linux/drivers/hv/hv_balloon.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2012, Microsoft Corporation.
   4 *
   5 * Author:
   6 *   K. Y. Srinivasan <kys@microsoft.com>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/kernel.h>
  12#include <linux/jiffies.h>
  13#include <linux/mman.h>
  14#include <linux/delay.h>
  15#include <linux/init.h>
  16#include <linux/module.h>
  17#include <linux/slab.h>
  18#include <linux/kthread.h>
  19#include <linux/completion.h>
  20#include <linux/memory_hotplug.h>
  21#include <linux/memory.h>
  22#include <linux/notifier.h>
  23#include <linux/percpu_counter.h>
  24#include <linux/page_reporting.h>
  25
  26#include <linux/hyperv.h>
  27#include <asm/hyperv-tlfs.h>
  28
  29#include <asm/mshyperv.h>
  30
  31#define CREATE_TRACE_POINTS
  32#include "hv_trace_balloon.h"
  33
  34/*
  35 * We begin with definitions supporting the Dynamic Memory protocol
  36 * with the host.
  37 *
  38 * Begin protocol definitions.
  39 */
  40
  41
  42
  43/*
  44 * Protocol versions. The low word is the minor version, the high word the major
  45 * version.
  46 *
  47 * History:
  48 * Initial version 1.0
  49 * Changed to 0.1 on 2009/03/25
  50 * Changes to 0.2 on 2009/05/14
  51 * Changes to 0.3 on 2009/12/03
  52 * Changed to 1.0 on 2011/04/05
  53 */
  54
  55#define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
  56#define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
  57#define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
  58
  59enum {
  60        DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
  61        DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
  62        DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
  63
  64        DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
  65        DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
  66        DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
  67
  68        DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
  69};
  70
  71
  72
  73/*
  74 * Message Types
  75 */
  76
  77enum dm_message_type {
  78        /*
  79         * Version 0.3
  80         */
  81        DM_ERROR                        = 0,
  82        DM_VERSION_REQUEST              = 1,
  83        DM_VERSION_RESPONSE             = 2,
  84        DM_CAPABILITIES_REPORT          = 3,
  85        DM_CAPABILITIES_RESPONSE        = 4,
  86        DM_STATUS_REPORT                = 5,
  87        DM_BALLOON_REQUEST              = 6,
  88        DM_BALLOON_RESPONSE             = 7,
  89        DM_UNBALLOON_REQUEST            = 8,
  90        DM_UNBALLOON_RESPONSE           = 9,
  91        DM_MEM_HOT_ADD_REQUEST          = 10,
  92        DM_MEM_HOT_ADD_RESPONSE         = 11,
  93        DM_VERSION_03_MAX               = 11,
  94        /*
  95         * Version 1.0.
  96         */
  97        DM_INFO_MESSAGE                 = 12,
  98        DM_VERSION_1_MAX                = 12
  99};
 100
 101
 102/*
 103 * Structures defining the dynamic memory management
 104 * protocol.
 105 */
 106
 107union dm_version {
 108        struct {
 109                __u16 minor_version;
 110                __u16 major_version;
 111        };
 112        __u32 version;
 113} __packed;
 114
 115
 116union dm_caps {
 117        struct {
 118                __u64 balloon:1;
 119                __u64 hot_add:1;
 120                /*
 121                 * To support guests that may have alignment
 122                 * limitations on hot-add, the guest can specify
 123                 * its alignment requirements; a value of n
 124                 * represents an alignment of 2^n in mega bytes.
 125                 */
 126                __u64 hot_add_alignment:4;
 127                __u64 reservedz:58;
 128        } cap_bits;
 129        __u64 caps;
 130} __packed;
 131
 132union dm_mem_page_range {
 133        struct  {
 134                /*
 135                 * The PFN number of the first page in the range.
 136                 * 40 bits is the architectural limit of a PFN
 137                 * number for AMD64.
 138                 */
 139                __u64 start_page:40;
 140                /*
 141                 * The number of pages in the range.
 142                 */
 143                __u64 page_cnt:24;
 144        } finfo;
 145        __u64  page_range;
 146} __packed;
 147
 148
 149
 150/*
 151 * The header for all dynamic memory messages:
 152 *
 153 * type: Type of the message.
 154 * size: Size of the message in bytes; including the header.
 155 * trans_id: The guest is responsible for manufacturing this ID.
 156 */
 157
 158struct dm_header {
 159        __u16 type;
 160        __u16 size;
 161        __u32 trans_id;
 162} __packed;
 163
 164/*
 165 * A generic message format for dynamic memory.
 166 * Specific message formats are defined later in the file.
 167 */
 168
 169struct dm_message {
 170        struct dm_header hdr;
 171        __u8 data[]; /* enclosed message */
 172} __packed;
 173
 174
 175/*
 176 * Specific message types supporting the dynamic memory protocol.
 177 */
 178
 179/*
 180 * Version negotiation message. Sent from the guest to the host.
 181 * The guest is free to try different versions until the host
 182 * accepts the version.
 183 *
 184 * dm_version: The protocol version requested.
 185 * is_last_attempt: If TRUE, this is the last version guest will request.
 186 * reservedz: Reserved field, set to zero.
 187 */
 188
 189struct dm_version_request {
 190        struct dm_header hdr;
 191        union dm_version version;
 192        __u32 is_last_attempt:1;
 193        __u32 reservedz:31;
 194} __packed;
 195
 196/*
 197 * Version response message; Host to Guest and indicates
 198 * if the host has accepted the version sent by the guest.
 199 *
 200 * is_accepted: If TRUE, host has accepted the version and the guest
 201 * should proceed to the next stage of the protocol. FALSE indicates that
 202 * guest should re-try with a different version.
 203 *
 204 * reservedz: Reserved field, set to zero.
 205 */
 206
 207struct dm_version_response {
 208        struct dm_header hdr;
 209        __u64 is_accepted:1;
 210        __u64 reservedz:63;
 211} __packed;
 212
 213/*
 214 * Message reporting capabilities. This is sent from the guest to the
 215 * host.
 216 */
 217
 218struct dm_capabilities {
 219        struct dm_header hdr;
 220        union dm_caps caps;
 221        __u64 min_page_cnt;
 222        __u64 max_page_number;
 223} __packed;
 224
 225/*
 226 * Response to the capabilities message. This is sent from the host to the
 227 * guest. This message notifies if the host has accepted the guest's
 228 * capabilities. If the host has not accepted, the guest must shutdown
 229 * the service.
 230 *
 231 * is_accepted: Indicates if the host has accepted guest's capabilities.
 232 * reservedz: Must be 0.
 233 */
 234
 235struct dm_capabilities_resp_msg {
 236        struct dm_header hdr;
 237        __u64 is_accepted:1;
 238        __u64 reservedz:63;
 239} __packed;
 240
 241/*
 242 * This message is used to report memory pressure from the guest.
 243 * This message is not part of any transaction and there is no
 244 * response to this message.
 245 *
 246 * num_avail: Available memory in pages.
 247 * num_committed: Committed memory in pages.
 248 * page_file_size: The accumulated size of all page files
 249 *                 in the system in pages.
 250 * zero_free: The nunber of zero and free pages.
 251 * page_file_writes: The writes to the page file in pages.
 252 * io_diff: An indicator of file cache efficiency or page file activity,
 253 *          calculated as File Cache Page Fault Count - Page Read Count.
 254 *          This value is in pages.
 255 *
 256 * Some of these metrics are Windows specific and fortunately
 257 * the algorithm on the host side that computes the guest memory
 258 * pressure only uses num_committed value.
 259 */
 260
 261struct dm_status {
 262        struct dm_header hdr;
 263        __u64 num_avail;
 264        __u64 num_committed;
 265        __u64 page_file_size;
 266        __u64 zero_free;
 267        __u32 page_file_writes;
 268        __u32 io_diff;
 269} __packed;
 270
 271
 272/*
 273 * Message to ask the guest to allocate memory - balloon up message.
