linux/drivers/hwtracing/coresight/coresight-tmc-etr.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright(C) 2016 Linaro Limited. All rights reserved.
   4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
   5 */
   6
   7#include <linux/atomic.h>
   8#include <linux/coresight.h>
   9#include <linux/dma-mapping.h>
  10#include <linux/iommu.h>
  11#include <linux/idr.h>
  12#include <linux/mutex.h>
  13#include <linux/refcount.h>
  14#include <linux/slab.h>
  15#include <linux/types.h>
  16#include <linux/vmalloc.h>
  17#include "coresight-catu.h"
  18#include "coresight-etm-perf.h"
  19#include "coresight-priv.h"
  20#include "coresight-tmc.h"
  21
  22struct etr_flat_buf {
  23        struct device   *dev;
  24        dma_addr_t      daddr;
  25        void            *vaddr;
  26        size_t          size;
  27};
  28
  29/*
  30 * etr_perf_buffer - Perf buffer used for ETR
  31 * @drvdata             - The ETR drvdaga this buffer has been allocated for.
  32 * @etr_buf             - Actual buffer used by the ETR
  33 * @pid                 - The PID this etr_perf_buffer belongs to.
  34 * @snaphost            - Perf session mode
  35 * @head                - handle->head at the beginning of the session.
  36 * @nr_pages            - Number of pages in the ring buffer.
  37 * @pages               - Array of Pages in the ring buffer.
  38 */
  39struct etr_perf_buffer {
  40        struct tmc_drvdata      *drvdata;
  41        struct etr_buf          *etr_buf;
  42        pid_t                   pid;
  43        bool                    snapshot;
  44        unsigned long           head;
  45        int                     nr_pages;
  46        void                    **pages;
  47};
  48
  49/* Convert the perf index to an offset within the ETR buffer */
  50#define PERF_IDX2OFF(idx, buf)  ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
  51
  52/* Lower limit for ETR hardware buffer */
  53#define TMC_ETR_PERF_MIN_BUF_SIZE       SZ_1M
  54
  55/*
  56 * The TMC ETR SG has a page size of 4K. The SG table contains pointers
  57 * to 4KB buffers. However, the OS may use a PAGE_SIZE different from
  58 * 4K (i.e, 16KB or 64KB). This implies that a single OS page could
  59 * contain more than one SG buffer and tables.
  60 *
  61 * A table entry has the following format:
  62 *
  63 * ---Bit31------------Bit4-------Bit1-----Bit0--
  64 * |     Address[39:12]    | SBZ |  Entry Type  |
  65 * ----------------------------------------------
  66 *
  67 * Address: Bits [39:12] of a physical page address. Bits [11:0] are
  68 *          always zero.
  69 *
  70 * Entry type:
  71 *      b00 - Reserved.
  72 *      b01 - Last entry in the tables, points to 4K page buffer.
  73 *      b10 - Normal entry, points to 4K page buffer.
  74 *      b11 - Link. The address points to the base of next table.
  75 */
  76
  77typedef u32 sgte_t;
  78
  79#define ETR_SG_PAGE_SHIFT               12
  80#define ETR_SG_PAGE_SIZE                (1UL << ETR_SG_PAGE_SHIFT)
  81#define ETR_SG_PAGES_PER_SYSPAGE        (PAGE_SIZE / ETR_SG_PAGE_SIZE)
  82#define ETR_SG_PTRS_PER_PAGE            (ETR_SG_PAGE_SIZE / sizeof(sgte_t))
  83#define ETR_SG_PTRS_PER_SYSPAGE         (PAGE_SIZE / sizeof(sgte_t))
  84
  85#define ETR_SG_ET_MASK                  0x3
  86#define ETR_SG_ET_LAST                  0x1
  87#define ETR_SG_ET_NORMAL                0x2
  88#define ETR_SG_ET_LINK                  0x3
  89
  90#define ETR_SG_ADDR_SHIFT               4
  91
  92#define ETR_SG_ENTRY(addr, type) \
  93        (sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \
  94                 (type & ETR_SG_ET_MASK))
  95
  96#define ETR_SG_ADDR(entry) \
  97        (((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT)
  98#define ETR_SG_ET(entry)                ((entry) & ETR_SG_ET_MASK)
  99
 100/*
 101 * struct etr_sg_table : ETR SG Table
 102 * @sg_table:           Generic SG Table holding the data/table pages.
 103 * @hwaddr:             hwaddress used by the TMC, which is the base
 104 *                      address of the table.
 105 */
 106struct etr_sg_table {
 107        struct tmc_sg_table     *sg_table;
 108        dma_addr_t              hwaddr;
 109};
 110
 111/*
 112 * tmc_etr_sg_table_entries: Total number of table entries required to map
 113 * @nr_pages system pages.
 114 *
 115 * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages.
 116 * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers,
 117 * with the last entry pointing to another page of table entries.
 118 * If we spill over to a new page for mapping 1 entry, we could as
 119 * well replace the link entry of the previous page with the last entry.
 120 */
 121static inline unsigned long __attribute_const__
 122tmc_etr_sg_table_entries(int nr_pages)
 123{
 124        unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE;
 125        unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1);
 126        /*
 127         * If we spill over to a new page for 1 entry, we could as well
 128         * make it the LAST entry in the previous page, skipping the Link
 129         * address.
 130         */
 131        if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2))
 132                nr_sglinks--;
 133        return nr_sgpages + nr_sglinks;
 134}
 135
 136/*
 137 * tmc_pages_get_offset:  Go through all the pages in the tmc_pages
 138 * and map the device address @addr to an offset within the virtual
 139 * contiguous buffer.
 140 */
 141static long
 142tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr)
 143{
 144        int i;
 145        dma_addr_t page_start;
 146
 147        for (i = 0; i < tmc_pages->nr_pages; i++) {
 148                page_start = tmc_pages->daddrs[i];
 149                if (addr >= page_start && addr < (page_start + PAGE_SIZE))
 150                        return i * PAGE_SIZE + (addr - page_start);
 151        }
 152
 153        return -EINVAL;
 154}
 155
 156/*
 157 * tmc_pages_free : Unmap and free the pages used by tmc_pages.
 158 * If the pages were not allocated in tmc_pages_alloc(), we would
 159 * simply drop the refcount.
 160 */
 161static void tmc_pages_free(struct tmc_pages *tmc_pages,
 162                           struct device *dev, enum dma_data_direction dir)
 163{
 164        int i;
 165        struct device *real_dev = dev->parent;
 166
 167        for (i = 0; i < tmc_pages->nr_pages; i++) {
 168                if (tmc_pages->daddrs && tmc_pages->daddrs[i])
 169                        dma_unmap_page(real_dev, tmc_pages->daddrs[i],
 170                                         PAGE_SIZE, dir);
 171                if (tmc_pages->pages && tmc_pages->pages[i])
 172                        __free_page(tmc_pages->pages[i]);
 173        }
 174
 175        kfree(tmc_pages->pages);
 176        kfree(tmc_pages->daddrs);
 177        tmc_pages->pages = NULL;
 178        tmc_pages->daddrs = NULL;
 179        tmc_pages->nr_pages = 0;
 180}
 181
 182/*
 183 * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages.
 184 * If @pages is not NULL, the list of page virtual addresses are
 185 * used as the data pages. The pages are then dma_map'ed for @dev
 186 * with dma_direction @dir.
 187 *
 188 * Returns 0 upon success, else the error number.
