linux/drivers/i2c/busses/i2c-mlxbf.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Mellanox BlueField I2C bus driver
   4 *
   5 *  Copyright (C) 2020 Mellanox Technologies, Ltd.
   6 */
   7
   8#include <linux/acpi.h>
   9#include <linux/delay.h>
  10#include <linux/err.h>
  11#include <linux/interrupt.h>
  12#include <linux/i2c.h>
  13#include <linux/io.h>
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/mutex.h>
  17#include <linux/of_device.h>
  18#include <linux/platform_device.h>
  19#include <linux/string.h>
  20
  21/* Defines what functionality is present. */
  22#define MLXBF_I2C_FUNC_SMBUS_BLOCK \
  23        (I2C_FUNC_SMBUS_BLOCK_DATA | I2C_FUNC_SMBUS_BLOCK_PROC_CALL)
  24
  25#define MLXBF_I2C_FUNC_SMBUS_DEFAULT \
  26        (I2C_FUNC_SMBUS_BYTE      | I2C_FUNC_SMBUS_BYTE_DATA | \
  27         I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_I2C_BLOCK | \
  28         I2C_FUNC_SMBUS_PROC_CALL)
  29
  30#define MLXBF_I2C_FUNC_ALL \
  31        (MLXBF_I2C_FUNC_SMBUS_DEFAULT | MLXBF_I2C_FUNC_SMBUS_BLOCK | \
  32         I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SLAVE)
  33
  34#define MLXBF_I2C_SMBUS_MAX        3
  35
  36/* Shared resources info in BlueField platforms. */
  37
  38#define MLXBF_I2C_COALESCE_TYU_ADDR    0x02801300
  39#define MLXBF_I2C_COALESCE_TYU_SIZE    0x010
  40
  41#define MLXBF_I2C_GPIO_TYU_ADDR        0x02802000
  42#define MLXBF_I2C_GPIO_TYU_SIZE        0x100
  43
  44#define MLXBF_I2C_COREPLL_TYU_ADDR     0x02800358
  45#define MLXBF_I2C_COREPLL_TYU_SIZE     0x008
  46
  47#define MLXBF_I2C_COREPLL_YU_ADDR      0x02800c30
  48#define MLXBF_I2C_COREPLL_YU_SIZE      0x00c
  49
  50#define MLXBF_I2C_SHARED_RES_MAX       3
  51
  52/*
  53 * Note that the following SMBus, CAUSE, GPIO and PLL register addresses
  54 * refer to their respective offsets relative to the corresponding
  55 * memory-mapped region whose addresses are specified in either the DT or
  56 * the ACPI tables or above.
  57 */
  58
  59/*
  60 * SMBus Master core clock frequency. Timing configurations are
  61 * strongly dependent on the core clock frequency of the SMBus
  62 * Master. Default value is set to 400MHz.
  63 */
  64#define MLXBF_I2C_TYU_PLL_OUT_FREQ  (400 * 1000 * 1000)
  65/* Reference clock for Bluefield - 156 MHz. */
  66#define MLXBF_I2C_PLL_IN_FREQ       (156 * 1000 * 1000)
  67
  68/* Constant used to determine the PLL frequency. */
  69#define MLNXBF_I2C_COREPLL_CONST    16384
  70
  71/* PLL registers. */
  72#define MLXBF_I2C_CORE_PLL_REG0         0x0
  73#define MLXBF_I2C_CORE_PLL_REG1         0x4
  74#define MLXBF_I2C_CORE_PLL_REG2         0x8
  75
  76/* OR cause register. */
  77#define MLXBF_I2C_CAUSE_OR_EVTEN0    0x14
  78#define MLXBF_I2C_CAUSE_OR_CLEAR     0x18
  79
  80/* Arbiter Cause Register. */
  81#define MLXBF_I2C_CAUSE_ARBITER      0x1c
  82
  83/*
  84 * Cause Status flags. Note that those bits might be considered
  85 * as interrupt enabled bits.
