linux/drivers/hwmon/bt1-pvt.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2020 BAIKAL ELECTRONICS, JSC
   4 *
   5 * Authors:
   6 *   Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>
   7 *   Serge Semin <Sergey.Semin@baikalelectronics.ru>
   8 *
   9 * Baikal-T1 Process, Voltage, Temperature sensor driver
  10 */
  11
  12#include <linux/bitfield.h>
  13#include <linux/bitops.h>
  14#include <linux/clk.h>
  15#include <linux/completion.h>
  16#include <linux/delay.h>
  17#include <linux/device.h>
  18#include <linux/hwmon-sysfs.h>
  19#include <linux/hwmon.h>
  20#include <linux/interrupt.h>
  21#include <linux/io.h>
  22#include <linux/kernel.h>
  23#include <linux/ktime.h>
  24#include <linux/limits.h>
  25#include <linux/module.h>
  26#include <linux/mutex.h>
  27#include <linux/of.h>
  28#include <linux/platform_device.h>
  29#include <linux/seqlock.h>
  30#include <linux/sysfs.h>
  31#include <linux/types.h>
  32
  33#include "bt1-pvt.h"
  34
  35/*
  36 * For the sake of the code simplification we created the sensors info table
  37 * with the sensor names, activation modes, threshold registers base address
  38 * and the thresholds bit fields.
  39 */
  40static const struct pvt_sensor_info pvt_info[] = {
  41        PVT_SENSOR_INFO(0, "CPU Core Temperature", hwmon_temp, TEMP, TTHRES),
  42        PVT_SENSOR_INFO(0, "CPU Core Voltage", hwmon_in, VOLT, VTHRES),
  43        PVT_SENSOR_INFO(1, "CPU Core Low-Vt", hwmon_in, LVT, LTHRES),
  44        PVT_SENSOR_INFO(2, "CPU Core High-Vt", hwmon_in, HVT, HTHRES),
  45        PVT_SENSOR_INFO(3, "CPU Core Standard-Vt", hwmon_in, SVT, STHRES),
  46};
  47
  48/*
  49 * The original translation formulae of the temperature (in degrees of Celsius)
  50 * to PVT data and vice-versa are following:
  51 * N = 1.8322e-8*(T^4) + 2.343e-5*(T^3) + 8.7018e-3*(T^2) + 3.9269*(T^1) +
  52 *     1.7204e2,
  53 * T = -1.6743e-11*(N^4) + 8.1542e-8*(N^3) + -1.8201e-4*(N^2) +
  54 *     3.1020e-1*(N^1) - 4.838e1,
  55 * where T = [-48.380, 147.438]C and N = [0, 1023].
  56 * They must be accordingly altered to be suitable for the integer arithmetics.
  57 * The technique is called 'factor redistribution', which just makes sure the
  58 * multiplications and divisions are made so to have a result of the operations
  59 * within the integer numbers limit. In addition we need to translate the
  60 * formulae to accept millidegrees of Celsius. Here what they look like after
  61 * the alterations:
  62 * N = (18322e-20*(T^4) + 2343e-13*(T^3) + 87018e-9*(T^2) + 39269e-3*T +
  63 *     17204e2) / 1e4,
  64 * T = -16743e-12*(D^4) + 81542e-9*(D^3) - 182010e-6*(D^2) + 310200e-3*D -
  65 *     48380,
  66 * where T = [-48380, 147438] mC and N = [0, 1023].
  67 */
  68static const struct pvt_poly __maybe_unused poly_temp_to_N = {
  69        .total_divider = 10000,
  70        .terms = {
  71                {4, 18322, 10000, 10000},
  72                {3, 2343, 10000, 10},
  73                {2, 87018, 10000, 10},
  74                {1, 39269, 1000, 1},
  75                {0, 1720400, 1, 1}
  76        }
  77};
  78
  79static const struct pvt_poly poly_N_to_temp = {
  80        .total_divider = 1,
  81        .terms = {
  82                {4, -16743, 1000, 1},
  83                {3, 81542, 1000, 1},
  84                {2, -182010, 1000, 1},
  85                {1, 310200, 1000, 1},
  86                {0, -48380, 1, 1}
  87        }
  88};
  89
  90/*
  91 * Similar alterations are performed for the voltage conversion equations.
  92 * The original formulae are:
  93 * N = 1.8658e3*V - 1.1572e3,
  94 * V = (N + 1.1572e3) / 1.8658e3,
  95 * where V = [0.620, 1.168] V and N = [0, 1023].
  96 * After the optimization they looks as follows:
  97 * N = (18658e-3*V - 11572) / 10,
  98 * V = N * 10^5 / 18658 + 11572 * 10^4 / 18658.
  99 */
 100static const struct pvt_poly __maybe_unused poly_volt_to_N = {
 101        .total_divider = 10,
 102        .terms = {
 103                {1, 18658, 1000, 1},
 104                {0, -11572, 1, 1}
 105        }
 106};
 107
 108static const struct pvt_poly poly_N_to_volt = {
 109        .total_divider = 10,
 110        .terms = {
 111                {1, 100000, 18658, 1},
 112                {0, 115720000, 1, 18658}
 113        }
 114};
 115
 116/*
 117 * Here is the polynomial calculation function, which performs the
 118 * redistributed terms calculations. It's pretty straightforward. We walk
 119 * over each degree term up to the free one, and perform the redistributed
 120 * multiplication of the term coefficient, its divider (as for the rationale
 121 * fraction representation), data power and the rational fraction divider
 122 * leftover. Then all of this is collected in a total sum variable, which
 123 * value is normalized by the total divider before being returned.