 189 */
 190static int tmc_pages_alloc(struct tmc_pages *tmc_pages,
 191                           struct device *dev, int node,
 192                           enum dma_data_direction dir, void **pages)
 193{
 194        int i, nr_pages;
 195        dma_addr_t paddr;
 196        struct page *page;
 197        struct device *real_dev = dev->parent;
 198
 199        nr_pages = tmc_pages->nr_pages;
 200        tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs),
 201                                         GFP_KERNEL);
 202        if (!tmc_pages->daddrs)
 203                return -ENOMEM;
 204        tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages),
 205                                         GFP_KERNEL);
 206        if (!tmc_pages->pages) {
 207                kfree(tmc_pages->daddrs);
 208                tmc_pages->daddrs = NULL;
 209                return -ENOMEM;
 210        }
 211
 212        for (i = 0; i < nr_pages; i++) {
 213                if (pages && pages[i]) {
 214                        page = virt_to_page(pages[i]);
 215                        /* Hold a refcount on the page */
 216                        get_page(page);
 217                } else {
 218                        page = alloc_pages_node(node,
 219                                                GFP_KERNEL | __GFP_ZERO, 0);
 220                        if (!page)
 221                                goto err;
 222                }
 223                paddr = dma_map_page(real_dev, page, 0, PAGE_SIZE, dir);
 224                if (dma_mapping_error(real_dev, paddr))
 225                        goto err;
 226                tmc_pages->daddrs[i] = paddr;
 227                tmc_pages->pages[i] = page;
 228        }
 229        return 0;
 230err:
 231        tmc_pages_free(tmc_pages, dev, dir);
 232        return -ENOMEM;
 233}
 234
 235static inline long
 236tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr)
 237{
 238        return tmc_pages_get_offset(&sg_table->data_pages, addr);
 239}
 240
 241static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table)
 242{
 243        if (sg_table->table_vaddr)
 244                vunmap(sg_table->table_vaddr);
 245        tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE);
 246}
 247
 248static void tmc_free_data_pages(struct tmc_sg_table *sg_table)
 249{
 250        if (sg_table->data_vaddr)
 251                vunmap(sg_table->data_vaddr);
 252        tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE);
 253}
 254
 255void tmc_free_sg_table(struct tmc_sg_table *sg_table)
 256{
 257        tmc_free_table_pages(sg_table);
 258        tmc_free_data_pages(sg_table);
 259}
 260EXPORT_SYMBOL_GPL(tmc_free_sg_table);
 261
 262/*
 263 * Alloc pages for the table. Since this will be used by the device,
 264 * allocate the pages closer to the device (i.e, dev_to_node(dev)
 265 * rather than the CPU node).
 266 */
 267static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table)
 268{
 269        int rc;
 270        struct tmc_pages *table_pages = &sg_table->table_pages;
 271
 272        rc = tmc_pages_alloc(table_pages, sg_table->dev,
 273                             dev_to_node(sg_table->dev),
 274                             DMA_TO_DEVICE, NULL);
 275        if (rc)
 276                return rc;
 277        sg_table->table_vaddr = vmap(table_pages->pages,
 278                                     table_pages->nr_pages,
 279                                     VM_MAP,
 280                                     PAGE_KERNEL);
 281        if (!sg_table->table_vaddr)
 282                rc = -ENOMEM;
 283        else
 284                sg_table->table_daddr = table_pages->daddrs[0];
 285        return rc;
 286}
 287
 288static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages)
 289{
 290        int rc;
 291
 292        /* Allocate data pages on the node requested by the caller */
 293        rc = tmc_pages_alloc(&sg_table->data_pages,
 294                             sg_table->dev, sg_table->node,
 295                             DMA_FROM_DEVICE, pages);
 296        if (!rc) {
 297                sg_table->data_vaddr = vmap(sg_table->data_pages.pages,
 298                                            sg_table->data_pages.nr_pages,
 299                                            VM_MAP,
 300                                            PAGE_KERNEL);
 301                if (!sg_table->data_vaddr)
 302                        rc = -ENOMEM;
 303        }
 304        return rc;
 305}
 306
 307/*
 308 * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table
 309 * and data buffers. TMC writes to the data buffers and reads from the SG
 310 * Table pages.
 311 *
 312 * @dev         - Coresight device to which page should be DMA mapped.
 313 * @node        - Numa node for mem allocations
 314 * @nr_tpages   - Number of pages for the table entries.
 315 * @nr_dpages   - Number of pages for Data buffer.
 316 * @pages       - Optional list of virtual address of pages.
 317 */
 318struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev,
 319                                        int node,
 320                                        int nr_tpages,
 321                                        int nr_dpages,
 322                                        void **pages)
 323{
 324        long rc;
 325        struct tmc_sg_table *sg_table;
 326
 327        sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL);
 328        if (!sg_table)
 329                return ERR_PTR(-ENOMEM);
 330        sg_table->data_pages.nr_pages = nr_dpages;
 331        sg_table->table_pages.nr_pages = nr_tpages;
 332        sg_table->node = node;
 333        sg_table->dev = dev;
 334
 335        rc  = tmc_alloc_data_pages(sg_table, pages);
 336        if (!rc)
 337                rc = tmc_alloc_table_pages(sg_table);
 338        if (rc) {
 339                tmc_free_sg_table(sg_table);
 340                kfree(sg_table);
 341                return ERR_PTR(rc);
 342        }
 343
 344        return sg_table;
 345}
 346EXPORT_SYMBOL_GPL(tmc_alloc_sg_table);
 347
 348/*
 349 * tmc_sg_table_sync_data_range: Sync the data buffer written
 350 * by the device from @offset upto a @size bytes.
 351 */
 352void tmc_sg_table_sync_data_range(struct tmc_sg_table *table,
 353                                  u64 offset, u64 size)
 354{
 355        int i, index, start;
 356        int npages = DIV_ROUND_UP(size, PAGE_SIZE);
 357        struct device *real_dev = table->dev->parent;
 358        struct tmc_pages *data = &table->data_pages;
 359
 360        start = offset >> PAGE_SHIFT;
 361        for (i = start; i < (start + npages); i++) {
 362                index = i % data->nr_pages;
 363                dma_sync_single_for_cpu(real_dev, data->daddrs[index],
 364                                        PAGE_SIZE, DMA_FROM_DEVICE);
 365        }
 366}
 367EXPORT_SYMBOL_GPL(tmc_sg_table_sync_data_range);
 368
 369/* tmc_sg_sync_table: Sync the page table */
 370void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table)
 371{
 372        int i;
 373        struct device *real_dev = sg_table->dev->parent;
 374        struct tmc_pages *table_pages = &sg_table->table_pages;
 375
 376        for (i = 0; i < table_pages->nr_pages; i++)
 377                dma_sync_single_for_device(real_dev, table_pages->daddrs[i],
 378                                           PAGE_SIZE, DMA_TO_DEVICE);
 379}
 380EXPORT_SYMBOL_GPL(tmc_sg_table_sync_table);
 381
 382/*
 383 * tmc_sg_table_get_data: Get the buffer pointer for data @offset
 384 * in the SG buffer. The @bufpp is updated to point to the buffer.
 385 * Returns :
 386 *      the length of linear data available at @offset.
 387 *      or
 388 *      <= 0 if no data is available.