 274 * This message is sent from the host to the guest. The guest may not be
 275 * able to allocate as much memory as requested.
 276 *
 277 * num_pages: number of pages to allocate.
 278 */
 279
 280struct dm_balloon {
 281        struct dm_header hdr;
 282        __u32 num_pages;
 283        __u32 reservedz;
 284} __packed;
 285
 286
 287/*
 288 * Balloon response message; this message is sent from the guest
 289 * to the host in response to the balloon message.
 290 *
 291 * reservedz: Reserved; must be set to zero.
 292 * more_pages: If FALSE, this is the last message of the transaction.
 293 * if TRUE there will atleast one more message from the guest.
 294 *
 295 * range_count: The number of ranges in the range array.
 296 *
 297 * range_array: An array of page ranges returned to the host.
 298 *
 299 */
 300
 301struct dm_balloon_response {
 302        struct dm_header hdr;
 303        __u32 reservedz;
 304        __u32 more_pages:1;
 305        __u32 range_count:31;
 306        union dm_mem_page_range range_array[];
 307} __packed;
 308
 309/*
 310 * Un-balloon message; this message is sent from the host
 311 * to the guest to give guest more memory.
 312 *
 313 * more_pages: If FALSE, this is the last message of the transaction.
 314 * if TRUE there will atleast one more message from the guest.
 315 *
 316 * reservedz: Reserved; must be set to zero.
 317 *
 318 * range_count: The number of ranges in the range array.
 319 *
 320 * range_array: An array of page ranges returned to the host.
 321 *
 322 */
 323
 324struct dm_unballoon_request {
 325        struct dm_header hdr;
 326        __u32 more_pages:1;
 327        __u32 reservedz:31;
 328        __u32 range_count;
 329        union dm_mem_page_range range_array[];
 330} __packed;
 331
 332/*
 333 * Un-balloon response message; this message is sent from the guest
 334 * to the host in response to an unballoon request.
 335 *
 336 */
 337
 338struct dm_unballoon_response {
 339        struct dm_header hdr;
 340} __packed;
 341
 342
 343/*
 344 * Hot add request message. Message sent from the host to the guest.
 345 *
 346 * mem_range: Memory range to hot add.
 347 *
 348 */
 349
 350struct dm_hot_add {
 351        struct dm_header hdr;
 352        union dm_mem_page_range range;
 353} __packed;
 354
 355/*
 356 * Hot add response message.
 357 * This message is sent by the guest to report the status of a hot add request.
 358 * If page_count is less than the requested page count, then the host should
 359 * assume all further hot add requests will fail, since this indicates that
 360 * the guest has hit an upper physical memory barrier.
 361 *
 362 * Hot adds may also fail due to low resources; in this case, the guest must
 363 * not complete this message until the hot add can succeed, and the host must
 364 * not send a new hot add request until the response is sent.
 365 * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
 366 * times it fails the request.
 367 *
 368 *
 369 * page_count: number of pages that were successfully hot added.
 370 *
 371 * result: result of the operation 1: success, 0: failure.
 372 *
 373 */
 374
 375struct dm_hot_add_response {
 376        struct dm_header hdr;
 377        __u32 page_count;
 378        __u32 result;
 379} __packed;
 380
 381/*
 382 * Types of information sent from host to the guest.
 383 */
 384
 385enum dm_info_type {
 386        INFO_TYPE_MAX_PAGE_CNT = 0,
 387        MAX_INFO_TYPE
 388};
 389
 390
 391/*
 392 * Header for the information message.
 393 */
 394
 395struct dm_info_header {
 396        enum dm_info_type type;
 397        __u32 data_size;
 398} __packed;
 399
 400/*
 401 * This message is sent from the host to the guest to pass
 402 * some relevant information (win8 addition).
 403 *
 404 * reserved: no used.
 405 * info_size: size of the information blob.
 406 * info: information blob.
 407 */
 408
 409struct dm_info_msg {
 410        struct dm_header hdr;
 411        __u32 reserved;
 412        __u32 info_size;
 413        __u8  info[];
 414};
 415
 416/*
 417 * End protocol definitions.
 418 */
 419
 420/*
 421 * State to manage hot adding memory into the guest.
 422 * The range start_pfn : end_pfn specifies the range
 423 * that the host has asked us to hot add. The range
 424 * start_pfn : ha_end_pfn specifies the range that we have
 425 * currently hot added. We hot add in multiples of 128M
 426 * chunks; it is possible that we may not be able to bring
 427 * online all the pages in the region. The range
 428 * covered_start_pfn:covered_end_pfn defines the pages that can
 429 * be brough online.
 430 */
 431
 432struct hv_hotadd_state {
 433        struct list_head list;
 434        unsigned long start_pfn;
 435        unsigned long covered_start_pfn;
 436        unsigned long covered_end_pfn;
 437        unsigned long ha_end_pfn;
 438        unsigned long end_pfn;
 439        /*
 440         * A list of gaps.
 441         */
 442        struct list_head gap_list;
 443};
 444
 445struct hv_hotadd_gap {
 446        struct list_head list;
 447        unsigned long start_pfn;
 448        unsigned long end_pfn;
 449};
 450
 451struct balloon_state {
 452        __u32 num_pages;
 453        struct work_struct wrk;
 454};
 455
 456struct hot_add_wrk {
 457        union dm_mem_page_range ha_page_range;
 458        union dm_mem_page_range ha_region_range;
 459        struct work_struct wrk;
 460};
 461
 462static bool allow_hibernation;
 463static bool hot_add = true;
 464static bool do_hot_add;
 465/*
 466 * Delay reporting memory pressure by
 467 * the specified number of seconds.
 468 */
 469static uint pressure_report_delay = 45;
 470
 471/*
 472 * The last time we posted a pressure report to host.
 473 */
 474static unsigned long last_post_time;
 475
 476module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
 477MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
 478
 479module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
 480MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
 481static atomic_t trans_id = ATOMIC_INIT(0);
 482
 483static int dm_ring_size = 20 * 1024;
 484
 485/*
 486 * Driver specific state.
 487 */
 488
 489enum hv_dm_state {
 490        DM_INITIALIZING = 0,
 491        DM_INITIALIZED,
 492        DM_BALLOON_UP,
 493        DM_BALLOON_DOWN,
 494        DM_HOT_ADD,
 495        DM_INIT_ERROR
 496};
 497
 498
 499static __u8 recv_buffer[HV_HYP_PAGE_SIZE];
 500static __u8 balloon_up_send_buffer[HV_HYP_PAGE_SIZE];
 501#define PAGES_IN_2M (2 * 1024 * 1024 / PAGE_SIZE)
 502#define HA_CHUNK (128 * 1024 * 1024 / PAGE_SIZE)
 503
 504struct hv_dynmem_device {
 505        struct hv_device *dev;
 506        enum hv_dm_state state;
 507        struct completion host_event;
 508        struct completion config_event;
 509
 510        /*
 511         * Number of pages we have currently ballooned out.
 512         */
 513        unsigned int num_pages_ballooned;
 514        unsigned int num_pages_onlined;
 515        unsigned int num_pages_added;
 516
 517        /*
 518         * State to manage the ballooning (up) operation.
 519         */
 520        struct balloon_state balloon_wrk;
 521
 522        /*
 523         * State to execute the "hot-add" operation.
 524         */
 525        struct hot_add_wrk ha_wrk;
 526
 527        /*
 528         * This state tracks if the host has specified a hot-add
 529         * region.
 530         */
 531        bool host_specified_ha_region;
 532
 533        /*
 534         * State to synchronize hot-add.
 535         */
 536        struct completion  ol_waitevent;
 537        /*
 538         * This thread handles hot-add
 539         * requests from the host as well as notifying
 540         * the host with regards to memory pressure in
 541         * the guest.
 542         */
 543        struct task_struct *thread;
 544
 545        /*
 546         * Protects ha_region_list, num_pages_onlined counter and individual
 547         * regions from ha_region_list.
