8
 322# define DSI0_PHY_AFEC1_IDR_DLANE0_MASK         VC4_MASK(6, 4)
 323# define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT        4
 324# define DSI0_PHY_AFEC1_IDR_CLANE_MASK          VC4_MASK(2, 0)
 325# define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT         0
 326
 327#define DSI0_TST_SEL            0x6c
 328#define DSI0_TST_MON            0x70
 329#define DSI0_ID                 0x74
 330# define DSI_ID_VALUE           0x00647369
 331
 332#define DSI1_CTRL               0x00
 333# define DSI_CTRL_HS_CLKC_MASK          VC4_MASK(15, 14)
 334# define DSI_CTRL_HS_CLKC_SHIFT         14
 335# define DSI_CTRL_HS_CLKC_BYTE          0
 336# define DSI_CTRL_HS_CLKC_DDR2          1
 337# define DSI_CTRL_HS_CLKC_DDR           2
 338
 339# define DSI_CTRL_RX_LPDT_EOT_DISABLE   BIT(13)
 340# define DSI_CTRL_LPDT_EOT_DISABLE      BIT(12)
 341# define DSI_CTRL_HSDT_EOT_DISABLE      BIT(11)
 342# define DSI_CTRL_SOFT_RESET_CFG        BIT(10)
 343# define DSI_CTRL_CAL_BYTE              BIT(9)
 344# define DSI_CTRL_INV_BYTE              BIT(8)
 345# define DSI_CTRL_CLR_LDF               BIT(7)
 346# define DSI0_CTRL_CLR_PBCF             BIT(6)
 347# define DSI1_CTRL_CLR_RXF              BIT(6)
 348# define DSI0_CTRL_CLR_CPBCF            BIT(5)
 349# define DSI1_CTRL_CLR_PDF              BIT(5)
 350# define DSI0_CTRL_CLR_PDF              BIT(4)
 351# define DSI1_CTRL_CLR_CDF              BIT(4)
 352# define DSI0_CTRL_CLR_CDF              BIT(3)
 353# define DSI0_CTRL_CTRL2                BIT(2)
 354# define DSI1_CTRL_DISABLE_DISP_CRCC    BIT(2)
 355# define DSI0_CTRL_CTRL1                BIT(1)
 356# define DSI1_CTRL_DISABLE_DISP_ECCC    BIT(1)
 357# define DSI0_CTRL_CTRL0                BIT(0)
 358# define DSI1_CTRL_EN                   BIT(0)
 359# define DSI0_CTRL_RESET_FIFOS          (DSI_CTRL_CLR_LDF | \
 360                                         DSI0_CTRL_CLR_PBCF | \
 361                                         DSI0_CTRL_CLR_CPBCF |  \
 362                                         DSI0_CTRL_CLR_PDF | \
 363                                         DSI0_CTRL_CLR_CDF)
 364# define DSI1_CTRL_RESET_FIFOS          (DSI_CTRL_CLR_LDF | \
 365                                         DSI1_CTRL_CLR_RXF | \
 366                                         DSI1_CTRL_CLR_PDF | \
 367                                         DSI1_CTRL_CLR_CDF)
 368
 369#define DSI1_TXPKT2C            0x0c
 370#define DSI1_TXPKT2H            0x10
 371#define DSI1_TXPKT_PIX_FIFO     0x20
 372#define DSI1_RXPKT_FIFO         0x24
 373#define DSI1_DISP0_CTRL         0x28
 374#define DSI1_INT_STAT           0x30
 375#define DSI1_INT_EN             0x34
 376/* State reporting bits.  These mostly behave like INT_STAT, where
 377 * writing a 1 clears the bit.
 378 */
 379#define DSI1_STAT               0x38
 380# define DSI1_STAT_PHY_D3_ULPS          BIT(31)
 381# define DSI1_STAT_PHY_D3_STOP          BIT(30)
 382# define DSI1_STAT_PHY_D2_ULPS          BIT(29)
 383# define DSI1_STAT_PHY_D2_STOP          BIT(28)
 384# define DSI1_STAT_PHY_D1_ULPS          BIT(27)
 385# define DSI1_STAT_PHY_D1_STOP          BIT(26)
 386# define DSI1_STAT_PHY_D0_ULPS          BIT(25)
 387# define DSI1_STAT_PHY_D0_STOP          BIT(24)
 388# define DSI1_STAT_FIFO_ERR             BIT(23)
 389# define DSI1_STAT_PHY_RXLPDT           BIT(22)
 390# define DSI1_STAT_PHY_RXTRIG           BIT(21)
 391# define DSI1_STAT_PHY_D0_LPDT          BIT(20)
 392/* Set when in forward direction */
 393# define DSI1_STAT_PHY_DIR              BIT(19)
 394# define DSI1_STAT_PHY_CLOCK_ULPS       BIT(18)
 395# define DSI1_STAT_PHY_CLOCK_HS         BIT(17)
 396# define DSI1_STAT_PHY_CLOCK_STOP       BIT(16)
 397# define DSI1_STAT_PR_TO                BIT(15)
 398# define DSI1_STAT_TA_TO                BIT(14)
 399# define DSI1_STAT_LPRX_TO              BIT(13)
 400# define DSI1_STAT_HSTX_TO              BIT(12)
 401# define DSI1_STAT_ERR_CONT_LP1         BIT(11)
 402# define DSI1_STAT_ERR_CONT_LP0         BIT(10)
 403# define DSI1_STAT_ERR_CONTROL          BIT(9)
 404# define DSI1_STAT_ERR_SYNC_ESC         BIT(8)
 405# define DSI1_STAT_RXPKT2               BIT(7)
 406# define DSI1_STAT_RXPKT1               BIT(6)
 407# define DSI1_STAT_TXPKT2_BUSY          BIT(5)
 408# define DSI1_STAT_TXPKT2_DONE          BIT(4)
 409# define DSI1_STAT_TXPKT2_END           BIT(3)
 410# define DSI1_STAT_TXPKT1_BUSY          BIT(2)
 411# define DSI1_STAT_TXPKT1_DONE          BIT(1)
 412# define DSI1_STAT_TXPKT1_END           BIT(0)
 413
 414#define DSI1_HSTX_TO_CNT        0x3c
 415#define DSI1_LPRX_TO_CNT        0x40
 416#define DSI1_TA_TO_CNT          0x44
 417#define DSI1_PR_TO_CNT          0x48
 418#define DSI1_PHYC               0x4c
 419
 420#define DSI1_HS_CLT0            0x50
 421# define DSI_HS_CLT0_CZERO_MASK         VC4_MASK(26, 18)
 422# define DSI_HS_CLT0_CZERO_SHIFT        18
 423# define DSI_HS_CLT0_CPRE_MASK          VC4_MASK(17, 9)
