linux/drivers/hwmon/abituguru.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * abituguru.c Copyright (c) 2005-2006 Hans de Goede <hdegoede@redhat.com>
   4 */
   5/*
   6 * This driver supports the sensor part of the first and second revision of
   7 * the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because
   8 * of lack of specs the CPU/RAM voltage & frequency control is not supported!
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/module.h>
  14#include <linux/sched.h>
  15#include <linux/init.h>
  16#include <linux/slab.h>
  17#include <linux/jiffies.h>
  18#include <linux/mutex.h>
  19#include <linux/err.h>
  20#include <linux/delay.h>
  21#include <linux/platform_device.h>
  22#include <linux/hwmon.h>
  23#include <linux/hwmon-sysfs.h>
  24#include <linux/dmi.h>
  25#include <linux/io.h>
  26
  27/* Banks */
  28#define ABIT_UGURU_ALARM_BANK                   0x20 /* 1x 3 bytes */
  29#define ABIT_UGURU_SENSOR_BANK1                 0x21 /* 16x volt and temp */
  30#define ABIT_UGURU_FAN_PWM                      0x24 /* 3x 5 bytes */
  31#define ABIT_UGURU_SENSOR_BANK2                 0x26 /* fans */
  32/* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
  33#define ABIT_UGURU_MAX_BANK1_SENSORS            16
  34/*
  35 * Warning if you increase one of the 2 MAX defines below to 10 or higher you
  36 * should adjust the belonging _NAMES_LENGTH macro for the 2 digit number!
  37 */
  38/* max nr of sensors in bank2, currently mb's with max 6 fans are known */
  39#define ABIT_UGURU_MAX_BANK2_SENSORS            6
  40/* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
  41#define ABIT_UGURU_MAX_PWMS                     5
  42/* uGuru sensor bank 1 flags */                      /* Alarm if: */
  43#define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE       0x01 /*  temp over warn */
  44#define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE       0x02 /*  volt over max */
  45#define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE        0x04 /*  volt under min */
  46#define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG         0x10 /* temp is over warn */
  47#define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG         0x20 /* volt is over max */
  48#define ABIT_UGURU_VOLT_LOW_ALARM_FLAG          0x40 /* volt is under min */
  49/* uGuru sensor bank 2 flags */                      /* Alarm if: */
  50#define ABIT_UGURU_FAN_LOW_ALARM_ENABLE         0x01 /*   fan under min */
  51/* uGuru sensor bank common flags */
  52#define ABIT_UGURU_BEEP_ENABLE                  0x08 /* beep if alarm */
  53#define ABIT_UGURU_SHUTDOWN_ENABLE              0x80 /* shutdown if alarm */
  54/* uGuru fan PWM (speed control) flags */
  55#define ABIT_UGURU_FAN_PWM_ENABLE               0x80 /* enable speed control */
  56/* Values used for conversion */
  57#define ABIT_UGURU_FAN_MAX                      15300 /* RPM */
  58/* Bank1 sensor types */
  59#define ABIT_UGURU_IN_SENSOR                    0
  60#define ABIT_UGURU_TEMP_SENSOR                  1
  61#define ABIT_UGURU_NC                           2
  62/*
  63 * In many cases we need to wait for the uGuru to reach a certain status, most
  64 * of the time it will reach this status within 30 - 90 ISA reads, and thus we
  65 * can best busy wait. This define gives the total amount of reads to try.
  66 */
  67#define ABIT_UGURU_WAIT_TIMEOUT                 125
  68/*
  69 * However sometimes older versions of the uGuru seem to be distracted and they
  70 * do not respond for a long time. To handle this we sleep before each of the
  71 * last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries.
  72 */
  73#define ABIT_UGURU_WAIT_TIMEOUT_SLEEP           5
  74/*
  75 * Normally all expected status in abituguru_ready, are reported after the
  76 * first read, but sometimes not and we need to poll.
  77 */
  78#define ABIT_UGURU_READY_TIMEOUT                5
  79/* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
  80#define ABIT_UGURU_MAX_RETRIES                  3
  81#define ABIT_UGURU_RETRY_DELAY                  (HZ/5)
  82/* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */
  83#define ABIT_UGURU_MAX_TIMEOUTS                 2
  84/* utility macros */
  85#define ABIT_UGURU_NAME                         "abituguru"
  86#define ABIT_UGURU_DEBUG(level, format, arg...)         \
  87        do {                                            \
  88                if (level <= verbose)                   \
  89                        pr_debug(format , ## arg);      \
  90        } while (0)
  91
  92/* Macros to help calculate the sysfs_names array length */
  93/*
  94 * sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
  95 * in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0
  96 */
  97#define ABITUGURU_IN_NAMES_LENGTH       (11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
  98/*
  99 * sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
 100 * temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0
 101 */
 102#define ABITUGURU_TEMP_NAMES_LENGTH     (13 + 11 + 12 + 13 + 20 + 12 + 16)
 103/*
 104 * sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
 105 * fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0
 106 */
 107#define ABITUGURU_FAN_NAMES_LENGTH      (11 + 9 + 11 + 18 + 10 + 14)
 108/*
 109 * sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
 110 * pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0
 111 */
 112#define ABITUGURU_PWM_NAMES_LENGTH      (12 + 24 + 2 * 21 + 2 * 22)
 113/* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
 114#define ABITUGURU_SYSFS_NAMES_LENGTH    ( \
 115        ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \
 116        ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
 117        ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)
 118
 119/*
 120 * All the macros below are named identical to the oguru and oguru2 programs
 121 * reverse engineered by Olle Sandberg, hence the names might not be 100%
 122 * logical. I could come up with better names, but I prefer keeping the names
 123 * identical so that this driver can be compared with his work more easily.
 124 */
 125/* Two i/o-ports are used by uGuru */
 126#define ABIT_UGURU_BASE                         0x00E0
 127/* Used to tell uGuru what to read and to read the actual data */
 128#define ABIT_UGURU_CMD                          0x00
 129/* Mostly used to check if uGuru is busy */
 130#define ABIT_UGURU_DATA                         0x04
 131#define ABIT_UGURU_REGION_LENGTH                5
 132/* uGuru status' */
 133#define ABIT_UGURU_STATUS_WRITE                 0x00 /* Ready to be written */
 134#define ABIT_UGURU_STATUS_READ                  0x01 /* Ready to be read */
 135#define ABIT_UGURU_STATUS_INPUT                 0x08 /* More input */
 136#define ABIT_UGURU_STATUS_READY                 0x09 /* Ready to be written */
 137
 138/* Constants */
 139/* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
 140static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
 141/*
 142 * Min / Max allowed values for sensor2 (fan) alarm threshold, these values
 143 * correspond to 300-3000 RPM
 144 */
 145static const u8 abituguru_bank2_min_threshold = 5;
 146static const u8 abituguru_bank2_max_threshold = 50;
 147/*
 148 * Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
 149 * are temperature trip points.
 150 */
 151static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
 152/*
 153 * Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
 154 * special case the minimum allowed pwm% setting for this is 30% (77) on
 155 * some MB's this special case is handled in the code!