 389 */
 390ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table,
 391                              u64 offset, size_t len, char **bufpp)
 392{
 393        size_t size;
 394        int pg_idx = offset >> PAGE_SHIFT;
 395        int pg_offset = offset & (PAGE_SIZE - 1);
 396        struct tmc_pages *data_pages = &sg_table->data_pages;
 397
 398        size = tmc_sg_table_buf_size(sg_table);
 399        if (offset >= size)
 400                return -EINVAL;
 401
 402        /* Make sure we don't go beyond the end */
 403        len = (len < (size - offset)) ? len : size - offset;
 404        /* Respect the page boundaries */
 405        len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset);
 406        if (len > 0)
 407                *bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset;
 408        return len;
 409}
 410EXPORT_SYMBOL_GPL(tmc_sg_table_get_data);
 411
 412#ifdef ETR_SG_DEBUG
 413/* Map a dma address to virtual address */
 414static unsigned long
 415tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table,
 416                      dma_addr_t addr, bool table)
 417{
 418        long offset;
 419        unsigned long base;
 420        struct tmc_pages *tmc_pages;
 421
 422        if (table) {
 423                tmc_pages = &sg_table->table_pages;
 424                base = (unsigned long)sg_table->table_vaddr;
 425        } else {
 426                tmc_pages = &sg_table->data_pages;
 427                base = (unsigned long)sg_table->data_vaddr;
 428        }
 429
 430        offset = tmc_pages_get_offset(tmc_pages, addr);
 431        if (offset < 0)
 432                return 0;
 433        return base + offset;
 434}
 435
 436/* Dump the given sg_table */
 437static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table)
 438{
 439        sgte_t *ptr;
 440        int i = 0;
 441        dma_addr_t addr;
 442        struct tmc_sg_table *sg_table = etr_table->sg_table;
 443
 444        ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
 445                                              etr_table->hwaddr, true);
 446        while (ptr) {
 447                addr = ETR_SG_ADDR(*ptr);
 448                switch (ETR_SG_ET(*ptr)) {
 449                case ETR_SG_ET_NORMAL:
 450                        dev_dbg(sg_table->dev,
 451                                "%05d: %p\t:[N] 0x%llx\n", i, ptr, addr);
 452                        ptr++;
 453                        break;
 454                case ETR_SG_ET_LINK:
 455                        dev_dbg(sg_table->dev,
 456                                "%05d: *** %p\t:{L} 0x%llx ***\n",
 457                                 i, ptr, addr);
 458                        ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
 459                                                              addr, true);
 460                        break;
 461                case ETR_SG_ET_LAST:
 462                        dev_dbg(sg_table->dev,
 463                                "%05d: ### %p\t:[L] 0x%llx ###\n",
 464                                 i, ptr, addr);
 465                        return;
 466                default:
 467                        dev_dbg(sg_table->dev,
 468                                "%05d: xxx %p\t:[INVALID] 0x%llx xxx\n",
 469                                 i, ptr, addr);
 470                        return;
 471                }
 472                i++;
 473        }
 474        dev_dbg(sg_table->dev, "******* End of Table *****\n");
 475}
 476#else
 477static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {}
 478#endif
 479
 480/*
 481 * Populate the SG Table page table entries from table/data
 482 * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages.
 483 * So does a Table page. So we keep track of indices of the tables
 484 * in each system page and move the pointers accordingly.
 485 */
 486#define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size))
 487static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table)
 488{
 489        dma_addr_t paddr;
 490        int i, type, nr_entries;
 491        int tpidx = 0; /* index to the current system table_page */
 492        int sgtidx = 0; /* index to the sg_table within the current syspage */
 493        int sgtentry = 0; /* the entry within the sg_table */
 494        int dpidx = 0; /* index to the current system data_page */
 495        int spidx = 0; /* index to the SG page within the current data page */
 496        sgte_t *ptr; /* pointer to the table entry to fill */
 497        struct tmc_sg_table *sg_table = etr_table->sg_table;
 498        dma_addr_t *table_daddrs = sg_table->table_pages.daddrs;
 499        dma_addr_t *data_daddrs = sg_table->data_pages.daddrs;
 500
 501        nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages);
 502        /*
 503         * Use the contiguous virtual address of the table to update entries.
 504         */
 505        ptr = sg_table->table_vaddr;
 506        /*
 507         * Fill all the entries, except the last entry to avoid special
 508         * checks within the loop.
 509         */
 510        for (i = 0; i < nr_entries - 1; i++) {
 511                if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) {
 512                        /*
 513                         * Last entry in a sg_table page is a link address to
 514                         * the next table page. If this sg_table is the last
 515                         * one in the system page, it links to the first
 516                         * sg_table in the next system page. Otherwise, it
 517                         * links to the next sg_table page within the system
 518                         * page.
 519                         */
 520                        if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) {
 521                                paddr = table_daddrs[tpidx + 1];
 522                        } else {
 523                                paddr = table_daddrs[tpidx] +
 524                                        (ETR_SG_PAGE_SIZE * (sgtidx + 1));
 525                        }
 526                        type = ETR_SG_ET_LINK;
 527                } else {
 528                        /*
 529                         * Update the indices to the data_pages to point to the
 530                         * next sg_page in the data buffer.
 531                         */
 532                        type = ETR_SG_ET_NORMAL;
 533                        paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
 534                        if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE))
 535                                dpidx++;
 536                }
 537                *ptr++ = ETR_SG_ENTRY(paddr, type);
 538                /*
 539                 * Move to the next table pointer, moving the table page index
 540                 * if necessary
 541                 */
 542                if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) {
 543                        if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE))
 544                                tpidx++;
 545                }
 546        }
 547
 548        /* Set up the last entry, which is always a data pointer */
 549        paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
 550        *ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST);
 551}
 552
 553/*
 554 * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and
 555 * populate the table.
 556 *
 557 * @dev         - Device pointer for the TMC
 558 * @node        - NUMA node where the memory should be allocated
 559 * @size        - Total size of the data buffer
 560 * @pages       - Optional list of page virtual address
 561 */
 562static struct etr_sg_table *
 563tmc_init_etr_sg_table(struct device *dev, int node,
 564                      unsigned long size, void **pages)
 565{
 566        int nr_entries, nr_tpages;
 567        int nr_dpages = size >> PAGE_SHIFT;
 568        struct tmc_sg_table *sg_table;
 569        struct etr_sg_table *etr_table;
 570
 571        etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL);
 572        if (!etr_table)
 573                return ERR_PTR(-ENOMEM);
 574        nr_entries = tmc_etr_sg_table_entries(nr_dpages);
 575        nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE);
 576
 577        sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages);
 578        if (IS_ERR(sg_table)) {
 579                kfree(etr_table);
 580                return ERR_CAST(sg_table);
 581        }
 582
 583        etr_table->sg_table = sg_table;
 584        /* TMC should use table base address for DBA */
 585        etr_table->hwaddr = sg_table->table_daddr;
 586        tmc_etr_sg_table_populate(etr_table);
 587        /* Sync the table pages for the HW */
 588        tmc_sg_table_sync_table(sg_table);
 589        tmc_etr_sg_table_dump(etr_table);
 590
 591        return etr_table;
 592}
 593
 594/*
 595 * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer.
 596 */
 597static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata,
 598                                  struct etr_buf *etr_buf, int node,
 599                                  void **pages)
 600{
 601        struct etr_flat_buf *flat_buf;
 602        struct device *real_dev = drvdata->csdev->dev.parent;
 603
 604        /* We cannot reuse existing pages for flat buf */
 605        if (pages)
 606                return -EINVAL;
 607
 608        flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL);
 609        if (!flat_buf)
 610                return -ENOMEM;
 611
 612        flat_buf->vaddr = dma_alloc_coherent(real_dev, etr_buf->size,
 613                                             &flat_buf->daddr, GFP_KERNEL);
 614        if (!flat_buf->vaddr) {
 615                kfree(flat_buf);
 616                return -ENOMEM;
 617        }
 618
 619        flat_buf->size = etr_buf->size;
 620        flat_buf->dev = &drvdata->csdev->dev;
 621        etr_buf->hwaddr = flat_buf->daddr;
 622        etr_buf->mode = ETR_MODE_FLAT;
 623        etr_buf->private = flat_buf;
 624        return 0;
 625}
 626
 627static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf)
 628{
 629        struct etr_flat_buf *flat_buf = etr_buf->private;
 630
 631        if (flat_buf && flat_buf->daddr) {
 632                struct device *real_dev = flat_buf->dev->parent;
 633
 634                dma_free_coherent(real_dev, flat_buf->size,
 635                                  flat_buf->vaddr, flat_buf->daddr);
 636        }
 637        kfree(flat_buf);
 638}
 639
 640static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
 641{
 642        /*
 643         * Adjust the buffer to point to the beginning of the trace data
 644         * and update the available trace data.