  86 */
  87
  88/* Transaction ended with STOP. */
  89#define MLXBF_I2C_CAUSE_TRANSACTION_ENDED  BIT(0)
  90/* Master arbitration lost. */
  91#define MLXBF_I2C_CAUSE_M_ARBITRATION_LOST BIT(1)
  92/* Unexpected start detected. */
  93#define MLXBF_I2C_CAUSE_UNEXPECTED_START   BIT(2)
  94/* Unexpected stop detected. */
  95#define MLXBF_I2C_CAUSE_UNEXPECTED_STOP    BIT(3)
  96/* Wait for transfer continuation. */
  97#define MLXBF_I2C_CAUSE_WAIT_FOR_FW_DATA   BIT(4)
  98/* Failed to generate STOP. */
  99#define MLXBF_I2C_CAUSE_PUT_STOP_FAILED    BIT(5)
 100/* Failed to generate START. */
 101#define MLXBF_I2C_CAUSE_PUT_START_FAILED   BIT(6)
 102/* Clock toggle completed. */
 103#define MLXBF_I2C_CAUSE_CLK_TOGGLE_DONE    BIT(7)
 104/* Transfer timeout occurred. */
 105#define MLXBF_I2C_CAUSE_M_FW_TIMEOUT       BIT(8)
 106/* Master busy bit reset. */
 107#define MLXBF_I2C_CAUSE_M_GW_BUSY_FALL     BIT(9)
 108
 109#define MLXBF_I2C_CAUSE_MASTER_ARBITER_BITS_MASK     GENMASK(9, 0)
 110
 111#define MLXBF_I2C_CAUSE_MASTER_STATUS_ERROR \
 112        (MLXBF_I2C_CAUSE_M_ARBITRATION_LOST | \
 113         MLXBF_I2C_CAUSE_UNEXPECTED_START | \
 114         MLXBF_I2C_CAUSE_UNEXPECTED_STOP | \
 115         MLXBF_I2C_CAUSE_PUT_STOP_FAILED | \
 116         MLXBF_I2C_CAUSE_PUT_START_FAILED | \
 117         MLXBF_I2C_CAUSE_CLK_TOGGLE_DONE | \
 118         MLXBF_I2C_CAUSE_M_FW_TIMEOUT)
 119
 120/*
 121 * Slave cause status flags. Note that those bits might be considered
 122 * as interrupt enabled bits.
 123 */
 124
 125/* Write transaction received successfully. */
 126#define MLXBF_I2C_CAUSE_WRITE_SUCCESS         BIT(0)
 127/* Read transaction received, waiting for response. */
 128#define MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE BIT(13)
 129/* Slave busy bit reset. */
 130#define MLXBF_I2C_CAUSE_S_GW_BUSY_FALL        BIT(18)
 131
 132#define MLXBF_I2C_CAUSE_SLAVE_ARBITER_BITS_MASK     GENMASK(20, 0)
 133
 134/* Cause coalesce registers. */
 135#define MLXBF_I2C_CAUSE_COALESCE_0        0x00
 136#define MLXBF_I2C_CAUSE_COALESCE_1        0x04
 137#define MLXBF_I2C_CAUSE_COALESCE_2        0x08
 138
 139#define MLXBF_I2C_CAUSE_TYU_SLAVE_BIT   MLXBF_I2C_SMBUS_MAX
 140#define MLXBF_I2C_CAUSE_YU_SLAVE_BIT    1
 141
 142/* Functional enable register. */
 143#define MLXBF_I2C_GPIO_0_FUNC_EN_0    0x28
 144/* Force OE enable register. */
 145#define MLXBF_I2C_GPIO_0_FORCE_OE_EN  0x30
 146/*
 147 * Note that Smbus GWs are on GPIOs 30:25. Two pins are used to control
 148 * SDA/SCL lines:
 149 *
 150 *  SMBUS GW0 -> bits[26:25]
 151 *  SMBUS GW1 -> bits[28:27]
 152 *  SMBUS GW2 -> bits[30:29]
 153 */
 154#define MLXBF_I2C_GPIO_SMBUS_GW_PINS(num) (25 + ((num) << 1))
 155
 156/* Note that gw_id can be 0,1 or 2. */
 157#define MLXBF_I2C_GPIO_SMBUS_GW_MASK(num) \
 158        (0xffffffff & (~(0x3 << MLXBF_I2C_GPIO_SMBUS_GW_PINS(num))))
 159
 160#define MLXBF_I2C_GPIO_SMBUS_GW_RESET_PINS(num, val) \
 161        ((val) & MLXBF_I2C_GPIO_SMBUS_GW_MASK(num))
 162
 163#define MLXBF_I2C_GPIO_SMBUS_GW_ASSERT_PINS(num, val) \
 164        ((val) | (0x3 << MLXBF_I2C_GPIO_SMBUS_GW_PINS(num)))
 165
 166/* SMBus timing parameters. */
 167#define MLXBF_I2C_SMBUS_TIMER_SCL_LOW_SCL_HIGH    0x00
 168#define MLXBF_I2C_SMBUS_TIMER_FALL_RISE_SPIKE     0x04
 169#define MLXBF_I2C_SMBUS_TIMER_THOLD               0x08
 170#define MLXBF_I2C_SMBUS_TIMER_TSETUP_START_STOP   0x0c
 171#define MLXBF_I2C_SMBUS_TIMER_TSETUP_DATA         0x10
 172#define MLXBF_I2C_SMBUS_THIGH_MAX_TBUF            0x14
 173#define MLXBF_I2C_SMBUS_SCL_LOW_TIMEOUT           0x18
 174
 175/*
 176 * Defines SMBus operating frequency and core clock frequency.
 177 * According to ADB files, default values are compliant to 100KHz SMBus
 178 * @ 400MHz core clock. The driver should be able to calculate core
 179 * frequency based on PLL parameters.