 156 */
 157static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
 158static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };
 159
 160
 161/* Insmod parameters */
 162static bool force;
 163module_param(force, bool, 0);
 164MODULE_PARM_DESC(force, "Set to one to force detection.");
 165static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1,
 166        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
 167module_param_array(bank1_types, int, NULL, 0);
 168MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n"
 169        "   -1 autodetect\n"
 170        "    0 volt sensor\n"
 171        "    1 temp sensor\n"
 172        "    2 not connected");
 173static int fan_sensors;
 174module_param(fan_sensors, int, 0);
 175MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
 176        "(0 = autodetect)");
 177static int pwms;
 178module_param(pwms, int, 0);
 179MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
 180        "(0 = autodetect)");
 181
 182/* Default verbose is 2, since this driver is still in the testing phase */
 183static int verbose = 2;
 184module_param(verbose, int, 0644);
 185MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
 186        "   0 normal output\n"
 187        "   1 + verbose error reporting\n"
 188        "   2 + sensors type probing info\n"
 189        "   3 + retryable error reporting");
 190
 191
 192/*
 193 * For the Abit uGuru, we need to keep some data in memory.
 194 * The structure is dynamically allocated, at the same time when a new
 195 * abituguru device is allocated.
 196 */
 197struct abituguru_data {
 198        struct device *hwmon_dev;       /* hwmon registered device */
 199        struct mutex update_lock;       /* protect access to data and uGuru */
 200        unsigned long last_updated;     /* In jiffies */
 201        unsigned short addr;            /* uguru base address */
 202        char uguru_ready;               /* is the uguru in ready state? */
 203        unsigned char update_timeouts;  /*
 204                                         * number of update timeouts since last
 205                                         * successful update
 206                                         */
 207
 208        /*
 209         * The sysfs attr and their names are generated automatically, for bank1
 210         * we cannot use a predefined array because we don't know beforehand
 211         * of a sensor is a volt or a temp sensor, for bank2 and the pwms its
 212         * easier todo things the same way.  For in sensors we have 9 (temp 7)
 213         * sysfs entries per sensor, for bank2 and pwms 6.
 214         */
 215        struct sensor_device_attribute_2 sysfs_attr[
 216                ABIT_UGURU_MAX_BANK1_SENSORS * 9 +
 217                ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
 218        /* Buffer to store the dynamically generated sysfs names */
 219        char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH];
 220
 221        /* Bank 1 data */
 222        /* number of and addresses of [0] in, [1] temp sensors */
 223        u8 bank1_sensors[2];
 224        u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS];
 225        u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS];
 226        /*
 227         * This array holds 3 entries per sensor for the bank 1 sensor settings
 228         * (flags, min, max for voltage / flags, warn, shutdown for temp).
 229         */
 230        u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3];
 231        /*
 232         * Maximum value for each sensor used for scaling in mV/millidegrees
 233         * Celsius.
 234         */
 235        int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS];
 236
 237        /* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
 238        u8 bank2_sensors; /* actual number of bank2 sensors found */
 239        u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS];
 240        u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */
 241
 242        /* Alarms 2 bytes for bank1, 1 byte for bank2 */
 243        u8 alarms[3];
 244
 245        /* Fan PWM (speed control) 5 bytes per PWM */
 246        u8 pwms; /* actual number of pwms found */
 247        u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5];
 248};
 249
 250static const char *never_happen = "This should never happen.";
 251static const char *report_this =
 252        "Please report this to the abituguru maintainer (see MAINTAINERS)";
 253
 254/* wait till the uguru is in the specified state */
 255static int abituguru_wait(struct abituguru_data *data, u8 state)
 256{
 257        int timeout = ABIT_UGURU_WAIT_TIMEOUT;
 258
 259        while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
 260                timeout--;
 261                if (timeout == 0)
 262                        return -EBUSY;
 263                /*
 264                 * sleep a bit before our last few tries, see the comment on
 265                 * this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined.
 266                 */
 267                if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP)
 268                        msleep(0);
 269        }
 270        return 0;
 271}
 272
 273/* Put the uguru in ready for input state */
 274static int abituguru_ready(struct abituguru_data *data)
 275{
 276        int timeout = ABIT_UGURU_READY_TIMEOUT;
 277
 278        if (data->uguru_ready)
 279                return 0;
 280
 281        /* Reset? / Prepare for next read/write cycle */
 282        outb(0x00, data->addr + ABIT_UGURU_DATA);
 283
 284        /* Wait till the uguru is ready */
 285        if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
 286                ABIT_UGURU_DEBUG(1,
 287                        "timeout exceeded waiting for ready state\n");
 288                return -EIO;
 289        }
 290
 291        /* Cmd port MUST be read now and should contain 0xAC */
 292        while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
 293                timeout--;
 294                if (timeout == 0) {
 295                        ABIT_UGURU_DEBUG(1,
 296                           "CMD reg does not hold 0xAC after ready command\n");
 297                        return -EIO;
 298                }
 299                msleep(0);
 300        }
 301
 302        /*
 303         * After this the ABIT_UGURU_DATA port should contain
 304         * ABIT_UGURU_STATUS_INPUT
 305         */
 306        timeout = ABIT_UGURU_READY_TIMEOUT;
 307        while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
 308                timeout--;
 309                if (timeout == 0) {
 310                        ABIT_UGURU_DEBUG(1,
 311                                "state != more input after ready command\n");
 312                        return -EIO;
 313                }
 314                msleep(0);
 315        }
 316
 317        data->uguru_ready = 1;
 318        return 0;
 319}
 320
 321/*
 322 * Send the bank and then sensor address to the uGuru for the next read/write
 323 * cycle. This function gets called as the first part of a read/write by
 324 * abituguru_read and abituguru_write. This function should never be
 325 * called by any other function.
 326 */
 327static int abituguru_send_address(struct abituguru_data *data,
 328        u8 bank_addr, u8 sensor_addr, int retries)
 329{
 330        /*
 331         * assume the caller does error handling itself if it has not requested
 332         * any retries, and thus be quiet.
 333         */
 334        int report_errors = retries;
 335
 336        for (;;) {
 337                /*
 338                 * Make sure the uguru is ready and then send the bank address,
 339                 * after this the uguru is no longer "ready".
 340                 */
 341                if (abituguru_ready(data) != 0)
 342                        return -EIO;
 343                outb(bank_addr, data->addr + ABIT_UGURU_DATA);
 344                data->uguru_ready = 0;
 345
 346                /*
 347                 * Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
 348                 * and send the sensor addr
 349                 */
 350                if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
 351                        if (retries) {
 352                                ABIT_UGURU_DEBUG(3, "timeout exceeded "
 353                                        "waiting for more input state, %d "
 354                                        "tries remaining\n", retries);
 355                                set_current_state(TASK_UNINTERRUPTIBLE);
 356                                schedule_timeout(ABIT_UGURU_RETRY_DELAY);
 357                                retries--;
 358                                continue;
 359                        }
 360                        if (report_errors)
 361                                ABIT_UGURU_DEBUG(1, "timeout exceeded "
 362                                        "waiting for more input state "
 363                                        "(bank: %d)\n", (int)bank_addr);
 364                        return -EBUSY;
 365                }
 366                outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
 367                return 0;
 368        }
 369}
 370
 371/*
 372 * Read count bytes from sensor sensor_addr in bank bank_addr and store the
 373 * result in buf, retry the send address part of the read retries times.