 645         */
 646        etr_buf->offset = rrp - etr_buf->hwaddr;
 647        if (etr_buf->full)
 648                etr_buf->len = etr_buf->size;
 649        else
 650                etr_buf->len = rwp - rrp;
 651}
 652
 653static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf,
 654                                         u64 offset, size_t len, char **bufpp)
 655{
 656        struct etr_flat_buf *flat_buf = etr_buf->private;
 657
 658        *bufpp = (char *)flat_buf->vaddr + offset;
 659        /*
 660         * tmc_etr_buf_get_data already adjusts the length to handle
 661         * buffer wrapping around.
 662         */
 663        return len;
 664}
 665
 666static const struct etr_buf_operations etr_flat_buf_ops = {
 667        .alloc = tmc_etr_alloc_flat_buf,
 668        .free = tmc_etr_free_flat_buf,
 669        .sync = tmc_etr_sync_flat_buf,
 670        .get_data = tmc_etr_get_data_flat_buf,
 671};
 672
 673/*
 674 * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters
 675 * appropriately.
 676 */
 677static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata,
 678                                struct etr_buf *etr_buf, int node,
 679                                void **pages)
 680{
 681        struct etr_sg_table *etr_table;
 682        struct device *dev = &drvdata->csdev->dev;
 683
 684        etr_table = tmc_init_etr_sg_table(dev, node,
 685                                          etr_buf->size, pages);
 686        if (IS_ERR(etr_table))
 687                return -ENOMEM;
 688        etr_buf->hwaddr = etr_table->hwaddr;
 689        etr_buf->mode = ETR_MODE_ETR_SG;
 690        etr_buf->private = etr_table;
 691        return 0;
 692}
 693
 694static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf)
 695{
 696        struct etr_sg_table *etr_table = etr_buf->private;
 697
 698        if (etr_table) {
 699                tmc_free_sg_table(etr_table->sg_table);
 700                kfree(etr_table);
 701        }
 702}
 703
 704static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset,
 705                                       size_t len, char **bufpp)
 706{
 707        struct etr_sg_table *etr_table = etr_buf->private;
 708
 709        return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp);
 710}
 711
 712static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
 713{
 714        long r_offset, w_offset;
 715        struct etr_sg_table *etr_table = etr_buf->private;
 716        struct tmc_sg_table *table = etr_table->sg_table;
 717
 718        /* Convert hw address to offset in the buffer */
 719        r_offset = tmc_sg_get_data_page_offset(table, rrp);
 720        if (r_offset < 0) {
 721                dev_warn(table->dev,
 722                         "Unable to map RRP %llx to offset\n", rrp);
 723                etr_buf->len = 0;
 724                return;
 725        }
 726
 727        w_offset = tmc_sg_get_data_page_offset(table, rwp);
 728        if (w_offset < 0) {
 729                dev_warn(table->dev,
 730                         "Unable to map RWP %llx to offset\n", rwp);
 731                etr_buf->len = 0;
 732                return;
 733        }
 734
 735        etr_buf->offset = r_offset;
 736        if (etr_buf->full)
 737                etr_buf->len = etr_buf->size;
 738        else
 739                etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) +
 740                                w_offset - r_offset;
 741        tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len);
 742}
 743
 744static const struct etr_buf_operations etr_sg_buf_ops = {
 745        .alloc = tmc_etr_alloc_sg_buf,
 746        .free = tmc_etr_free_sg_buf,
 747        .sync = tmc_etr_sync_sg_buf,
 748        .get_data = tmc_etr_get_data_sg_buf,
 749};
 750
 751/*
 752 * TMC ETR could be connected to a CATU device, which can provide address
 753 * translation service. This is represented by the Output port of the TMC
 754 * (ETR) connected to the input port of the CATU.
 755 *
 756 * Returns      : coresight_device ptr for the CATU device if a CATU is found.
 757 *              : NULL otherwise.
 758 */
 759struct coresight_device *
 760tmc_etr_get_catu_device(struct tmc_drvdata *drvdata)
 761{
 762        int i;
 763        struct coresight_device *tmp, *etr = drvdata->csdev;
 764
 765        if (!IS_ENABLED(CONFIG_CORESIGHT_CATU))
 766                return NULL;
 767
 768        for (i = 0; i < etr->pdata->nr_outport; i++) {
 769                tmp = etr->pdata->conns[i].child_dev;
 770                if (tmp && coresight_is_catu_device(tmp))
 771                        return tmp;
 772        }
 773
 774        return NULL;
 775}
 776EXPORT_SYMBOL_GPL(tmc_etr_get_catu_device);
 777
 778static inline int tmc_etr_enable_catu(struct tmc_drvdata *drvdata,
 779                                      struct etr_buf *etr_buf)
 780{
 781        struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
 782
 783        if (catu && helper_ops(catu)->enable)
 784                return helper_ops(catu)->enable(catu, etr_buf);
 785        return 0;
 786}
 787
 788static inline void tmc_etr_disable_catu(struct tmc_drvdata *drvdata)
 789{
 790        struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
 791
 792        if (catu && helper_ops(catu)->disable)
 793                helper_ops(catu)->disable(catu, drvdata->etr_buf);
 794}
 795
 796static const struct etr_buf_operations *etr_buf_ops[] = {
 797        [ETR_MODE_FLAT] = &etr_flat_buf_ops,
 798        [ETR_MODE_ETR_SG] = &etr_sg_buf_ops,
 799        [ETR_MODE_CATU] = NULL,
 800};
 801
 802void tmc_etr_set_catu_ops(const struct etr_buf_operations *catu)
 803{
 804        etr_buf_ops[ETR_MODE_CATU] = catu;
 805}
 806EXPORT_SYMBOL_GPL(tmc_etr_set_catu_ops);
 807
 808void tmc_etr_remove_catu_ops(void)
 809{
 810        etr_buf_ops[ETR_MODE_CATU] = NULL;
 811}
 812EXPORT_SYMBOL_GPL(tmc_etr_remove_catu_ops);
 813
 814static inline int tmc_etr_mode_alloc_buf(int mode,
 815                                         struct tmc_drvdata *drvdata,
 816                                         struct etr_buf *etr_buf, int node,
 817                                         void **pages)
 818{
 819        int rc = -EINVAL;
 820
 821        switch (mode) {
 822        case ETR_MODE_FLAT:
 823        case ETR_MODE_ETR_SG:
 824        case ETR_MODE_CATU:
 825                if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc)
 826                        rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf,
 827                                                      node, pages);
 828                if (!rc)
 829                        etr_buf->ops = etr_buf_ops[mode];
 830                return rc;
 831        default:
 832                return -EINVAL;
 833        }
 834}
 835
 836/*
 837 * tmc_alloc_etr_buf: Allocate a buffer use by ETR.
 838 * @drvdata     : ETR device details.
 839 * @size        : size of the requested buffer.
 840 * @flags       : Required properties for the buffer.
 841 * @node        : Node for memory allocations.
 842 * @pages       : An optional list of pages.
 843 */
 844static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata,
 845                                         ssize_t size, int flags,
 846                                         int node, void **pages)
 847{
 848        int rc = -ENOMEM;
 849        bool has_etr_sg, has_iommu;
 850        bool has_sg, has_catu;
 851        struct etr_buf *etr_buf;
 852        struct device *dev = &drvdata->csdev->dev;
 853
 854        has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG);
 855        has_iommu = iommu_get_domain_for_dev(dev->parent);
 856        has_catu = !!tmc_etr_get_catu_device(drvdata);
 857
 858        has_sg = has_catu || has_etr_sg;
 859
 860        etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL);
 861        if (!etr_buf)
 862                return ERR_PTR(-ENOMEM);
 863
 864        etr_buf->size = size;
 865
 866        /*
 867         * If we have to use an existing list of pages, we cannot reliably
 868         * use a contiguous DMA memory (even if we have an IOMMU). Otherwise,
 869         * we use the contiguous DMA memory if at least one of the following
 870         * conditions is true:
 871         *  a) The ETR cannot use Scatter-Gather.