 424# define DSI_HS_CLT0_CPRE_SHIFT         9
 425# define DSI_HS_CLT0_CPREP_MASK         VC4_MASK(8, 0)
 426# define DSI_HS_CLT0_CPREP_SHIFT        0
 427
 428#define DSI1_HS_CLT1            0x54
 429# define DSI_HS_CLT1_CTRAIL_MASK        VC4_MASK(17, 9)
 430# define DSI_HS_CLT1_CTRAIL_SHIFT       9
 431# define DSI_HS_CLT1_CPOST_MASK         VC4_MASK(8, 0)
 432# define DSI_HS_CLT1_CPOST_SHIFT        0
 433
 434#define DSI1_HS_CLT2            0x58
 435# define DSI_HS_CLT2_WUP_MASK           VC4_MASK(23, 0)
 436# define DSI_HS_CLT2_WUP_SHIFT          0
 437
 438#define DSI1_HS_DLT3            0x5c
 439# define DSI_HS_DLT3_EXIT_MASK          VC4_MASK(26, 18)
 440# define DSI_HS_DLT3_EXIT_SHIFT         18
 441# define DSI_HS_DLT3_ZERO_MASK          VC4_MASK(17, 9)
 442# define DSI_HS_DLT3_ZERO_SHIFT         9
 443# define DSI_HS_DLT3_PRE_MASK           VC4_MASK(8, 0)
 444# define DSI_HS_DLT3_PRE_SHIFT          0
 445
 446#define DSI1_HS_DLT4            0x60
 447# define DSI_HS_DLT4_ANLAT_MASK         VC4_MASK(22, 18)
 448# define DSI_HS_DLT4_ANLAT_SHIFT        18
 449# define DSI_HS_DLT4_TRAIL_MASK         VC4_MASK(17, 9)
 450# define DSI_HS_DLT4_TRAIL_SHIFT        9
 451# define DSI_HS_DLT4_LPX_MASK           VC4_MASK(8, 0)
 452# define DSI_HS_DLT4_LPX_SHIFT          0
 453
 454#define DSI1_HS_DLT5            0x64
 455# define DSI_HS_DLT5_INIT_MASK          VC4_MASK(23, 0)
 456# define DSI_HS_DLT5_INIT_SHIFT         0
 457
 458#define DSI1_HS_DLT6            0x68
 459# define DSI_HS_DLT6_TA_GET_MASK        VC4_MASK(31, 24)
 460# define DSI_HS_DLT6_TA_GET_SHIFT       24
 461# define DSI_HS_DLT6_TA_SURE_MASK       VC4_MASK(23, 16)
 462# define DSI_HS_DLT6_TA_SURE_SHIFT      16
 463# define DSI_HS_DLT6_TA_GO_MASK         VC4_MASK(15, 8)
 464# define DSI_HS_DLT6_TA_GO_SHIFT        8
 465# define DSI_HS_DLT6_LP_LPX_MASK        VC4_MASK(7, 0)
 466# define DSI_HS_DLT6_LP_LPX_SHIFT       0
 467
 468#define DSI1_HS_DLT7            0x6c
 469# define DSI_HS_DLT7_LP_WUP_MASK        VC4_MASK(23, 0)
 470# define DSI_HS_DLT7_LP_WUP_SHIFT       0
 471
 472#define DSI1_PHY_AFEC0          0x70
 473
 474#define DSI1_PHY_AFEC1          0x74
 475# define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK       VC4_MASK(19, 16)
 476# define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT      16
 477# define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK       VC4_MASK(15, 12)
 478# define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT      12
 479# define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK       VC4_MASK(11, 8)
 480# define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT      8
 481# define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK       VC4_MASK(7, 4)
 482# define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT      4
 483# define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK        VC4_MASK(3, 0)
 484# define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT       0
 485
 486#define DSI1_TST_SEL            0x78
 487#define DSI1_TST_MON            0x7c
 488#define DSI1_PHY_TST1           0x80
 489#define DSI1_PHY_TST2           0x84
 490#define DSI1_PHY_FIFO_STAT      0x88
 491/* Actually, all registers in the range that aren't otherwise claimed
 492 * will return the ID.
 493 */
 494#define DSI1_ID                 0x8c
 495
 496struct vc4_dsi_variant {
 497        /* Whether we're on bcm2835's DSI0 or DSI1. */
 498        unsigned int port;
 499
 500        bool broken_axi_workaround;
 501
 502        const char *debugfs_name;
 503        const struct debugfs_reg32 *regs;
 504        size_t nregs;
 505
 506};
 507
 508/* General DSI hardware state. */
 509struct vc4_dsi {
 510        struct platform_device *pdev;
 511
 512        struct mipi_dsi_host dsi_host;
 513        struct drm_encoder *encoder;
 514        struct drm_bridge *bridge;
 515        struct list_head bridge_chain;
 516
 517        void __iomem *regs;
 518
 519        struct dma_chan *reg_dma_chan;
 520        dma_addr_t reg_dma_paddr;
 521        u32 *reg_dma_mem;
 522        dma_addr_t reg_paddr;
 523
 524        const struct vc4_dsi_variant *variant;
 525
 526        /* DSI channel for the panel we're connected to. */
 527        u32 channel;
 528        u32 lanes;
 529        u32 format;
 530        u32 divider;
 531        u32 mode_flags;
 532
 533        /* Input clock from CPRMAN to the digital PHY, for the DSI
 534         * escape clock.
 535         */
 536        struct clk *escape_clock;
 537
 538        /* Input clock to the analog PHY, used to generate the DSI bit
 539         * clock.
 540         */
 541        struct clk *pll_phy_clock;
 542
 543        /* HS Clocks generated within the DSI analog PHY. */
 544        struct clk_fixed_factor phy_clocks[3];
 545
 546        struct clk_hw_onecell_data *clk_onecell;
 547
 548        /* Pixel clock output to the pixelvalve, generated from the HS
 549         * clock.