 374 */
 375static int abituguru_read(struct abituguru_data *data,
 376        u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
 377{
 378        int i;
 379
 380        /* Send the address */
 381        i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
 382        if (i)
 383                return i;
 384
 385        /* And read the data */
 386        for (i = 0; i < count; i++) {
 387                if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
 388                        ABIT_UGURU_DEBUG(retries ? 1 : 3,
 389                                "timeout exceeded waiting for "
 390                                "read state (bank: %d, sensor: %d)\n",
 391                                (int)bank_addr, (int)sensor_addr);
 392                        break;
 393                }
 394                buf[i] = inb(data->addr + ABIT_UGURU_CMD);
 395        }
 396
 397        /* Last put the chip back in ready state */
 398        abituguru_ready(data);
 399
 400        return i;
 401}
 402
 403/*
 404 * Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
 405 * address part of the write is always retried ABIT_UGURU_MAX_RETRIES times.
 406 */
 407static int abituguru_write(struct abituguru_data *data,
 408        u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
 409{
 410        /*
 411         * We use the ready timeout as we have to wait for 0xAC just like the
 412         * ready function
 413         */
 414        int i, timeout = ABIT_UGURU_READY_TIMEOUT;
 415
 416        /* Send the address */
 417        i = abituguru_send_address(data, bank_addr, sensor_addr,
 418                ABIT_UGURU_MAX_RETRIES);
 419        if (i)
 420                return i;
 421
 422        /* And write the data */
 423        for (i = 0; i < count; i++) {
 424                if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
 425                        ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
 426                                "write state (bank: %d, sensor: %d)\n",
 427                                (int)bank_addr, (int)sensor_addr);
 428                        break;
 429                }
 430                outb(buf[i], data->addr + ABIT_UGURU_CMD);
 431        }
 432
 433        /*
 434         * Now we need to wait till the chip is ready to be read again,
 435         * so that we can read 0xAC as confirmation that our write has
 436         * succeeded.
 437         */
 438        if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
 439                ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
 440                        "after write (bank: %d, sensor: %d)\n", (int)bank_addr,
 441                        (int)sensor_addr);
 442                return -EIO;
 443        }
 444
 445        /* Cmd port MUST be read now and should contain 0xAC */
 446        while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
 447                timeout--;
 448                if (timeout == 0) {
 449                        ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after "
 450                                "write (bank: %d, sensor: %d)\n",
 451                                (int)bank_addr, (int)sensor_addr);
 452                        return -EIO;
 453                }
 454                msleep(0);
 455        }
 456
 457        /* Last put the chip back in ready state */
 458        abituguru_ready(data);
 459
 460        return i;
 461}
 462
 463/*
 464 * Detect sensor type. Temp and Volt sensors are enabled with
 465 * different masks and will ignore enable masks not meant for them.
 466 * This enables us to test what kind of sensor we're dealing with.
 467 * By setting the alarm thresholds so that we will always get an
 468 * alarm for sensor type X and then enabling the sensor as sensor type
 469 * X, if we then get an alarm it is a sensor of type X.
 470 */
 471static int
 472abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
 473                                   u8 sensor_addr)
 474{
 475        u8 val, test_flag, buf[3];
 476        int i, ret = -ENODEV; /* error is the most common used retval :| */
 477
 478        /* If overriden by the user return the user selected type */
 479        if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR &&
 480                        bank1_types[sensor_addr] <= ABIT_UGURU_NC) {
 481                ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor "
 482                        "%d because of \"bank1_types\" module param\n",
 483                        bank1_types[sensor_addr], (int)sensor_addr);
 484                return bank1_types[sensor_addr];
 485        }
 486
 487        /* First read the sensor and the current settings */
 488        if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
 489                        1, ABIT_UGURU_MAX_RETRIES) != 1)
 490                return -ENODEV;
 491
 492        /* Test val is sane / usable for sensor type detection. */
 493        if ((val < 10u) || (val > 250u)) {
 494                pr_warn("bank1-sensor: %d reading (%d) too close to limits, "
 495                        "unable to determine sensor type, skipping sensor\n",
 496                        (int)sensor_addr, (int)val);
 497                /*
 498                 * assume no sensor is there for sensors for which we can't
 499                 * determine the sensor type because their reading is too close
 500                 * to their limits, this usually means no sensor is there.
 501                 */
 502                return ABIT_UGURU_NC;
 503        }
 504
 505        ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
 506        /*
 507         * Volt sensor test, enable volt low alarm, set min value ridiculously
 508         * high, or vica versa if the reading is very high. If its a volt
 509         * sensor this should always give us an alarm.
 510         */
 511        if (val <= 240u) {
 512                buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
 513                buf[1] = 245;
 514                buf[2] = 250;
 515                test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG;
 516        } else {
 517                buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE;
 518                buf[1] = 5;
 519                buf[2] = 10;
 520                test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG;
 521        }
 522
 523        if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
 524                        buf, 3) != 3)
 525                goto abituguru_detect_bank1_sensor_type_exit;
 526        /*
 527         * Now we need 20 ms to give the uguru time to read the sensors
 528         * and raise a voltage alarm
 529         */
 530        set_current_state(TASK_UNINTERRUPTIBLE);
 531        schedule_timeout(HZ/50);
 532        /* Check for alarm and check the alarm is a volt low alarm. */
 533        if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
 534                        ABIT_UGURU_MAX_RETRIES) != 3)
 535                goto abituguru_detect_bank1_sensor_type_exit;
 536        if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
 537                if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
 538                                sensor_addr, buf, 3,
 539                                ABIT_UGURU_MAX_RETRIES) != 3)
 540                        goto abituguru_detect_bank1_sensor_type_exit;
 541                if (buf[0] & test_flag) {
 542                        ABIT_UGURU_DEBUG(2, "  found volt sensor\n");
 543                        ret = ABIT_UGURU_IN_SENSOR;
 544                        goto abituguru_detect_bank1_sensor_type_exit;
 545                } else
 546                        ABIT_UGURU_DEBUG(2, "  alarm raised during volt "
 547                                "sensor test, but volt range flag not set\n");
 548        } else
 549                ABIT_UGURU_DEBUG(2, "  alarm not raised during volt sensor "
 550                        "test\n");
 551
 552        /*
 553         * Temp sensor test, enable sensor as a temp sensor, set beep value
 554         * ridiculously low (but not too low, otherwise uguru ignores it).
 555         * If its a temp sensor this should always give us an alarm.
 556         */
 557        buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
 558        buf[1] = 5;
 559        buf[2] = 10;
 560        if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
 561                        buf, 3) != 3)
 562                goto abituguru_detect_bank1_sensor_type_exit;
 563        /*
 564         * Now we need 50 ms to give the uguru time to read the sensors
 565         * and raise a temp alarm
 566         */
 567        set_current_state(TASK_UNINTERRUPTIBLE);
 568        schedule_timeout(HZ/20);
 569        /* Check for alarm and check the alarm is a temp high alarm. */
 570        if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
 571                        ABIT_UGURU_MAX_RETRIES) != 3)
 572                goto abituguru_detect_bank1_sensor_type_exit;
 573        if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
 574                if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
 575                                sensor_addr, buf, 3,
 576                                ABIT_UGURU_MAX_RETRIES) != 3)
 577                        goto abituguru_detect_bank1_sensor_type_exit;
 578                if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
 579                        ABIT_UGURU_DEBUG(2, "  found temp sensor\n");
 580                        ret = ABIT_UGURU_TEMP_SENSOR;
 581                        goto abituguru_detect_bank1_sensor_type_exit;
 582                } else
 583                        ABIT_UGURU_DEBUG(2, "  alarm raised during temp "
 584                                "sensor test, but temp high flag not set\n");
 585        } else
 586                ABIT_UGURU_DEBUG(2, "  alarm not raised during temp sensor "
 587                        "test\n");
 588
 589        ret = ABIT_UGURU_NC;
 590abituguru_detect_bank1_sensor_type_exit:
 591        /*
 592         * Restore original settings, failing here is really BAD, it has been
 593         * reported that some BIOS-es hang when entering the uGuru menu with
 594         * invalid settings present in the uGuru, so we try this 3 times.
