linux/drivers/i2c/busses/i2c-bcm-iproc.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2014 Broadcom Corporation
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public License as
   6 * published by the Free Software Foundation version 2.
   7 *
   8 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
   9 * kind, whether express or implied; without even the implied warranty
  10 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  11 * GNU General Public License for more details.
  12 */
  13
  14#include <linux/delay.h>
  15#include <linux/i2c.h>
  16#include <linux/interrupt.h>
  17#include <linux/io.h>
  18#include <linux/kernel.h>
  19#include <linux/module.h>
  20#include <linux/of_device.h>
  21#include <linux/platform_device.h>
  22#include <linux/slab.h>
  23
  24#define IDM_CTRL_DIRECT_OFFSET       0x00
  25#define CFG_OFFSET                   0x00
  26#define CFG_RESET_SHIFT              31
  27#define CFG_EN_SHIFT                 30
  28#define CFG_SLAVE_ADDR_0_SHIFT       28
  29#define CFG_M_RETRY_CNT_SHIFT        16
  30#define CFG_M_RETRY_CNT_MASK         0x0f
  31
  32#define TIM_CFG_OFFSET               0x04
  33#define TIM_CFG_MODE_400_SHIFT       31
  34#define TIM_RAND_SLAVE_STRETCH_SHIFT      24
  35#define TIM_RAND_SLAVE_STRETCH_MASK       0x7f
  36#define TIM_PERIODIC_SLAVE_STRETCH_SHIFT  16
  37#define TIM_PERIODIC_SLAVE_STRETCH_MASK   0x7f
  38
  39#define S_CFG_SMBUS_ADDR_OFFSET           0x08
  40#define S_CFG_EN_NIC_SMB_ADDR3_SHIFT      31
  41#define S_CFG_NIC_SMB_ADDR3_SHIFT         24
  42#define S_CFG_NIC_SMB_ADDR3_MASK          0x7f
  43#define S_CFG_EN_NIC_SMB_ADDR2_SHIFT      23
  44#define S_CFG_NIC_SMB_ADDR2_SHIFT         16
  45#define S_CFG_NIC_SMB_ADDR2_MASK          0x7f
  46#define S_CFG_EN_NIC_SMB_ADDR1_SHIFT      15
  47#define S_CFG_NIC_SMB_ADDR1_SHIFT         8
  48#define S_CFG_NIC_SMB_ADDR1_MASK          0x7f
  49#define S_CFG_EN_NIC_SMB_ADDR0_SHIFT      7
  50#define S_CFG_NIC_SMB_ADDR0_SHIFT         0
  51#define S_CFG_NIC_SMB_ADDR0_MASK          0x7f
  52
  53#define M_FIFO_CTRL_OFFSET           0x0c
  54#define M_FIFO_RX_FLUSH_SHIFT        31
  55#define M_FIFO_TX_FLUSH_SHIFT        30
  56#define M_FIFO_RX_CNT_SHIFT          16
  57#define M_FIFO_RX_CNT_MASK           0x7f
  58#define M_FIFO_RX_THLD_SHIFT         8
  59#define M_FIFO_RX_THLD_MASK          0x3f
  60
  61#define S_FIFO_CTRL_OFFSET           0x10
  62#define S_FIFO_RX_FLUSH_SHIFT        31
  63#define S_FIFO_TX_FLUSH_SHIFT        30
  64#define S_FIFO_RX_CNT_SHIFT          16
  65#define S_FIFO_RX_CNT_MASK           0x7f
  66#define S_FIFO_RX_THLD_SHIFT         8
  67#define S_FIFO_RX_THLD_MASK          0x3f
  68
  69#define M_CMD_OFFSET                 0x30
  70#define M_CMD_START_BUSY_SHIFT       31
  71#define M_CMD_STATUS_SHIFT           25
  72#define M_CMD_STATUS_MASK            0x07
  73#define M_CMD_STATUS_SUCCESS         0x0
  74#define M_CMD_STATUS_LOST_ARB        0x1
  75#define M_CMD_STATUS_NACK_ADDR       0x2
  76#define M_CMD_STATUS_NACK_DATA       0x3
  77#define M_CMD_STATUS_TIMEOUT         0x4
  78#define M_CMD_STATUS_FIFO_UNDERRUN   0x5
  79#define M_CMD_STATUS_RX_FIFO_FULL    0x6
  80#define M_CMD_PROTOCOL_SHIFT         9
  81#define M_CMD_PROTOCOL_MASK          0xf
  82#define M_CMD_PROTOCOL_QUICK         0x0
  83#define M_CMD_PROTOCOL_BLK_WR        0x7
  84#define M_CMD_PROTOCOL_BLK_RD        0x8
  85#define M_CMD_PROTOCOL_PROCESS       0xa
  86#define M_CMD_PEC_SHIFT              8
  87#define M_CMD_RD_CNT_SHIFT           0
  88#define M_CMD_RD_CNT_MASK            0xff
  89
  90#define S_CMD_OFFSET                 0x34
  91#define S_CMD_START_BUSY_SHIFT       31
  92#define S_CMD_STATUS_SHIFT           23
  93#define S_CMD_STATUS_MASK            0x07
  94#define S_CMD_STATUS_SUCCESS         0x0
  95#define S_CMD_STATUS_TIMEOUT         0x5
  96#define S_CMD_STATUS_MASTER_ABORT    0x7
  97
  98#define IE_OFFSET                    0x38
  99#define IE_M_RX_FIFO_FULL_SHIFT      31
 100#define IE_M_RX_THLD_SHIFT           30
 101#define IE_M_START_BUSY_SHIFT        28
 102#define IE_M_TX_UNDERRUN_SHIFT       27
 103#define IE_S_RX_FIFO_FULL_SHIFT      26
 104#define IE_S_RX_THLD_SHIFT           25
 105#define IE_S_RX_EVENT_SHIFT          24
 106#define IE_S_START_BUSY_SHIFT        23
 107#define IE_S_TX_UNDERRUN_SHIFT       22
 108#define IE_S_RD_EVENT_SHIFT          21
 109
 110#define IS_OFFSET                    0x3c
 111#define IS_M_RX_FIFO_FULL_SHIFT      31
 112#define IS_M_RX_THLD_SHIFT           30
 113#define IS_M_START_BUSY_SHIFT        28
 114#define IS_M_TX_UNDERRUN_SHIFT       27
 115#define IS_S_RX_FIFO_FULL_SHIFT      26
 116#define IS_S_RX_THLD_SHIFT           25
 117#define IS_S_RX_EVENT_SHIFT          24
 118#define IS_S_START_BUSY_SHIFT        23
 119#define IS_S_TX_UNDERRUN_SHIFT       22
 120#define IS_S_RD_EVENT_SHIFT          21
 121
 122#define M_TX_OFFSET                  0x40
 123#define M_TX_WR_STATUS_SHIFT         31
 124#define M_TX_DATA_SHIFT              0
 125#define M_TX_DATA_MASK               0xff
 126
 127#define M_RX_OFFSET                  0x44
 128#define M_RX_STATUS_SHIFT            30
 129#define M_RX_STATUS_MASK             0x03
 130#define M_RX_PEC_ERR_SHIFT           29
 131#define M_RX_DATA_SHIFT              0
 132#define M_RX_DATA_MASK               0xff
 133
 134#define S_TX_OFFSET                  0x48
 135#define S_TX_WR_STATUS_SHIFT         31
 136#define S_TX_DATA_SHIFT              0
 137#define S_TX_DATA_MASK               0xff
 138
