linux/drivers/hwmon/hwmon-vid.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * hwmon-vid.c - VID/VRM/VRD voltage conversions
   4 *
   5 * Copyright (c) 2004 Rudolf Marek <r.marek@assembler.cz>
   6 *
   7 * Partly imported from i2c-vid.h of the lm_sensors project
   8 * Copyright (c) 2002 Mark D. Studebaker <mdsxyz123@yahoo.com>
   9 * With assistance from Trent Piepho <xyzzy@speakeasy.org>
  10 */
  11
  12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  13
  14#include <linux/module.h>
  15#include <linux/kernel.h>
  16#include <linux/hwmon-vid.h>
  17
  18/*
  19 * Common code for decoding VID pins.
  20 *
  21 * References:
  22 *
  23 * For VRM 8.4 to 9.1, "VRM x.y DC-DC Converter Design Guidelines",
  24 * available at http://developer.intel.com/.
  25 *
  26 * For VRD 10.0 and up, "VRD x.y Design Guide",
  27 * available at http://developer.intel.com/.
  28 *
  29 * AMD Athlon 64 and AMD Opteron Processors, AMD Publication 26094,
  30 * http://support.amd.com/us/Processor_TechDocs/26094.PDF
  31 * Table 74. VID Code Voltages
  32 * This corresponds to an arbitrary VRM code of 24 in the functions below.
  33 * These CPU models (K8 revision <= E) have 5 VID pins. See also:
  34 * Revision Guide for AMD Athlon 64 and AMD Opteron Processors, AMD Publication 25759,
  35 * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/25759.pdf
  36 *
  37 * AMD NPT Family 0Fh Processors, AMD Publication 32559,
  38 * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/32559.pdf
  39 * Table 71. VID Code Voltages
  40 * This corresponds to an arbitrary VRM code of 25 in the functions below.
  41 * These CPU models (K8 revision >= F) have 6 VID pins. See also:
  42 * Revision Guide for AMD NPT Family 0Fh Processors, AMD Publication 33610,
  43 * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/33610.pdf
  44 *
  45 * The 17 specification is in fact Intel Mobile Voltage Positioning -
  46 * (IMVP-II). You can find more information in the datasheet of Max1718
  47 * http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2452
  48 *
  49 * The 13 specification corresponds to the Intel Pentium M series. There
  50 * doesn't seem to be any named specification for these. The conversion
  51 * tables are detailed directly in the various Pentium M datasheets:
  52 * https://www.intel.com/design/intarch/pentiumm/docs_pentiumm.htm
  53 *
  54 * The 14 specification corresponds to Intel Core series. There
  55 * doesn't seem to be any named specification for these. The conversion
  56 * tables are detailed directly in the various Pentium Core datasheets:
  57 * https://www.intel.com/design/mobile/datashts/309221.htm
  58 *
  59 * The 110 (VRM 11) specification corresponds to Intel Conroe based series.
  60 * https://www.intel.com/design/processor/applnots/313214.htm
  61 */
  62
  63/*
  64 * vrm is the VRM/VRD document version multiplied by 10.
  65 * val is the 4-bit or more VID code.
  66 * Returned value is in mV to avoid floating point in the kernel.
  67 * Some VID have some bits in uV scale, this is rounded to mV.
  68 */
  69int vid_from_reg(int val, u8 vrm)
  70{
  71        int vid;
  72
  73        switch (vrm) {
  74
  75        case 100:               /* VRD 10.0 */
  76                /* compute in uV, round to mV */
  77                val &= 0x3f;
  78                if ((val & 0x1f) == 0x1f)
  79                        return 0;
  80                if ((val & 0x1f) <= 0x09 || val == 0x0a)
  81                        vid = 1087500 - (val & 0x1f) * 25000;
  82                else
  83                        vid = 1862500 - (val & 0x1f) * 25000;
  84                if (val & 0x20)
  85                        vid -= 12500;
  86                return (vid + 500) / 1000;
  87
  88        case 110:               /* Intel Conroe */
  89                                /* compute in uV, round to mV */
  90                val &= 0xff;
  91                if (val < 0x02 || val > 0xb2)
  92                        return 0;
  93                return (1600000 - (val - 2) * 6250 + 500) / 1000;
  94
  95        case 24:                /* Athlon64 & Opteron */
  96                val &= 0x1f;
  97                if (val == 0x1f)
  98                        return 0;
  99                fallthrough;
 100        case 25:                /* AMD NPT 0Fh */
 101                val &= 0x3f;
 102                return (val < 32) ? 1550 - 25 * val