 872         *  b) we have a backing IOMMU
 873         *  c) The requested memory size is smaller (< 1M).
 874         *
 875         * Fallback to available mechanisms.
 876         *
 877         */
 878        if (!pages &&
 879            (!has_sg || has_iommu || size < SZ_1M))
 880                rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata,
 881                                            etr_buf, node, pages);
 882        if (rc && has_etr_sg)
 883                rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata,
 884                                            etr_buf, node, pages);
 885        if (rc && has_catu)
 886                rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata,
 887                                            etr_buf, node, pages);
 888        if (rc) {
 889                kfree(etr_buf);
 890                return ERR_PTR(rc);
 891        }
 892
 893        refcount_set(&etr_buf->refcount, 1);
 894        dev_dbg(dev, "allocated buffer of size %ldKB in mode %d\n",
 895                (unsigned long)size >> 10, etr_buf->mode);
 896        return etr_buf;
 897}
 898
 899static void tmc_free_etr_buf(struct etr_buf *etr_buf)
 900{
 901        WARN_ON(!etr_buf->ops || !etr_buf->ops->free);
 902        etr_buf->ops->free(etr_buf);
 903        kfree(etr_buf);
 904}
 905
 906/*
 907 * tmc_etr_buf_get_data: Get the pointer the trace data at @offset
 908 * with a maximum of @len bytes.
 909 * Returns: The size of the linear data available @pos, with *bufpp
 910 * updated to point to the buffer.
 911 */
 912static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf,
 913                                    u64 offset, size_t len, char **bufpp)
 914{
 915        /* Adjust the length to limit this transaction to end of buffer */
 916        len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset;
 917
 918        return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp);
 919}
 920
 921static inline s64
 922tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset)
 923{
 924        ssize_t len;
 925        char *bufp;
 926
 927        len = tmc_etr_buf_get_data(etr_buf, offset,
 928                                   CORESIGHT_BARRIER_PKT_SIZE, &bufp);
 929        if (WARN_ON(len < CORESIGHT_BARRIER_PKT_SIZE))
 930                return -EINVAL;
 931        coresight_insert_barrier_packet(bufp);
 932        return offset + CORESIGHT_BARRIER_PKT_SIZE;
 933}
 934
 935/*
 936 * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata.
 937 * Makes sure the trace data is synced to the memory for consumption.
 938 * @etr_buf->offset will hold the offset to the beginning of the trace data
 939 * within the buffer, with @etr_buf->len bytes to consume.
 940 */
 941static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata)
 942{
 943        struct etr_buf *etr_buf = drvdata->etr_buf;
 944        u64 rrp, rwp;
 945        u32 status;
 946
 947        rrp = tmc_read_rrp(drvdata);
 948        rwp = tmc_read_rwp(drvdata);
 949        status = readl_relaxed(drvdata->base + TMC_STS);
 950
 951        /*
 952         * If there were memory errors in the session, truncate the
 953         * buffer.
 954         */
 955        if (WARN_ON_ONCE(status & TMC_STS_MEMERR)) {
 956                dev_dbg(&drvdata->csdev->dev,
 957                        "tmc memory error detected, truncating buffer\n");
 958                etr_buf->len = 0;
 959                etr_buf->full = false;
 960                return;
 961        }
 962
 963        etr_buf->full = !!(status & TMC_STS_FULL);
 964
 965        WARN_ON(!etr_buf->ops || !etr_buf->ops->sync);
 966
 967        etr_buf->ops->sync(etr_buf, rrp, rwp);
 968}
 969
 970static void __tmc_etr_enable_hw(struct tmc_drvdata *drvdata)
 971{
 972        u32 axictl, sts;
 973        struct etr_buf *etr_buf = drvdata->etr_buf;
 974
 975        CS_UNLOCK(drvdata->base);
 976
 977        /* Wait for TMCSReady bit to be set */
 978        tmc_wait_for_tmcready(drvdata);
 979
 980        writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ);
 981        writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE);
 982
 983        axictl = readl_relaxed(drvdata->base + TMC_AXICTL);
 984        axictl &= ~TMC_AXICTL_CLEAR_MASK;
 985        axictl |= (TMC_AXICTL_PROT_CTL_B1 | TMC_AXICTL_WR_BURST_16);
 986        axictl |= TMC_AXICTL_AXCACHE_OS;
 987
 988        if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) {
 989                axictl &= ~TMC_AXICTL_ARCACHE_MASK;
 990                axictl |= TMC_AXICTL_ARCACHE_OS;
 991        }
 992
 993        if (etr_buf->mode == ETR_MODE_ETR_SG)
 994                axictl |= TMC_AXICTL_SCT_GAT_MODE;
 995
 996        writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
 997        tmc_write_dba(drvdata, etr_buf->hwaddr);
 998        /*
 999         * If the TMC pointers must be programmed before the session,
1000         * we have to set it properly (i.e, RRP/RWP to base address and
1001         * STS to "not full").
1002         */
1003        if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) {
1004                tmc_write_rrp(drvdata, etr_buf->hwaddr);
1005                tmc_write_rwp(drvdata, etr_buf->hwaddr);
1006                sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL;
1007                writel_relaxed(sts, drvdata->base + TMC_STS);
1008        }
1009
1010        writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI |
1011                       TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT |
1012                       TMC_FFCR_TRIGON_TRIGIN,
1013                       drvdata->base + TMC_FFCR);
1014        writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG);
1015        tmc_enable_hw(drvdata);
1016
1017        CS_LOCK(drvdata->base);
1018}
1019
1020static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata,
1021                             struct etr_buf *etr_buf)
1022{
1023        int rc;
1024
1025        /* Callers should provide an appropriate buffer for use */
1026        if (WARN_ON(!etr_buf))
1027                return -EINVAL;
1028
1029        if ((etr_buf->mode == ETR_MODE_ETR_SG) &&
1030            WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG)))
1031                return -EINVAL;
1032
1033        if (WARN_ON(drvdata->etr_buf))
1034                return -EBUSY;
1035
1036        /*
1037         * If this ETR is connected to a CATU, enable it before we turn
1038         * this on.
1039         */
1040        rc = tmc_etr_enable_catu(drvdata, etr_buf);
1041        if (rc)
1042                return rc;
1043        rc = coresight_claim_device(drvdata->csdev);
1044        if (!rc) {
1045                drvdata->etr_buf = etr_buf;
1046                __tmc_etr_enable_hw(drvdata);
1047        }
1048
1049        return rc;
1050}
1051
1052/*
1053 * Return the available trace data in the buffer (starts at etr_buf->offset,
1054 * limited by etr_buf->len) from @pos, with a maximum limit of @len,
1055 * also updating the @bufpp on where to find it. Since the trace data
1056 * starts at anywhere in the buffer, depending on the RRP, we adjust the
1057 * @len returned to handle buffer wrapping around.
1058 *
1059 * We are protected here by drvdata->reading != 0, which ensures the
1060 * sysfs_buf stays alive.
1061 */
1062ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata,
1063                                loff_t pos, size_t len, char **bufpp)
1064{
1065        s64 offset;
1066        ssize_t actual = len;
1067        struct etr_buf *etr_buf = drvdata->sysfs_buf;
1068
1069        if (pos + actual > etr_buf->len)
1070                actual = etr_buf->len - pos;
1071        if (actual <= 0)
1072                return actual;
1073
1074        /* Compute the offset from which we read the data */
1075        offset = etr_buf->offset + pos;
1076        if (offset >= etr_buf->size)
1077                offset -= etr_buf->size;
1078        return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp);
1079}
1080
1081static struct etr_buf *
1082tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata)
1083{
1084        return tmc_alloc_etr_buf(drvdata, drvdata->size,
1085                                 0, cpu_to_node(0), NULL);
1086}
1087
1088static void
1089tmc_etr_free_sysfs_buf(struct etr_buf *buf)
1090{
1091        if (buf)
1092                tmc_free_etr_buf(buf);
1093}
1094
1095static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata)
1096{
1097        struct etr_buf *etr_buf = drvdata->etr_buf;
1098
1099        if (WARN_ON(drvdata->sysfs_buf != etr_buf)) {
1100                tmc_etr_free_sysfs_buf(drvdata->sysfs_buf);
1101                drvdata->sysfs_buf = NULL;
1102        } else {
1103                tmc_sync_etr_buf(drvdata);
1104                /*
1105                 * Insert barrier packets at the beginning, if there was
1106                 * an overflow.