 124 */
 125static long pvt_calc_poly(const struct pvt_poly *poly, long data)
 126{
 127        const struct pvt_poly_term *term = poly->terms;
 128        long tmp, ret = 0;
 129        int deg;
 130
 131        do {
 132                tmp = term->coef;
 133                for (deg = 0; deg < term->deg; ++deg)
 134                        tmp = mult_frac(tmp, data, term->divider);
 135                ret += tmp / term->divider_leftover;
 136        } while ((term++)->deg);
 137
 138        return ret / poly->total_divider;
 139}
 140
 141static inline u32 pvt_update(void __iomem *reg, u32 mask, u32 data)
 142{
 143        u32 old;
 144
 145        old = readl_relaxed(reg);
 146        writel((old & ~mask) | (data & mask), reg);
 147
 148        return old & mask;
 149}
 150
 151/*
 152 * Baikal-T1 PVT mode can be updated only when the controller is disabled.
 153 * So first we disable it, then set the new mode together with the controller
 154 * getting back enabled. The same concerns the temperature trim and
 155 * measurements timeout. If it is necessary the interface mutex is supposed
 156 * to be locked at the time the operations are performed.
 157 */
 158static inline void pvt_set_mode(struct pvt_hwmon *pvt, u32 mode)
 159{
 160        u32 old;
 161
 162        mode = FIELD_PREP(PVT_CTRL_MODE_MASK, mode);
 163
 164        old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
 165        pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_MODE_MASK | PVT_CTRL_EN,
 166                   mode | old);
 167}
 168
 169static inline u32 pvt_calc_trim(long temp)
 170{
 171        temp = clamp_val(temp, 0, PVT_TRIM_TEMP);
 172
 173        return DIV_ROUND_UP(temp, PVT_TRIM_STEP);
 174}
 175
 176static inline void pvt_set_trim(struct pvt_hwmon *pvt, u32 trim)
 177{
 178        u32 old;
 179
 180        trim = FIELD_PREP(PVT_CTRL_TRIM_MASK, trim);
 181
 182        old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
 183        pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_TRIM_MASK | PVT_CTRL_EN,
 184                   trim | old);
 185}
 186
 187static inline void pvt_set_tout(struct pvt_hwmon *pvt, u32 tout)
 188{
 189        u32 old;
 190
 191        old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
 192        writel(tout, pvt->regs + PVT_TTIMEOUT);
 193        pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, old);
 194}
 195
 196/*
 197 * This driver can optionally provide the hwmon alarms for each sensor the PVT
 198 * controller supports. The alarms functionality is made compile-time
 199 * configurable due to the hardware interface implementation peculiarity
 200 * described further in this comment. So in case if alarms are unnecessary in
 201 * your system design it's recommended to have them disabled to prevent the PVT
 202 * IRQs being periodically raised to get the data cache/alarms status up to
 203 * date.
 204 *
 205 * Baikal-T1 PVT embedded controller is based on the Analog Bits PVT sensor,
 206 * but is equipped with a dedicated control wrapper. It exposes the PVT
 207 * sub-block registers space via the APB3 bus. In addition the wrapper provides
 208 * a common interrupt vector of the sensors conversion completion events and
 209 * threshold value alarms. Alas the wrapper interface hasn't been fully thought
 210 * through. There is only one sensor can be activated at a time, for which the
 211 * thresholds comparator is enabled right after the data conversion is
 212 * completed. Due to this if alarms need to be implemented for all available
 213 * sensors we can't just set the thresholds and enable the interrupts. We need
 214 * to enable the sensors one after another and let the controller to detect
 215 * the alarms by itself at each conversion. This also makes pointless to handle
 216 * the alarms interrupts, since in occasion they happen synchronously with
 217 * data conversion completion. The best driver design would be to have the
 218 * completion interrupts enabled only and keep the converted value in the
 219 * driver data cache. This solution is implemented if hwmon alarms are enabled
 220 * in this driver. In case if the alarms are disabled, the conversion is
 221 * performed on demand at the time a sensors input file is read.
 222 */
 223
 224#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
 225
 226#define pvt_hard_isr NULL
 227
 228static irqreturn_t pvt_soft_isr(int irq, void *data)
 229{
 230        const struct pvt_sensor_info *info;
 231        struct pvt_hwmon *pvt = data;
 232        struct pvt_cache *cache;
 233        u32 val, thres_sts, old;
 234
 235        /*
 236         * DVALID bit will be cleared by reading the data. We need to save the
 237         * status before the next conversion happens. Threshold events will be
 238         * handled a bit later.
 239         */
 240        thres_sts = readl(pvt->regs + PVT_RAW_INTR_STAT);
 241
 242        /*
 243         * Then lets recharge the PVT interface with the next sampling mode.
 244         * Lock the interface mutex to serialize trim, timeouts and alarm
 245         * thresholds settings.
 246         */
 247        cache = &pvt->cache[pvt->sensor];
 248        info = &pvt_info[pvt->sensor];
 249        pvt->sensor = (pvt->sensor == PVT_SENSOR_LAST) ?
 250                      PVT_SENSOR_FIRST : (pvt->sensor + 1);
 251
 252        /*
 253         * For some reason we have to mask the interrupt before changing the
 254         * mode, otherwise sometimes the temperature mode doesn't get
 255         * activated even though the actual mode in the ctrl register
 256         * corresponds to one. Then we read the data. By doing so we also
 257         * recharge the data conversion. After this the mode corresponding
 258         * to the next sensor in the row is set. Finally we enable the
 259         * interrupts back.