 548         */
 549        spinlock_t ha_lock;
 550
 551        /*
 552         * A list of hot-add regions.
 553         */
 554        struct list_head ha_region_list;
 555
 556        /*
 557         * We start with the highest version we can support
 558         * and downgrade based on the host; we save here the
 559         * next version to try.
 560         */
 561        __u32 next_version;
 562
 563        /*
 564         * The negotiated version agreed by host.
 565         */
 566        __u32 version;
 567
 568        struct page_reporting_dev_info pr_dev_info;
 569};
 570
 571static struct hv_dynmem_device dm_device;
 572
 573static void post_status(struct hv_dynmem_device *dm);
 574
 575#ifdef CONFIG_MEMORY_HOTPLUG
 576static inline bool has_pfn_is_backed(struct hv_hotadd_state *has,
 577                                     unsigned long pfn)
 578{
 579        struct hv_hotadd_gap *gap;
 580
 581        /* The page is not backed. */
 582        if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn))
 583                return false;
 584
 585        /* Check for gaps. */
 586        list_for_each_entry(gap, &has->gap_list, list) {
 587                if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn))
 588                        return false;
 589        }
 590
 591        return true;
 592}
 593
 594static unsigned long hv_page_offline_check(unsigned long start_pfn,
 595                                           unsigned long nr_pages)
 596{
 597        unsigned long pfn = start_pfn, count = 0;
 598        struct hv_hotadd_state *has;
 599        bool found;
 600
 601        while (pfn < start_pfn + nr_pages) {
 602                /*
 603                 * Search for HAS which covers the pfn and when we find one
 604                 * count how many consequitive PFNs are covered.
 605                 */
 606                found = false;
 607                list_for_each_entry(has, &dm_device.ha_region_list, list) {
 608                        while ((pfn >= has->start_pfn) &&
 609                               (pfn < has->end_pfn) &&
 610                               (pfn < start_pfn + nr_pages)) {
 611                                found = true;
 612                                if (has_pfn_is_backed(has, pfn))
 613                                        count++;
 614                                pfn++;
 615                        }
 616                }
 617
 618                /*
 619                 * This PFN is not in any HAS (e.g. we're offlining a region
 620                 * which was present at boot), no need to account for it. Go
 621                 * to the next one.
 622                 */
 623                if (!found)
 624                        pfn++;
 625        }
 626
 627        return count;
 628}
 629
 630static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
 631                              void *v)
 632{
 633        struct memory_notify *mem = (struct memory_notify *)v;
 634        unsigned long flags, pfn_count;
 635
 636        switch (val) {
 637        case MEM_ONLINE:
 638        case MEM_CANCEL_ONLINE:
 639                complete(&dm_device.ol_waitevent);
 640                break;
 641
 642        case MEM_OFFLINE:
 643                spin_lock_irqsave(&dm_device.ha_lock, flags);
 644                pfn_count = hv_page_offline_check(mem->start_pfn,
 645                                                  mem->nr_pages);
 646                if (pfn_count <= dm_device.num_pages_onlined) {
 647                        dm_device.num_pages_onlined -= pfn_count;
 648                } else {
 649                        /*
 650                         * We're offlining more pages than we managed to online.
 651                         * This is unexpected. In any case don't let
 652                         * num_pages_onlined wrap around zero.
 653                         */
 654                        WARN_ON_ONCE(1);
 655                        dm_device.num_pages_onlined = 0;
 656                }
 657                spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 658                break;
 659        case MEM_GOING_ONLINE:
 660        case MEM_GOING_OFFLINE:
 661        case MEM_CANCEL_OFFLINE:
 662                break;
 663        }
 664        return NOTIFY_OK;
 665}
 666
 667static struct notifier_block hv_memory_nb = {
 668        .notifier_call = hv_memory_notifier,
 669        .priority = 0
 670};
 671
 672/* Check if the particular page is backed and can be onlined and online it. */
 673static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
 674{
 675        if (!has_pfn_is_backed(has, page_to_pfn(pg))) {
 676                if (!PageOffline(pg))
 677                        __SetPageOffline(pg);
 678                return;
 679        }
 680        if (PageOffline(pg))
 681                __ClearPageOffline(pg);
 682
 683        /* This frame is currently backed; online the page. */
 684        generic_online_page(pg, 0);
 685
 686        lockdep_assert_held(&dm_device.ha_lock);
 687        dm_device.num_pages_onlined++;
 688}
 689
 690static void hv_bring_pgs_online(struct hv_hotadd_state *has,
 691                                unsigned long start_pfn, unsigned long size)
 692{
 693        int i;
 694
 695        pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
 696        for (i = 0; i < size; i++)
 697                hv_page_online_one(has, pfn_to_page(start_pfn + i));
 698}
 699
 700static void hv_mem_hot_add(unsigned long start, unsigned long size,
 701                                unsigned long pfn_count,
 702                                struct hv_hotadd_state *has)
 703{
 704        int ret = 0;
 705        int i, nid;
 706        unsigned long start_pfn;
 707        unsigned long processed_pfn;
 708        unsigned long total_pfn = pfn_count;
 709        unsigned long flags;
 710
 711        for (i = 0; i < (size/HA_CHUNK); i++) {
 712                start_pfn = start + (i * HA_CHUNK);
 713
 714                spin_lock_irqsave(&dm_device.ha_lock, flags);
 715                has->ha_end_pfn +=  HA_CHUNK;
 716
 717                if (total_pfn > HA_CHUNK) {
 718                        processed_pfn = HA_CHUNK;
 719                        total_pfn -= HA_CHUNK;
 720                } else {
 721                        processed_pfn = total_pfn;
 722                        total_pfn = 0;
 723                }
 724
 725                has->covered_end_pfn +=  processed_pfn;
 726                spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 727
 728                reinit_completion(&dm_device.ol_waitevent);
 729
 730                nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
 731                ret = add_memory(nid, PFN_PHYS((start_pfn)),
 732                                (HA_CHUNK << PAGE_SHIFT), MHP_MERGE_RESOURCE);
 733
 734                if (ret) {
 735                        pr_err("hot_add memory failed error is %d\n", ret);
 736                        if (ret == -EEXIST) {
 737                                /*
 738                                 * This error indicates that the error
 739                                 * is not a transient failure. This is the
 740                                 * case where the guest's physical address map
 741                                 * precludes hot adding memory. Stop all further
 742                                 * memory hot-add.
 743                                 */
 744                                do_hot_add = false;
 745                        }
 746                        spin_lock_irqsave(&dm_device.ha_lock, flags);
 747                        has->ha_end_pfn -= HA_CHUNK;
 748                        has->covered_end_pfn -=  processed_pfn;
 749                        spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 750                        break;
 751                }
 752
 753                /*
 754                 * Wait for memory to get onlined. If the kernel onlined the
 755                 * memory when adding it, this will return directly. Otherwise,
 756                 * it will wait for user space to online the memory. This helps
 757                 * to avoid adding memory faster than it is getting onlined. As
 758                 * adding succeeded, it is ok to proceed even if the memory was
 759                 * not onlined in time.
 760                 */
 761                wait_for_completion_timeout(&dm_device.ol_waitevent, 5 * HZ);
 762                post_status(&dm_device);
 763        }
 764}
 765
 766static void hv_online_page(struct page *pg, unsigned int order)
 767{
 768        struct hv_hotadd_state *has;
 769        unsigned long flags;
 770        unsigned long pfn = page_to_pfn(pg);
 771
 772        spin_lock_irqsave(&dm_device.ha_lock, flags);
 773        list_for_each_entry(has, &dm_device.ha_region_list, list) {
 774                /* The page belongs to a different HAS. */
 775                if ((pfn < has->start_pfn) ||
 776                                (pfn + (1UL << order) > has->end_pfn))
 777                        continue;
 778
 779                hv_bring_pgs_online(has, pfn, 1UL << order);
 780                break;
 781        }
 782        spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 783}
 784
 785static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
 786{
 787        struct hv_hotadd_state *has;
 788        struct hv_hotadd_gap *gap;
 789        unsigned long residual, new_inc;
 790        int ret = 0;
 791        unsigned long flags;
 792
 793        spin_lock_irqsave(&dm_device.ha_lock, flags);
 794        list_for_each_entry(has, &dm_device.ha_region_list, list) {
 795                /*
 796                 * If the pfn range we are dealing with is not in the current
 797                 * "hot add block", move on.