1107                 */
1108                if (etr_buf->full)
1109                        tmc_etr_buf_insert_barrier_packet(etr_buf,
1110                                                          etr_buf->offset);
1111        }
1112}
1113
1114static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1115{
1116        CS_UNLOCK(drvdata->base);
1117
1118        tmc_flush_and_stop(drvdata);
1119        /*
1120         * When operating in sysFS mode the content of the buffer needs to be
1121         * read before the TMC is disabled.
1122         */
1123        if (drvdata->mode == CS_MODE_SYSFS)
1124                tmc_etr_sync_sysfs_buf(drvdata);
1125
1126        tmc_disable_hw(drvdata);
1127
1128        CS_LOCK(drvdata->base);
1129
1130}
1131
1132void tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1133{
1134        __tmc_etr_disable_hw(drvdata);
1135        /* Disable CATU device if this ETR is connected to one */
1136        tmc_etr_disable_catu(drvdata);
1137        coresight_disclaim_device(drvdata->csdev);
1138        /* Reset the ETR buf used by hardware */
1139        drvdata->etr_buf = NULL;
1140}
1141
1142static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev)
1143{
1144        int ret = 0;
1145        unsigned long flags;
1146        struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1147        struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL;
1148
1149        /*
1150         * If we are enabling the ETR from disabled state, we need to make
1151         * sure we have a buffer with the right size. The etr_buf is not reset
1152         * immediately after we stop the tracing in SYSFS mode as we wait for
1153         * the user to collect the data. We may be able to reuse the existing
1154         * buffer, provided the size matches. Any allocation has to be done
1155         * with the lock released.
1156         */
1157        spin_lock_irqsave(&drvdata->spinlock, flags);
1158        sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1159        if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) {
1160                spin_unlock_irqrestore(&drvdata->spinlock, flags);
1161
1162                /* Allocate memory with the locks released */
1163                free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata);
1164                if (IS_ERR(new_buf))
1165                        return PTR_ERR(new_buf);
1166
1167                /* Let's try again */
1168                spin_lock_irqsave(&drvdata->spinlock, flags);
1169        }
1170
1171        if (drvdata->reading || drvdata->mode == CS_MODE_PERF) {
1172                ret = -EBUSY;
1173                goto out;
1174        }
1175
1176        /*
1177         * In sysFS mode we can have multiple writers per sink.  Since this
1178         * sink is already enabled no memory is needed and the HW need not be
1179         * touched, even if the buffer size has changed.
1180         */
1181        if (drvdata->mode == CS_MODE_SYSFS) {
1182                atomic_inc(csdev->refcnt);
1183                goto out;
1184        }
1185
1186        /*
1187         * If we don't have a buffer or it doesn't match the requested size,
1188         * use the buffer allocated above. Otherwise reuse the existing buffer.
1189         */
1190        sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1191        if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) {
1192                free_buf = sysfs_buf;
1193                drvdata->sysfs_buf = new_buf;
1194        }
1195
1196        ret = tmc_etr_enable_hw(drvdata, drvdata->sysfs_buf);
1197        if (!ret) {
1198                drvdata->mode = CS_MODE_SYSFS;
1199                atomic_inc(csdev->refcnt);
1200        }
1201out:
1202        spin_unlock_irqrestore(&drvdata->spinlock, flags);
1203
1204        /* Free memory outside the spinlock if need be */
1205        if (free_buf)
1206                tmc_etr_free_sysfs_buf(free_buf);
1207
1208        if (!ret)
1209                dev_dbg(&csdev->dev, "TMC-ETR enabled\n");
1210
1211        return ret;
1212}
1213
1214/*
1215 * alloc_etr_buf: Allocate ETR buffer for use by perf.
1216 * The size of the hardware buffer is dependent on the size configured
1217 * via sysfs and the perf ring buffer size. We prefer to allocate the
1218 * largest possible size, scaling down the size by half until it
1219 * reaches a minimum limit (1M), beyond which we give up.
1220 */
1221static struct etr_buf *
1222alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1223              int nr_pages, void **pages, bool snapshot)
1224{
1225        int node;
1226        struct etr_buf *etr_buf;
1227        unsigned long size;
1228
1229        node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
1230        /*
1231         * Try to match the perf ring buffer size if it is larger
1232         * than the size requested via sysfs.
1233         */
1234        if ((nr_pages << PAGE_SHIFT) > drvdata->size) {
1235                etr_buf = tmc_alloc_etr_buf(drvdata, (nr_pages << PAGE_SHIFT),
1236                                            0, node, NULL);
1237                if (!IS_ERR(etr_buf))
1238                        goto done;
1239        }
1240
1241        /*
1242         * Else switch to configured size for this ETR
1243         * and scale down until we hit the minimum limit.
1244         */
1245        size = drvdata->size;
1246        do {
1247                etr_buf = tmc_alloc_etr_buf(drvdata, size, 0, node, NULL);
1248                if (!IS_ERR(etr_buf))
1249                        goto done;
1250                size /= 2;
1251        } while (size >= TMC_ETR_PERF_MIN_BUF_SIZE);
1252
1253        return ERR_PTR(-ENOMEM);
1254
1255done:
1256        return etr_buf;
1257}
1258
1259static struct etr_buf *
1260get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata,
1261                          struct perf_event *event, int nr_pages,
1262                          void **pages, bool snapshot)
1263{
1264        int ret;
1265        pid_t pid = task_pid_nr(event->owner);
1266        struct etr_buf *etr_buf;
1267
1268retry:
1269        /*
1270         * An etr_perf_buffer is associated with an event and holds a reference
1271         * to the AUX ring buffer that was created for that event.  In CPU-wide
1272         * N:1 mode multiple events (one per CPU), each with its own AUX ring
1273         * buffer, share a sink.  As such an etr_perf_buffer is created for each
1274         * event but a single etr_buf associated with the ETR is shared between
1275         * them.  The last event in a trace session will copy the content of the
1276         * etr_buf to its AUX ring buffer.  Ring buffer associated to other
1277         * events are simply not used an freed as events are destoyed.  We still
1278         * need to allocate a ring buffer for each event since we don't know
1279         * which event will be last.
1280         */
1281
1282        /*
1283         * The first thing to do here is check if an etr_buf has already been
1284         * allocated for this session.  If so it is shared with this event,
1285         * otherwise it is created.
1286         */
1287        mutex_lock(&drvdata->idr_mutex);
1288        etr_buf = idr_find(&drvdata->idr, pid);
1289        if (etr_buf) {
1290                refcount_inc(&etr_buf->refcount);
1291                mutex_unlock(&drvdata->idr_mutex);
1292                return etr_buf;
1293        }
1294
1295        /* If we made it here no buffer has been allocated, do so now. */
1296        mutex_unlock(&drvdata->idr_mutex);
1297
1298        etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1299        if (IS_ERR(etr_buf))
1300                return etr_buf;
1301
1302        /* Now that we have a buffer, add it to the IDR. */
1303        mutex_lock(&drvdata->idr_mutex);
1304        ret = idr_alloc(&drvdata->idr, etr_buf, pid, pid + 1, GFP_KERNEL);
1305        mutex_unlock(&drvdata->idr_mutex);
1306
1307        /* Another event with this session ID has allocated this buffer. */
1308        if (ret == -ENOSPC) {
1309                tmc_free_etr_buf(etr_buf);
1310                goto retry;
1311        }
1312
1313        /* The IDR can't allocate room for a new session, abandon ship. */
1314        if (ret == -ENOMEM) {
1315                tmc_free_etr_buf(etr_buf);
1316                return ERR_PTR(ret);
1317        }
1318
1319
1320        return etr_buf;
1321}
1322
1323static struct etr_buf *
1324get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata,
1325                            struct perf_event *event, int nr_pages,
1326                            void **pages, bool snapshot)
1327{
1328        /*
1329         * In per-thread mode the etr_buf isn't shared, so just go ahead
1330         * with memory allocation.