 595         */
 596        for (i = 0; i < 3; i++)
 597                if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
 598                                sensor_addr, data->bank1_settings[sensor_addr],
 599                                3) == 3)
 600                        break;
 601        if (i == 3) {
 602                pr_err("Fatal error could not restore original settings. %s %s\n",
 603                       never_happen, report_this);
 604                return -ENODEV;
 605        }
 606        return ret;
 607}
 608
 609/*
 610 * These functions try to find out how many sensors there are in bank2 and how
 611 * many pwms there are. The purpose of this is to make sure that we don't give
 612 * the user the possibility to change settings for non-existent sensors / pwm.
 613 * The uGuru will happily read / write whatever memory happens to be after the
 614 * memory storing the PWM settings when reading/writing to a PWM which is not
 615 * there. Notice even if we detect a PWM which doesn't exist we normally won't
 616 * write to it, unless the user tries to change the settings.
 617 *
 618 * Although the uGuru allows reading (settings) from non existing bank2
 619 * sensors, my version of the uGuru does seem to stop writing to them, the
 620 * write function above aborts in this case with:
 621 * "CMD reg does not hold 0xAC after write"
 622 *
 623 * Notice these 2 tests are non destructive iow read-only tests, otherwise
 624 * they would defeat their purpose. Although for the bank2_sensors detection a
 625 * read/write test would be feasible because of the reaction above, I've
 626 * however opted to stay on the safe side.
 627 */
 628static void
 629abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
 630{
 631        int i;
 632
 633        if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) {
 634                data->bank2_sensors = fan_sensors;
 635                ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
 636                        "\"fan_sensors\" module param\n",
 637                        (int)data->bank2_sensors);
 638                return;
 639        }
 640
 641        ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
 642        for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
 643                /*
 644                 * 0x89 are the known used bits:
 645                 * -0x80 enable shutdown
 646                 * -0x08 enable beep
 647                 * -0x01 enable alarm
 648                 * All other bits should be 0, but on some motherboards
 649                 * 0x40 (bit 6) is also high for some of the fans??
 650                 */
 651                if (data->bank2_settings[i][0] & ~0xC9) {
 652                        ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
 653                                "to be a fan sensor: settings[0] = %02X\n",
 654                                i, (unsigned int)data->bank2_settings[i][0]);
 655                        break;
 656                }
 657
 658                /* check if the threshold is within the allowed range */
 659                if (data->bank2_settings[i][1] <
 660                                abituguru_bank2_min_threshold) {
 661                        ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
 662                                "to be a fan sensor: the threshold (%d) is "
 663                                "below the minimum (%d)\n", i,
 664                                (int)data->bank2_settings[i][1],
 665                                (int)abituguru_bank2_min_threshold);
 666                        break;
 667                }
 668                if (data->bank2_settings[i][1] >
 669                                abituguru_bank2_max_threshold) {
 670                        ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
 671                                "to be a fan sensor: the threshold (%d) is "
 672                                "above the maximum (%d)\n", i,
 673                                (int)data->bank2_settings[i][1],
 674                                (int)abituguru_bank2_max_threshold);
 675                        break;
 676                }
 677        }
 678
 679        data->bank2_sensors = i;
 680        ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
 681                (int)data->bank2_sensors);
 682}
 683
 684static void
 685abituguru_detect_no_pwms(struct abituguru_data *data)
 686{
 687        int i, j;
 688
 689        if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) {
 690                data->pwms = pwms;
 691                ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
 692                        "\"pwms\" module param\n", (int)data->pwms);
 693                return;
 694        }
 695
 696        ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
 697        for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
 698                /*
 699                 * 0x80 is the enable bit and the low
 700                 * nibble is which temp sensor to use,
 701                 * the other bits should be 0
 702                 */
 703                if (data->pwm_settings[i][0] & ~0x8F) {
 704                        ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 705                                "to be a pwm channel: settings[0] = %02X\n",
 706                                i, (unsigned int)data->pwm_settings[i][0]);
 707                        break;
 708                }
 709
 710                /*
 711                 * the low nibble must correspond to one of the temp sensors
 712                 * we've found
 713                 */
 714                for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
 715                                j++) {
 716                        if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
 717                                        (data->pwm_settings[i][0] & 0x0F))
 718                                break;
 719                }
 720                if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
 721                        ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 722                                "to be a pwm channel: %d is not a valid temp "
 723                                "sensor address\n", i,
 724                                data->pwm_settings[i][0] & 0x0F);
 725                        break;
 726                }
 727
 728                /* check if all other settings are within the allowed range */
 729                for (j = 1; j < 5; j++) {
 730                        u8 min;
 731                        /* special case pwm1 min pwm% */
 732                        if ((i == 0) && ((j == 1) || (j == 2)))
 733                                min = 77;
 734                        else
 735                                min = abituguru_pwm_min[j];
 736                        if (data->pwm_settings[i][j] < min) {
 737                                ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
 738                                        "not seem to be a pwm channel: "
 739                                        "setting %d (%d) is below the minimum "
 740                                        "value (%d)\n", i, j,
 741                                        (int)data->pwm_settings[i][j],
 742                                        (int)min);
 743                                goto abituguru_detect_no_pwms_exit;
 744                        }
 745                        if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
 746                                ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
 747                                        "not seem to be a pwm channel: "
 748                                        "setting %d (%d) is above the maximum "
 749                                        "value (%d)\n", i, j,
 750                                        (int)data->pwm_settings[i][j],
 751                                        (int)abituguru_pwm_max[j]);
 752                                goto abituguru_detect_no_pwms_exit;
 753                        }
 754                }
 755
 756                /* check that min temp < max temp and min pwm < max pwm */
 757                if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
 758                        ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 759                                "to be a pwm channel: min pwm (%d) >= "
 760                                "max pwm (%d)\n", i,
 761                                (int)data->pwm_settings[i][1],
 762                                (int)data->pwm_settings[i][2]);
 763                        break;
 764                }
 765                if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
 766                        ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 767                                "to be a pwm channel: min temp (%d) >= "
 768                                "max temp (%d)\n", i,
 769                                (int)data->pwm_settings[i][3],
 770                                (int)data->pwm_settings[i][4]);
 771                        break;
 772                }
 773        }
 774
 775abituguru_detect_no_pwms_exit:
 776        data->pwms = i;
 777        ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
 778}
 779
 780/*
 781 * Following are the sysfs callback functions. These functions expect:
 782 * sensor_device_attribute_2->index:   sensor address/offset in the bank
 783 * sensor_device_attribute_2->nr:      register offset, bitmask or NA.