 260         */
 261        mutex_lock(&pvt->iface_mtx);
 262
 263        old = pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
 264                         PVT_INTR_DVALID);
 265
 266        val = readl(pvt->regs + PVT_DATA);
 267
 268        pvt_set_mode(pvt, pvt_info[pvt->sensor].mode);
 269
 270        pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, old);
 271
 272        mutex_unlock(&pvt->iface_mtx);
 273
 274        /*
 275         * We can now update the data cache with data just retrieved from the
 276         * sensor. Lock write-seqlock to make sure the reader has a coherent
 277         * data.
 278         */
 279        write_seqlock(&cache->data_seqlock);
 280
 281        cache->data = FIELD_GET(PVT_DATA_DATA_MASK, val);
 282
 283        write_sequnlock(&cache->data_seqlock);
 284
 285        /*
 286         * While PVT core is doing the next mode data conversion, we'll check
 287         * whether the alarms were triggered for the current sensor. Note that
 288         * according to the documentation only one threshold IRQ status can be
 289         * set at a time, that's why if-else statement is utilized.
 290         */
 291        if ((thres_sts & info->thres_sts_lo) ^ cache->thres_sts_lo) {
 292                WRITE_ONCE(cache->thres_sts_lo, thres_sts & info->thres_sts_lo);
 293                hwmon_notify_event(pvt->hwmon, info->type, info->attr_min_alarm,
 294                                   info->channel);
 295        } else if ((thres_sts & info->thres_sts_hi) ^ cache->thres_sts_hi) {
 296                WRITE_ONCE(cache->thres_sts_hi, thres_sts & info->thres_sts_hi);
 297                hwmon_notify_event(pvt->hwmon, info->type, info->attr_max_alarm,
 298                                   info->channel);
 299        }
 300
 301        return IRQ_HANDLED;
 302}
 303
 304static inline umode_t pvt_limit_is_visible(enum pvt_sensor_type type)
 305{
 306        return 0644;
 307}
 308
 309static inline umode_t pvt_alarm_is_visible(enum pvt_sensor_type type)
 310{
 311        return 0444;
 312}
 313
 314static int pvt_read_data(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
 315                         long *val)
 316{
 317        struct pvt_cache *cache = &pvt->cache[type];
 318        unsigned int seq;
 319        u32 data;
 320
 321        do {
 322                seq = read_seqbegin(&cache->data_seqlock);
 323                data = cache->data;
 324        } while (read_seqretry(&cache->data_seqlock, seq));
 325
 326        if (type == PVT_TEMP)
 327                *val = pvt_calc_poly(&poly_N_to_temp, data);
 328        else
 329                *val = pvt_calc_poly(&poly_N_to_volt, data);
 330
 331        return 0;
 332}
 333
 334static int pvt_read_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
 335                          bool is_low, long *val)
 336{
 337        u32 data;
 338
 339        /* No need in serialization, since it is just read from MMIO. */
 340        data = readl(pvt->regs + pvt_info[type].thres_base);
 341
 342        if (is_low)
 343                data = FIELD_GET(PVT_THRES_LO_MASK, data);
 344        else
 345                data = FIELD_GET(PVT_THRES_HI_MASK, data);
 346
 347        if (type == PVT_TEMP)
 348                *val = pvt_calc_poly(&poly_N_to_temp, data);
 349        else
 350                *val = pvt_calc_poly(&poly_N_to_volt, data);
 351
 352        return 0;
 353}
 354
 355static int pvt_write_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
 356                           bool is_low, long val)
 357{
 358        u32 data, limit, mask;
 359        int ret;
 360
 361        if (type == PVT_TEMP) {
 362                val = clamp(val, PVT_TEMP_MIN, PVT_TEMP_MAX);
 363                data = pvt_calc_poly(&poly_temp_to_N, val);
 364        } else {
 365                val = clamp(val, PVT_VOLT_MIN, PVT_VOLT_MAX);
 366                data = pvt_calc_poly(&poly_volt_to_N, val);
 367        }
 368
 369        /* Serialize limit update, since a part of the register is changed. */
 370        ret = mutex_lock_interruptible(&pvt->iface_mtx);
 371        if (ret)
 372                return ret;
 373
 374        /* Make sure the upper and lower ranges don't intersect. */
 375        limit = readl(pvt->regs + pvt_info[type].thres_base);
 376        if (is_low) {
 377                limit = FIELD_GET(PVT_THRES_HI_MASK, limit);
 378                data = clamp_val(data, PVT_DATA_MIN, limit);
 379                data = FIELD_PREP(PVT_THRES_LO_MASK, data);
 380                mask = PVT_THRES_LO_MASK;
 381        } else {
 382                limit = FIELD_GET(PVT_THRES_LO_MASK, limit);
 383                data = clamp_val(data, limit, PVT_DATA_MAX);
 384                data = FIELD_PREP(PVT_THRES_HI_MASK, data);