 139#define S_RX_OFFSET                  0x4c
 140#define S_RX_STATUS_SHIFT            30
 141#define S_RX_STATUS_MASK             0x03
 142#define S_RX_PEC_ERR_SHIFT           29
 143#define S_RX_DATA_SHIFT              0
 144#define S_RX_DATA_MASK               0xff
 145
 146#define I2C_TIMEOUT_MSEC             50000
 147#define M_TX_RX_FIFO_SIZE            64
 148#define M_RX_FIFO_MAX_THLD_VALUE     (M_TX_RX_FIFO_SIZE - 1)
 149
 150#define M_RX_MAX_READ_LEN            255
 151#define M_RX_FIFO_THLD_VALUE         50
 152
 153#define IE_M_ALL_INTERRUPT_SHIFT     27
 154#define IE_M_ALL_INTERRUPT_MASK      0x1e
 155
 156#define SLAVE_READ_WRITE_BIT_MASK    0x1
 157#define SLAVE_READ_WRITE_BIT_SHIFT   0x1
 158#define SLAVE_MAX_SIZE_TRANSACTION   64
 159#define SLAVE_CLOCK_STRETCH_TIME     25
 160
 161#define IE_S_ALL_INTERRUPT_SHIFT     21
 162#define IE_S_ALL_INTERRUPT_MASK      0x3f
 163/*
 164 * It takes ~18us to reading 10bytes of data, hence to keep tasklet
 165 * running for less time, max slave read per tasklet is set to 10 bytes.
 166 */
 167#define MAX_SLAVE_RX_PER_INT         10
 168
 169enum i2c_slave_read_status {
 170        I2C_SLAVE_RX_FIFO_EMPTY = 0,
 171        I2C_SLAVE_RX_START,
 172        I2C_SLAVE_RX_DATA,
 173        I2C_SLAVE_RX_END,
 174};
 175
 176enum bus_speed_index {
 177        I2C_SPD_100K = 0,
 178        I2C_SPD_400K,
 179};
 180
 181enum bcm_iproc_i2c_type {
 182        IPROC_I2C,
 183        IPROC_I2C_NIC
 184};
 185
 186struct bcm_iproc_i2c_dev {
 187        struct device *device;
 188        enum bcm_iproc_i2c_type type;
 189        int irq;
 190
 191        void __iomem *base;
 192        void __iomem *idm_base;
 193
 194        u32 ape_addr_mask;
 195
 196        /* lock for indirect access through IDM */
 197        spinlock_t idm_lock;
 198
 199        struct i2c_adapter adapter;
 200        unsigned int bus_speed;
 201
 202        struct completion done;
 203        int xfer_is_done;
 204
 205        struct i2c_msg *msg;
 206
 207        struct i2c_client *slave;
 208
 209        /* bytes that have been transferred */
 210        unsigned int tx_bytes;
 211        /* bytes that have been read */
 212        unsigned int rx_bytes;
 213        unsigned int thld_bytes;
 214
 215        bool slave_rx_only;
 216        bool rx_start_rcvd;
 217        bool slave_read_complete;
 218        u32 tx_underrun;
 219        u32 slave_int_mask;
 220        struct tasklet_struct slave_rx_tasklet;
 221};
 222
 223/* tasklet to process slave rx data */
 224static void slave_rx_tasklet_fn(unsigned long);
 225
 226/*
 227 * Can be expanded in the future if more interrupt status bits are utilized
 228 */
 229#define ISR_MASK (BIT(IS_M_START_BUSY_SHIFT) | BIT(IS_M_TX_UNDERRUN_SHIFT)\
 230                | BIT(IS_M_RX_THLD_SHIFT))
 231
 232#define ISR_MASK_SLAVE (BIT(IS_S_START_BUSY_SHIFT)\
 233                | BIT(IS_S_RX_EVENT_SHIFT) | BIT(IS_S_RD_EVENT_SHIFT)\
 234                | BIT(IS_S_TX_UNDERRUN_SHIFT) | BIT(IS_S_RX_FIFO_FULL_SHIFT)\
 235                | BIT(IS_S_RX_THLD_SHIFT))
 236
 237static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave);
 238static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave);
 239static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
 240                                         bool enable);
 241
 242static inline u32 iproc_i2c_rd_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
 243                                   u32 offset)
 244{
 245        u32 val;
 246
 247        if (iproc_i2c->idm_base) {
 248                spin_lock(&iproc_i2c->idm_lock);
 249                writel(iproc_i2c->ape_addr_mask,
 250                       iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
 251                val = readl(iproc_i2c->base + offset);
 252                spin_unlock(&iproc_i2c->idm_lock);
 253        } else {
 254                val = readl(iproc_i2c->base + offset);
 255        }
 256
 257        return val;
 258}
 259
 260static inline void iproc_i2c_wr_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
 261                                    u32 offset, u32 val)
 262{
 263        if (iproc_i2c->idm_base) {
 264                spin_lock(&iproc_i2c->idm_lock);
 265                writel(iproc_i2c->ape_addr_mask,
 266                       iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
 267                writel(val, iproc_i2c->base + offset);
 268                spin_unlock(&iproc_i2c->idm_lock);
 269        } else {
 270                writel(val, iproc_i2c->base + offset);
 271        }
 272}
 273
 274static void bcm_iproc_i2c_slave_init(
 275        struct bcm_iproc_i2c_dev *iproc_i2c, bool need_reset)
 276{
 277        u32 val;
 278
 279        iproc_i2c->tx_underrun = 0;
 280        if (need_reset) {
 281                /* put controller in reset */
 282                val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
 283                val |= BIT(CFG_RESET_SHIFT);
 284                iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
 285
 286                /* wait 100 usec per spec */
 287                udelay(100);
 288
 289                /* bring controller out of reset */
 290                val &= ~(BIT(CFG_RESET_SHIFT));
 291                iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
 292        }
 293
 294        /* flush TX/RX FIFOs */
 295        val = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
 296        iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
 297
 298        /* Maximum slave stretch time */