 103                        : 775 - (25 * (val - 31)) / 2;
 104
 105        case 26:                /* AMD family 10h to 15h, serial VID */
 106                val &= 0x7f;
 107                if (val >= 0x7c)
 108                        return 0;
 109                return DIV_ROUND_CLOSEST(15500 - 125 * val, 10);
 110
 111        case 91:                /* VRM 9.1 */
 112        case 90:                /* VRM 9.0 */
 113                val &= 0x1f;
 114                return val == 0x1f ? 0 :
 115                                     1850 - val * 25;
 116
 117        case 85:                /* VRM 8.5 */
 118                val &= 0x1f;
 119                return (val & 0x10  ? 25 : 0) +
 120                       ((val & 0x0f) > 0x04 ? 2050 : 1250) -
 121                       ((val & 0x0f) * 50);
 122
 123        case 84:                /* VRM 8.4 */
 124                val &= 0x0f;
 125                fallthrough;
 126        case 82:                /* VRM 8.2 */
 127                val &= 0x1f;
 128                return val == 0x1f ? 0 :
 129                       val & 0x10  ? 5100 - (val) * 100 :
 130                                     2050 - (val) * 50;
 131        case 17:                /* Intel IMVP-II */
 132                val &= 0x1f;
 133                return val & 0x10 ? 975 - (val & 0xF) * 25 :
 134                                    1750 - val * 50;
 135        case 13:
 136        case 131:
 137                val &= 0x3f;
 138                /* Exception for Eden ULV 500 MHz */
 139                if (vrm == 131 && val == 0x3f)
 140                        val++;
 141                return 1708 - val * 16;
 142        case 14:                /* Intel Core */
 143                                /* compute in uV, round to mV */
 144                val &= 0x7f;
 145                return val > 0x77 ? 0 : (1500000 - (val * 12500) + 500) / 1000;
 146        default:                /* report 0 for unknown */
 147                if (vrm)
 148                        pr_warn("Requested unsupported VRM version (%u)\n",
 149                                (unsigned int)vrm);
 150                return 0;
 151        }
 152}
 153EXPORT_SYMBOL(vid_from_reg);
 154
 155/*
 156 * After this point is the code to automatically determine which
 157 * VRM/VRD specification should be used depending on the CPU.
 158 */
 159
 160struct vrm_model {
 161        u8 vendor;
 162        u8 family;
 163        u8 model_from;
 164        u8 model_to;
 165        u8 stepping_to;
 166        u8 vrm_type;
 167};
 168
 169#define ANY 0xFF
 170
 171#ifdef CONFIG_X86
 172
 173/*
 174 * The stepping_to parameter is highest acceptable stepping for current line.
 175 * The model match must be exact for 4-bit values. For model values 0x10
 176 * and above (extended model), all models below the parameter will match.
 177 */
 178
 179static struct vrm_model vrm_models[] = {
 180        {X86_VENDOR_AMD, 0x6, 0x0, ANY, ANY, 90},       /* Athlon Duron etc */
 181        {X86_VENDOR_AMD, 0xF, 0x0, 0x3F, ANY, 24},      /* Athlon 64, Opteron */
 182        /*
 183         * In theory, all NPT family 0Fh processors have 6 VID pins and should
 184         * thus use vrm 25, however in practice not all mainboards route the
 185         * 6th VID pin because it is never needed. So we use the 5 VID pin
 186         * variant (vrm 24) for the models which exist today.
 187         */
 188        {X86_VENDOR_AMD, 0xF, 0x40, 0x7F, ANY, 24},     /* NPT family 0Fh */
 189        {X86_VENDOR_AMD, 0xF, 0x80, ANY, ANY, 25},      /* future fam. 0Fh */
 190        {X86_VENDOR_AMD, 0x10, 0x0, ANY, ANY, 25},      /* NPT family 10h */
 191        {X86_VENDOR_AMD, 0x11, 0x0, ANY, ANY, 26},      /* family 11h */
 192        {X86_VENDOR_AMD, 0x12, 0x0, ANY, ANY, 26},      /* family 12h */
 193        {X86_VENDOR_AMD, 0x14, 0x0, ANY, ANY, 26},      /* family 14h */
 194        {X86_VENDOR_AMD, 0x15, 0x0, ANY, ANY, 26},      /* family 15h */
 195
 196        {X86_VENDOR_INTEL, 0x6, 0x0, 0x6, ANY, 82},     /* Pentium Pro,
 197                                                         * Pentium II, Xeon,
 198                                                         * Mobile Pentium,
 199                                                         * Celeron */
 200        {X86_VENDOR_INTEL, 0x6, 0x7, 0x7, ANY, 84},     /* Pentium III, Xeon */
 201        {X86_VENDOR_INTEL, 0x6, 0x8, 0x8, ANY, 82},     /* Pentium III, Xeon */