 385                mask = PVT_THRES_HI_MASK;
 386        }
 387
 388        pvt_update(pvt->regs + pvt_info[type].thres_base, mask, data);
 389
 390        mutex_unlock(&pvt->iface_mtx);
 391
 392        return 0;
 393}
 394
 395static int pvt_read_alarm(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
 396                          bool is_low, long *val)
 397{
 398        if (is_low)
 399                *val = !!READ_ONCE(pvt->cache[type].thres_sts_lo);
 400        else
 401                *val = !!READ_ONCE(pvt->cache[type].thres_sts_hi);
 402
 403        return 0;
 404}
 405
 406static const struct hwmon_channel_info *pvt_channel_info[] = {
 407        HWMON_CHANNEL_INFO(chip,
 408                           HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL),
 409        HWMON_CHANNEL_INFO(temp,
 410                           HWMON_T_INPUT | HWMON_T_TYPE | HWMON_T_LABEL |
 411                           HWMON_T_MIN | HWMON_T_MIN_ALARM |
 412                           HWMON_T_MAX | HWMON_T_MAX_ALARM |
 413                           HWMON_T_OFFSET),
 414        HWMON_CHANNEL_INFO(in,
 415                           HWMON_I_INPUT | HWMON_I_LABEL |
 416                           HWMON_I_MIN | HWMON_I_MIN_ALARM |
 417                           HWMON_I_MAX | HWMON_I_MAX_ALARM,
 418                           HWMON_I_INPUT | HWMON_I_LABEL |
 419                           HWMON_I_MIN | HWMON_I_MIN_ALARM |
 420                           HWMON_I_MAX | HWMON_I_MAX_ALARM,
 421                           HWMON_I_INPUT | HWMON_I_LABEL |
 422                           HWMON_I_MIN | HWMON_I_MIN_ALARM |
 423                           HWMON_I_MAX | HWMON_I_MAX_ALARM,
 424                           HWMON_I_INPUT | HWMON_I_LABEL |
 425                           HWMON_I_MIN | HWMON_I_MIN_ALARM |
 426                           HWMON_I_MAX | HWMON_I_MAX_ALARM),
 427        NULL
 428};
 429
 430#else /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
 431
 432static irqreturn_t pvt_hard_isr(int irq, void *data)
 433{
 434        struct pvt_hwmon *pvt = data;
 435        struct pvt_cache *cache;
 436        u32 val;
 437
 438        /*
 439         * Mask the DVALID interrupt so after exiting from the handler a
 440         * repeated conversion wouldn't happen.
 441         */
 442        pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
 443                   PVT_INTR_DVALID);
 444
 445        /*
 446         * Nothing special for alarm-less driver. Just read the data, update
 447         * the cache and notify a waiter of this event.
 448         */
 449        val = readl(pvt->regs + PVT_DATA);
 450        if (!(val & PVT_DATA_VALID)) {
 451                dev_err(pvt->dev, "Got IRQ when data isn't valid\n");
 452                return IRQ_HANDLED;
 453        }
 454
 455        cache = &pvt->cache[pvt->sensor];
 456
 457        WRITE_ONCE(cache->data, FIELD_GET(PVT_DATA_DATA_MASK, val));
 458
 459        complete(&cache->conversion);
 460
 461        return IRQ_HANDLED;
 462}
 463
 464#define pvt_soft_isr NULL
 465
 466static inline umode_t pvt_limit_is_visible(enum pvt_sensor_type type)
 467{
 468        return 0;
 469}
 470
 471static inline umode_t pvt_alarm_is_visible(enum pvt_sensor_type type)
 472{
 473        return 0;
 474}
 475
 476static int pvt_read_data(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
 477                         long *val)
 478{
 479        struct pvt_cache *cache = &pvt->cache[type];
 480        unsigned long timeout;
 481        u32 data;
 482        int ret;
 483
 484        /*
 485         * Lock PVT conversion interface until data cache is updated. The
 486         * data read procedure is following: set the requested PVT sensor
 487         * mode, enable IRQ and conversion, wait until conversion is finished,
 488         * then disable conversion and IRQ, and read the cached data.
 489         */
 490        ret = mutex_lock_interruptible(&pvt->iface_mtx);
 491        if (ret)
 492                return ret;
 493
 494        pvt->sensor = type;
 495        pvt_set_mode(pvt, pvt_info[type].mode);
 496
 497        /*
 498         * Unmask the DVALID interrupt and enable the sensors conversions.
 499         * Do the reverse procedure when conversion is done.
 500         */
 501        pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, 0);
 502        pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN);
 503
 504        /*
 505         * Wait with timeout since in case if the sensor is suddenly powered
 506         * down the request won't be completed and the caller will hang up on
 507         * this procedure until the power is back up again. Multiply the
 508         * timeout by the factor of two to prevent a false timeout.