 550         */
 551        struct clk *pixel_clock;
 552
 553        struct completion xfer_completion;
 554        int xfer_result;
 555
 556        struct debugfs_regset32 regset;
 557};
 558
 559#define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
 560
 561static inline void
 562dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
 563{
 564        struct dma_chan *chan = dsi->reg_dma_chan;
 565        struct dma_async_tx_descriptor *tx;
 566        dma_cookie_t cookie;
 567        int ret;
 568
 569        /* DSI0 should be able to write normally. */
 570        if (!chan) {
 571                writel(val, dsi->regs + offset);
 572                return;
 573        }
 574
 575        *dsi->reg_dma_mem = val;
 576
 577        tx = chan->device->device_prep_dma_memcpy(chan,
 578                                                  dsi->reg_paddr + offset,
 579                                                  dsi->reg_dma_paddr,
 580                                                  4, 0);
 581        if (!tx) {
 582                DRM_ERROR("Failed to set up DMA register write\n");
 583                return;
 584        }
 585
 586        cookie = tx->tx_submit(tx);
 587        ret = dma_submit_error(cookie);
 588        if (ret) {
 589                DRM_ERROR("Failed to submit DMA: %d\n", ret);
 590                return;
 591        }
 592        ret = dma_sync_wait(chan, cookie);
 593        if (ret)
 594                DRM_ERROR("Failed to wait for DMA: %d\n", ret);
 595}
 596
 597#define DSI_READ(offset) readl(dsi->regs + (offset))
 598#define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
 599#define DSI_PORT_READ(offset) \
 600        DSI_READ(dsi->variant->port ? DSI1_##offset : DSI0_##offset)
 601#define DSI_PORT_WRITE(offset, val) \
 602        DSI_WRITE(dsi->variant->port ? DSI1_##offset : DSI0_##offset, val)
 603#define DSI_PORT_BIT(bit) (dsi->variant->port ? DSI1_##bit : DSI0_##bit)
 604
 605/* VC4 DSI encoder KMS struct */
 606struct vc4_dsi_encoder {
 607        struct vc4_encoder base;
 608        struct vc4_dsi *dsi;
 609};
 610
 611static inline struct vc4_dsi_encoder *
 612to_vc4_dsi_encoder(struct drm_encoder *encoder)
 613{
 614        return container_of(encoder, struct vc4_dsi_encoder, base.base);
 615}
 616
 617static const struct debugfs_reg32 dsi0_regs[] = {
 618        VC4_REG32(DSI0_CTRL),
 619        VC4_REG32(DSI0_STAT),
 620        VC4_REG32(DSI0_HSTX_TO_CNT),
 621        VC4_REG32(DSI0_LPRX_TO_CNT),
 622        VC4_REG32(DSI0_TA_TO_CNT),
 623        VC4_REG32(DSI0_PR_TO_CNT),
 624        VC4_REG32(DSI0_DISP0_CTRL),
 625        VC4_REG32(DSI0_DISP1_CTRL),
 626        VC4_REG32(DSI0_INT_STAT),
 627        VC4_REG32(DSI0_INT_EN),
 628        VC4_REG32(DSI0_PHYC),
 629        VC4_REG32(DSI0_HS_CLT0),
 630        VC4_REG32(DSI0_HS_CLT1),
 631        VC4_REG32(DSI0_HS_CLT2),
 632        VC4_REG32(DSI0_HS_DLT3),
 633        VC4_REG32(DSI0_HS_DLT4),
 634        VC4_REG32(DSI0_HS_DLT5),
 635        VC4_REG32(DSI0_HS_DLT6),
 636        VC4_REG32(DSI0_HS_DLT7),
 637        VC4_REG32(DSI0_PHY_AFEC0),
 638        VC4_REG32(DSI0_PHY_AFEC1),
 639        VC4_REG32(DSI0_ID),
 640};
 641
 642static const struct debugfs_reg32 dsi1_regs[] = {
 643        VC4_REG32(DSI1_CTRL),
 644        VC4_REG32(DSI1_STAT),
 645        VC4_REG32(DSI1_HSTX_TO_CNT),
 646        VC4_REG32(DSI1_LPRX_TO_CNT),
 647        VC4_REG32(DSI1_TA_TO_CNT),
 648        VC4_REG32(DSI1_PR_TO_CNT),
 649        VC4_REG32(DSI1_DISP0_CTRL),
 650        VC4_REG32(DSI1_DISP1_CTRL),
 651        VC4_REG32(DSI1_INT_STAT),
 652        VC4_REG32(DSI1_INT_EN),
 653        VC4_REG32(DSI1_PHYC),
 654        VC4_REG32(DSI1_HS_CLT0),
 655        VC4_REG32(DSI1_HS_CLT1),
 656        VC4_REG32(DSI1_HS_CLT2),
 657        VC4_REG32(DSI1_HS_DLT3),
 658        VC4_REG32(DSI1_HS_DLT4),
 659        VC4_REG32(DSI1_HS_DLT5),
 660        VC4_REG32(DSI1_HS_DLT6),
 661        VC4_REG32(DSI1_HS_DLT7),
 662        VC4_REG32(DSI1_PHY_AFEC0),
 663        VC4_REG32(DSI1_PHY_AFEC1),
 664        VC4_REG32(DSI1_ID),
 665};
 666
 667static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
 668{
 669        u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
 670
 671        if (latch)
 672                afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
 673        else
 674                afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
 675
 676        DSI_PORT_WRITE(PHY_AFEC0, afec0);
 677}
 678
 679/* Enters or exits Ultra Low Power State. */
 680static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
 681{
 682        bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
 683        u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
 684                         DSI_PHYC_DLANE0_ULPS |
 685                         (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
 686                         (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
 687                         (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
 688        u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
 689                         DSI1_STAT_PHY_D0_ULPS |
 690                         (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
 691                         (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
 692                         (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
 693        u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
 694                         DSI1_STAT_PHY_D0_STOP |
 695                         (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
 696                         (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
 697                         (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
 698        int ret;
 699        bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
 700                                       DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
 701
 702        if (ulps == ulps_currently_enabled)
 703                return;
 704
 705        DSI_PORT_WRITE(STAT, stat_ulps);
 706        DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
 707        ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
 708        if (ret) {
 709                dev_warn(&dsi->pdev->dev,
 710                         "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
 711                         DSI_PORT_READ(STAT));
 712                DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 713                vc4_dsi_latch_ulps(dsi, false);
 714                return;
 715        }
 716
 717        /* The DSI module can't be disabled while the module is
 718         * generating ULPS state.  So, to be able to disable the
 719         * module, we have the AFE latch the ULPS state and continue
 720         * on to having the module enter STOP.
 721         */
 722        vc4_dsi_latch_ulps(dsi, ulps);
 723
 724        DSI_PORT_WRITE(STAT, stat_stop);
 725        DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 726        ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
 727        if (ret) {
 728                dev_warn(&dsi->pdev->dev,
 729                         "Timeout waiting for DSI STOP entry: STAT 0x%08x",
 730                         DSI_PORT_READ(STAT));
 731                DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 732                return;
 733        }
 734}
 735
 736static u32
 737dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
 738{
 739        /* The HS timings have to be rounded up to a multiple of 8
 740         * because we're using the byte clock.