1331         */
1332        return alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1333}
1334
1335static struct etr_buf *
1336get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1337                 int nr_pages, void **pages, bool snapshot)
1338{
1339        if (event->cpu == -1)
1340                return get_perf_etr_buf_per_thread(drvdata, event, nr_pages,
1341                                                   pages, snapshot);
1342
1343        return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages,
1344                                         pages, snapshot);
1345}
1346
1347static struct etr_perf_buffer *
1348tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1349                       int nr_pages, void **pages, bool snapshot)
1350{
1351        int node;
1352        struct etr_buf *etr_buf;
1353        struct etr_perf_buffer *etr_perf;
1354
1355        node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
1356
1357        etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node);
1358        if (!etr_perf)
1359                return ERR_PTR(-ENOMEM);
1360
1361        etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1362        if (!IS_ERR(etr_buf))
1363                goto done;
1364
1365        kfree(etr_perf);
1366        return ERR_PTR(-ENOMEM);
1367
1368done:
1369        /*
1370         * Keep a reference to the ETR this buffer has been allocated for
1371         * in order to have access to the IDR in tmc_free_etr_buffer().
1372         */
1373        etr_perf->drvdata = drvdata;
1374        etr_perf->etr_buf = etr_buf;
1375
1376        return etr_perf;
1377}
1378
1379
1380static void *tmc_alloc_etr_buffer(struct coresight_device *csdev,
1381                                  struct perf_event *event, void **pages,
1382                                  int nr_pages, bool snapshot)
1383{
1384        struct etr_perf_buffer *etr_perf;
1385        struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1386
1387        etr_perf = tmc_etr_setup_perf_buf(drvdata, event,
1388                                          nr_pages, pages, snapshot);
1389        if (IS_ERR(etr_perf)) {
1390                dev_dbg(&csdev->dev, "Unable to allocate ETR buffer\n");
1391                return NULL;
1392        }
1393
1394        etr_perf->pid = task_pid_nr(event->owner);
1395        etr_perf->snapshot = snapshot;
1396        etr_perf->nr_pages = nr_pages;
1397        etr_perf->pages = pages;
1398
1399        return etr_perf;
1400}
1401
1402static void tmc_free_etr_buffer(void *config)
1403{
1404        struct etr_perf_buffer *etr_perf = config;
1405        struct tmc_drvdata *drvdata = etr_perf->drvdata;
1406        struct etr_buf *buf, *etr_buf = etr_perf->etr_buf;
1407
1408        if (!etr_buf)
1409                goto free_etr_perf_buffer;
1410
1411        mutex_lock(&drvdata->idr_mutex);
1412        /* If we are not the last one to use the buffer, don't touch it. */
1413        if (!refcount_dec_and_test(&etr_buf->refcount)) {
1414                mutex_unlock(&drvdata->idr_mutex);
1415                goto free_etr_perf_buffer;
1416        }
1417
1418        /* We are the last one, remove from the IDR and free the buffer. */
1419        buf = idr_remove(&drvdata->idr, etr_perf->pid);
1420        mutex_unlock(&drvdata->idr_mutex);
1421
1422        /*
1423         * Something went very wrong if the buffer associated with this ID
1424         * is not the same in the IDR.  Leak to avoid use after free.
1425         */
1426        if (buf && WARN_ON(buf != etr_buf))
1427                goto free_etr_perf_buffer;
1428
1429        tmc_free_etr_buf(etr_perf->etr_buf);
1430
1431free_etr_perf_buffer:
1432        kfree(etr_perf);
1433}
1434
1435/*
1436 * tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware
1437 * buffer to the perf ring buffer.
1438 */
1439static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf,
1440                                     unsigned long src_offset,
1441                                     unsigned long to_copy)
1442{
1443        long bytes;
1444        long pg_idx, pg_offset;
1445        unsigned long head = etr_perf->head;
1446        char **dst_pages, *src_buf;
1447        struct etr_buf *etr_buf = etr_perf->etr_buf;
1448
1449        head = etr_perf->head;
1450        pg_idx = head >> PAGE_SHIFT;
1451        pg_offset = head & (PAGE_SIZE - 1);
1452        dst_pages = (char **)etr_perf->pages;
1453
1454        while (to_copy > 0) {
1455                /*
1456                 * In one iteration, we can copy minimum of :
1457                 *  1) what is available in the source buffer,
1458                 *  2) what is available in the source buffer, before it
1459                 *     wraps around.
1460                 *  3) what is available in the destination page.
1461                 * in one iteration.
1462                 */
1463                if (src_offset >= etr_buf->size)
1464                        src_offset -= etr_buf->size;
1465                bytes = tmc_etr_buf_get_data(etr_buf, src_offset, to_copy,
1466                                             &src_buf);
1467                if (WARN_ON_ONCE(bytes <= 0))
1468                        break;
1469                bytes = min(bytes, (long)(PAGE_SIZE - pg_offset));
1470
1471                memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes);
1472
1473                to_copy -= bytes;
1474
1475                /* Move destination pointers */
1476                pg_offset += bytes;
1477                if (pg_offset == PAGE_SIZE) {
1478                        pg_offset = 0;
1479                        if (++pg_idx == etr_perf->nr_pages)
1480                                pg_idx = 0;
1481                }
1482
1483                /* Move source pointers */
1484                src_offset += bytes;
1485        }
1486}
1487
1488/*
1489 * tmc_update_etr_buffer : Update the perf ring buffer with the
1490 * available trace data. We use software double buffering at the moment.
1491 *
1492 * TODO: Add support for reusing the perf ring buffer.
1493 */
1494static unsigned long
1495tmc_update_etr_buffer(struct coresight_device *csdev,
1496                      struct perf_output_handle *handle,
1497                      void *config)
1498{
1499        bool lost = false;
1500        unsigned long flags, offset, size = 0;
1501        struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1502        struct etr_perf_buffer *etr_perf = config;
1503        struct etr_buf *etr_buf = etr_perf->etr_buf;
1504
1505        spin_lock_irqsave(&drvdata->spinlock, flags);
1506
1507        /* Don't do anything if another tracer is using this sink */
1508        if (atomic_read(csdev->refcnt) != 1) {
1509                spin_unlock_irqrestore(&drvdata->spinlock, flags);
1510                goto out;
1511        }
1512
1513        if (WARN_ON(drvdata->perf_buf != etr_buf)) {
1514                lost = true;
1515                spin_unlock_irqrestore(&drvdata->spinlock, flags);
1516                goto out;
1517        }
1518
1519        CS_UNLOCK(drvdata->base);
1520
1521        tmc_flush_and_stop(drvdata);
1522        tmc_sync_etr_buf(drvdata);
1523
1524        CS_LOCK(drvdata->base);
1525        spin_unlock_irqrestore(&drvdata->spinlock, flags);
1526
1527        lost = etr_buf->full;
1528        offset = etr_buf->offset;
1529        size = etr_buf->len;
1530
1531        /*
1532         * The ETR buffer may be bigger than the space available in the
1533         * perf ring buffer (handle->size).  If so advance the offset so that we
1534         * get the latest trace data.  In snapshot mode none of that matters
1535         * since we are expected to clobber stale data in favour of the latest
1536         * traces.