 509         */
 510        timeout = 2 * usecs_to_jiffies(ktime_to_us(pvt->timeout));
 511        ret = wait_for_completion_timeout(&cache->conversion, timeout);
 512
 513        pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
 514        pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
 515                   PVT_INTR_DVALID);
 516
 517        data = READ_ONCE(cache->data);
 518
 519        mutex_unlock(&pvt->iface_mtx);
 520
 521        if (!ret)
 522                return -ETIMEDOUT;
 523
 524        if (type == PVT_TEMP)
 525                *val = pvt_calc_poly(&poly_N_to_temp, data);
 526        else
 527                *val = pvt_calc_poly(&poly_N_to_volt, data);
 528
 529        return 0;
 530}
 531
 532static int pvt_read_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
 533                          bool is_low, long *val)
 534{
 535        return -EOPNOTSUPP;
 536}
 537
 538static int pvt_write_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
 539                           bool is_low, long val)
 540{
 541        return -EOPNOTSUPP;
 542}
 543
 544static int pvt_read_alarm(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
 545                          bool is_low, long *val)
 546{
 547        return -EOPNOTSUPP;
 548}
 549
 550static const struct hwmon_channel_info *pvt_channel_info[] = {
 551        HWMON_CHANNEL_INFO(chip,
 552                           HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL),
 553        HWMON_CHANNEL_INFO(temp,
 554                           HWMON_T_INPUT | HWMON_T_TYPE | HWMON_T_LABEL |
 555                           HWMON_T_OFFSET),
 556        HWMON_CHANNEL_INFO(in,
 557                           HWMON_I_INPUT | HWMON_I_LABEL,
 558                           HWMON_I_INPUT | HWMON_I_LABEL,
 559                           HWMON_I_INPUT | HWMON_I_LABEL,
 560                           HWMON_I_INPUT | HWMON_I_LABEL),
 561        NULL
 562};
 563
 564#endif /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
 565
 566static inline bool pvt_hwmon_channel_is_valid(enum hwmon_sensor_types type,
 567                                              int ch)
 568{
 569        switch (type) {
 570        case hwmon_temp:
 571                if (ch < 0 || ch >= PVT_TEMP_CHS)
 572                        return false;
 573                break;
 574        case hwmon_in:
 575                if (ch < 0 || ch >= PVT_VOLT_CHS)
 576                        return false;
 577                break;
 578        default:
 579                break;
 580        }
 581
 582        /* The rest of the types are independent from the channel number. */
 583        return true;
 584}
 585
 586static umode_t pvt_hwmon_is_visible(const void *data,
 587                                    enum hwmon_sensor_types type,
 588                                    u32 attr, int ch)
 589{
 590        if (!pvt_hwmon_channel_is_valid(type, ch))
 591                return 0;
 592
 593        switch (type) {
 594        case hwmon_chip:
 595                switch (attr) {
 596                case hwmon_chip_update_interval:
 597                        return 0644;
 598                }
 599                break;
 600        case hwmon_temp:
 601                switch (attr) {
 602                case hwmon_temp_input:
 603                case hwmon_temp_type:
 604                case hwmon_temp_label:
 605                        return 0444;
 606                case hwmon_temp_min:
 607                case hwmon_temp_max:
 608                        return pvt_limit_is_visible(ch);
 609                case hwmon_temp_min_alarm:
 610                case hwmon_temp_max_alarm:
 611                        return pvt_alarm_is_visible(ch);
 612                case hwmon_temp_offset:
 613                        return 0644;
 614                }
 615                break;
 616        case hwmon_in:
 617                switch (attr) {
 618                case hwmon_in_input:
 619                case hwmon_in_label:
 620                        return 0444;
 621                case hwmon_in_min:
 622                case hwmon_in_max:
 623                        return pvt_limit_is_visible(PVT_VOLT + ch);
 624                case hwmon_in_min_alarm:
 625                case hwmon_in_max_alarm:
 626                        return pvt_alarm_is_visible(PVT_VOLT + ch);
 627                }
 628                break;
 629        default:
 630                break;
 631        }
 632
 633        return 0;
 634}
 635
 636static int pvt_read_trim(struct pvt_hwmon *pvt, long *val)
 637{
 638        u32 data;
 639
 640        data = readl(pvt->regs + PVT_CTRL);
 641        *val = FIELD_GET(PVT_CTRL_TRIM_MASK, data) * PVT_TRIM_STEP;
 642
 643        return 0;
 644}
 645
 646static int pvt_write_trim(struct pvt_hwmon *pvt, long val)
 647{
 648        u32 trim;
 649        int ret;
 650
 651        /*
 652         * Serialize trim update, since a part of the register is changed and
 653         * the controller is supposed to be disabled during this operation.
 654         */
 655        ret = mutex_lock_interruptible(&pvt->iface_mtx);
 656        if (ret)
 657                return ret;
 658
 659        trim = pvt_calc_trim(val);
 660        pvt_set_trim(pvt, trim);
 661
 662        mutex_unlock(&pvt->iface_mtx);
 663
 664        return 0;
 665}
 666
 667static int pvt_read_timeout(struct pvt_hwmon *pvt, long *val)
 668{
 669        int ret;
 670
 671        ret = mutex_lock_interruptible(&pvt->iface_mtx);
 672        if (ret)
 673                return ret;
 674
 675        /* Return the result in msec as hwmon sysfs interface requires. */
 676        *val = ktime_to_ms(pvt->timeout);
 677
 678        mutex_unlock(&pvt->iface_mtx);
 679
 680        return 0;
 681}
 682
 683static int pvt_write_timeout(struct pvt_hwmon *pvt, long val)
 684{
 685        unsigned long rate;
 686        ktime_t kt, cache;
 687        u32 data;
 688        int ret;
 689
 690        rate = clk_get_rate(pvt->clks[PVT_CLOCK_REF].clk);
 691        if (!rate)
 692                return -ENODEV;
 693
 694        /*
 695         * If alarms are enabled, the requested timeout must be divided
 696         * between all available sensors to have the requested delay
 697         * applicable to each individual sensor.
 698         */
 699        cache = kt = ms_to_ktime(val);
 700#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
 701        kt = ktime_divns(kt, PVT_SENSORS_NUM);
 702#endif
 703
 704        /*
 705         * Subtract a constant lag, which always persists due to the limited
 706         * PVT sampling rate. Make sure the timeout is not negative.
 707         */
 708        kt = ktime_sub_ns(kt, PVT_TOUT_MIN);
 709        if (ktime_to_ns(kt) < 0)
 710                kt = ktime_set(0, 0);
 711
 712        /*
 713         * Finally recalculate the timeout in terms of the reference clock
 714         * period.
 715         */
 716        data = ktime_divns(kt * rate, NSEC_PER_SEC);
 717
 718        /*
 719         * Update the measurements delay, but lock the interface first, since
 720         * we have to disable PVT in order to have the new delay actually
 721         * updated.