 798                 */
 799                if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
 800                        continue;
 801
 802                /*
 803                 * If the current start pfn is not where the covered_end
 804                 * is, create a gap and update covered_end_pfn.
 805                 */
 806                if (has->covered_end_pfn != start_pfn) {
 807                        gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
 808                        if (!gap) {
 809                                ret = -ENOMEM;
 810                                break;
 811                        }
 812
 813                        INIT_LIST_HEAD(&gap->list);
 814                        gap->start_pfn = has->covered_end_pfn;
 815                        gap->end_pfn = start_pfn;
 816                        list_add_tail(&gap->list, &has->gap_list);
 817
 818                        has->covered_end_pfn = start_pfn;
 819                }
 820
 821                /*
 822                 * If the current hot add-request extends beyond
 823                 * our current limit; extend it.
 824                 */
 825                if ((start_pfn + pfn_cnt) > has->end_pfn) {
 826                        residual = (start_pfn + pfn_cnt - has->end_pfn);
 827                        /*
 828                         * Extend the region by multiples of HA_CHUNK.
 829                         */
 830                        new_inc = (residual / HA_CHUNK) * HA_CHUNK;
 831                        if (residual % HA_CHUNK)
 832                                new_inc += HA_CHUNK;
 833
 834                        has->end_pfn += new_inc;
 835                }
 836
 837                ret = 1;
 838                break;
 839        }
 840        spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 841
 842        return ret;
 843}
 844
 845static unsigned long handle_pg_range(unsigned long pg_start,
 846                                        unsigned long pg_count)
 847{
 848        unsigned long start_pfn = pg_start;
 849        unsigned long pfn_cnt = pg_count;
 850        unsigned long size;
 851        struct hv_hotadd_state *has;
 852        unsigned long pgs_ol = 0;
 853        unsigned long old_covered_state;
 854        unsigned long res = 0, flags;
 855
 856        pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
 857                pg_start);
 858
 859        spin_lock_irqsave(&dm_device.ha_lock, flags);
 860        list_for_each_entry(has, &dm_device.ha_region_list, list) {
 861                /*
 862                 * If the pfn range we are dealing with is not in the current
 863                 * "hot add block", move on.
 864                 */
 865                if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
 866                        continue;
 867
 868                old_covered_state = has->covered_end_pfn;
 869
 870                if (start_pfn < has->ha_end_pfn) {
 871                        /*
 872                         * This is the case where we are backing pages
 873                         * in an already hot added region. Bring
 874                         * these pages online first.
 875                         */
 876                        pgs_ol = has->ha_end_pfn - start_pfn;
 877                        if (pgs_ol > pfn_cnt)
 878                                pgs_ol = pfn_cnt;
 879
 880                        has->covered_end_pfn +=  pgs_ol;
 881                        pfn_cnt -= pgs_ol;
 882                        /*
 883                         * Check if the corresponding memory block is already
 884                         * online. It is possible to observe struct pages still
 885                         * being uninitialized here so check section instead.
 886                         * In case the section is online we need to bring the
 887                         * rest of pfns (which were not backed previously)
 888                         * online too.
 889                         */
 890                        if (start_pfn > has->start_pfn &&
 891                            online_section_nr(pfn_to_section_nr(start_pfn)))
 892                                hv_bring_pgs_online(has, start_pfn, pgs_ol);
 893
 894                }
 895
 896                if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
 897                        /*
 898                         * We have some residual hot add range
 899                         * that needs to be hot added; hot add
 900                         * it now. Hot add a multiple of
 901                         * of HA_CHUNK that fully covers the pages
 902                         * we have.
 903                         */
 904                        size = (has->end_pfn - has->ha_end_pfn);
 905                        if (pfn_cnt <= size) {
 906                                size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
 907                                if (pfn_cnt % HA_CHUNK)
 908                                        size += HA_CHUNK;
 909                        } else {
 910                                pfn_cnt = size;
 911                        }
 912                        spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 913                        hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
 914                        spin_lock_irqsave(&dm_device.ha_lock, flags);
 915                }
 916                /*
 917                 * If we managed to online any pages that were given to us,
 918                 * we declare success.
 919                 */
 920                res = has->covered_end_pfn - old_covered_state;
 921                break;
 922        }
 923        spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 924
 925        return res;
 926}
 927
 928static unsigned long process_hot_add(unsigned long pg_start,
 929                                        unsigned long pfn_cnt,
 930                                        unsigned long rg_start,
 931                                        unsigned long rg_size)
 932{
 933        struct hv_hotadd_state *ha_region = NULL;
 934        int covered;
 935        unsigned long flags;
 936
 937        if (pfn_cnt == 0)
 938                return 0;
 939
 940        if (!dm_device.host_specified_ha_region) {
 941                covered = pfn_covered(pg_start, pfn_cnt);
 942                if (covered < 0)
 943                        return 0;
 944
 945                if (covered)
 946                        goto do_pg_range;
 947        }
 948
 949        /*
 950         * If the host has specified a hot-add range; deal with it first.
 951         */
 952
 953        if (rg_size != 0) {
 954                ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
 955                if (!ha_region)
 956                        return 0;
 957
 958                INIT_LIST_HEAD(&ha_region->list);
 959                INIT_LIST_HEAD(&ha_region->gap_list);
 960
 961                ha_region->start_pfn = rg_start;
 962                ha_region->ha_end_pfn = rg_start;
 963                ha_region->covered_start_pfn = pg_start;
 964                ha_region->covered_end_pfn = pg_start;
 965                ha_region->end_pfn = rg_start + rg_size;
 966
 967                spin_lock_irqsave(&dm_device.ha_lock, flags);
 968                list_add_tail(&ha_region->list, &dm_device.ha_region_list);
 969                spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 970        }
 971
 972do_pg_range:
 973        /*
 974         * Process the page range specified; bringing them
 975         * online if possible.
 976         */
 977        return handle_pg_range(pg_start, pfn_cnt);
 978}
 979
 980#endif
 981
 982static void hot_add_req(struct work_struct *dummy)
 983{
 984        struct dm_hot_add_response resp;
 985#ifdef CONFIG_MEMORY_HOTPLUG
 986        unsigned long pg_start, pfn_cnt;
 987        unsigned long rg_start, rg_sz;
 988#endif
 989        struct hv_dynmem_device *dm = &dm_device;
 990
 991        memset(&resp, 0, sizeof(struct dm_hot_add_response));
 992        resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
 993        resp.hdr.size = sizeof(struct dm_hot_add_response);
 994
 995#ifdef CONFIG_MEMORY_HOTPLUG
 996        pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
 997        pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
 998
 999        rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
1000        rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
1001
1002        if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
1003                unsigned long region_size;
1004                unsigned long region_start;
1005
1006                /*
1007                 * The host has not specified the hot-add region.
1008                 * Based on the hot-add page range being specified,
1009                 * compute a hot-add region that can cover the pages
1010                 * that need to be hot-added while ensuring the alignment
1011                 * and size requirements of Linux as it relates to hot-add.
1012                 */
1013                region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
1014                if (pfn_cnt % HA_CHUNK)
1015                        region_size += HA_CHUNK;
1016
1017                region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
1018
1019                rg_start = region_start;
1020                rg_sz = region_size;
1021        }
1022
1023        if (do_hot_add)
1024                resp.page_count = process_hot_add(pg_start, pfn_cnt,
1025                                                rg_start, rg_sz);
1026
1027        dm->num_pages_added += resp.page_count;
1028#endif
1029        /*
1030         * The result field of the response structure has the
1031         * following semantics:
1032         *
1033         * 1. If all or some pages hot-added: Guest should return success.