1537         */
1538        if (!etr_perf->snapshot && size > handle->size) {
1539                u32 mask = tmc_get_memwidth_mask(drvdata);
1540
1541                /*
1542                 * Make sure the new size is aligned in accordance with the
1543                 * requirement explained in function tmc_get_memwidth_mask().
1544                 */
1545                size = handle->size & mask;
1546                offset = etr_buf->offset + etr_buf->len - size;
1547
1548                if (offset >= etr_buf->size)
1549                        offset -= etr_buf->size;
1550                lost = true;
1551        }
1552
1553        /* Insert barrier packets at the beginning, if there was an overflow */
1554        if (lost)
1555                tmc_etr_buf_insert_barrier_packet(etr_buf, offset);
1556        tmc_etr_sync_perf_buffer(etr_perf, offset, size);
1557
1558        /*
1559         * In snapshot mode we simply increment the head by the number of byte
1560         * that were written.  User space function  cs_etm_find_snapshot() will
1561         * figure out how many bytes to get from the AUX buffer based on the
1562         * position of the head.
1563         */
1564        if (etr_perf->snapshot)
1565                handle->head += size;
1566out:
1567        /*
1568         * Don't set the TRUNCATED flag in snapshot mode because 1) the
1569         * captured buffer is expected to be truncated and 2) a full buffer
1570         * prevents the event from being re-enabled by the perf core,
1571         * resulting in stale data being send to user space.
1572         */
1573        if (!etr_perf->snapshot && lost)
1574                perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
1575        return size;
1576}
1577
1578static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data)
1579{
1580        int rc = 0;
1581        pid_t pid;
1582        unsigned long flags;
1583        struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1584        struct perf_output_handle *handle = data;
1585        struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle);
1586
1587        spin_lock_irqsave(&drvdata->spinlock, flags);
1588         /* Don't use this sink if it is already claimed by sysFS */
1589        if (drvdata->mode == CS_MODE_SYSFS) {
1590                rc = -EBUSY;
1591                goto unlock_out;
1592        }
1593
1594        if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) {
1595                rc = -EINVAL;
1596                goto unlock_out;
1597        }
1598
1599        /* Get a handle on the pid of the process to monitor */
1600        pid = etr_perf->pid;
1601
1602        /* Do not proceed if this device is associated with another session */
1603        if (drvdata->pid != -1 && drvdata->pid != pid) {
1604                rc = -EBUSY;
1605                goto unlock_out;
1606        }
1607
1608        etr_perf->head = PERF_IDX2OFF(handle->head, etr_perf);
1609
1610        /*
1611         * No HW configuration is needed if the sink is already in
1612         * use for this session.
1613         */
1614        if (drvdata->pid == pid) {
1615                atomic_inc(csdev->refcnt);
1616                goto unlock_out;
1617        }
1618
1619        rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf);
1620        if (!rc) {
1621                /* Associate with monitored process. */
1622                drvdata->pid = pid;
1623                drvdata->mode = CS_MODE_PERF;
1624                drvdata->perf_buf = etr_perf->etr_buf;
1625                atomic_inc(csdev->refcnt);
1626        }
1627
1628unlock_out:
1629        spin_unlock_irqrestore(&drvdata->spinlock, flags);
1630        return rc;
1631}
1632
1633static int tmc_enable_etr_sink(struct coresight_device *csdev,
1634                               u32 mode, void *data)
1635{
1636        switch (mode) {
1637        case CS_MODE_SYSFS:
1638                return tmc_enable_etr_sink_sysfs(csdev);
1639        case CS_MODE_PERF:
1640                return tmc_enable_etr_sink_perf(csdev, data);
1641        }
1642
1643        /* We shouldn't be here */
1644        return -EINVAL;
1645}
1646
1647static int tmc_disable_etr_sink(struct coresight_device *csdev)
1648{
1649        unsigned long flags;
1650        struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1651
1652        spin_lock_irqsave(&drvdata->spinlock, flags);
1653
1654        if (drvdata->reading) {
1655                spin_unlock_irqrestore(&drvdata->spinlock, flags);
1656                return -EBUSY;
1657        }
1658
1659        if (atomic_dec_return(csdev->refcnt)) {
1660                spin_unlock_irqrestore(&drvdata->spinlock, flags);
1661                return -EBUSY;
1662        }
1663
1664        /* Complain if we (somehow) got out of sync */
1665        WARN_ON_ONCE(drvdata->mode == CS_MODE_DISABLED);
1666        tmc_etr_disable_hw(drvdata);
1667        /* Dissociate from monitored process. */
1668        drvdata->pid = -1;
1669        drvdata->mode = CS_MODE_DISABLED;
1670        /* Reset perf specific data */
1671        drvdata->perf_buf = NULL;
1672
1673        spin_unlock_irqrestore(&drvdata->spinlock, flags);
1674
1675        dev_dbg(&csdev->dev, "TMC-ETR disabled\n");
1676        return 0;
1677}
1678
1679static const struct coresight_ops_sink tmc_etr_sink_ops = {
1680        .enable         = tmc_enable_etr_sink,
1681        .disable        = tmc_disable_etr_sink,
1682        .alloc_buffer   = tmc_alloc_etr_buffer,
1683        .update_buffer  = tmc_update_etr_buffer,
1684        .free_buffer    = tmc_free_etr_buffer,
1685};
1686
1687const struct coresight_ops tmc_etr_cs_ops = {
1688        .sink_ops       = &tmc_etr_sink_ops,
1689};
1690
1691int tmc_read_prepare_etr(struct tmc_drvdata *drvdata)
1692{
1693        int ret = 0;
1694        unsigned long flags;
1695
1696        /* config types are set a boot time and never change */
1697        if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1698                return -EINVAL;
1699
1700        spin_lock_irqsave(&drvdata->spinlock, flags);
1701        if (drvdata->reading) {
1702                ret = -EBUSY;
1703                goto out;
1704        }
1705
1706        /*
1707         * We can safely allow reads even if the ETR is operating in PERF mode,
1708         * since the sysfs session is captured in mode specific data.
1709         * If drvdata::sysfs_data is NULL the trace data has been read already.
1710         */
1711        if (!drvdata->sysfs_buf) {
1712                ret = -EINVAL;
1713                goto out;
1714        }
1715
1716        /* Disable the TMC if we are trying to read from a running session. */
1717        if (drvdata->mode == CS_MODE_SYSFS)
1718                __tmc_etr_disable_hw(drvdata);
1719
1720        drvdata->reading = true;
1721out:
1722        spin_unlock_irqrestore(&drvdata->spinlock, flags);
1723
1724        return ret;
1725}
1726
1727int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata)
1728{
1729        unsigned long flags;
1730        struct etr_buf *sysfs_buf = NULL;
1731
1732        /* config types are set a boot time and never change */
1733        if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1734                return -EINVAL;
1735
1736        spin_lock_irqsave(&drvdata->spinlock, flags);
1737
1738        /* RE-enable the TMC if need be */
1739        if (drvdata->mode == CS_MODE_SYSFS) {
1740                /*
1741                 * The trace run will continue with the same allocated trace
1742                 * buffer. Since the tracer is still enabled drvdata::buf can't
1743                 * be NULL.
1744                 */
1745                __tmc_etr_enable_hw(drvdata);
1746        } else {
1747                /*
1748                 * The ETR is not tracing and the buffer was just read.
1749                 * As such prepare to free the trace buffer.
1750                 */
1751                sysfs_buf = drvdata->sysfs_buf;
1752                drvdata->sysfs_buf = NULL;
1753        }
1754
1755        drvdata->reading = false;
1756        spin_unlock_irqrestore(&drvdata->spinlock, flags);
1757
1758        /* Free allocated memory out side of the spinlock */
1759        if (sysfs_buf)
1760                tmc_etr_free_sysfs_buf(sysfs_buf);
1761
1762        return 0;
1763}
1764