 202        {X86_VENDOR_INTEL, 0x6, 0x9, 0x9, ANY, 13},     /* Pentium M (130 nm) */
 203        {X86_VENDOR_INTEL, 0x6, 0xA, 0xA, ANY, 82},     /* Pentium III Xeon */
 204        {X86_VENDOR_INTEL, 0x6, 0xB, 0xB, ANY, 85},     /* Tualatin */
 205        {X86_VENDOR_INTEL, 0x6, 0xD, 0xD, ANY, 13},     /* Pentium M (90 nm) */
 206        {X86_VENDOR_INTEL, 0x6, 0xE, 0xE, ANY, 14},     /* Intel Core (65 nm) */
 207        {X86_VENDOR_INTEL, 0x6, 0xF, ANY, ANY, 110},    /* Intel Conroe and
 208                                                         * later */
 209        {X86_VENDOR_INTEL, 0xF, 0x0, 0x0, ANY, 90},     /* P4 */
 210        {X86_VENDOR_INTEL, 0xF, 0x1, 0x1, ANY, 90},     /* P4 Willamette */
 211        {X86_VENDOR_INTEL, 0xF, 0x2, 0x2, ANY, 90},     /* P4 Northwood */
 212        {X86_VENDOR_INTEL, 0xF, 0x3, ANY, ANY, 100},    /* Prescott and above
 213                                                         * assume VRD 10 */
 214
 215        {X86_VENDOR_CENTAUR, 0x6, 0x7, 0x7, ANY, 85},   /* Eden ESP/Ezra */
 216        {X86_VENDOR_CENTAUR, 0x6, 0x8, 0x8, 0x7, 85},   /* Ezra T */
 217        {X86_VENDOR_CENTAUR, 0x6, 0x9, 0x9, 0x7, 85},   /* Nehemiah */
 218        {X86_VENDOR_CENTAUR, 0x6, 0x9, 0x9, ANY, 17},   /* C3-M, Eden-N */
 219        {X86_VENDOR_CENTAUR, 0x6, 0xA, 0xA, 0x7, 0},    /* No information */
 220        {X86_VENDOR_CENTAUR, 0x6, 0xA, 0xA, ANY, 13},   /* C7-M, C7,
 221                                                         * Eden (Esther) */
 222        {X86_VENDOR_CENTAUR, 0x6, 0xD, 0xD, ANY, 134},  /* C7-D, C7-M, C7,
 223                                                         * Eden (Esther) */
 224};
 225
 226/*
 227 * Special case for VIA model D: there are two different possible
 228 * VID tables, so we have to figure out first, which one must be
 229 * used. This resolves temporary drm value 134 to 14 (Intel Core
 230 * 7-bit VID), 13 (Pentium M 6-bit VID) or 131 (Pentium M 6-bit VID
 231 * + quirk for Eden ULV 500 MHz).
 232 * Note: something similar might be needed for model A, I'm not sure.
 233 */
 234static u8 get_via_model_d_vrm(void)
 235{
 236        unsigned int vid, brand, __maybe_unused dummy;
 237        static const char *brands[4] = {
 238                "C7-M", "C7", "Eden", "C7-D"
 239        };
 240
 241        rdmsr(0x198, dummy, vid);
 242        vid &= 0xff;
 243
 244        rdmsr(0x1154, brand, dummy);
 245        brand = ((brand >> 4) ^ (brand >> 2)) & 0x03;
 246
 247        if (vid > 0x3f) {
 248                pr_info("Using %d-bit VID table for VIA %s CPU\n",
 249                        7, brands[brand]);
 250                return 14;
 251        } else {
 252                pr_info("Using %d-bit VID table for VIA %s CPU\n",
 253                        6, brands[brand]);
 254                /* Enable quirk for Eden */
 255                return brand == 2 ? 131 : 13;
 256        }
 257}
 258
 259static u8 find_vrm(u8 family, u8 model, u8 stepping, u8 vendor)
 260{
 261        int i;
 262
 263        for (i = 0; i < ARRAY_SIZE(vrm_models); i++) {
 264                if (vendor == vrm_models[i].vendor &&
 265                    family == vrm_models[i].family &&
 266                    model >= vrm_models[i].model_from &&
 267                    model <= vrm_models[i].model_to &&
 268                    stepping <= vrm_models[i].stepping_to)
 269                        return vrm_models[i].vrm_type;
 270        }
 271
 272        return 0;
 273}
 274
 275u8 vid_which_vrm(void)
 276{
 277        struct cpuinfo_x86 *c = &cpu_data(0);
 278        u8 vrm_ret;
 279
 280        if (c->x86 < 6)         /* Any CPU with family lower than 6 */
 281                return 0;       /* doesn't have VID */
 282
 283        vrm_ret = find_vrm(c->x86, c->x86_model, c->x86_stepping, c->x86_vendor);
 284        if (vrm_ret == 134)
 285                vrm_ret = get_via_model_d_vrm();
 286        if (vrm_ret == 0)
 287                pr_info("Unknown VRM version of your x86 CPU\n");
 288        return vrm_ret;
 289}
 290
 291/* and now for something completely different for the non-x86 world */
 292#else
 293u8 vid_which_vrm(void)
 294{
 295        pr_info("Unknown VRM version of your CPU\n");
 296        return 0;
 297}
 298#endif
 299EXPORT_SYMBOL(vid_which_vrm);
 300
 301MODULE_AUTHOR("Rudolf Marek <r.marek@assembler.cz>");
 302
 303MODULE_DESCRIPTION("hwmon-vid driver");
 304MODULE_LICENSE("GPL");
 305