1034         *
1035         * 2. If no pages could be hot-added:
1036         *
1037         * If the guest returns success, then the host
1038         * will not attempt any further hot-add operations. This
1039         * signifies a permanent failure.
1040         *
1041         * If the guest returns failure, then this failure will be
1042         * treated as a transient failure and the host may retry the
1043         * hot-add operation after some delay.
1044         */
1045        if (resp.page_count > 0)
1046                resp.result = 1;
1047        else if (!do_hot_add)
1048                resp.result = 1;
1049        else
1050                resp.result = 0;
1051
1052        if (!do_hot_add || resp.page_count == 0) {
1053                if (!allow_hibernation)
1054                        pr_err("Memory hot add failed\n");
1055                else
1056                        pr_info("Ignore hot-add request!\n");
1057        }
1058
1059        dm->state = DM_INITIALIZED;
1060        resp.hdr.trans_id = atomic_inc_return(&trans_id);
1061        vmbus_sendpacket(dm->dev->channel, &resp,
1062                        sizeof(struct dm_hot_add_response),
1063                        (unsigned long)NULL,
1064                        VM_PKT_DATA_INBAND, 0);
1065}
1066
1067static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1068{
1069        struct dm_info_header *info_hdr;
1070
1071        info_hdr = (struct dm_info_header *)msg->info;
1072
1073        switch (info_hdr->type) {
1074        case INFO_TYPE_MAX_PAGE_CNT:
1075                if (info_hdr->data_size == sizeof(__u64)) {
1076                        __u64 *max_page_count = (__u64 *)&info_hdr[1];
1077
1078                        pr_info("Max. dynamic memory size: %llu MB\n",
1079                                (*max_page_count) >> (20 - HV_HYP_PAGE_SHIFT));
1080                }
1081
1082                break;
1083        default:
1084                pr_warn("Received Unknown type: %d\n", info_hdr->type);
1085        }
1086}
1087
1088static unsigned long compute_balloon_floor(void)
1089{
1090        unsigned long min_pages;
1091        unsigned long nr_pages = totalram_pages();
1092#define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1093        /* Simple continuous piecewiese linear function:
1094         *  max MiB -> min MiB  gradient
1095         *       0         0
1096         *      16        16
1097         *      32        24
1098         *     128        72    (1/2)
1099         *     512       168    (1/4)
1100         *    2048       360    (1/8)
1101         *    8192       744    (1/16)
1102         *   32768      1512    (1/32)
1103         */
1104        if (nr_pages < MB2PAGES(128))
1105                min_pages = MB2PAGES(8) + (nr_pages >> 1);
1106        else if (nr_pages < MB2PAGES(512))
1107                min_pages = MB2PAGES(40) + (nr_pages >> 2);
1108        else if (nr_pages < MB2PAGES(2048))
1109                min_pages = MB2PAGES(104) + (nr_pages >> 3);
1110        else if (nr_pages < MB2PAGES(8192))
1111                min_pages = MB2PAGES(232) + (nr_pages >> 4);
1112        else
1113                min_pages = MB2PAGES(488) + (nr_pages >> 5);
1114#undef MB2PAGES
1115        return min_pages;
1116}
1117
1118/*
1119 * Post our status as it relates memory pressure to the
1120 * host. Host expects the guests to post this status
1121 * periodically at 1 second intervals.
1122 *
1123 * The metrics specified in this protocol are very Windows
1124 * specific and so we cook up numbers here to convey our memory
1125 * pressure.
1126 */
1127
1128static void post_status(struct hv_dynmem_device *dm)
1129{
1130        struct dm_status status;
1131        unsigned long now = jiffies;
1132        unsigned long last_post = last_post_time;
1133
1134        if (pressure_report_delay > 0) {
1135                --pressure_report_delay;
1136                return;
1137        }
1138
1139        if (!time_after(now, (last_post_time + HZ)))
1140                return;
1141
1142        memset(&status, 0, sizeof(struct dm_status));
1143        status.hdr.type = DM_STATUS_REPORT;
1144        status.hdr.size = sizeof(struct dm_status);
1145        status.hdr.trans_id = atomic_inc_return(&trans_id);
1146
1147        /*
1148         * The host expects the guest to report free and committed memory.
1149         * Furthermore, the host expects the pressure information to include
1150         * the ballooned out pages. For a given amount of memory that we are
1151         * managing we need to compute a floor below which we should not
1152         * balloon. Compute this and add it to the pressure report.
1153         * We also need to report all offline pages (num_pages_added -
1154         * num_pages_onlined) as committed to the host, otherwise it can try
1155         * asking us to balloon them out.
1156         */
1157        status.num_avail = si_mem_available();
1158        status.num_committed = vm_memory_committed() +
1159                dm->num_pages_ballooned +
1160                (dm->num_pages_added > dm->num_pages_onlined ?
1161                 dm->num_pages_added - dm->num_pages_onlined : 0) +
1162                compute_balloon_floor();
1163
1164        trace_balloon_status(status.num_avail, status.num_committed,
1165                             vm_memory_committed(), dm->num_pages_ballooned,
1166                             dm->num_pages_added, dm->num_pages_onlined);
1167        /*
1168         * If our transaction ID is no longer current, just don't
1169         * send the status. This can happen if we were interrupted
1170         * after we picked our transaction ID.
1171         */
1172        if (status.hdr.trans_id != atomic_read(&trans_id))
1173                return;
1174
1175        /*
1176         * If the last post time that we sampled has changed,
1177         * we have raced, don't post the status.
1178         */
1179        if (last_post != last_post_time)
1180                return;
1181
1182        last_post_time = jiffies;
1183        vmbus_sendpacket(dm->dev->channel, &status,
1184                                sizeof(struct dm_status),
1185                                (unsigned long)NULL,
1186                                VM_PKT_DATA_INBAND, 0);
1187
1188}
1189
1190static void free_balloon_pages(struct hv_dynmem_device *dm,
1191                         union dm_mem_page_range *range_array)
1192{
1193        int num_pages = range_array->finfo.page_cnt;
1194        __u64 start_frame = range_array->finfo.start_page;
1195        struct page *pg;
1196        int i;
1197
1198        for (i = 0; i < num_pages; i++) {
1199                pg = pfn_to_page(i + start_frame);
1200                __ClearPageOffline(pg);
1201                __free_page(pg);
1202                dm->num_pages_ballooned--;
1203                adjust_managed_page_count(pg, 1);
1204        }
1205}
1206
1207
1208
1209static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1210                                        unsigned int num_pages,
1211                                        struct dm_balloon_response *bl_resp,
1212                                        int alloc_unit)
1213{
1214        unsigned int i, j;
1215        struct page *pg;
1216
1217        for (i = 0; i < num_pages / alloc_unit; i++) {
1218                if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1219                        HV_HYP_PAGE_SIZE)
1220                        return i * alloc_unit;
1221
1222                /*
1223                 * We execute this code in a thread context. Furthermore,
1224                 * we don't want the kernel to try too hard.
1225                 */
1226                pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1227                                __GFP_NOMEMALLOC | __GFP_NOWARN,
1228                                get_order(alloc_unit << PAGE_SHIFT));
1229
1230                if (!pg)
1231                        return i * alloc_unit;
1232
1233                dm->num_pages_ballooned += alloc_unit;
1234
1235                /*
1236                 * If we allocatted 2M pages; split them so we
1237                 * can free them in any order we get.