 741         */
 742        return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
 743}
 744
 745/* ESC always runs at 100Mhz. */
 746#define ESC_TIME_NS 10
 747
 748static u32
 749dsi_esc_timing(u32 ns)
 750{
 751        return DIV_ROUND_UP(ns, ESC_TIME_NS);
 752}
 753
 754static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
 755{
 756        struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
 757        struct vc4_dsi *dsi = vc4_encoder->dsi;
 758        struct device *dev = &dsi->pdev->dev;
 759        struct drm_bridge *iter;
 760
 761        list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
 762                if (iter->funcs->disable)
 763                        iter->funcs->disable(iter);
 764        }
 765
 766        vc4_dsi_ulps(dsi, true);
 767
 768        list_for_each_entry_from(iter, &dsi->bridge_chain, chain_node) {
 769                if (iter->funcs->post_disable)
 770                        iter->funcs->post_disable(iter);
 771        }
 772
 773        clk_disable_unprepare(dsi->pll_phy_clock);
 774        clk_disable_unprepare(dsi->escape_clock);
 775        clk_disable_unprepare(dsi->pixel_clock);
 776
 777        pm_runtime_put(dev);
 778}
 779
 780/* Extends the mode's blank intervals to handle BCM2835's integer-only
 781 * DSI PLL divider.
 782 *
 783 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
 784 * driver since most peripherals are hanging off of the PLLD_PER
 785 * divider.  PLLD_DSI1, which drives our DSI bit clock (and therefore
 786 * the pixel clock), only has an integer divider off of DSI.
 787 *
 788 * To get our panel mode to refresh at the expected 60Hz, we need to
 789 * extend the horizontal blank time.  This means we drive a
 790 * higher-than-expected clock rate to the panel, but that's what the
 791 * firmware does too.
 792 */
 793static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
 794                                       const struct drm_display_mode *mode,
 795                                       struct drm_display_mode *adjusted_mode)
 796{
 797        struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
 798        struct vc4_dsi *dsi = vc4_encoder->dsi;
 799        struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
 800        unsigned long parent_rate = clk_get_rate(phy_parent);
 801        unsigned long pixel_clock_hz = mode->clock * 1000;
 802        unsigned long pll_clock = pixel_clock_hz * dsi->divider;
 803        int divider;
 804
 805        /* Find what divider gets us a faster clock than the requested
 806         * pixel clock.
 807         */
 808        for (divider = 1; divider < 8; divider++) {
 809                if (parent_rate / divider < pll_clock) {
 810                        divider--;
 811                        break;
 812                }
 813        }
 814
 815        /* Now that we've picked a PLL divider, calculate back to its
 816         * pixel clock.
 817         */
 818        pll_clock = parent_rate / divider;
 819        pixel_clock_hz = pll_clock / dsi->divider;
 820
 821        adjusted_mode->clock = pixel_clock_hz / 1000;
 822
 823        /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
 824        adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
 825                                mode->clock;
 826        adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
 827        adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
 828
 829        return true;
 830}
 831
 832static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
 833{
 834        struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
 835        struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
 836        struct vc4_dsi *dsi = vc4_encoder->dsi;
 837        struct device *dev = &dsi->pdev->dev;
 838        bool debug_dump_regs = false;
 839        struct drm_bridge *iter;
 840        unsigned long hs_clock;
 841        u32 ui_ns;
 842        /* Minimum LP state duration in escape clock cycles. */
 843        u32 lpx = dsi_esc_timing(60);
 844        unsigned long pixel_clock_hz = mode->clock * 1000;
 845        unsigned long dsip_clock;
 846        unsigned long phy_clock;
 847        int ret;
 848
 849        ret = pm_runtime_get_sync(dev);
 850        if (ret) {
 851                DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->variant->port);
 852                return;
 853        }
 854
 855        if (debug_dump_regs) {
 856                struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
 857                dev_info(&dsi->pdev->dev, "DSI regs before:\n");
 858                drm_print_regset32(&p, &dsi->regset);
 859        }
 860
 861        /* Round up the clk_set_rate() request slightly, since
 862         * PLLD_DSI1 is an integer divider and its rate selection will
 863         * never round up.
 864         */
 865        phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
 866        ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
 867        if (ret) {
 868                dev_err(&dsi->pdev->dev,
 869                        "Failed to set phy clock to %ld: %d\n", phy_clock, ret);
 870        }
 871
 872        /* Reset the DSI and all its fifos. */
 873        DSI_PORT_WRITE(CTRL,
 874                       DSI_CTRL_SOFT_RESET_CFG |
 875                       DSI_PORT_BIT(CTRL_RESET_FIFOS));
 876
 877        DSI_PORT_WRITE(CTRL,
 878                       DSI_CTRL_HSDT_EOT_DISABLE |
 879                       DSI_CTRL_RX_LPDT_EOT_DISABLE);
 880
 881        /* Clear all stat bits so we see what has happened during enable. */
 882        DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
 883
 884        /* Set AFE CTR00/CTR1 to release powerdown of analog. */
 885        if (dsi->variant->port == 0) {
 886                u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
 887                             VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
 888
 889                if (dsi->lanes < 2)
 890                        afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
 891
 892                if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
 893                        afec0 |= DSI0_PHY_AFEC0_RESET;
 894
 895                DSI_PORT_WRITE(PHY_AFEC0, afec0);
 896
 897                DSI_PORT_WRITE(PHY_AFEC1,
 898                               VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE1) |
 899                               VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE0) |
 900                               VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_CLANE));
 901        } else {
 902                u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
 903                             VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
 904                             VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
 905                             VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
 906                             VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
 907                             VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
 908                             VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
 909
 910                if (dsi->lanes < 4)
 911                        afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
 912                if (dsi->lanes < 3)
 913                        afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
 914                if (dsi->lanes < 2)
 915                        afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
 916
 917                afec0 |= DSI1_PHY_AFEC0_RESET;
 918
 919                DSI_PORT_WRITE(PHY_AFEC0, afec0);
 920
 921                DSI_PORT_WRITE(PHY_AFEC1, 0);
 922
 923                /* AFEC reset hold time */
 924                mdelay(1);
 925        }
 926
 927        ret = clk_prepare_enable(dsi->escape_clock);
 928        if (ret) {
 929                DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
 930                return;
 931        }
 932
 933        ret = clk_prepare_enable(dsi->pll_phy_clock);
 934        if (ret) {
 935                DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
 936                return;
 937        }
 938
 939        hs_clock = clk_get_rate(dsi->pll_phy_clock);
 940
 941        /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
 942         * not the pixel clock rate.  DSIxP take from the APHY's byte,
 943         * DDR2, or DDR4 clock (we use byte) and feed into the PV at
 944         * that rate.  Separately, a value derived from PIX_CLK_DIV
 945         * and HS_CLKC is fed into the PV to divide down to the actual
 946         * pixel clock for pushing pixels into DSI.
 947         */
 948        dsip_clock = phy_clock / 8;
 949        ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
 950        if (ret) {
 951                dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
 952                        dsip_clock, ret);
 953        }
 954
 955        ret = clk_prepare_enable(dsi->pixel_clock);
 956        if (ret) {
 957                DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
 958                return;
 959        }
 960
 961        /* How many ns one DSI unit interval is.  Note that the clock
 962         * is DDR, so there's an extra divide by 2.