 722         */
 723        ret = mutex_lock_interruptible(&pvt->iface_mtx);
 724        if (ret)
 725                return ret;
 726
 727        pvt_set_tout(pvt, data);
 728        pvt->timeout = cache;
 729
 730        mutex_unlock(&pvt->iface_mtx);
 731
 732        return 0;
 733}
 734
 735static int pvt_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
 736                          u32 attr, int ch, long *val)
 737{
 738        struct pvt_hwmon *pvt = dev_get_drvdata(dev);
 739
 740        if (!pvt_hwmon_channel_is_valid(type, ch))
 741                return -EINVAL;
 742
 743        switch (type) {
 744        case hwmon_chip:
 745                switch (attr) {
 746                case hwmon_chip_update_interval:
 747                        return pvt_read_timeout(pvt, val);
 748                }
 749                break;
 750        case hwmon_temp:
 751                switch (attr) {
 752                case hwmon_temp_input:
 753                        return pvt_read_data(pvt, ch, val);
 754                case hwmon_temp_type:
 755                        *val = 1;
 756                        return 0;
 757                case hwmon_temp_min:
 758                        return pvt_read_limit(pvt, ch, true, val);
 759                case hwmon_temp_max:
 760                        return pvt_read_limit(pvt, ch, false, val);
 761                case hwmon_temp_min_alarm:
 762                        return pvt_read_alarm(pvt, ch, true, val);
 763                case hwmon_temp_max_alarm:
 764                        return pvt_read_alarm(pvt, ch, false, val);
 765                case hwmon_temp_offset:
 766                        return pvt_read_trim(pvt, val);
 767                }
 768                break;
 769        case hwmon_in:
 770                switch (attr) {
 771                case hwmon_in_input:
 772                        return pvt_read_data(pvt, PVT_VOLT + ch, val);
 773                case hwmon_in_min:
 774                        return pvt_read_limit(pvt, PVT_VOLT + ch, true, val);
 775                case hwmon_in_max:
 776                        return pvt_read_limit(pvt, PVT_VOLT + ch, false, val);
 777                case hwmon_in_min_alarm:
 778                        return pvt_read_alarm(pvt, PVT_VOLT + ch, true, val);
 779                case hwmon_in_max_alarm:
 780                        return pvt_read_alarm(pvt, PVT_VOLT + ch, false, val);
 781                }
 782                break;
 783        default:
 784                break;
 785        }
 786
 787        return -EOPNOTSUPP;
 788}
 789
 790static int pvt_hwmon_read_string(struct device *dev,
 791                                 enum hwmon_sensor_types type,
 792                                 u32 attr, int ch, const char **str)
 793{
 794        if (!pvt_hwmon_channel_is_valid(type, ch))
 795                return -EINVAL;
 796
 797        switch (type) {
 798        case hwmon_temp:
 799                switch (attr) {
 800                case hwmon_temp_label:
 801                        *str = pvt_info[ch].label;
 802                        return 0;
 803                }
 804                break;
 805        case hwmon_in:
 806                switch (attr) {
 807                case hwmon_in_label:
 808                        *str = pvt_info[PVT_VOLT + ch].label;
 809                        return 0;
 810                }
 811                break;
 812        default:
 813                break;
 814        }
 815
 816        return -EOPNOTSUPP;
 817}
 818
 819static int pvt_hwmon_write(struct device *dev, enum hwmon_sensor_types type,
 820                           u32 attr, int ch, long val)
 821{
 822        struct pvt_hwmon *pvt = dev_get_drvdata(dev);
 823
 824        if (!pvt_hwmon_channel_is_valid(type, ch))
 825                return -EINVAL;
 826
 827        switch (type) {
 828        case hwmon_chip:
 829                switch (attr) {
 830                case hwmon_chip_update_interval:
 831                        return pvt_write_timeout(pvt, val);
 832                }
 833                break;
 834        case hwmon_temp:
 835                switch (attr) {
 836                case hwmon_temp_min:
 837                        return pvt_write_limit(pvt, ch, true, val);
 838                case hwmon_temp_max:
 839                        return pvt_write_limit(pvt, ch, false, val);
 840                case hwmon_temp_offset:
 841                        return pvt_write_trim(pvt, val);
 842                }
 843                break;
 844        case hwmon_in:
 845                switch (attr) {
 846                case hwmon_in_min:
 847                        return pvt_write_limit(pvt, PVT_VOLT + ch, true, val);
 848                case hwmon_in_max:
 849                        return pvt_write_limit(pvt, PVT_VOLT + ch, false, val);
 850                }
 851                break;
 852        default:
 853                break;
 854        }
 855
 856        return -EOPNOTSUPP;
 857}
 858
 859static const struct hwmon_ops pvt_hwmon_ops = {
 860        .is_visible = pvt_hwmon_is_visible,
 861        .read = pvt_hwmon_read,
 862        .read_string = pvt_hwmon_read_string,