 299        val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
 300        val &= ~(TIM_RAND_SLAVE_STRETCH_MASK << TIM_RAND_SLAVE_STRETCH_SHIFT);
 301        val |= (SLAVE_CLOCK_STRETCH_TIME << TIM_RAND_SLAVE_STRETCH_SHIFT);
 302        iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
 303
 304        /* Configure the slave address */
 305        val = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
 306        val |= BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
 307        val &= ~(S_CFG_NIC_SMB_ADDR3_MASK << S_CFG_NIC_SMB_ADDR3_SHIFT);
 308        val |= (iproc_i2c->slave->addr << S_CFG_NIC_SMB_ADDR3_SHIFT);
 309        iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, val);
 310
 311        /* clear all pending slave interrupts */
 312        iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
 313
 314        /* Enable interrupt register to indicate a valid byte in receive fifo */
 315        val = BIT(IE_S_RX_EVENT_SHIFT);
 316        /* Enable interrupt register to indicate Slave Rx FIFO Full */
 317        val |= BIT(IE_S_RX_FIFO_FULL_SHIFT);
 318        /* Enable interrupt register to indicate a Master read transaction */
 319        val |= BIT(IE_S_RD_EVENT_SHIFT);
 320        /* Enable interrupt register for the Slave BUSY command */
 321        val |= BIT(IE_S_START_BUSY_SHIFT);
 322        iproc_i2c->slave_int_mask = val;
 323        iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
 324}
 325
 326static void bcm_iproc_i2c_check_slave_status(
 327        struct bcm_iproc_i2c_dev *iproc_i2c)
 328{
 329        u32 val;
 330
 331        val = iproc_i2c_rd_reg(iproc_i2c, S_CMD_OFFSET);
 332        /* status is valid only when START_BUSY is cleared after it was set */
 333        if (val & BIT(S_CMD_START_BUSY_SHIFT))
 334                return;
 335
 336        val = (val >> S_CMD_STATUS_SHIFT) & S_CMD_STATUS_MASK;
 337        if (val == S_CMD_STATUS_TIMEOUT || val == S_CMD_STATUS_MASTER_ABORT) {
 338                dev_err(iproc_i2c->device, (val == S_CMD_STATUS_TIMEOUT) ?
 339                        "slave random stretch time timeout\n" :
 340                        "Master aborted read transaction\n");
 341                /* re-initialize i2c for recovery */
 342                bcm_iproc_i2c_enable_disable(iproc_i2c, false);
 343                bcm_iproc_i2c_slave_init(iproc_i2c, true);
 344                bcm_iproc_i2c_enable_disable(iproc_i2c, true);
 345        }
 346}
 347
 348static void bcm_iproc_i2c_slave_read(struct bcm_iproc_i2c_dev *iproc_i2c)
 349{
 350        u8 rx_data, rx_status;
 351        u32 rx_bytes = 0;
 352        u32 val;
 353
 354        while (rx_bytes < MAX_SLAVE_RX_PER_INT) {
 355                val = iproc_i2c_rd_reg(iproc_i2c, S_RX_OFFSET);
 356                rx_status = (val >> S_RX_STATUS_SHIFT) & S_RX_STATUS_MASK;
 357                rx_data = ((val >> S_RX_DATA_SHIFT) & S_RX_DATA_MASK);
 358
 359                if (rx_status == I2C_SLAVE_RX_START) {
 360                        /* Start of SMBUS Master write */
 361                        i2c_slave_event(iproc_i2c->slave,
 362                                        I2C_SLAVE_WRITE_REQUESTED, &rx_data);
 363                        iproc_i2c->rx_start_rcvd = true;
 364                        iproc_i2c->slave_read_complete = false;
 365                } else if (rx_status == I2C_SLAVE_RX_DATA &&
 366                           iproc_i2c->rx_start_rcvd) {
 367                        /* Middle of SMBUS Master write */
 368                        i2c_slave_event(iproc_i2c->slave,
 369                                        I2C_SLAVE_WRITE_RECEIVED, &rx_data);
 370                } else if (rx_status == I2C_SLAVE_RX_END &&
 371                           iproc_i2c->rx_start_rcvd) {
 372                        /* End of SMBUS Master write */
 373                        if (iproc_i2c->slave_rx_only)
 374                                i2c_slave_event(iproc_i2c->slave,
 375                                                I2C_SLAVE_WRITE_RECEIVED,
 376                                                &rx_data);
 377
 378                        i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP,
 379                                        &rx_data);
 380                } else if (rx_status == I2C_SLAVE_RX_FIFO_EMPTY) {
 381                        iproc_i2c->rx_start_rcvd = false;
 382                        iproc_i2c->slave_read_complete = true;
 383                        break;
 384                }
 385
 386                rx_bytes++;
 387        }
 388}
 389
 390static void slave_rx_tasklet_fn(unsigned long data)
 391{
 392        struct bcm_iproc_i2c_dev *iproc_i2c = (struct bcm_iproc_i2c_dev *)data;
 393        u32 int_clr;
 394
 395        bcm_iproc_i2c_slave_read(iproc_i2c);
 396
 397        /* clear pending IS_S_RX_EVENT_SHIFT interrupt */
 398        int_clr = BIT(IS_S_RX_EVENT_SHIFT);
 399
 400        if (!iproc_i2c->slave_rx_only && iproc_i2c->slave_read_complete) {
 401                /*
 402                 * In case of single byte master-read request,
 403                 * IS_S_TX_UNDERRUN_SHIFT event is generated before
 404                 * IS_S_START_BUSY_SHIFT event. Hence start slave data send
 405                 * from first IS_S_TX_UNDERRUN_SHIFT event.
 406                 *
 407                 * This means don't send any data from slave when
 408                 * IS_S_RD_EVENT_SHIFT event is generated else it will increment
 409                 * eeprom or other backend slave driver read pointer twice.