 963         */
 964        ui_ns = DIV_ROUND_UP(500000000, hs_clock);
 965
 966        DSI_PORT_WRITE(HS_CLT0,
 967                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
 968                                     DSI_HS_CLT0_CZERO) |
 969                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
 970                                     DSI_HS_CLT0_CPRE) |
 971                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
 972                                     DSI_HS_CLT0_CPREP));
 973
 974        DSI_PORT_WRITE(HS_CLT1,
 975                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
 976                                     DSI_HS_CLT1_CTRAIL) |
 977                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
 978                                     DSI_HS_CLT1_CPOST));
 979
 980        DSI_PORT_WRITE(HS_CLT2,
 981                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
 982                                     DSI_HS_CLT2_WUP));
 983
 984        DSI_PORT_WRITE(HS_DLT3,
 985                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
 986                                     DSI_HS_DLT3_EXIT) |
 987                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
 988                                     DSI_HS_DLT3_ZERO) |
 989                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
 990                                     DSI_HS_DLT3_PRE));
 991
 992        DSI_PORT_WRITE(HS_DLT4,
 993                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
 994                                     DSI_HS_DLT4_LPX) |
 995                       VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
 996                                         dsi_hs_timing(ui_ns, 60, 4)),
 997                                     DSI_HS_DLT4_TRAIL) |
 998                       VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
 999
1000        /* T_INIT is how long STOP is driven after power-up to
1001         * indicate to the slave (also coming out of power-up) that
1002         * master init is complete, and should be greater than the
1003         * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE.  The
1004         * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
1005         * T_INIT,SLAVE, while allowing protocols on top of it to give
1006         * greater minimums.  The vc4 firmware uses an extremely
1007         * conservative 5ms, and we maintain that here.
1008         */
1009        DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
1010                                                            5 * 1000 * 1000, 0),
1011                                              DSI_HS_DLT5_INIT));
1012
1013        DSI_PORT_WRITE(HS_DLT6,
1014                       VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1015                       VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1016                       VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1017                       VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1018
1019        DSI_PORT_WRITE(HS_DLT7,
1020                       VC4_SET_FIELD(dsi_esc_timing(1000000),
1021                                     DSI_HS_DLT7_LP_WUP));
1022
1023        DSI_PORT_WRITE(PHYC,
1024                       DSI_PHYC_DLANE0_ENABLE |
1025                       (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1026                       (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1027                       (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1028                       DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1029                       ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1030                        0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1031                       (dsi->variant->port == 0 ?
1032                        VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1033                        VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1034
1035        DSI_PORT_WRITE(CTRL,
1036                       DSI_PORT_READ(CTRL) |
1037                       DSI_CTRL_CAL_BYTE);
1038
1039        /* HS timeout in HS clock cycles: disabled. */
1040        DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1041        /* LP receive timeout in HS clocks. */
1042        DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1043        /* Bus turnaround timeout */
1044        DSI_PORT_WRITE(TA_TO_CNT, 100000);
1045        /* Display reset sequence timeout */
1046        DSI_PORT_WRITE(PR_TO_CNT, 100000);
1047
1048        /* Set up DISP1 for transferring long command payloads through
1049         * the pixfifo.
1050         */
1051        DSI_PORT_WRITE(DISP1_CTRL,
1052                       VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1053                                     DSI_DISP1_PFORMAT) |
1054                       DSI_DISP1_ENABLE);
1055
1056        /* Ungate the block. */
1057        if (dsi->variant->port == 0)
1058                DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1059        else
1060                DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1061
1062        /* Bring AFE out of reset. */
1063        if (dsi->variant->port == 0) {
1064        } else {
1065                DSI_PORT_WRITE(PHY_AFEC0,
1066                               DSI_PORT_READ(PHY_AFEC0) &
1067                               ~DSI1_PHY_AFEC0_RESET);
1068        }
1069
1070        vc4_dsi_ulps(dsi, false);
1071
1072        list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
1073                if (iter->funcs->pre_enable)
1074                        iter->funcs->pre_enable(iter);
1075        }
1076
1077        if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1078                DSI_PORT_WRITE(DISP0_CTRL,
1079                               VC4_SET_FIELD(dsi->divider,
1080                                             DSI_DISP0_PIX_CLK_DIV) |
1081                               VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1082                               VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1083                                             DSI_DISP0_LP_STOP_CTRL) |
1084                               DSI_DISP0_ST_END |
1085                               DSI_DISP0_ENABLE);
1086        } else {
1087                DSI_PORT_WRITE(DISP0_CTRL,
1088                               DSI_DISP0_COMMAND_MODE |
1089                               DSI_DISP0_ENABLE);
1090        }
1091
1092        list_for_each_entry(iter, &dsi->bridge_chain, chain_node) {
1093                if (iter->funcs->enable)
1094                        iter->funcs->enable(iter);
1095        }
1096
1097        if (debug_dump_regs) {
1098                struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
1099                dev_info(&dsi->pdev->dev, "DSI regs after:\n");
1100                drm_print_regset32(&p, &dsi->regset);
1101        }
1102}
1103
1104static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1105                                     const struct mipi_dsi_msg *msg)
1106{
1107        struct vc4_dsi *dsi = host_to_dsi(host);
1108        struct mipi_dsi_packet packet;
1109        u32 pkth = 0, pktc = 0;
1110        int i, ret;
1111        bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1112        u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1113
1114        mipi_dsi_create_packet(&packet, msg);
1115
1116        pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1117        pkth |= VC4_SET_FIELD(packet.header[1] |
1118                              (packet.header[2] << 8),
1119                              DSI_TXPKT1H_BC_PARAM);
1120        if (is_long) {
1121                /* Divide data across the various FIFOs we have available.
1122                 * The command FIFO takes byte-oriented data, but is of
1123                 * limited size. The pixel FIFO (never actually used for
1124                 * pixel data in reality) is word oriented, and substantially
1125                 * larger. So, we use the pixel FIFO for most of the data,
1126                 * sending the residual bytes in the command FIFO at the start.
1127                 *
1128                 * With this arrangement, the command FIFO will never get full.