 863        .write = pvt_hwmon_write
 864};
 865
 866static const struct hwmon_chip_info pvt_hwmon_info = {
 867        .ops = &pvt_hwmon_ops,
 868        .info = pvt_channel_info
 869};
 870
 871static void pvt_clear_data(void *data)
 872{
 873        struct pvt_hwmon *pvt = data;
 874#if !defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
 875        int idx;
 876
 877        for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
 878                complete_all(&pvt->cache[idx].conversion);
 879#endif
 880
 881        mutex_destroy(&pvt->iface_mtx);
 882}
 883
 884static struct pvt_hwmon *pvt_create_data(struct platform_device *pdev)
 885{
 886        struct device *dev = &pdev->dev;
 887        struct pvt_hwmon *pvt;
 888        int ret, idx;
 889
 890        pvt = devm_kzalloc(dev, sizeof(*pvt), GFP_KERNEL);
 891        if (!pvt)
 892                return ERR_PTR(-ENOMEM);
 893
 894        ret = devm_add_action(dev, pvt_clear_data, pvt);
 895        if (ret) {
 896                dev_err(dev, "Can't add PVT data clear action\n");
 897                return ERR_PTR(ret);
 898        }
 899
 900        pvt->dev = dev;
 901        pvt->sensor = PVT_SENSOR_FIRST;
 902        mutex_init(&pvt->iface_mtx);
 903
 904#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
 905        for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
 906                seqlock_init(&pvt->cache[idx].data_seqlock);
 907#else
 908        for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
 909                init_completion(&pvt->cache[idx].conversion);
 910#endif
 911
 912        return pvt;
 913}
 914
 915static int pvt_request_regs(struct pvt_hwmon *pvt)
 916{
 917        struct platform_device *pdev = to_platform_device(pvt->dev);
 918        struct resource *res;
 919
 920        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 921        if (!res) {
 922                dev_err(pvt->dev, "Couldn't find PVT memresource\n");
 923                return -EINVAL;
 924        }
 925
 926        pvt->regs = devm_ioremap_resource(pvt->dev, res);
 927        if (IS_ERR(pvt->regs))
 928                return PTR_ERR(pvt->regs);
 929
 930        return 0;
 931}
 932
 933static void pvt_disable_clks(void *data)
 934{
 935        struct pvt_hwmon *pvt = data;
 936
 937        clk_bulk_disable_unprepare(PVT_CLOCK_NUM, pvt->clks);
 938}
 939
 940static int pvt_request_clks(struct pvt_hwmon *pvt)
 941{
 942        int ret;
 943
 944        pvt->clks[PVT_CLOCK_APB].id = "pclk";
 945        pvt->clks[PVT_CLOCK_REF].id = "ref";
 946
 947        ret = devm_clk_bulk_get(pvt->dev, PVT_CLOCK_NUM, pvt->clks);
 948        if (ret) {
 949                dev_err(pvt->dev, "Couldn't get PVT clocks descriptors\n");
 950                return ret;
 951        }
 952
 953        ret = clk_bulk_prepare_enable(PVT_CLOCK_NUM, pvt->clks);
 954        if (ret) {
 955                dev_err(pvt->dev, "Couldn't enable the PVT clocks\n");
 956                return ret;
 957        }
 958
 959        ret = devm_add_action_or_reset(pvt->dev, pvt_disable_clks, pvt);
 960        if (ret) {
 961                dev_err(pvt->dev, "Can't add PVT clocks disable action\n");
 962                return ret;
 963        }
 964
 965        return 0;
 966}
 967
 968static int pvt_check_pwr(struct pvt_hwmon *pvt)
 969{
 970        unsigned long tout;
 971        int ret = 0;
 972        u32 data;
 973
 974        /*
 975         * Test out the sensor conversion functionality. If it is not done on
 976         * time then the domain must have been unpowered and we won't be able
 977         * to use the device later in this driver.
 978         * Note If the power source is lost during the normal driver work the
 979         * data read procedure will either return -ETIMEDOUT (for the
 980         * alarm-less driver configuration) or just stop the repeated
 981         * conversion. In the later case alas we won't be able to detect the
 982         * problem.
 983         */
 984        pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_ALL, PVT_INTR_ALL);
 985        pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN);
 986        pvt_set_tout(pvt, 0);
 987        readl(pvt->regs + PVT_DATA);
 988
 989        tout = PVT_TOUT_MIN / NSEC_PER_USEC;
 990        usleep_range(tout, 2 * tout);
 991
 992        data = readl(pvt->regs + PVT_DATA);
 993        if (!(data & PVT_DATA_VALID)) {
 994                ret = -ENODEV;
 995                dev_err(pvt->dev, "Sensor is powered down\n");
 996        }
 997
 998        pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
 999
1000        return ret;
1001}
1002
1003static int pvt_init_iface(struct pvt_hwmon *pvt)
1004{
1005        unsigned long rate;
1006        u32 trim, temp;
1007
1008        rate = clk_get_rate(pvt->clks[PVT_CLOCK_REF].clk);
1009        if (!rate) {
1010                dev_err(pvt->dev, "Invalid reference clock rate\n");
1011                return -ENODEV;
1012        }
1013
1014        /*
1015         * Make sure all interrupts and controller are disabled so not to
1016         * accidentally have ISR executed before the driver data is fully
1017         * initialized. Clear the IRQ status as well.