 410                 */
 411                iproc_i2c->tx_underrun = 0;
 412                iproc_i2c->slave_int_mask |= BIT(IE_S_TX_UNDERRUN_SHIFT);
 413
 414                /* clear IS_S_RD_EVENT_SHIFT interrupt */
 415                int_clr |= BIT(IS_S_RD_EVENT_SHIFT);
 416        }
 417
 418        /* clear slave interrupt */
 419        iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, int_clr);
 420        /* enable slave interrupts */
 421        iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, iproc_i2c->slave_int_mask);
 422}
 423
 424static bool bcm_iproc_i2c_slave_isr(struct bcm_iproc_i2c_dev *iproc_i2c,
 425                                    u32 status)
 426{
 427        u32 val;
 428        u8 value;
 429
 430        /*
 431         * Slave events in case of master-write, master-write-read and,
 432         * master-read
 433         *
 434         * Master-write     : only IS_S_RX_EVENT_SHIFT event
 435         * Master-write-read: both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT
 436         *                    events
 437         * Master-read      : both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT
 438         *                    events or only IS_S_RD_EVENT_SHIFT
 439         *
 440         * iproc has a slave rx fifo size of 64 bytes. Rx fifo full interrupt
 441         * (IS_S_RX_FIFO_FULL_SHIFT) will be generated when RX fifo becomes
 442         * full. This can happen if Master issues write requests of more than
 443         * 64 bytes.
 444         */
 445        if (status & BIT(IS_S_RX_EVENT_SHIFT) ||
 446            status & BIT(IS_S_RD_EVENT_SHIFT) ||
 447            status & BIT(IS_S_RX_FIFO_FULL_SHIFT)) {
 448                /* disable slave interrupts */
 449                val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
 450                val &= ~iproc_i2c->slave_int_mask;
 451                iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
 452
 453                if (status & BIT(IS_S_RD_EVENT_SHIFT))
 454                        /* Master-write-read request */
 455                        iproc_i2c->slave_rx_only = false;
 456                else
 457                        /* Master-write request only */
 458                        iproc_i2c->slave_rx_only = true;
 459
 460                /* schedule tasklet to read data later */
 461                tasklet_schedule(&iproc_i2c->slave_rx_tasklet);
 462
 463                /*
 464                 * clear only IS_S_RX_EVENT_SHIFT and
 465                 * IS_S_RX_FIFO_FULL_SHIFT interrupt.
 466                 */
 467                val = BIT(IS_S_RX_EVENT_SHIFT);
 468                if (status & BIT(IS_S_RX_FIFO_FULL_SHIFT))
 469                        val |= BIT(IS_S_RX_FIFO_FULL_SHIFT);
 470                iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, val);
 471        }
 472
 473        if (status & BIT(IS_S_TX_UNDERRUN_SHIFT)) {
 474                iproc_i2c->tx_underrun++;
 475                if (iproc_i2c->tx_underrun == 1)
 476                        /* Start of SMBUS for Master Read */
 477                        i2c_slave_event(iproc_i2c->slave,
 478                                        I2C_SLAVE_READ_REQUESTED,
 479                                        &value);
 480                else
 481                        /* Master read other than start */
 482                        i2c_slave_event(iproc_i2c->slave,
 483                                        I2C_SLAVE_READ_PROCESSED,
 484                                        &value);
 485
 486                iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, value);
 487                /* start transfer */
 488                val = BIT(S_CMD_START_BUSY_SHIFT);
 489                iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
 490
 491                /* clear interrupt */
 492                iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
 493                                 BIT(IS_S_TX_UNDERRUN_SHIFT));
 494        }
 495
 496        /* Stop received from master in case of master read transaction */
 497        if (status & BIT(IS_S_START_BUSY_SHIFT)) {
 498                /*
 499                 * Disable interrupt for TX FIFO becomes empty and
 500                 * less than PKT_LENGTH bytes were output on the SMBUS
 501                 */
 502                iproc_i2c->slave_int_mask &= ~BIT(IE_S_TX_UNDERRUN_SHIFT);
 503                iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET,
 504                                 iproc_i2c->slave_int_mask);
 505
 506                /* End of SMBUS for Master Read */
 507                val = BIT(S_TX_WR_STATUS_SHIFT);
 508                iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, val);
 509
 510                val = BIT(S_CMD_START_BUSY_SHIFT);
 511                iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
 512
 513                /* flush TX FIFOs */
 514                val = iproc_i2c_rd_reg(iproc_i2c, S_FIFO_CTRL_OFFSET);
 515                val |= (BIT(S_FIFO_TX_FLUSH_SHIFT));
 516                iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
 517
 518                i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP, &value);
 519
 520                /* clear interrupt */
 521                iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
 522                                 BIT(IS_S_START_BUSY_SHIFT));
 523        }
 524
 525        /* check slave transmit status only if slave is transmitting */
 526        if (!iproc_i2c->slave_rx_only)
 527                bcm_iproc_i2c_check_slave_status(iproc_i2c);
 528
 529        return true;
 530}
 531
 532static void bcm_iproc_i2c_read_valid_bytes(struct bcm_iproc_i2c_dev *iproc_i2c)
 533{
 534        struct i2c_msg *msg = iproc_i2c->msg;
 535        uint32_t val;
 536
 537        /* Read valid data from RX FIFO */
 538        while (iproc_i2c->rx_bytes < msg->len) {
 539                val = iproc_i2c_rd_reg(iproc_i2c, M_RX_OFFSET);
 540
 541                /* rx fifo empty */
 542                if (!((val >> M_RX_STATUS_SHIFT) & M_RX_STATUS_MASK))
 543                        break;
 544
 545                msg->buf[iproc_i2c->rx_bytes] =
 546                        (val >> M_RX_DATA_SHIFT) & M_RX_DATA_MASK;
 547                iproc_i2c->rx_bytes++;
 548        }
 549}
 550
 551static void bcm_iproc_i2c_send(struct bcm_iproc_i2c_dev *iproc_i2c)
 552{
 553        struct i2c_msg *msg = iproc_i2c->msg;
 554        unsigned int tx_bytes = msg->len - iproc_i2c->tx_bytes;
 555        unsigned int i;
 556        u32 val;
 557
 558        /* can only fill up to the FIFO size */
 559        tx_bytes = min_t(unsigned int, tx_bytes, M_TX_RX_FIFO_SIZE);
 560        for (i = 0; i < tx_bytes; i++) {
 561                /* start from where we left over */
 562                unsigned int idx = iproc_i2c->tx_bytes + i;
 563
 564                val = msg->buf[idx];
 565
 566                /* mark the last byte */
 567                if (idx == msg->len - 1) {
 568                        val |= BIT(M_TX_WR_STATUS_SHIFT);
 569
 570                        if (iproc_i2c->irq) {
 571                                u32 tmp;
 572
 573                                /*
 574                                 * Since this is the last byte, we should now
 575                                 * disable TX FIFO underrun interrupt
 576                                 */
 577                                tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
 578                                tmp &= ~BIT(IE_M_TX_UNDERRUN_SHIFT);
 579                                iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET,
 580                                                 tmp);
 581                        }
 582                }
 583
 584                /* load data into TX FIFO */
 585                iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
 586        }
 587
 588        /* update number of transferred bytes */
 589        iproc_i2c->tx_bytes += tx_bytes;
 590}
 591
 592static void bcm_iproc_i2c_read(struct bcm_iproc_i2c_dev *iproc_i2c)
 593{
 594        struct i2c_msg *msg = iproc_i2c->msg;
 595        u32 bytes_left, val;
 596
 597        bcm_iproc_i2c_read_valid_bytes(iproc_i2c);
 598        bytes_left = msg->len - iproc_i2c->rx_bytes;
 599        if (bytes_left == 0) {
 600                if (iproc_i2c->irq) {
 601                        /* finished reading all data, disable rx thld event */
 602                        val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
 603                        val &= ~BIT(IS_M_RX_THLD_SHIFT);
 604                        iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
 605                }
 606        } else if (bytes_left < iproc_i2c->thld_bytes) {
 607                /* set bytes left as threshold */
 608                val = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
 609                val &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
 610                val |= (bytes_left << M_FIFO_RX_THLD_SHIFT);
 611                iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
 612                iproc_i2c->thld_bytes = bytes_left;
 613        }
 614        /*
 615         * bytes_left >= iproc_i2c->thld_bytes,
 616         * hence no need to change the THRESHOLD SET.