1129                 */
1130                if (packet.payload_length <= 16) {
1131                        cmd_fifo_len = packet.payload_length;
1132                        pix_fifo_len = 0;
1133                } else {
1134                        cmd_fifo_len = (packet.payload_length %
1135                                        DSI_PIX_FIFO_WIDTH);
1136                        pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1137                                        DSI_PIX_FIFO_WIDTH);
1138                }
1139
1140                WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1141
1142                pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1143        }
1144
1145        if (msg->rx_len) {
1146                pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1147                                      DSI_TXPKT1C_CMD_CTRL);
1148        } else {
1149                pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1150                                      DSI_TXPKT1C_CMD_CTRL);
1151        }
1152
1153        for (i = 0; i < cmd_fifo_len; i++)
1154                DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1155        for (i = 0; i < pix_fifo_len; i++) {
1156                const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1157
1158                DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1159                               pix[0] |
1160                               pix[1] << 8 |
1161                               pix[2] << 16 |
1162                               pix[3] << 24);
1163        }
1164
1165        if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1166                pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1167        if (is_long)
1168                pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1169
1170        /* Send one copy of the packet.  Larger repeats are used for pixel
1171         * data in command mode.
1172         */
1173        pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1174
1175        pktc |= DSI_TXPKT1C_CMD_EN;
1176        if (pix_fifo_len) {
1177                pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1178                                      DSI_TXPKT1C_DISPLAY_NO);
1179        } else {
1180                pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1181                                      DSI_TXPKT1C_DISPLAY_NO);
1182        }
1183
1184        /* Enable the appropriate interrupt for the transfer completion. */
1185        dsi->xfer_result = 0;
1186        reinit_completion(&dsi->xfer_completion);
1187        DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1188        if (msg->rx_len) {
1189                DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1190                                        DSI1_INT_PHY_DIR_RTF));
1191        } else {
1192                DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1193                                        DSI1_INT_TXPKT1_DONE));
1194        }
1195
1196        /* Send the packet. */
1197        DSI_PORT_WRITE(TXPKT1H, pkth);
1198        DSI_PORT_WRITE(TXPKT1C, pktc);
1199
1200        if (!wait_for_completion_timeout(&dsi->xfer_completion,
1201                                         msecs_to_jiffies(1000))) {
1202                dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1203                dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1204                        DSI_PORT_READ(INT_STAT));
1205                ret = -ETIMEDOUT;
1206        } else {
1207                ret = dsi->xfer_result;
1208        }
1209
1210        DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1211
1212        if (ret)
1213                goto reset_fifo_and_return;
1214
1215        if (ret == 0 && msg->rx_len) {
1216                u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1217                u8 *msg_rx = msg->rx_buf;
1218
1219                if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1220                        u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1221                                                  DSI_RXPKT1H_BC_PARAM);
1222
1223                        if (rxlen != msg->rx_len) {
1224                                DRM_ERROR("DSI returned %db, expecting %db\n",
1225                                          rxlen, (int)msg->rx_len);
1226                                ret = -ENXIO;
1227                                goto reset_fifo_and_return;
1228                        }
1229
1230                        for (i = 0; i < msg->rx_len; i++)
1231                                msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1232                } else {
1233                        /* FINISHME: Handle AWER */
1234
1235                        msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1236                                                  DSI_RXPKT1H_SHORT_0);
1237                        if (msg->rx_len > 1) {
1238                                msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1239                                                          DSI_RXPKT1H_SHORT_1);
1240                        }
1241                }
1242        }
1243
1244        return ret;
1245
1246reset_fifo_and_return:
1247        DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1248
1249        DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1250        udelay(1);
1251        DSI_PORT_WRITE(CTRL,
1252                       DSI_PORT_READ(CTRL) |
1253                       DSI_PORT_BIT(CTRL_RESET_FIFOS));
1254
1255        DSI_PORT_WRITE(TXPKT1C, 0);
1256        DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1257        return ret;
1258}
1259
1260static const struct component_ops vc4_dsi_ops;
1261static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1262                               struct mipi_dsi_device *device)
1263{
1264        struct vc4_dsi *dsi = host_to_dsi(host);
1265        int ret;
1266
1267        dsi->lanes = device->lanes;
1268        dsi->channel = device->channel;
1269        dsi->mode_flags = device->mode_flags;
1270
1271        switch (device->format) {
1272        case MIPI_DSI_FMT_RGB888:
1273                dsi->format = DSI_PFORMAT_RGB888;
1274                dsi->divider = 24 / dsi->lanes;
1275                break;
1276        case MIPI_DSI_FMT_RGB666:
1277                dsi->format = DSI_PFORMAT_RGB666;
1278                dsi->divider = 24 / dsi->lanes;
1279                break;
1280        case MIPI_DSI_FMT_RGB666_PACKED:
1281                dsi->format = DSI_PFORMAT_RGB666_PACKED;
1282                dsi->divider = 18 / dsi->lanes;
1283                break;
1284        case MIPI_DSI_FMT_RGB565:
1285                dsi->format = DSI_PFORMAT_RGB565;
1286                dsi->divider = 16 / dsi->lanes;
1287                break;
1288        default:
1289                dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1290                        dsi->format);
1291                return 0;
1292        }
1293
1294        if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1295                dev_err(&dsi->pdev->dev,
1296                        "Only VIDEO mode panels supported currently.\n");
1297                return 0;
1298        }
1299
1300        ret = component_add(&dsi->pdev->dev, &vc4_dsi_ops);
1301        if (ret) {
1302                mipi_dsi_host_unregister(&dsi->dsi_host);
1303                return ret;
1304        }
1305
1306        return 0;
1307}
1308
1309static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1310                               struct mipi_dsi_device *device)
1311{
1312        return 0;
1313}
1314
1315static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1316        .attach = vc4_dsi_host_attach,
1317        .detach = vc4_dsi_host_detach,
1318        .transfer = vc4_dsi_host_transfer,
1319};
1320
1321static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1322        .disable = vc4_dsi_encoder_disable,
1323        .enable = vc4_dsi_encoder_enable,
1324        .mode_fixup = vc4_dsi_encoder_mode_fixup,
1325};
1326
1327static const struct vc4_dsi_variant bcm2711_dsi1_variant = {
1328        .port                   = 1,
1329        .debugfs_name           = "dsi1_regs",
1330        .regs                   = dsi1_regs,
1331        .nregs                  = ARRAY_SIZE(dsi1_regs),
1332};
1333
1334static const struct vc4_dsi_variant bcm2835_dsi0_variant = {
1335        .port                   = 0,
1336        .debugfs_name           = "dsi0_regs",
1337        .regs                   = dsi0_regs,
1338        .nregs                  = ARRAY_SIZE(dsi0_regs),
1339};
1340
1341static const struct vc4_dsi_variant bcm2835_dsi1_variant = {
1342        .port                   = 1,
1343        .broken_axi_workaround  = true,
1344        .debugfs_name           = "dsi1_regs",
1345        .regs                   = dsi1_regs,
1346        .nregs                  = ARRAY_SIZE(dsi1_regs),
1347};
1348
1349static const struct of_device_id vc4_dsi_dt_match[] = {
1350        { .compatible = "brcm,bcm2711-dsi1", &bcm2711_dsi1_variant },
1351        { .compatible = "brcm,bcm2835-dsi0", &bcm2835_dsi0_variant },
1352        { .compatible = "brcm,bcm2835-dsi1", &bcm2835_dsi1_variant },
1353        {}
1354};
1355
1356static void dsi_handle_error(struct vc4_dsi *dsi,
1357                             irqreturn_t *ret, u32 stat, u32 bit,
1358                             const char *type)
1359{
1360        if (!(stat & bit))
1361                return;
1362
1363        DRM_ERROR("DSI%d: %s error\n", dsi->variant->port, type);
1364        *ret = IRQ_HANDLED;
1365}
1366
1367/*
1368 * Initial handler for port 1 where we need the reg_dma workaround.