1238                 */
1239
1240                if (alloc_unit != 1)
1241                        split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1242
1243                /* mark all pages offline */
1244                for (j = 0; j < alloc_unit; j++) {
1245                        __SetPageOffline(pg + j);
1246                        adjust_managed_page_count(pg + j, -1);
1247                }
1248
1249                bl_resp->range_count++;
1250                bl_resp->range_array[i].finfo.start_page =
1251                        page_to_pfn(pg);
1252                bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1253                bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1254
1255        }
1256
1257        return i * alloc_unit;
1258}
1259
1260static void balloon_up(struct work_struct *dummy)
1261{
1262        unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1263        unsigned int num_ballooned = 0;
1264        struct dm_balloon_response *bl_resp;
1265        int alloc_unit;
1266        int ret;
1267        bool done = false;
1268        int i;
1269        long avail_pages;
1270        unsigned long floor;
1271
1272        /*
1273         * We will attempt 2M allocations. However, if we fail to
1274         * allocate 2M chunks, we will go back to PAGE_SIZE allocations.
1275         */
1276        alloc_unit = PAGES_IN_2M;
1277
1278        avail_pages = si_mem_available();
1279        floor = compute_balloon_floor();
1280
1281        /* Refuse to balloon below the floor. */
1282        if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1283                pr_info("Balloon request will be partially fulfilled. %s\n",
1284                        avail_pages < num_pages ? "Not enough memory." :
1285                        "Balloon floor reached.");
1286
1287                num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1288        }
1289
1290        while (!done) {
1291                memset(balloon_up_send_buffer, 0, HV_HYP_PAGE_SIZE);
1292                bl_resp = (struct dm_balloon_response *)balloon_up_send_buffer;
1293                bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1294                bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1295                bl_resp->more_pages = 1;
1296
1297                num_pages -= num_ballooned;
1298                num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1299                                                    bl_resp, alloc_unit);
1300
1301                if (alloc_unit != 1 && num_ballooned == 0) {
1302                        alloc_unit = 1;
1303                        continue;
1304                }
1305
1306                if (num_ballooned == 0 || num_ballooned == num_pages) {
1307                        pr_debug("Ballooned %u out of %u requested pages.\n",
1308                                num_pages, dm_device.balloon_wrk.num_pages);
1309
1310                        bl_resp->more_pages = 0;
1311                        done = true;
1312                        dm_device.state = DM_INITIALIZED;
1313                }
1314
1315                /*
1316                 * We are pushing a lot of data through the channel;
1317                 * deal with transient failures caused because of the
1318                 * lack of space in the ring buffer.
1319                 */
1320
1321                do {
1322                        bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1323                        ret = vmbus_sendpacket(dm_device.dev->channel,
1324                                                bl_resp,
1325                                                bl_resp->hdr.size,
1326                                                (unsigned long)NULL,
1327                                                VM_PKT_DATA_INBAND, 0);
1328
1329                        if (ret == -EAGAIN)
1330                                msleep(20);
1331                        post_status(&dm_device);
1332                } while (ret == -EAGAIN);
1333
1334                if (ret) {
1335                        /*
1336                         * Free up the memory we allocatted.
1337                         */
1338                        pr_err("Balloon response failed\n");
1339
1340                        for (i = 0; i < bl_resp->range_count; i++)
1341                                free_balloon_pages(&dm_device,
1342                                                 &bl_resp->range_array[i]);
1343
1344                        done = true;
1345                }
1346        }
1347
1348}
1349
1350static void balloon_down(struct hv_dynmem_device *dm,
1351                        struct dm_unballoon_request *req)
1352{
1353        union dm_mem_page_range *range_array = req->range_array;
1354        int range_count = req->range_count;
1355        struct dm_unballoon_response resp;
1356        int i;
1357        unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1358
1359        for (i = 0; i < range_count; i++) {
1360                free_balloon_pages(dm, &range_array[i]);
1361                complete(&dm_device.config_event);
1362        }
1363
1364        pr_debug("Freed %u ballooned pages.\n",
1365                prev_pages_ballooned - dm->num_pages_ballooned);
1366
1367        if (req->more_pages == 1)
1368                return;
1369
1370        memset(&resp, 0, sizeof(struct dm_unballoon_response));
1371        resp.hdr.type = DM_UNBALLOON_RESPONSE;
1372        resp.hdr.trans_id = atomic_inc_return(&trans_id);
1373        resp.hdr.size = sizeof(struct dm_unballoon_response);
1374
1375        vmbus_sendpacket(dm_device.dev->channel, &resp,
1376                                sizeof(struct dm_unballoon_response),
1377                                (unsigned long)NULL,
1378                                VM_PKT_DATA_INBAND, 0);
1379
1380        dm->state = DM_INITIALIZED;
1381}
1382
1383static void balloon_onchannelcallback(void *context);
1384
1385static int dm_thread_func(void *dm_dev)
1386{
1387        struct hv_dynmem_device *dm = dm_dev;
1388
1389        while (!kthread_should_stop()) {
1390                wait_for_completion_interruptible_timeout(
1391                                                &dm_device.config_event, 1*HZ);
1392                /*
1393                 * The host expects us to post information on the memory
1394                 * pressure every second.
1395                 */
1396                reinit_completion(&dm_device.config_event);
1397                post_status(dm);
1398        }
1399
1400        return 0;
1401}
1402
1403
1404static void version_resp(struct hv_dynmem_device *dm,
1405                        struct dm_version_response *vresp)
1406{
1407        struct dm_version_request version_req;
1408        int ret;
1409
1410        if (vresp->is_accepted) {
1411                /*
1412                 * We are done; wakeup the
1413                 * context waiting for version
1414                 * negotiation.
1415                 */
1416                complete(&dm->host_event);
1417                return;
1418        }
1419        /*
1420         * If there are more versions to try, continue
1421         * with negotiations; if not
1422         * shutdown the service since we are not able
1423         * to negotiate a suitable version number
1424         * with the host.
1425         */
1426        if (dm->next_version == 0)
1427                goto version_error;
1428
1429        memset(&version_req, 0, sizeof(struct dm_version_request));
1430        version_req.hdr.type = DM_VERSION_REQUEST;
1431        version_req.hdr.size = sizeof(struct dm_version_request);
1432        version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1433        version_req.version.version = dm->next_version;
1434        dm->version = version_req.version.version;
1435
1436        /*
1437         * Set the next version to try in case current version fails.
1438         * Win7 protocol ought to be the last one to try.
1439         */
1440        switch (version_req.version.version) {
1441        case DYNMEM_PROTOCOL_VERSION_WIN8:
1442                dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1443                version_req.is_last_attempt = 0;
1444                break;
1445        default:
1446                dm->next_version = 0;
1447                version_req.is_last_attempt = 1;
1448        }
1449
1450        ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1451                                sizeof(struct dm_version_request),
1452                                (unsigned long)NULL,
1453                                VM_PKT_DATA_INBAND, 0);
1454
1455        if (ret)
1456                goto version_error;
1457
1458        return;
1459
1460version_error:
1461        dm->state = DM_INIT_ERROR;
1462        complete(&dm->host_event);
1463}
1464
1465static void cap_resp(struct hv_dynmem_device *dm,
1466                        struct dm_capabilities_resp_msg *cap_resp)
1467{
1468        if (!cap_resp->is_accepted) {
1469                pr_err("Capabilities not accepted by host\n");
1470                dm->state = DM_INIT_ERROR;
1471        }
1472        complete(&dm->host_event);
1473}
1474
1475static void balloon_onchannelcallback(void *context)
1476{
1477        struct hv_device *dev = context;
1478        u32 recvlen;
1479        u64 requestid;
1480        struct dm_message *dm_msg;
1481        struct dm_header *dm_hdr;
1482        struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1483        struct dm_balloon *bal_msg;
1484        struct dm_hot_add *ha_msg;
1485        union dm_mem_page_range *ha_pg_range;
1486        union dm_mem_page_range *ha_region;
1487
1488        memset(recv_buffer, 0, sizeof(recv_buffer));
1489        vmbus_recvpacket(dev->channel, recv_buffer,
1490                         HV_HYP_PAGE_SIZE, &recvlen, &requestid);
1491
1492        if (recvlen > 0) {
1493                dm_msg = (struct dm_message *)recv_buffer;
1494                dm_hdr = &dm_msg->hdr;
1495
1496                switch (dm_hdr->type) {
1497                case DM_VERSION_RESPONSE:
1498                        version_resp(dm,
1499                                 (struct dm_version_response *)dm_msg);
1500                        break;
1501
1502                case DM_CAPABILITIES_RESPONSE:
1503                        cap_resp(dm,
1504                                 (struct dm_capabilities_resp_msg *)dm_msg);
1505                        break;
1506
1507                case DM_BALLOON_REQUEST:
1508                        if (allow_hibernation) {
1509                                pr_info("Ignore balloon-up request!\n");
1510                                break;
1511                        }
1512
1513                        if (dm->state == DM_BALLOON_UP)
1514                                pr_warn("Currently ballooning\n");
1515                        bal_msg = (struct dm_balloon *)recv_buffer;
1516                        dm->state = DM_BALLOON_UP;
1517                        dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1518                        schedule_work(&dm_device.balloon_wrk.wrk);
1519                        break;
1520
1521                case DM_UNBALLOON_REQUEST:
1522                        if (allow_hibernation) {
1523                                pr_info("Ignore balloon-down request!\n");
1524                                break;
1525                        }
1526
1527                        dm->state = DM_BALLOON_DOWN;
1528                        balloon_down(dm,
1529                                 (struct dm_unballoon_request *)recv_buffer);
1530                        break;
1531
1532                case DM_MEM_HOT_ADD_REQUEST:
1533                        if (dm->state == DM_HOT_ADD)
1534                                pr_warn("Currently hot-adding\n");
1535                        dm->state = DM_HOT_ADD;
1536                        ha_msg = (struct dm_hot_add *)recv_buffer;
1537                        if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1538                                /*
1539                                 * This is a normal hot-add request specifying
1540                                 * hot-add memory.