 617         * It will remain as iproc_i2c->thld_bytes itself
 618         */
 619}
 620
 621static void bcm_iproc_i2c_process_m_event(struct bcm_iproc_i2c_dev *iproc_i2c,
 622                                          u32 status)
 623{
 624        /* TX FIFO is empty and we have more data to send */
 625        if (status & BIT(IS_M_TX_UNDERRUN_SHIFT))
 626                bcm_iproc_i2c_send(iproc_i2c);
 627
 628        /* RX FIFO threshold is reached and data needs to be read out */
 629        if (status & BIT(IS_M_RX_THLD_SHIFT))
 630                bcm_iproc_i2c_read(iproc_i2c);
 631
 632        /* transfer is done */
 633        if (status & BIT(IS_M_START_BUSY_SHIFT)) {
 634                iproc_i2c->xfer_is_done = 1;
 635                if (iproc_i2c->irq)
 636                        complete(&iproc_i2c->done);
 637        }
 638}
 639
 640static irqreturn_t bcm_iproc_i2c_isr(int irq, void *data)
 641{
 642        struct bcm_iproc_i2c_dev *iproc_i2c = data;
 643        u32 slave_status;
 644        u32 status;
 645        bool ret;
 646
 647        status = iproc_i2c_rd_reg(iproc_i2c, IS_OFFSET);
 648        /* process only slave interrupt which are enabled */
 649        slave_status = status & iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET) &
 650                       ISR_MASK_SLAVE;
 651
 652        if (slave_status) {
 653                ret = bcm_iproc_i2c_slave_isr(iproc_i2c, slave_status);
 654                if (ret)
 655                        return IRQ_HANDLED;
 656                else
 657                        return IRQ_NONE;
 658        }
 659
 660        status &= ISR_MASK;
 661        if (!status)
 662                return IRQ_NONE;
 663
 664        /* process all master based events */
 665        bcm_iproc_i2c_process_m_event(iproc_i2c, status);
 666        iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
 667
 668        return IRQ_HANDLED;
 669}
 670
 671static int bcm_iproc_i2c_init(struct bcm_iproc_i2c_dev *iproc_i2c)
 672{
 673        u32 val;
 674
 675        /* put controller in reset */
 676        val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
 677        val |= BIT(CFG_RESET_SHIFT);
 678        val &= ~(BIT(CFG_EN_SHIFT));
 679        iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
 680
 681        /* wait 100 usec per spec */
 682        udelay(100);
 683
 684        /* bring controller out of reset */
 685        val &= ~(BIT(CFG_RESET_SHIFT));
 686        iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
 687
 688        /* flush TX/RX FIFOs and set RX FIFO threshold to zero */
 689        val = (BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT));
 690        iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
 691        /* disable all interrupts */
 692        val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
 693        val &= ~(IE_M_ALL_INTERRUPT_MASK <<
 694                        IE_M_ALL_INTERRUPT_SHIFT);
 695        iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
 696
 697        /* clear all pending interrupts */
 698        iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, 0xffffffff);
 699
 700        return 0;
 701}
 702
 703static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
 704                                         bool enable)
 705{
 706        u32 val;
 707
 708        val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
 709        if (enable)
 710                val |= BIT(CFG_EN_SHIFT);
 711        else
 712                val &= ~BIT(CFG_EN_SHIFT);
 713        iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
 714}
 715
 716static int bcm_iproc_i2c_check_status(struct bcm_iproc_i2c_dev *iproc_i2c,
 717                                      struct i2c_msg *msg)
 718{
 719        u32 val;
 720
 721        val = iproc_i2c_rd_reg(iproc_i2c, M_CMD_OFFSET);
 722        val = (val >> M_CMD_STATUS_SHIFT) & M_CMD_STATUS_MASK;
 723
 724        switch (val) {
 725        case M_CMD_STATUS_SUCCESS:
 726                return 0;
 727
 728        case M_CMD_STATUS_LOST_ARB:
 729                dev_dbg(iproc_i2c->device, "lost bus arbitration\n");
 730                return -EAGAIN;
 731
 732        case M_CMD_STATUS_NACK_ADDR:
 733                dev_dbg(iproc_i2c->device, "NAK addr:0x%02x\n", msg->addr);
 734                return -ENXIO;
 735
 736        case M_CMD_STATUS_NACK_DATA:
 737                dev_dbg(iproc_i2c->device, "NAK data\n");
 738                return -ENXIO;
 739
 740        case M_CMD_STATUS_TIMEOUT:
 741                dev_dbg(iproc_i2c->device, "bus timeout\n");
 742                return -ETIMEDOUT;
 743
 744        case M_CMD_STATUS_FIFO_UNDERRUN:
 745                dev_dbg(iproc_i2c->device, "FIFO under-run\n");
 746                return -ENXIO;
 747
 748        case M_CMD_STATUS_RX_FIFO_FULL:
 749                dev_dbg(iproc_i2c->device, "RX FIFO full\n");
 750                return -ETIMEDOUT;
 751
 752        default:
 753                dev_dbg(iproc_i2c->device, "unknown error code=%d\n", val);
 754
 755                /* re-initialize i2c for recovery */
 756                bcm_iproc_i2c_enable_disable(iproc_i2c, false);
 757                bcm_iproc_i2c_init(iproc_i2c);
 758                bcm_iproc_i2c_enable_disable(iproc_i2c, true);
 759
 760                return -EIO;
 761        }
 762}
 763
 764static int bcm_iproc_i2c_xfer_wait(struct bcm_iproc_i2c_dev *iproc_i2c,
 765                                   struct i2c_msg *msg,
 766                                   u32 cmd)
 767{
 768        unsigned long time_left = msecs_to_jiffies(I2C_TIMEOUT_MSEC);
 769        u32 val, status;
 770        int ret;
 771
 772        iproc_i2c_wr_reg(iproc_i2c, M_CMD_OFFSET, cmd);
 773
 774        if (iproc_i2c->irq) {
 775                time_left = wait_for_completion_timeout(&iproc_i2c->done,
 776                                                        time_left);
 777                /* disable all interrupts */
 778                iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
 779                /* read it back to flush the write */
 780                iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
 781                /* make sure the interrupt handler isn't running */
 782                synchronize_irq(iproc_i2c->irq);
 783
 784        } else { /* polling mode */