1369 * The register DMA writes sleep, so we can't do it in the top half.
1370 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1371 * parent interrupt contrller until our interrupt thread is done.
1372 */
1373static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
1374{
1375        struct vc4_dsi *dsi = data;
1376        u32 stat = DSI_PORT_READ(INT_STAT);
1377
1378        if (!stat)
1379                return IRQ_NONE;
1380
1381        return IRQ_WAKE_THREAD;
1382}
1383
1384/*
1385 * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1386 * 1 where we need the reg_dma workaround.
1387 */
1388static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1389{
1390        struct vc4_dsi *dsi = data;
1391        u32 stat = DSI_PORT_READ(INT_STAT);
1392        irqreturn_t ret = IRQ_NONE;
1393
1394        DSI_PORT_WRITE(INT_STAT, stat);
1395
1396        dsi_handle_error(dsi, &ret, stat,
1397                         DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
1398        dsi_handle_error(dsi, &ret, stat,
1399                         DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
1400        dsi_handle_error(dsi, &ret, stat,
1401                         DSI1_INT_ERR_CONT_LP0, "LP0 contention");
1402        dsi_handle_error(dsi, &ret, stat,
1403                         DSI1_INT_ERR_CONT_LP1, "LP1 contention");
1404        dsi_handle_error(dsi, &ret, stat,
1405                         DSI1_INT_HSTX_TO, "HSTX timeout");
1406        dsi_handle_error(dsi, &ret, stat,
1407                         DSI1_INT_LPRX_TO, "LPRX timeout");
1408        dsi_handle_error(dsi, &ret, stat,
1409                         DSI1_INT_TA_TO, "turnaround timeout");
1410        dsi_handle_error(dsi, &ret, stat,
1411                         DSI1_INT_PR_TO, "peripheral reset timeout");
1412
1413        if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
1414                complete(&dsi->xfer_completion);
1415                ret = IRQ_HANDLED;
1416        } else if (stat & DSI1_INT_HSTX_TO) {
1417                complete(&dsi->xfer_completion);
1418                dsi->xfer_result = -ETIMEDOUT;
1419                ret = IRQ_HANDLED;
1420        }
1421
1422        return ret;
1423}
1424
1425/**
1426 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1427 * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1428 * @dsi: DSI encoder
1429 */
1430static int
1431vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1432{
1433        struct device *dev = &dsi->pdev->dev;
1434        const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1435        static const struct {
1436                const char *name;
1437                int div;
1438        } phy_clocks[] = {
1439                { "byte", 8 },
1440                { "ddr2", 4 },
1441                { "ddr", 2 },
1442        };
1443        int i;
1444
1445        dsi->clk_onecell = devm_kzalloc(dev,
1446                                        sizeof(*dsi->clk_onecell) +
1447                                        ARRAY_SIZE(phy_clocks) *
1448                                        sizeof(struct clk_hw *),
1449                                        GFP_KERNEL);
1450        if (!dsi->clk_onecell)
1451                return -ENOMEM;
1452        dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1453
1454        for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1455                struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1456                struct clk_init_data init;
1457                char clk_name[16];
1458                int ret;
1459
1460                snprintf(clk_name, sizeof(clk_name),
1461                         "dsi%u_%s", dsi->variant->port, phy_clocks[i].name);
1462
1463                /* We just use core fixed factor clock ops for the PHY
1464                 * clocks.  The clocks are actually gated by the
1465                 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1466                 * setting if we use the DDR/DDR2 clocks.  However,
1467                 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1468                 * setting both our parent DSI PLL's rate and this
1469                 * clock's rate, so it knows if DDR/DDR2 are going to
1470                 * be used and could enable the gates itself.
1471                 */
1472                fix->mult = 1;
1473                fix->div = phy_clocks[i].div;
1474                fix->hw.init = &init;
1475
1476                memset(&init, 0, sizeof(init));
1477                init.parent_names = &parent_name;
1478                init.num_parents = 1;
1479                init.name = clk_name;
1480                init.ops = &clk_fixed_factor_ops;
1481
1482                ret = devm_clk_hw_register(dev, &fix->hw);
1483                if (ret)
1484                        return ret;
1485
1486                dsi->clk_onecell->hws[i] = &fix->hw;
1487        }
1488
1489        return of_clk_add_hw_provider(dev->of_node,
1490                                      of_clk_hw_onecell_get,
1491                                      dsi->clk_onecell);
1492}
1493
1494static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1495{
1496        struct platform_device *pdev = to_platform_device(dev);
1497        struct drm_device *drm = dev_get_drvdata(master);
1498        struct vc4_dsi *dsi = dev_get_drvdata(dev);
1499        struct vc4_dsi_encoder *vc4_dsi_encoder;
1500        struct drm_panel *panel;
1501        const struct of_device_id *match;
1502        dma_cap_mask_t dma_mask;
1503        int ret;
1504
1505        match = of_match_device(vc4_dsi_dt_match, dev);
1506        if (!match)
1507                return -ENODEV;
1508
1509        dsi->variant = match->data;
1510
1511        vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
1512                                       GFP_KERNEL);
1513        if (!vc4_dsi_encoder)
1514                return -ENOMEM;
1515
1516        INIT_LIST_HEAD(&dsi->bridge_chain);
1517        vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
1518        vc4_dsi_encoder->dsi = dsi;
1519        dsi->encoder = &vc4_dsi_encoder->base.base;
1520
1521        dsi->regs = vc4_ioremap_regs(pdev, 0);
1522        if (IS_ERR(dsi->regs))
1523                return PTR_ERR(dsi->regs);
1524
1525        dsi->regset.base = dsi->regs;
1526        dsi->regset.regs = dsi->variant->regs;
1527        dsi->regset.nregs = dsi->variant->nregs;
1528
1529        if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1530                dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1531                        DSI_PORT_READ(ID), DSI_ID_VALUE);
1532                return -ENODEV;
1533        }
1534
1535        /* DSI1 on BCM2835/6/7 has a broken AXI slave that doesn't respond to
1536         * writes from the ARM.  It does handle writes from the DMA engine,
1537         * so set up a channel for talking to it.