1541                                 */
1542                                dm->host_specified_ha_region = false;
1543                                ha_pg_range = &ha_msg->range;
1544                                dm->ha_wrk.ha_page_range = *ha_pg_range;
1545                                dm->ha_wrk.ha_region_range.page_range = 0;
1546                        } else {
1547                                /*
1548                                 * Host is specifying that we first hot-add
1549                                 * a region and then partially populate this
1550                                 * region.
1551                                 */
1552                                dm->host_specified_ha_region = true;
1553                                ha_pg_range = &ha_msg->range;
1554                                ha_region = &ha_pg_range[1];
1555                                dm->ha_wrk.ha_page_range = *ha_pg_range;
1556                                dm->ha_wrk.ha_region_range = *ha_region;
1557                        }
1558                        schedule_work(&dm_device.ha_wrk.wrk);
1559                        break;
1560
1561                case DM_INFO_MESSAGE:
1562                        process_info(dm, (struct dm_info_msg *)dm_msg);
1563                        break;
1564
1565                default:
1566                        pr_warn("Unhandled message: type: %d\n", dm_hdr->type);
1567
1568                }
1569        }
1570
1571}
1572
1573/* Hyper-V only supports reporting 2MB pages or higher */
1574#define HV_MIN_PAGE_REPORTING_ORDER     9
1575#define HV_MIN_PAGE_REPORTING_LEN (HV_HYP_PAGE_SIZE << HV_MIN_PAGE_REPORTING_ORDER)
1576static int hv_free_page_report(struct page_reporting_dev_info *pr_dev_info,
1577                    struct scatterlist *sgl, unsigned int nents)
1578{
1579        unsigned long flags;
1580        struct hv_memory_hint *hint;
1581        int i;
1582        u64 status;
1583        struct scatterlist *sg;
1584
1585        WARN_ON_ONCE(nents > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1586        WARN_ON_ONCE(sgl->length < HV_MIN_PAGE_REPORTING_LEN);
1587        local_irq_save(flags);
1588        hint = *(struct hv_memory_hint **)this_cpu_ptr(hyperv_pcpu_input_arg);
1589        if (!hint) {
1590                local_irq_restore(flags);
1591                return -ENOSPC;
1592        }
1593
1594        hint->type = HV_EXT_MEMORY_HEAT_HINT_TYPE_COLD_DISCARD;
1595        hint->reserved = 0;
1596        for_each_sg(sgl, sg, nents, i) {
1597                union hv_gpa_page_range *range;
1598
1599                range = &hint->ranges[i];
1600                range->address_space = 0;
1601                /* page reporting only reports 2MB pages or higher */
1602                range->page.largepage = 1;
1603                range->page.additional_pages =
1604                        (sg->length / HV_MIN_PAGE_REPORTING_LEN) - 1;
1605                range->page_size = HV_GPA_PAGE_RANGE_PAGE_SIZE_2MB;
1606                range->base_large_pfn =
1607                        page_to_hvpfn(sg_page(sg)) >> HV_MIN_PAGE_REPORTING_ORDER;
1608        }
1609
1610        status = hv_do_rep_hypercall(HV_EXT_CALL_MEMORY_HEAT_HINT, nents, 0,
1611                                     hint, NULL);
1612        local_irq_restore(flags);
1613        if ((status & HV_HYPERCALL_RESULT_MASK) != HV_STATUS_SUCCESS) {
1614                pr_err("Cold memory discard hypercall failed with status %llx\n",
1615                        status);
1616                return -EINVAL;
1617        }
1618
1619        return 0;
1620}
1621
1622static void enable_page_reporting(void)
1623{
1624        int ret;
1625
1626        /* Essentially, validating 'PAGE_REPORTING_MIN_ORDER' is big enough. */
1627        if (pageblock_order < HV_MIN_PAGE_REPORTING_ORDER) {
1628                pr_debug("Cold memory discard is only supported on 2MB pages and above\n");
1629                return;
1630        }
1631
1632        if (!hv_query_ext_cap(HV_EXT_CAPABILITY_MEMORY_COLD_DISCARD_HINT)) {
1633                pr_debug("Cold memory discard hint not supported by Hyper-V\n");
1634                return;
1635        }
1636
1637        BUILD_BUG_ON(PAGE_REPORTING_CAPACITY > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1638        dm_device.pr_dev_info.report = hv_free_page_report;
1639        ret = page_reporting_register(&dm_device.pr_dev_info);
1640        if (ret < 0) {
1641                dm_device.pr_dev_info.report = NULL;
1642                pr_err("Failed to enable cold memory discard: %d\n", ret);
1643        } else {
1644                pr_info("Cold memory discard hint enabled\n");
1645        }
1646}
1647
1648static void disable_page_reporting(void)
1649{
1650        if (dm_device.pr_dev_info.report) {
1651                page_reporting_unregister(&dm_device.pr_dev_info);
1652                dm_device.pr_dev_info.report = NULL;
1653        }
1654}
1655
1656static int balloon_connect_vsp(struct hv_device *dev)
1657{
1658        struct dm_version_request version_req;
1659        struct dm_capabilities cap_msg;
1660        unsigned long t;
1661        int ret;
1662
1663        ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1664                         balloon_onchannelcallback, dev);
1665        if (ret)
1666                return ret;
1667
1668        /*
1669         * Initiate the hand shake with the host and negotiate
1670         * a version that the host can support. We start with the
1671         * highest version number and go down if the host cannot
1672         * support it.
1673         */
1674        memset(&version_req, 0, sizeof(struct dm_version_request));
1675        version_req.hdr.type = DM_VERSION_REQUEST;
1676        version_req.hdr.size = sizeof(struct dm_version_request);
1677        version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1678        version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1679        version_req.is_last_attempt = 0;
1680        dm_device.version = version_req.version.version;
1681
1682        ret = vmbus_sendpacket(dev->channel, &version_req,
1683                               sizeof(struct dm_version_request),
1684                               (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1685        if (ret)
1686                goto out;
1687
1688        t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1689        if (t == 0) {
1690                ret = -ETIMEDOUT;
1691                goto out;
1692        }
1693
1694        /*
1695         * If we could not negotiate a compatible version with the host
1696         * fail the probe function.