 784 */
 785static struct abituguru_data *abituguru_update_device(struct device *dev);
 786
 787static ssize_t show_bank1_value(struct device *dev,
 788        struct device_attribute *devattr, char *buf)
 789{
 790        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 791        struct abituguru_data *data = abituguru_update_device(dev);
 792        if (!data)
 793                return -EIO;
 794        return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
 795                data->bank1_max_value[attr->index] + 128) / 255);
 796}
 797
 798static ssize_t show_bank1_setting(struct device *dev,
 799        struct device_attribute *devattr, char *buf)
 800{
 801        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 802        struct abituguru_data *data = dev_get_drvdata(dev);
 803        return sprintf(buf, "%d\n",
 804                (data->bank1_settings[attr->index][attr->nr] *
 805                data->bank1_max_value[attr->index] + 128) / 255);
 806}
 807
 808static ssize_t show_bank2_value(struct device *dev,
 809        struct device_attribute *devattr, char *buf)
 810{
 811        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 812        struct abituguru_data *data = abituguru_update_device(dev);
 813        if (!data)
 814                return -EIO;
 815        return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
 816                ABIT_UGURU_FAN_MAX + 128) / 255);
 817}
 818
 819static ssize_t show_bank2_setting(struct device *dev,
 820        struct device_attribute *devattr, char *buf)
 821{
 822        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 823        struct abituguru_data *data = dev_get_drvdata(dev);
 824        return sprintf(buf, "%d\n",
 825                (data->bank2_settings[attr->index][attr->nr] *
 826                ABIT_UGURU_FAN_MAX + 128) / 255);
 827}
 828
 829static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
 830        *devattr, const char *buf, size_t count)
 831{
 832        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 833        struct abituguru_data *data = dev_get_drvdata(dev);
 834        unsigned long val;
 835        ssize_t ret;
 836
 837        ret = kstrtoul(buf, 10, &val);
 838        if (ret)
 839                return ret;
 840
 841        ret = count;
 842        val = (val * 255 + data->bank1_max_value[attr->index] / 2) /
 843                data->bank1_max_value[attr->index];
 844        if (val > 255)
 845                return -EINVAL;
 846
 847        mutex_lock(&data->update_lock);
 848        if (data->bank1_settings[attr->index][attr->nr] != val) {
 849                u8 orig_val = data->bank1_settings[attr->index][attr->nr];
 850                data->bank1_settings[attr->index][attr->nr] = val;
 851                if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
 852                                attr->index, data->bank1_settings[attr->index],
 853                                3) <= attr->nr) {
 854                        data->bank1_settings[attr->index][attr->nr] = orig_val;
 855                        ret = -EIO;
 856                }
 857        }
 858        mutex_unlock(&data->update_lock);
 859        return ret;
 860}
 861
 862static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
 863        *devattr, const char *buf, size_t count)
 864{
 865        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 866        struct abituguru_data *data = dev_get_drvdata(dev);
 867        unsigned long val;
 868        ssize_t ret;
 869
 870        ret = kstrtoul(buf, 10, &val);
 871        if (ret)
 872                return ret;
 873
 874        ret = count;
 875        val = (val * 255 + ABIT_UGURU_FAN_MAX / 2) / ABIT_UGURU_FAN_MAX;
 876
 877        /* this check can be done before taking the lock */
 878        if (val < abituguru_bank2_min_threshold ||
 879                        val > abituguru_bank2_max_threshold)
 880                return -EINVAL;
 881
 882        mutex_lock(&data->update_lock);
 883        if (data->bank2_settings[attr->index][attr->nr] != val) {
 884                u8 orig_val = data->bank2_settings[attr->index][attr->nr];
 885                data->bank2_settings[attr->index][attr->nr] = val;
 886                if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
 887                                attr->index, data->bank2_settings[attr->index],
 888                                2) <= attr->nr) {
 889                        data->bank2_settings[attr->index][attr->nr] = orig_val;
 890                        ret = -EIO;
 891                }
 892        }
 893        mutex_unlock(&data->update_lock);
 894        return ret;
 895}
 896
 897static ssize_t show_bank1_alarm(struct device *dev,
 898        struct device_attribute *devattr, char *buf)
 899{
 900        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 901        struct abituguru_data *data = abituguru_update_device(dev);
 902        if (!data)
 903                return -EIO;
 904        /*
 905         * See if the alarm bit for this sensor is set, and if the
 906         * alarm matches the type of alarm we're looking for (for volt
 907         * it can be either low or high). The type is stored in a few
 908         * readonly bits in the settings part of the relevant sensor.
 909         * The bitmask of the type is passed to us in attr->nr.
 910         */
 911        if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
 912                        (data->bank1_settings[attr->index][0] & attr->nr))
 913                return sprintf(buf, "1\n");
 914        else
 915                return sprintf(buf, "0\n");
 916}
 917
 918static ssize_t show_bank2_alarm(struct device *dev,
 919        struct device_attribute *devattr, char *buf)
 920{
 921        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 922        struct abituguru_data *data = abituguru_update_device(dev);
 923        if (!data)
 924                return -EIO;
 925        if (data->alarms[2] & (0x01 << attr->index))
 926                return sprintf(buf, "1\n");
 927        else
 928                return sprintf(buf, "0\n");
 929}
 930
 931static ssize_t show_bank1_mask(struct device *dev,
 932        struct device_attribute *devattr, char *buf)
 933{
 934        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 935        struct abituguru_data *data = dev_get_drvdata(dev);
 936        if (data->bank1_settings[attr->index][0] & attr->nr)
 937                return sprintf(buf, "1\n");
 938        else
 939                return sprintf(buf, "0\n");
 940}
 941
 942static ssize_t show_bank2_mask(struct device *dev,
 943        struct device_attribute *devattr, char *buf)
 944{
 945        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 946        struct abituguru_data *data = dev_get_drvdata(dev);
 947        if (data->bank2_settings[attr->index][0] & attr->nr)
 948                return sprintf(buf, "1\n");
 949        else
 950                return sprintf(buf, "0\n");
 951}
 952
 953static ssize_t store_bank1_mask(struct device *dev,
 954        struct device_attribute *devattr, const char *buf, size_t count)
 955{
 956        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 957        struct abituguru_data *data = dev_get_drvdata(dev);
 958        ssize_t ret;
 959        u8 orig_val;
 960        unsigned long mask;
 961
 962        ret = kstrtoul(buf, 10, &mask);
 963        if (ret)
 964                return ret;
 965
 966        ret = count;
 967        mutex_lock(&data->update_lock);
 968        orig_val = data->bank1_settings[attr->index][0];
 969
 970        if (mask)
 971                data->bank1_settings[attr->index][0] |= attr->nr;
 972        else
 973                data->bank1_settings[attr->index][0] &= ~attr->nr;
 974
 975        if ((data->bank1_settings[attr->index][0] != orig_val) &&
 976                        (abituguru_write(data,
 977                        ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
 978                        data->bank1_settings[attr->index], 3) < 1)) {
 979                data->bank1_settings[attr->index][0] = orig_val;
 980                ret = -EIO;
 981        }
 982        mutex_unlock(&data->update_lock);
 983        return ret;
 984}
 985
 986static ssize_t store_bank2_mask(struct device *dev,
 987        struct device_attribute *devattr, const char *buf, size_t count)
 988{
 989        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 990        struct abituguru_data *data = dev_get_drvdata(dev);
 991        ssize_t ret;
 992        u8 orig_val;
 993        unsigned long mask;
 994
 995        ret = kstrtoul(buf, 10, &mask);
 996        if (ret)
 997                return ret;
 998
 999        ret = count;
1000        mutex_lock(&data->update_lock);
1001        orig_val = data->bank2_settings[attr->index][0];
1002
1003        if (mask)
1004                data->bank2_settings[attr->index][0] |= attr->nr;
1005        else
1006                data->bank2_settings[attr->index][0] &= ~attr->nr;
1007
1008        if ((data->bank2_settings[attr->index][0] != orig_val) &&
1009                        (abituguru_write(data,
1010                        ABIT_UGURU_SENSOR_BANK2 + 2, attr->index,
1011                        data->bank2_settings[attr->index], 2) < 1)) {
1012                data->bank2_settings[attr->index][0] = orig_val;
1013                ret = -EIO;
1014        }
1015        mutex_unlock(&data->update_lock);
1016        return ret;
1017}
1018
1019/* Fan PWM (speed control) */
1020static ssize_t show_pwm_setting(struct device *dev,
1021        struct device_attribute *devattr, char *buf)
1022{
1023        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1024        struct abituguru_data *data = dev_get_drvdata(dev);
1025        return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] *
1026                abituguru_pwm_settings_multiplier[attr->nr]);
1027}
1028
1029static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
1030        *devattr, const char *buf, size_t count)
1031{
1032        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1033        struct abituguru_data *data = dev_get_drvdata(dev);
1034        u8 min;
1035        unsigned long val;
1036        ssize_t ret;
1037
1038        ret = kstrtoul(buf, 10, &val);
1039        if (ret)