 785                unsigned long timeout = jiffies + time_left;
 786
 787                do {
 788                        status = iproc_i2c_rd_reg(iproc_i2c,
 789                                                  IS_OFFSET) & ISR_MASK;
 790                        bcm_iproc_i2c_process_m_event(iproc_i2c, status);
 791                        iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
 792
 793                        if (time_after(jiffies, timeout)) {
 794                                time_left = 0;
 795                                break;
 796                        }
 797
 798                        cpu_relax();
 799                        cond_resched();
 800                } while (!iproc_i2c->xfer_is_done);
 801        }
 802
 803        if (!time_left && !iproc_i2c->xfer_is_done) {
 804                dev_err(iproc_i2c->device, "transaction timed out\n");
 805
 806                /* flush both TX/RX FIFOs */
 807                val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
 808                iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
 809                return -ETIMEDOUT;
 810        }
 811
 812        ret = bcm_iproc_i2c_check_status(iproc_i2c, msg);
 813        if (ret) {
 814                /* flush both TX/RX FIFOs */
 815                val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
 816                iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
 817                return ret;
 818        }
 819
 820        return 0;
 821}
 822
 823/*
 824 * If 'process_call' is true, then this is a multi-msg transfer that requires
 825 * a repeated start between the messages.
 826 * More specifically, it must be a write (reg) followed by a read (data).
 827 * The i2c quirks are set to enforce this rule.
 828 */
 829static int bcm_iproc_i2c_xfer_internal(struct bcm_iproc_i2c_dev *iproc_i2c,
 830                                        struct i2c_msg *msgs, bool process_call)
 831{
 832        int i;
 833        u8 addr;
 834        u32 val, tmp, val_intr_en;
 835        unsigned int tx_bytes;
 836        struct i2c_msg *msg = &msgs[0];
 837
 838        /* check if bus is busy */
 839        if (!!(iproc_i2c_rd_reg(iproc_i2c,
 840                                M_CMD_OFFSET) & BIT(M_CMD_START_BUSY_SHIFT))) {
 841                dev_warn(iproc_i2c->device, "bus is busy\n");
 842                return -EBUSY;
 843        }
 844
 845        iproc_i2c->msg = msg;
 846
 847        /* format and load slave address into the TX FIFO */
 848        addr = i2c_8bit_addr_from_msg(msg);
 849        iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, addr);
 850
 851        /*
 852         * For a write transaction, load data into the TX FIFO. Only allow
 853         * loading up to TX FIFO size - 1 bytes of data since the first byte
 854         * has been used up by the slave address
 855         */
 856        tx_bytes = min_t(unsigned int, msg->len, M_TX_RX_FIFO_SIZE - 1);
 857        if (!(msg->flags & I2C_M_RD)) {
 858                for (i = 0; i < tx_bytes; i++) {
 859                        val = msg->buf[i];
 860
 861                        /* mark the last byte */
 862                        if (!process_call && (i == msg->len - 1))
 863                                val |= BIT(M_TX_WR_STATUS_SHIFT);
 864
 865                        iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
 866                }
 867                iproc_i2c->tx_bytes = tx_bytes;
 868        }
 869
 870        /* Process the read message if this is process call */
 871        if (process_call) {
 872                msg++;
 873                iproc_i2c->msg = msg;  /* point to second msg */
 874
 875                /*
 876                 * The last byte to be sent out should be a slave
 877                 * address with read operation
 878                 */
 879                addr = i2c_8bit_addr_from_msg(msg);
 880                /* mark it the last byte out */
 881                val = addr | BIT(M_TX_WR_STATUS_SHIFT);
 882                iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
 883        }
 884
 885        /* mark as incomplete before starting the transaction */
 886        if (iproc_i2c->irq)
 887                reinit_completion(&iproc_i2c->done);
 888
 889        iproc_i2c->xfer_is_done = 0;
 890
 891        /*
 892         * Enable the "start busy" interrupt, which will be triggered after the
 893         * transaction is done, i.e., the internal start_busy bit, transitions
 894         * from 1 to 0.
 895         */
 896        val_intr_en = BIT(IE_M_START_BUSY_SHIFT);
 897
 898        /*
 899         * If TX data size is larger than the TX FIFO, need to enable TX
 900         * underrun interrupt, which will be triggerred when the TX FIFO is
 901         * empty. When that happens we can then pump more data into the FIFO
 902         */
 903        if (!process_call && !(msg->flags & I2C_M_RD) &&
 904            msg->len > iproc_i2c->tx_bytes)
 905                val_intr_en |= BIT(IE_M_TX_UNDERRUN_SHIFT);
 906
 907        /*
 908         * Now we can activate the transfer. For a read operation, specify the
 909         * number of bytes to read
 910         */
 911        val = BIT(M_CMD_START_BUSY_SHIFT);
 912
 913        if (msg->len == 0) {
 914                /* SMBUS QUICK Command (Read/Write) */
 915                val |= (M_CMD_PROTOCOL_QUICK << M_CMD_PROTOCOL_SHIFT);
 916        } else if (msg->flags & I2C_M_RD) {
 917                u32 protocol;
 918
 919                iproc_i2c->rx_bytes = 0;
 920                if (msg->len > M_RX_FIFO_MAX_THLD_VALUE)
 921                        iproc_i2c->thld_bytes = M_RX_FIFO_THLD_VALUE;
 922                else
 923                        iproc_i2c->thld_bytes = msg->len;
 924
 925                /* set threshold value */
 926                tmp = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
 927                tmp &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
 928                tmp |= iproc_i2c->thld_bytes << M_FIFO_RX_THLD_SHIFT;
 929                iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, tmp);
 930
 931                /* enable the RX threshold interrupt */
 932                val_intr_en |= BIT(IE_M_RX_THLD_SHIFT);
 933
 934                protocol = process_call ?