1697         */
1698        if (dm_device.state == DM_INIT_ERROR) {
1699                ret = -EPROTO;
1700                goto out;
1701        }
1702
1703        pr_info("Using Dynamic Memory protocol version %u.%u\n",
1704                DYNMEM_MAJOR_VERSION(dm_device.version),
1705                DYNMEM_MINOR_VERSION(dm_device.version));
1706
1707        /*
1708         * Now submit our capabilities to the host.
1709         */
1710        memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1711        cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1712        cap_msg.hdr.size = sizeof(struct dm_capabilities);
1713        cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1714
1715        /*
1716         * When hibernation (i.e. virtual ACPI S4 state) is enabled, the host
1717         * currently still requires the bits to be set, so we have to add code
1718         * to fail the host's hot-add and balloon up/down requests, if any.
1719         */
1720        cap_msg.caps.cap_bits.balloon = 1;
1721        cap_msg.caps.cap_bits.hot_add = 1;
1722
1723        /*
1724         * Specify our alignment requirements as it relates
1725         * memory hot-add. Specify 128MB alignment.
1726         */
1727        cap_msg.caps.cap_bits.hot_add_alignment = 7;
1728
1729        /*
1730         * Currently the host does not use these
1731         * values and we set them to what is done in the
1732         * Windows driver.
1733         */
1734        cap_msg.min_page_cnt = 0;
1735        cap_msg.max_page_number = -1;
1736
1737        ret = vmbus_sendpacket(dev->channel, &cap_msg,
1738                               sizeof(struct dm_capabilities),
1739                               (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1740        if (ret)
1741                goto out;
1742
1743        t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1744        if (t == 0) {
1745                ret = -ETIMEDOUT;
1746                goto out;
1747        }
1748
1749        /*
1750         * If the host does not like our capabilities,
1751         * fail the probe function.
1752         */
1753        if (dm_device.state == DM_INIT_ERROR) {
1754                ret = -EPROTO;
1755                goto out;
1756        }
1757
1758        return 0;
1759out:
1760        vmbus_close(dev->channel);
1761        return ret;
1762}
1763
1764static int balloon_probe(struct hv_device *dev,
1765                         const struct hv_vmbus_device_id *dev_id)
1766{
1767        int ret;
1768
1769        allow_hibernation = hv_is_hibernation_supported();
1770        if (allow_hibernation)
1771                hot_add = false;
1772
1773#ifdef CONFIG_MEMORY_HOTPLUG
1774        do_hot_add = hot_add;
1775#else
1776        do_hot_add = false;
1777#endif
1778        dm_device.dev = dev;
1779        dm_device.state = DM_INITIALIZING;
1780        dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1781        init_completion(&dm_device.host_event);
1782        init_completion(&dm_device.config_event);
1783        INIT_LIST_HEAD(&dm_device.ha_region_list);
1784        spin_lock_init(&dm_device.ha_lock);
1785        INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1786        INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1787        dm_device.host_specified_ha_region = false;
1788
1789#ifdef CONFIG_MEMORY_HOTPLUG
1790        set_online_page_callback(&hv_online_page);
1791        init_completion(&dm_device.ol_waitevent);
1792        register_memory_notifier(&hv_memory_nb);
1793#endif
1794
1795        hv_set_drvdata(dev, &dm_device);
1796
1797        ret = balloon_connect_vsp(dev);
1798        if (ret != 0)
1799                return ret;
1800
1801        enable_page_reporting();
1802        dm_device.state = DM_INITIALIZED;
1803
1804        dm_device.thread =
1805                 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1806        if (IS_ERR(dm_device.thread)) {
1807                ret = PTR_ERR(dm_device.thread);
1808                goto probe_error;
1809        }
1810
1811        return 0;
1812
1813probe_error:
1814        dm_device.state = DM_INIT_ERROR;
1815        dm_device.thread  = NULL;
1816        disable_page_reporting();
1817        vmbus_close(dev->channel);
1818#ifdef CONFIG_MEMORY_HOTPLUG
1819        unregister_memory_notifier(&hv_memory_nb);
1820        restore_online_page_callback(&hv_online_page);
1821#endif
1822        return ret;
1823}
1824
1825static int balloon_remove(struct hv_device *dev)
1826{
1827        struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1828        struct hv_hotadd_state *has, *tmp;
1829        struct hv_hotadd_gap *gap, *tmp_gap;
1830        unsigned long flags;
1831
1832        if (dm->num_pages_ballooned != 0)
1833                pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1834
1835        cancel_work_sync(&dm->balloon_wrk.wrk);
1836        cancel_work_sync(&dm->ha_wrk.wrk);
1837
1838        kthread_stop(dm->thread);
1839        disable_page_reporting();
1840        vmbus_close(dev->channel);
1841#ifdef CONFIG_MEMORY_HOTPLUG
1842        unregister_memory_notifier(&hv_memory_nb);
1843        restore_online_page_callback(&hv_online_page);
1844#endif
1845        spin_lock_irqsave(&dm_device.ha_lock, flags);
1846        list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
1847                list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
1848                        list_del(&gap->list);
1849                        kfree(gap);
1850                }
1851                list_del(&has->list);
1852                kfree(has);
1853        }
1854        spin_unlock_irqrestore(&dm_device.ha_lock, flags);
1855
1856        return 0;
1857}
1858
1859static int balloon_suspend(struct hv_device *hv_dev)
1860{
1861        struct hv_dynmem_device *dm = hv_get_drvdata(hv_dev);
1862
1863        tasklet_disable(&hv_dev->channel->callback_event);
1864
1865        cancel_work_sync(&dm->balloon_wrk.wrk);
1866        cancel_work_sync(&dm->ha_wrk.wrk);
1867
1868        if (dm->thread) {
1869                kthread_stop(dm->thread);
1870                dm->thread = NULL;
1871                vmbus_close(hv_dev->channel);
1872        }
1873
1874        tasklet_enable(&hv_dev->channel->callback_event);
1875
1876        return 0;
1877
1878}
1879
1880static int balloon_resume(struct hv_device *dev)
1881{
1882        int ret;
1883
1884        dm_device.state = DM_INITIALIZING;
1885
1886        ret = balloon_connect_vsp(dev);
1887
1888        if (ret != 0)
1889                goto out;
1890
1891        dm_device.thread =
1892                 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1893        if (IS_ERR(dm_device.thread)) {
1894                ret = PTR_ERR(dm_device.thread);
1895                dm_device.thread = NULL;
1896                goto close_channel;
1897        }
1898
1899        dm_device.state = DM_INITIALIZED;
1900        return 0;
1901close_channel:
1902        vmbus_close(dev->channel);
1903out:
1904        dm_device.state = DM_INIT_ERROR;
1905#ifdef CONFIG_MEMORY_HOTPLUG
1906        unregister_memory_notifier(&hv_memory_nb);
1907        restore_online_page_callback(&hv_online_page);
1908#endif
1909        return ret;
1910}
1911
1912static const struct hv_vmbus_device_id id_table[] = {
1913        /* Dynamic Memory Class ID */
1914        /* 525074DC-8985-46e2-8057-A307DC18A502 */
1915        { HV_DM_GUID, },
1916        { },
1917};
1918
1919MODULE_DEVICE_TABLE(vmbus, id_table);
1920
1921static  struct hv_driver balloon_drv = {
1922        .name = "hv_balloon",
1923        .id_table = id_table,
1924        .probe =  balloon_probe,
1925        .remove =  balloon_remove,
1926        .suspend = balloon_suspend,
1927        .resume = balloon_resume,
1928        .driver = {
1929                .probe_type = PROBE_PREFER_ASYNCHRONOUS,
1930        },
1931};
1932
1933static int __init init_balloon_drv(void)
1934{
1935
1936        return vmbus_driver_register(&balloon_drv);
1937}
1938
1939module_init(init_balloon_drv);
1940
1941MODULE_DESCRIPTION("Hyper-V Balloon");
1942MODULE_LICENSE("GPL");
1943