1040                return ret;
1041
1042        ret = count;
1043        val = (val + abituguru_pwm_settings_multiplier[attr->nr] / 2) /
1044                                abituguru_pwm_settings_multiplier[attr->nr];
1045
1046        /* special case pwm1 min pwm% */
1047        if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
1048                min = 77;
1049        else
1050                min = abituguru_pwm_min[attr->nr];
1051
1052        /* this check can be done before taking the lock */
1053        if (val < min || val > abituguru_pwm_max[attr->nr])
1054                return -EINVAL;
1055
1056        mutex_lock(&data->update_lock);
1057        /* this check needs to be done after taking the lock */
1058        if ((attr->nr & 1) &&
1059                        (val >= data->pwm_settings[attr->index][attr->nr + 1]))
1060                ret = -EINVAL;
1061        else if (!(attr->nr & 1) &&
1062                        (val <= data->pwm_settings[attr->index][attr->nr - 1]))
1063                ret = -EINVAL;
1064        else if (data->pwm_settings[attr->index][attr->nr] != val) {
1065                u8 orig_val = data->pwm_settings[attr->index][attr->nr];
1066                data->pwm_settings[attr->index][attr->nr] = val;
1067                if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1068                                attr->index, data->pwm_settings[attr->index],
1069                                5) <= attr->nr) {
1070                        data->pwm_settings[attr->index][attr->nr] =
1071                                orig_val;
1072                        ret = -EIO;
1073                }
1074        }
1075        mutex_unlock(&data->update_lock);
1076        return ret;
1077}
1078
1079static ssize_t show_pwm_sensor(struct device *dev,
1080        struct device_attribute *devattr, char *buf)
1081{
1082        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1083        struct abituguru_data *data = dev_get_drvdata(dev);
1084        int i;
1085        /*
1086         * We need to walk to the temp sensor addresses to find what
1087         * the userspace id of the configured temp sensor is.
1088         */
1089        for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
1090                if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
1091                                (data->pwm_settings[attr->index][0] & 0x0F))
1092                        return sprintf(buf, "%d\n", i+1);
1093
1094        return -ENXIO;
1095}
1096
1097static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
1098        *devattr, const char *buf, size_t count)
1099{
1100        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1101        struct abituguru_data *data = dev_get_drvdata(dev);
1102        ssize_t ret;
1103        unsigned long val;
1104        u8 orig_val;
1105        u8 address;
1106
1107        ret = kstrtoul(buf, 10, &val);
1108        if (ret)
1109                return ret;
1110
1111        if (val == 0 || val > data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR])
1112                return -EINVAL;
1113
1114        val -= 1;
1115        ret = count;
1116        mutex_lock(&data->update_lock);
1117        orig_val = data->pwm_settings[attr->index][0];
1118        address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
1119        data->pwm_settings[attr->index][0] &= 0xF0;
1120        data->pwm_settings[attr->index][0] |= address;
1121        if (data->pwm_settings[attr->index][0] != orig_val) {
1122                if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index,
1123                                    data->pwm_settings[attr->index], 5) < 1) {
1124                        data->pwm_settings[attr->index][0] = orig_val;
1125                        ret = -EIO;
1126                }
1127        }
1128        mutex_unlock(&data->update_lock);
1129        return ret;
1130}
1131
1132static ssize_t show_pwm_enable(struct device *dev,
1133        struct device_attribute *devattr, char *buf)
1134{
1135        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1136        struct abituguru_data *data = dev_get_drvdata(dev);
1137        int res = 0;
1138        if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE)
1139                res = 2;
1140        return sprintf(buf, "%d\n", res);
1141}
1142
1143static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
1144        *devattr, const char *buf, size_t count)
1145{
1146        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1147        struct abituguru_data *data = dev_get_drvdata(dev);
1148        u8 orig_val;
1149        ssize_t ret;
1150        unsigned long user_val;
1151
1152        ret = kstrtoul(buf, 10, &user_val);
1153        if (ret)
1154                return ret;
1155
1156        ret = count;
1157        mutex_lock(&data->update_lock);
1158        orig_val = data->pwm_settings[attr->index][0];
1159        switch (user_val) {
1160        case 0:
1161                data->pwm_settings[attr->index][0] &=
1162                        ~ABIT_UGURU_FAN_PWM_ENABLE;
1163                break;
1164        case 2:
1165                data->pwm_settings[attr->index][0] |= ABIT_UGURU_FAN_PWM_ENABLE;
1166                break;
1167        default:
1168                ret = -EINVAL;
1169        }
1170        if ((data->pwm_settings[attr->index][0] != orig_val) &&
1171                        (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1172                        attr->index, data->pwm_settings[attr->index],
1173                        5) < 1)) {
1174                data->pwm_settings[attr->index][0] = orig_val;
1175                ret = -EIO;
1176        }
1177        mutex_unlock(&data->update_lock);
1178        return ret;
1179}
1180
1181static ssize_t show_name(struct device *dev,
1182        struct device_attribute *devattr, char *buf)
1183{
1184        return sprintf(buf, "%s\n", ABIT_UGURU_NAME);
1185}
1186
1187/* Sysfs attr templates, the real entries are generated automatically. */
1188static const
1189struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = {
1190        {
1191        SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0),
1192        SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting,
1193                store_bank1_setting, 1, 0),
1194        SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL,
1195                ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0),
1196        SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting,
1197                store_bank1_setting, 2, 0),
1198        SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL,
1199                ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0),
1200        SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask,
1201                store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1202        SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask,
1203                store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1204        SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask,
1205                store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0),
1206        SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask,
1207                store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0),
1208        }, {
1209        SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0),
1210        SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL,
1211                ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0),
1212        SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting,
1213                store_bank1_setting, 1, 0),
1214        SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting,
1215                store_bank1_setting, 2, 0),
1216        SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask,
1217                store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1218        SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask,
1219                store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1220        SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask,
1221                store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0),
1222        }
1223};
1224
1225static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = {
1226        SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0),
1227        SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0),
1228        SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting,
1229                store_bank2_setting, 1, 0),
1230        SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask,
1231                store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1232        SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask,
1233                store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1234        SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask,
1235                store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0),
1236};
1237
1238static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = {
1239        SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable,
1240                store_pwm_enable, 0, 0),
1241        SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor,
1242                store_pwm_sensor, 0, 0),
1243        SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting,
1244                store_pwm_setting, 1, 0),
1245        SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting,
1246                store_pwm_setting, 2, 0),
1247        SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting,
1248                store_pwm_setting, 3, 0),
1249        SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting,
1250                store_pwm_setting, 4, 0),
1251};
1252
1253static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = {
1254        SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0),
1255};
1256
1257static int abituguru_probe(struct platform_device *pdev)
1258{
1259        struct abituguru_data *data;
1260        int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV;
1261        char *sysfs_filename;
1262
1263        /*
1264         * El weirdo probe order, to keep the sysfs order identical to the
1265         * BIOS and window-appliction listing order.