 935                                M_CMD_PROTOCOL_PROCESS : M_CMD_PROTOCOL_BLK_RD;
 936
 937                val |= (protocol << M_CMD_PROTOCOL_SHIFT) |
 938                       (msg->len << M_CMD_RD_CNT_SHIFT);
 939        } else {
 940                val |= (M_CMD_PROTOCOL_BLK_WR << M_CMD_PROTOCOL_SHIFT);
 941        }
 942
 943        if (iproc_i2c->irq)
 944                iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val_intr_en);
 945
 946        return bcm_iproc_i2c_xfer_wait(iproc_i2c, msg, val);
 947}
 948
 949static int bcm_iproc_i2c_xfer(struct i2c_adapter *adapter,
 950                              struct i2c_msg msgs[], int num)
 951{
 952        struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(adapter);
 953        bool process_call = false;
 954        int ret;
 955
 956        if (num == 2) {
 957                /* Repeated start, use process call */
 958                process_call = true;
 959                if (msgs[1].flags & I2C_M_NOSTART) {
 960                        dev_err(iproc_i2c->device, "Invalid repeated start\n");
 961                        return -EOPNOTSUPP;
 962                }
 963        }
 964
 965        ret = bcm_iproc_i2c_xfer_internal(iproc_i2c, msgs, process_call);
 966        if (ret) {
 967                dev_dbg(iproc_i2c->device, "xfer failed\n");
 968                return ret;
 969        }
 970
 971        return num;
 972}
 973
 974static uint32_t bcm_iproc_i2c_functionality(struct i2c_adapter *adap)
 975{
 976        u32 val;
 977
 978        val = I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
 979
 980        if (adap->algo->reg_slave)
 981                val |= I2C_FUNC_SLAVE;
 982
 983        return val;
 984}
 985
 986static struct i2c_algorithm bcm_iproc_algo = {
 987        .master_xfer = bcm_iproc_i2c_xfer,
 988        .functionality = bcm_iproc_i2c_functionality,
 989        .reg_slave = bcm_iproc_i2c_reg_slave,
 990        .unreg_slave = bcm_iproc_i2c_unreg_slave,
 991};
 992
 993static const struct i2c_adapter_quirks bcm_iproc_i2c_quirks = {
 994        .flags = I2C_AQ_COMB_WRITE_THEN_READ,
 995        .max_comb_1st_msg_len = M_TX_RX_FIFO_SIZE,
 996        .max_read_len = M_RX_MAX_READ_LEN,
 997};
 998
 999static int bcm_iproc_i2c_cfg_speed(struct bcm_iproc_i2c_dev *iproc_i2c)
1000{
1001        unsigned int bus_speed;
1002        u32 val;
1003        int ret = of_property_read_u32(iproc_i2c->device->of_node,
1004                                       "clock-frequency", &bus_speed);
1005        if (ret < 0) {
1006                dev_info(iproc_i2c->device,
1007                        "unable to interpret clock-frequency DT property\n");
1008                bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
1009        }
1010
1011        if (bus_speed < I2C_MAX_STANDARD_MODE_FREQ) {
1012                dev_err(iproc_i2c->device, "%d Hz bus speed not supported\n",
1013                        bus_speed);
1014                dev_err(iproc_i2c->device,
1015                        "valid speeds are 100khz and 400khz\n");
1016                return -EINVAL;
1017        } else if (bus_speed < I2C_MAX_FAST_MODE_FREQ) {
1018                bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
1019        } else {
1020                bus_speed = I2C_MAX_FAST_MODE_FREQ;
1021        }
1022
1023        iproc_i2c->bus_speed = bus_speed;
1024        val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
1025        val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
1026        val |= (bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
1027        iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
1028
1029        dev_info(iproc_i2c->device, "bus set to %u Hz\n", bus_speed);
1030
1031        return 0;
1032}
1033
1034static int bcm_iproc_i2c_probe(struct platform_device *pdev)
1035{
1036        int irq, ret = 0;
1037        struct bcm_iproc_i2c_dev *iproc_i2c;
1038        struct i2c_adapter *adap;
1039        struct resource *res;
1040
1041        iproc_i2c = devm_kzalloc(&pdev->dev, sizeof(*iproc_i2c),
1042                                 GFP_KERNEL);
1043        if (!iproc_i2c)
1044                return -ENOMEM;
1045
1046        platform_set_drvdata(pdev, iproc_i2c);
1047        iproc_i2c->device = &pdev->dev;
1048        iproc_i2c->type =
1049                (enum bcm_iproc_i2c_type)of_device_get_match_data(&pdev->dev);
1050        init_completion(&iproc_i2c->done);
1051
1052        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1053        iproc_i2c->base = devm_ioremap_resource(iproc_i2c->device, res);
1054        if (IS_ERR(iproc_i2c->base))
1055                return PTR_ERR(iproc_i2c->base);
1056
1057        if (iproc_i2c->type == IPROC_I2C_NIC) {
1058                res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1059                iproc_i2c->idm_base = devm_ioremap_resource(iproc_i2c->device,
1060                                                            res);
1061                if (IS_ERR(iproc_i2c->idm_base))
1062                        return PTR_ERR(iproc_i2c->idm_base);
1063
1064                ret = of_property_read_u32(iproc_i2c->device->of_node,
1065                                           "brcm,ape-hsls-addr-mask",
1066                                           &iproc_i2c->ape_addr_mask);
1067                if (ret < 0) {
1068                        dev_err(iproc_i2c->device,
1069                                "'brcm,ape-hsls-addr-mask' missing\n");
1070                        return -EINVAL;
1071                }
1072
1073                spin_lock_init(&iproc_i2c->idm_lock);
1074
1075                /* no slave support */
1076                bcm_iproc_algo.reg_slave = NULL;
1077                bcm_iproc_algo.unreg_slave = NULL;
1078        }
1079
1080        ret = bcm_iproc_i2c_init(iproc_i2c);
1081        if (ret)
1082                return ret;
1083
1084        ret = bcm_iproc_i2c_cfg_speed(iproc_i2c);
1085        if (ret)
1086                return ret;
1087
1088        irq = platform_get_irq(pdev, 0);
1089        if (irq > 0) {
1090                ret = devm_request_irq(iproc_i2c->device, irq,
1091                                       bcm_iproc_i2c_isr, 0, pdev->name,
1092                                       iproc_i2c);
1093                if (ret < 0) {
1094                        dev_err(iproc_i2c->device,
1095                                "unable to request irq %i\n", irq);