1538         */
1539        if (dsi->variant->broken_axi_workaround) {
1540                dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1541                                                      &dsi->reg_dma_paddr,
1542                                                      GFP_KERNEL);
1543                if (!dsi->reg_dma_mem) {
1544                        DRM_ERROR("Failed to get DMA memory\n");
1545                        return -ENOMEM;
1546                }
1547
1548                dma_cap_zero(dma_mask);
1549                dma_cap_set(DMA_MEMCPY, dma_mask);
1550                dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1551                if (IS_ERR(dsi->reg_dma_chan)) {
1552                        ret = PTR_ERR(dsi->reg_dma_chan);
1553                        if (ret != -EPROBE_DEFER)
1554                                DRM_ERROR("Failed to get DMA channel: %d\n",
1555                                          ret);
1556                        return ret;
1557                }
1558
1559                /* Get the physical address of the device's registers.  The
1560                 * struct resource for the regs gives us the bus address
1561                 * instead.
1562                 */
1563                dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1564                                                             0, NULL, NULL));
1565        }
1566
1567        init_completion(&dsi->xfer_completion);
1568        /* At startup enable error-reporting interrupts and nothing else. */
1569        DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1570        /* Clear any existing interrupt state. */
1571        DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1572
1573        if (dsi->reg_dma_mem)
1574                ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
1575                                                vc4_dsi_irq_defer_to_thread_handler,
1576                                                vc4_dsi_irq_handler,
1577                                                IRQF_ONESHOT,
1578                                                "vc4 dsi", dsi);
1579        else
1580                ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1581                                       vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1582        if (ret) {
1583                if (ret != -EPROBE_DEFER)
1584                        dev_err(dev, "Failed to get interrupt: %d\n", ret);
1585                return ret;
1586        }
1587
1588        dsi->escape_clock = devm_clk_get(dev, "escape");
1589        if (IS_ERR(dsi->escape_clock)) {
1590                ret = PTR_ERR(dsi->escape_clock);
1591                if (ret != -EPROBE_DEFER)
1592                        dev_err(dev, "Failed to get escape clock: %d\n", ret);
1593                return ret;
1594        }
1595
1596        dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1597        if (IS_ERR(dsi->pll_phy_clock)) {
1598                ret = PTR_ERR(dsi->pll_phy_clock);
1599                if (ret != -EPROBE_DEFER)
1600                        dev_err(dev, "Failed to get phy clock: %d\n", ret);
1601                return ret;
1602        }
1603
1604        dsi->pixel_clock = devm_clk_get(dev, "pixel");
1605        if (IS_ERR(dsi->pixel_clock)) {
1606                ret = PTR_ERR(dsi->pixel_clock);
1607                if (ret != -EPROBE_DEFER)
1608                        dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1609                return ret;
1610        }
1611
1612        ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0,
1613                                          &panel, &dsi->bridge);
1614        if (ret) {
1615                /* If the bridge or panel pointed by dev->of_node is not
1616                 * enabled, just return 0 here so that we don't prevent the DRM
1617                 * dev from being registered. Of course that means the DSI
1618                 * encoder won't be exposed, but that's not a problem since
1619                 * nothing is connected to it.
1620                 */
1621                if (ret == -ENODEV)
1622                        return 0;
1623
1624                return ret;
1625        }
1626
1627        if (panel) {
1628                dsi->bridge = devm_drm_panel_bridge_add_typed(dev, panel,
1629                                                              DRM_MODE_CONNECTOR_DSI);
1630                if (IS_ERR(dsi->bridge))
1631                        return PTR_ERR(dsi->bridge);
1632        }
1633
1634        /* The esc clock rate is supposed to always be 100Mhz. */
1635        ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1636        if (ret) {
1637                dev_err(dev, "Failed to set esc clock: %d\n", ret);
1638                return ret;
1639        }
1640
1641        ret = vc4_dsi_init_phy_clocks(dsi);
1642        if (ret)
1643                return ret;
1644
1645        drm_simple_encoder_init(drm, dsi->encoder, DRM_MODE_ENCODER_DSI);
1646        drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
1647
1648        ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL, 0);
1649        if (ret)
1650                return ret;
1651        /* Disable the atomic helper calls into the bridge.  We
1652         * manually call the bridge pre_enable / enable / etc. calls
1653         * from our driver, since we need to sequence them within the
1654         * encoder's enable/disable paths.
1655         */
1656        list_splice_init(&dsi->encoder->bridge_chain, &dsi->bridge_chain);
1657
1658        vc4_debugfs_add_regset32(drm, dsi->variant->debugfs_name, &dsi->regset);
1659
1660        pm_runtime_enable(dev);
1661
1662        return 0;
1663}
1664
1665static void vc4_dsi_unbind(struct device *dev, struct device *master,
1666                           void *data)
1667{
1668        struct vc4_dsi *dsi = dev_get_drvdata(dev);
1669
1670        if (dsi->bridge)
1671                pm_runtime_disable(dev);
1672
1673        /*
1674         * Restore the bridge_chain so the bridge detach procedure can happen
1675         * normally.
1676         */
1677        list_splice_init(&dsi->bridge_chain, &dsi->encoder->bridge_chain);
1678        drm_encoder_cleanup(dsi->encoder);
1679}
1680
1681static const struct component_ops vc4_dsi_ops = {
1682        .bind   = vc4_dsi_bind,
1683        .unbind = vc4_dsi_unbind,
1684};
1685
1686static int vc4_dsi_dev_probe(struct platform_device *pdev)
1687{
1688        struct device *dev = &pdev->dev;
1689        struct vc4_dsi *dsi;
1690
1691        dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
1692        if (!dsi)
1693                return -ENOMEM;
1694        dev_set_drvdata(dev, dsi);
1695
1696        dsi->pdev = pdev;
1697        dsi->dsi_host.ops = &vc4_dsi_host_ops;
1698        dsi->dsi_host.dev = dev;
1699        mipi_dsi_host_register(&dsi->dsi_host);
1700
1701        return 0;
1702}
1703
1704static int vc4_dsi_dev_remove(struct platform_device *pdev)
1705{
1706        struct device *dev = &pdev->dev;
1707        struct vc4_dsi *dsi = dev_get_drvdata(dev);
1708
1709        component_del(&pdev->dev, &vc4_dsi_ops);
1710        mipi_dsi_host_unregister(&dsi->dsi_host);
1711
1712        return 0;
1713}
1714
1715struct platform_driver vc4_dsi_driver = {
1716        .probe = vc4_dsi_dev_probe,
1717        .remove = vc4_dsi_dev_remove,
1718        .driver = {
1719                .name = "vc4_dsi",
1720                .of_match_table = vc4_dsi_dt_match,
1721        },
1722};
1723