1266         */
1267        static const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = {
1268                0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02,
1269                0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
1270
1271        data = devm_kzalloc(&pdev->dev, sizeof(struct abituguru_data),
1272                            GFP_KERNEL);
1273        if (!data)
1274                return -ENOMEM;
1275
1276        data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
1277        mutex_init(&data->update_lock);
1278        platform_set_drvdata(pdev, data);
1279
1280        /* See if the uGuru is ready */
1281        if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT)
1282                data->uguru_ready = 1;
1283
1284        /*
1285         * Completely read the uGuru this has 2 purposes:
1286         * - testread / see if one really is there.
1287         * - make an in memory copy of all the uguru settings for future use.
1288         */
1289        if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1290                        data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3)
1291                goto abituguru_probe_error;
1292
1293        for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1294                if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i,
1295                                &data->bank1_value[i], 1,
1296                                ABIT_UGURU_MAX_RETRIES) != 1)
1297                        goto abituguru_probe_error;
1298                if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i,
1299                                data->bank1_settings[i], 3,
1300                                ABIT_UGURU_MAX_RETRIES) != 3)
1301                        goto abituguru_probe_error;
1302        }
1303        /*
1304         * Note: We don't know how many bank2 sensors / pwms there really are,
1305         * but in order to "detect" this we need to read the maximum amount
1306         * anyways. If we read sensors/pwms not there we'll just read crap
1307         * this can't hurt. We need the detection because we don't want
1308         * unwanted writes, which will hurt!
1309         */
1310        for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
1311                if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1312                                &data->bank2_value[i], 1,
1313                                ABIT_UGURU_MAX_RETRIES) != 1)
1314                        goto abituguru_probe_error;
1315                if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i,
1316                                data->bank2_settings[i], 2,
1317                                ABIT_UGURU_MAX_RETRIES) != 2)
1318                        goto abituguru_probe_error;
1319        }
1320        for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
1321                if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i,
1322                                data->pwm_settings[i], 5,
1323                                ABIT_UGURU_MAX_RETRIES) != 5)
1324                        goto abituguru_probe_error;
1325        }
1326        data->last_updated = jiffies;
1327
1328        /* Detect sensor types and fill the sysfs attr for bank1 */
1329        sysfs_attr_i = 0;
1330        sysfs_filename = data->sysfs_names;
1331        sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH;
1332        for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1333                res = abituguru_detect_bank1_sensor_type(data, probe_order[i]);
1334                if (res < 0)
1335                        goto abituguru_probe_error;
1336                if (res == ABIT_UGURU_NC)
1337                        continue;
1338
1339                /* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */
1340                for (j = 0; j < (res ? 7 : 9); j++) {
1341                        used = snprintf(sysfs_filename, sysfs_names_free,
1342                                abituguru_sysfs_bank1_templ[res][j].dev_attr.
1343                                attr.name, data->bank1_sensors[res] + res)
1344                                + 1;
1345                        data->sysfs_attr[sysfs_attr_i] =
1346                                abituguru_sysfs_bank1_templ[res][j];
1347                        data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1348                                sysfs_filename;
1349                        data->sysfs_attr[sysfs_attr_i].index = probe_order[i];
1350                        sysfs_filename += used;
1351                        sysfs_names_free -= used;
1352                        sysfs_attr_i++;
1353                }
1354                data->bank1_max_value[probe_order[i]] =
1355                        abituguru_bank1_max_value[res];
1356                data->bank1_address[res][data->bank1_sensors[res]] =
1357                        probe_order[i];
1358                data->bank1_sensors[res]++;
1359        }
1360        /* Detect number of sensors and fill the sysfs attr for bank2 (fans) */
1361        abituguru_detect_no_bank2_sensors(data);
1362        for (i = 0; i < data->bank2_sensors; i++) {
1363                for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) {
1364                        used = snprintf(sysfs_filename, sysfs_names_free,
1365                                abituguru_sysfs_fan_templ[j].dev_attr.attr.name,
1366                                i + 1) + 1;
1367                        data->sysfs_attr[sysfs_attr_i] =
1368                                abituguru_sysfs_fan_templ[j];
1369                        data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1370                                sysfs_filename;
1371                        data->sysfs_attr[sysfs_attr_i].index = i;
1372                        sysfs_filename += used;
1373                        sysfs_names_free -= used;
1374                        sysfs_attr_i++;
1375                }
1376        }
1377        /* Detect number of sensors and fill the sysfs attr for pwms */
1378        abituguru_detect_no_pwms(data);
1379        for (i = 0; i < data->pwms; i++) {
1380                for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) {
1381                        used = snprintf(sysfs_filename, sysfs_names_free,
1382                                abituguru_sysfs_pwm_templ[j].dev_attr.attr.name,
1383                                i + 1) + 1;
1384                        data->sysfs_attr[sysfs_attr_i] =
1385                                abituguru_sysfs_pwm_templ[j];
1386                        data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1387                                sysfs_filename;
1388                        data->sysfs_attr[sysfs_attr_i].index = i;
1389                        sysfs_filename += used;
1390                        sysfs_names_free -= used;
1391                        sysfs_attr_i++;
1392                }
1393        }
1394        /* Fail safe check, this should never happen! */
1395        if (sysfs_names_free < 0) {
1396                pr_err("Fatal error ran out of space for sysfs attr names. %s %s",
1397                       never_happen, report_this);
1398                res = -ENAMETOOLONG;
1399                goto abituguru_probe_error;
1400        }
1401        pr_info("found Abit uGuru\n");
1402
1403        /* Register sysfs hooks */
1404        for (i = 0; i < sysfs_attr_i; i++) {
1405                res = device_create_file(&pdev->dev,
1406                                         &data->sysfs_attr[i].dev_attr);
1407                if (res)
1408                        goto abituguru_probe_error;
1409        }
1410        for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) {
1411                res = device_create_file(&pdev->dev,
1412                                         &abituguru_sysfs_attr[i].dev_attr);
1413                if (res)
1414                        goto abituguru_probe_error;
1415        }
1416
1417        data->hwmon_dev = hwmon_device_register(&pdev->dev);
1418        if (!IS_ERR(data->hwmon_dev))
1419                return 0; /* success */
1420
1421        res = PTR_ERR(data->hwmon_dev);
1422abituguru_probe_error:
1423        for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1424                device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1425        for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1426                device_remove_file(&pdev->dev,