1096                        return ret;
1097                }
1098
1099                iproc_i2c->irq = irq;
1100        } else {
1101                dev_warn(iproc_i2c->device,
1102                         "no irq resource, falling back to poll mode\n");
1103        }
1104
1105        bcm_iproc_i2c_enable_disable(iproc_i2c, true);
1106
1107        adap = &iproc_i2c->adapter;
1108        i2c_set_adapdata(adap, iproc_i2c);
1109        snprintf(adap->name, sizeof(adap->name),
1110                "Broadcom iProc (%s)",
1111                of_node_full_name(iproc_i2c->device->of_node));
1112        adap->algo = &bcm_iproc_algo;
1113        adap->quirks = &bcm_iproc_i2c_quirks;
1114        adap->dev.parent = &pdev->dev;
1115        adap->dev.of_node = pdev->dev.of_node;
1116
1117        return i2c_add_adapter(adap);
1118}
1119
1120static int bcm_iproc_i2c_remove(struct platform_device *pdev)
1121{
1122        struct bcm_iproc_i2c_dev *iproc_i2c = platform_get_drvdata(pdev);
1123
1124        if (iproc_i2c->irq) {
1125                /*
1126                 * Make sure there's no pending interrupt when we remove the
1127                 * adapter
1128                 */
1129                iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
1130                iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1131                synchronize_irq(iproc_i2c->irq);
1132        }
1133
1134        i2c_del_adapter(&iproc_i2c->adapter);
1135        bcm_iproc_i2c_enable_disable(iproc_i2c, false);
1136
1137        return 0;
1138}
1139
1140#ifdef CONFIG_PM_SLEEP
1141
1142static int bcm_iproc_i2c_suspend(struct device *dev)
1143{
1144        struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
1145
1146        if (iproc_i2c->irq) {
1147                /*
1148                 * Make sure there's no pending interrupt when we go into
1149                 * suspend
1150                 */
1151                iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
1152                iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1153                synchronize_irq(iproc_i2c->irq);
1154        }
1155
1156        /* now disable the controller */
1157        bcm_iproc_i2c_enable_disable(iproc_i2c, false);
1158
1159        return 0;
1160}
1161
1162static int bcm_iproc_i2c_resume(struct device *dev)
1163{
1164        struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
1165        int ret;
1166        u32 val;
1167
1168        /*
1169         * Power domain could have been shut off completely in system deep
1170         * sleep, so re-initialize the block here
1171         */
1172        ret = bcm_iproc_i2c_init(iproc_i2c);
1173        if (ret)
1174                return ret;
1175
1176        /* configure to the desired bus speed */
1177        val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
1178        val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
1179        val |= (iproc_i2c->bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
1180        iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
1181
1182        bcm_iproc_i2c_enable_disable(iproc_i2c, true);
1183
1184        return 0;
1185}
1186
1187static const struct dev_pm_ops bcm_iproc_i2c_pm_ops = {
1188        .suspend_late = &bcm_iproc_i2c_suspend,
1189        .resume_early = &bcm_iproc_i2c_resume
1190};
1191
1192#define BCM_IPROC_I2C_PM_OPS (&bcm_iproc_i2c_pm_ops)
1193#else
1194#define BCM_IPROC_I2C_PM_OPS NULL
1195#endif /* CONFIG_PM_SLEEP */
1196
1197
1198static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave)
1199{
1200        struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1201
1202        if (iproc_i2c->slave)
1203                return -EBUSY;
1204
1205        if (slave->flags & I2C_CLIENT_TEN)
1206                return -EAFNOSUPPORT;
1207
1208        iproc_i2c->slave = slave;
1209
1210        tasklet_init(&iproc_i2c->slave_rx_tasklet, slave_rx_tasklet_fn,
1211                     (unsigned long)iproc_i2c);
1212
1213        bcm_iproc_i2c_slave_init(iproc_i2c, false);
1214        return 0;
1215}
1216
1217static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave)
1218{
1219        u32 tmp;
1220        struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1221
1222        if (!iproc_i2c->slave)
1223                return -EINVAL;
1224
1225        disable_irq(iproc_i2c->irq);
1226
1227        tasklet_kill(&iproc_i2c->slave_rx_tasklet);
1228
1229        /* disable all slave interrupts */
1230        tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1231        tmp &= ~(IE_S_ALL_INTERRUPT_MASK <<
1232                        IE_S_ALL_INTERRUPT_SHIFT);
1233        iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, tmp);
1234
1235        /* Erase the slave address programmed */
1236        tmp = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
1237        tmp &= ~BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
1238        iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, tmp);
1239
1240        /* flush TX/RX FIFOs */
1241        tmp = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
1242        iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, tmp);
1243
1244        /* clear all pending slave interrupts */
1245        iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
1246
1247        iproc_i2c->slave = NULL;
1248
1249        enable_irq(iproc_i2c->irq);
1250
1251        return 0;
1252}
1253
1254static const struct of_device_id bcm_iproc_i2c_of_match[] = {
1255        {
1256                .compatible = "brcm,iproc-i2c",
1257                .data = (int *)IPROC_I2C,
1258        }, {
1259                .compatible = "brcm,iproc-nic-i2c",
1260                .data = (int *)IPROC_I2C_NIC,
1261        },
1262        { /* sentinel */ }
1263};
1264MODULE_DEVICE_TABLE(of, bcm_iproc_i2c_of_match);
1265
1266static struct platform_driver bcm_iproc_i2c_driver = {
1267        .driver = {
1268                .name = "bcm-iproc-i2c",
1269                .of_match_table = bcm_iproc_i2c_of_match,
1270                .pm = BCM_IPROC_I2C_PM_OPS,
1271        },
1272        .probe = bcm_iproc_i2c_probe,
1273        .remove = bcm_iproc_i2c_remove,
1274};
1275module_platform_driver(bcm_iproc_i2c_driver);
1276
1277MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1278MODULE_DESCRIPTION("Broadcom iProc I2C Driver");
1279MODULE_LICENSE("GPL v2");
1280