1018         */
1019        pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_ALL, PVT_INTR_ALL);
1020        pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
1021        readl(pvt->regs + PVT_CLR_INTR);
1022        readl(pvt->regs + PVT_DATA);
1023
1024        /* Setup default sensor mode, timeout and temperature trim. */
1025        pvt_set_mode(pvt, pvt_info[pvt->sensor].mode);
1026        pvt_set_tout(pvt, PVT_TOUT_DEF);
1027
1028        /*
1029         * Preserve the current ref-clock based delay (Ttotal) between the
1030         * sensors data samples in the driver data so not to recalculate it
1031         * each time on the data requests and timeout reads. It consists of the
1032         * delay introduced by the internal ref-clock timer (N / Fclk) and the
1033         * constant timeout caused by each conversion latency (Tmin):
1034         *   Ttotal = N / Fclk + Tmin
1035         * If alarms are enabled the sensors are polled one after another and
1036         * in order to get the next measurement of a particular sensor the
1037         * caller will have to wait for at most until all the others are
1038         * polled. In that case the formulae will look a bit different:
1039         *   Ttotal = 5 * (N / Fclk + Tmin)
1040         */
1041#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
1042        pvt->timeout = ktime_set(PVT_SENSORS_NUM * PVT_TOUT_DEF, 0);
1043        pvt->timeout = ktime_divns(pvt->timeout, rate);
1044        pvt->timeout = ktime_add_ns(pvt->timeout, PVT_SENSORS_NUM * PVT_TOUT_MIN);
1045#else
1046        pvt->timeout = ktime_set(PVT_TOUT_DEF, 0);
1047        pvt->timeout = ktime_divns(pvt->timeout, rate);
1048        pvt->timeout = ktime_add_ns(pvt->timeout, PVT_TOUT_MIN);
1049#endif
1050
1051        trim = PVT_TRIM_DEF;
1052        if (!of_property_read_u32(pvt->dev->of_node,
1053             "baikal,pvt-temp-offset-millicelsius", &temp))
1054                trim = pvt_calc_trim(temp);
1055
1056        pvt_set_trim(pvt, trim);
1057
1058        return 0;
1059}
1060
1061static int pvt_request_irq(struct pvt_hwmon *pvt)
1062{
1063        struct platform_device *pdev = to_platform_device(pvt->dev);
1064        int ret;
1065
1066        pvt->irq = platform_get_irq(pdev, 0);
1067        if (pvt->irq < 0)
1068                return pvt->irq;
1069
1070        ret = devm_request_threaded_irq(pvt->dev, pvt->irq,
1071                                        pvt_hard_isr, pvt_soft_isr,
1072#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
1073                                        IRQF_SHARED | IRQF_TRIGGER_HIGH |
1074                                        IRQF_ONESHOT,
1075#else
1076                                        IRQF_SHARED | IRQF_TRIGGER_HIGH,
1077#endif
1078                                        "pvt", pvt);
1079        if (ret) {
1080                dev_err(pvt->dev, "Couldn't request PVT IRQ\n");
1081                return ret;
1082        }
1083
1084        return 0;
1085}
1086
1087static int pvt_create_hwmon(struct pvt_hwmon *pvt)
1088{
1089        pvt->hwmon = devm_hwmon_device_register_with_info(pvt->dev, "pvt", pvt,
1090                &pvt_hwmon_info, NULL);
1091        if (IS_ERR(pvt->hwmon)) {
1092                dev_err(pvt->dev, "Couldn't create hwmon device\n");
1093                return PTR_ERR(pvt->hwmon);
1094        }
1095
1096        return 0;
1097}
1098
1099#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
1100
1101static void pvt_disable_iface(void *data)
1102{
1103        struct pvt_hwmon *pvt = data;
1104
1105        mutex_lock(&pvt->iface_mtx);
1106        pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
1107        pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
1108                   PVT_INTR_DVALID);
1109        mutex_unlock(&pvt->iface_mtx);
1110}
1111
1112static int pvt_enable_iface(struct pvt_hwmon *pvt)
1113{
1114        int ret;
1115
1116        ret = devm_add_action(pvt->dev, pvt_disable_iface, pvt);
1117        if (ret) {
1118                dev_err(pvt->dev, "Can't add PVT disable interface action\n");
1119                return ret;
1120        }
1121
1122        /*
1123         * Enable sensors data conversion and IRQ. We need to lock the
1124         * interface mutex since hwmon has just been created and the
1125         * corresponding sysfs files are accessible from user-space,
1126         * which theoretically may cause races.
1127         */
1128        mutex_lock(&pvt->iface_mtx);
1129        pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, 0);
1130        pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN);
1131        mutex_unlock(&pvt->iface_mtx);
1132
1133        return 0;
1134}
1135
1136#else /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
1137
1138static int pvt_enable_iface(struct pvt_hwmon *pvt)
1139{
1140        return 0;
1141}
1142
1143#endif /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
1144
1145static int pvt_probe(struct platform_device *pdev)
1146{
1147        struct pvt_hwmon *pvt;
1148        int ret;
1149
1150        pvt = pvt_create_data(pdev);
1151        if (IS_ERR(pvt))
1152                return PTR_ERR(pvt);
1153
1154        ret = pvt_request_regs(pvt);
1155        if (ret)
1156                return ret;
1157
1158        ret = pvt_request_clks(pvt);
1159        if (ret)
1160                return ret;
1161
1162        ret = pvt_check_pwr(pvt);
1163        if (ret)
1164                return ret;
1165
1166        ret = pvt_init_iface(pvt);
1167        if (ret)
1168                return ret;
1169
1170        ret = pvt_request_irq(pvt);
1171        if (ret)
1172                return ret;
1173
1174        ret = pvt_create_hwmon(pvt);
1175        if (ret)
1176                return ret;
1177
1178        ret = pvt_enable_iface(pvt);
1179        if (ret)
1180                return ret;
1181
1182        return 0;
1183}
1184
1185static const struct of_device_id pvt_of_match[] = {
1186        { .compatible = "baikal,bt1-pvt" },
1187        { }
1188};
1189MODULE_DEVICE_TABLE(of, pvt_of_match);
1190
1191static struct platform_driver pvt_driver = {
1192        .probe = pvt_probe,
1193        .driver = {
1194                .name = "bt1-pvt",
1195                .of_match_table = pvt_of_match
1196        }
1197};
1198module_platform_driver(pvt_driver);
1199
1200MODULE_AUTHOR("Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>");
1201MODULE_DESCRIPTION("Baikal-T1 PVT driver");
1202MODULE_LICENSE("GPL v2");
1203