1427                        &abituguru_sysfs_attr[i].dev_attr);
1428        return res;
1429}
1430
1431static int abituguru_remove(struct platform_device *pdev)
1432{
1433        int i;
1434        struct abituguru_data *data = platform_get_drvdata(pdev);
1435
1436        hwmon_device_unregister(data->hwmon_dev);
1437        for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1438                device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1439        for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1440                device_remove_file(&pdev->dev,
1441                        &abituguru_sysfs_attr[i].dev_attr);
1442
1443        return 0;
1444}
1445
1446static struct abituguru_data *abituguru_update_device(struct device *dev)
1447{
1448        int i, err;
1449        struct abituguru_data *data = dev_get_drvdata(dev);
1450        /* fake a complete successful read if no update necessary. */
1451        char success = 1;
1452
1453        mutex_lock(&data->update_lock);
1454        if (time_after(jiffies, data->last_updated + HZ)) {
1455                success = 0;
1456                err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1457                                     data->alarms, 3, 0);
1458                if (err != 3)
1459                        goto LEAVE_UPDATE;
1460                for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1461                        err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1,
1462                                             i, &data->bank1_value[i], 1, 0);
1463                        if (err != 1)
1464                                goto LEAVE_UPDATE;
1465                        err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
1466                                             i, data->bank1_settings[i], 3, 0);
1467                        if (err != 3)
1468                                goto LEAVE_UPDATE;
1469                }
1470                for (i = 0; i < data->bank2_sensors; i++) {
1471                        err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1472                                             &data->bank2_value[i], 1, 0);
1473                        if (err != 1)
1474                                goto LEAVE_UPDATE;
1475                }
1476                /* success! */
1477                success = 1;
1478                data->update_timeouts = 0;
1479LEAVE_UPDATE:
1480                /* handle timeout condition */
1481                if (!success && (err == -EBUSY || err >= 0)) {
1482                        /* No overflow please */
1483                        if (data->update_timeouts < 255u)
1484                                data->update_timeouts++;
1485                        if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) {
1486                                ABIT_UGURU_DEBUG(3, "timeout exceeded, will "
1487                                        "try again next update\n");
1488                                /* Just a timeout, fake a successful read */
1489                                success = 1;
1490                        } else
1491                                ABIT_UGURU_DEBUG(1, "timeout exceeded %d "
1492                                        "times waiting for more input state\n",
1493                                        (int)data->update_timeouts);
1494                }
1495                /* On success set last_updated */
1496                if (success)
1497                        data->last_updated = jiffies;
1498        }
1499        mutex_unlock(&data->update_lock);
1500
1501        if (success)
1502                return data;
1503        else
1504                return NULL;
1505}
1506
1507#ifdef CONFIG_PM_SLEEP
1508static int abituguru_suspend(struct device *dev)
1509{
1510        struct abituguru_data *data = dev_get_drvdata(dev);
1511        /*
1512         * make sure all communications with the uguru are done and no new
1513         * ones are started
1514         */
1515        mutex_lock(&data->update_lock);
1516        return 0;
1517}
1518
1519static int abituguru_resume(struct device *dev)
1520{
1521        struct abituguru_data *data = dev_get_drvdata(dev);
1522        /* See if the uGuru is still ready */
1523        if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT)
1524                data->uguru_ready = 0;
1525        mutex_unlock(&data->update_lock);
1526        return 0;
1527}
1528
1529static SIMPLE_DEV_PM_OPS(abituguru_pm, abituguru_suspend, abituguru_resume);
1530#define ABIT_UGURU_PM   (&abituguru_pm)
1531#else
1532#define ABIT_UGURU_PM   NULL
1533#endif /* CONFIG_PM */
1534
1535static struct platform_driver abituguru_driver = {
1536        .driver = {
1537                .name   = ABIT_UGURU_NAME,
1538                .pm     = ABIT_UGURU_PM,
1539        },
1540        .probe          = abituguru_probe,
1541        .remove         = abituguru_remove,
1542};
1543
1544static int __init abituguru_detect(void)
1545{
1546        /*
1547         * See if there is an uguru there. After a reboot uGuru will hold 0x00
1548         * at DATA and 0xAC, when this driver has already been loaded once
1549         * DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
1550         * scenario but some will hold 0x00.
1551         * Some uGuru's initially hold 0x09 at DATA and will only hold 0x08
1552         * after reading CMD first, so CMD must be read first!
1553         */
1554        u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
1555        u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
1556        if (((data_val == 0x00) || (data_val == 0x08)) &&
1557            ((cmd_val == 0x00) || (cmd_val == 0xAC)))
1558                return ABIT_UGURU_BASE;
1559
1560        ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = "
1561                "0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val);
1562
1563        if (force) {
1564                pr_info("Assuming Abit uGuru is present because of \"force\" parameter\n");
1565                return ABIT_UGURU_BASE;
1566        }
1567
1568        /* No uGuru found */
1569        return -ENODEV;
1570}
1571
1572static struct platform_device *abituguru_pdev;
1573
1574static int __init abituguru_init(void)
1575{
1576        int address, err;
1577        struct resource res = { .flags = IORESOURCE_IO };
1578        const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR);
1579
1580        /* safety check, refuse to load on non Abit motherboards */
1581        if (!force && (!board_vendor ||
1582                        strcmp(board_vendor, "http://www.abit.com.tw/")))
1583                return -ENODEV;
1584
1585        address = abituguru_detect();
1586        if (address < 0)
1587                return address;
1588
1589        err = platform_driver_register(&abituguru_driver);
1590        if (err)
1591                goto exit;
1592
1593        abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address);
1594        if (!abituguru_pdev) {
1595                pr_err("Device allocation failed\n");
1596                err = -ENOMEM;
1597                goto exit_driver_unregister;
1598        }
1599
1600        res.start = address;
1601        res.end = address + ABIT_UGURU_REGION_LENGTH - 1;
1602        res.name = ABIT_UGURU_NAME;
1603
1604        err = platform_device_add_resources(abituguru_pdev, &res, 1);
1605        if (err) {
1606                pr_err("Device resource addition failed (%d)\n", err);
1607                goto exit_device_put;
1608        }
1609
1610        err = platform_device_add(abituguru_pdev);
1611        if (err) {
1612                pr_err("Device addition failed (%d)\n", err);
1613                goto exit_device_put;
1614        }
1615
1616        return 0;
1617
1618exit_device_put:
1619        platform_device_put(abituguru_pdev);
1620exit_driver_unregister:
1621        platform_driver_unregister(&abituguru_driver);
1622exit:
1623        return err;
1624}
1625
1626static void __exit abituguru_exit(void)
1627{
1628        platform_device_unregister(abituguru_pdev);
1629        platform_driver_unregister(&abituguru_driver);
1630}
1631
1632MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
1633MODULE_DESCRIPTION("Abit uGuru Sensor device");
1634MODULE_LICENSE("GPL");
1635
1636module_init(abituguru_init);
1637module_exit(abituguru_exit);
1638