 180 */
 181#define MLXBF_I2C_COREPLL_FREQ          MLXBF_I2C_TYU_PLL_OUT_FREQ
 182
 183/* Core PLL TYU configuration. */
 184#define MLXBF_I2C_COREPLL_CORE_F_TYU_MASK   GENMASK(12, 0)
 185#define MLXBF_I2C_COREPLL_CORE_OD_TYU_MASK  GENMASK(3, 0)
 186#define MLXBF_I2C_COREPLL_CORE_R_TYU_MASK   GENMASK(5, 0)
 187
 188#define MLXBF_I2C_COREPLL_CORE_F_TYU_SHIFT  3
 189#define MLXBF_I2C_COREPLL_CORE_OD_TYU_SHIFT 16
 190#define MLXBF_I2C_COREPLL_CORE_R_TYU_SHIFT  20
 191
 192/* Core PLL YU configuration. */
 193#define MLXBF_I2C_COREPLL_CORE_F_YU_MASK    GENMASK(25, 0)
 194#define MLXBF_I2C_COREPLL_CORE_OD_YU_MASK   GENMASK(3, 0)
 195#define MLXBF_I2C_COREPLL_CORE_R_YU_MASK    GENMASK(5, 0)
 196
 197#define MLXBF_I2C_COREPLL_CORE_F_YU_SHIFT   0
 198#define MLXBF_I2C_COREPLL_CORE_OD_YU_SHIFT  1
 199#define MLXBF_I2C_COREPLL_CORE_R_YU_SHIFT   26
 200
 201/* Core PLL frequency. */
 202static u64 mlxbf_i2c_corepll_frequency;
 203
 204/* SMBus Master GW. */
 205#define MLXBF_I2C_SMBUS_MASTER_GW     0x200
 206/* Number of bytes received and sent. */
 207#define MLXBF_I2C_SMBUS_RS_BYTES      0x300
 208/* Packet error check (PEC) value. */
 209#define MLXBF_I2C_SMBUS_MASTER_PEC    0x304
 210/* Status bits (ACK/NACK/FW Timeout). */
 211#define MLXBF_I2C_SMBUS_MASTER_STATUS 0x308
 212/* SMbus Master Finite State Machine. */
 213#define MLXBF_I2C_SMBUS_MASTER_FSM    0x310
 214
 215/*
 216 * When enabled, the master will issue a stop condition in case of
 217 * timeout while waiting for FW response.
 218 */
 219#define MLXBF_I2C_SMBUS_EN_FW_TIMEOUT 0x31c
 220
 221/* SMBus master GW control bits offset in MLXBF_I2C_SMBUS_MASTER_GW[31:3]. */
 222#define MLXBF_I2C_MASTER_LOCK_BIT         BIT(31) /* Lock bit. */
 223#define MLXBF_I2C_MASTER_BUSY_BIT         BIT(30) /* Busy bit. */
 224#define MLXBF_I2C_MASTER_START_BIT        BIT(29) /* Control start. */
 225#define MLXBF_I2C_MASTER_CTL_WRITE_BIT    BIT(28) /* Control write phase. */
 226#define MLXBF_I2C_MASTER_CTL_READ_BIT     BIT(19) /* Control read phase. */
 227#define MLXBF_I2C_MASTER_STOP_BIT         BIT(3)  /* Control stop. */
 228
 229#define MLXBF_I2C_MASTER_ENABLE \
 230        (MLXBF_I2C_MASTER_LOCK_BIT | MLXBF_I2C_MASTER_BUSY_BIT | \
 231         MLXBF_I2C_MASTER_START_BIT | MLXBF_I2C_MASTER_STOP_BIT)
 232
 233#define MLXBF_I2C_MASTER_ENABLE_WRITE \
 234        (MLXBF_I2C_MASTER_ENABLE | MLXBF_I2C_MASTER_CTL_WRITE_BIT)
 235
 236#define MLXBF_I2C_MASTER_ENABLE_READ \
 237        (MLXBF_I2C_MASTER_ENABLE | MLXBF_I2C_MASTER_CTL_READ_BIT)
 238
 239#define MLXBF_I2C_MASTER_SLV_ADDR_SHIFT   12 /* Slave address shift. */
 240#define MLXBF_I2C_MASTER_WRITE_SHIFT      21 /* Control write bytes shift. */
 241#define MLXBF_I2C_MASTER_SEND_PEC_SHIFT   20 /* Send PEC byte shift. */
 242#define MLXBF_I2C_MASTER_PARSE_EXP_SHIFT  11 /* Parse expected bytes shift. */
 243#define MLXBF_I2C_MASTER_READ_SHIFT       4  /* Control read bytes shift. */
 244
 245/* SMBus master GW Data descriptor. */
 246#define MLXBF_I2C_MASTER_DATA_DESC_ADDR   0x280
 247#define MLXBF_I2C_MASTER_DATA_DESC_SIZE   0x80 /* Size in bytes. */
 248
 249/* Maximum bytes to read/write per SMBus transaction. */
 250#define MLXBF_I2C_MASTER_DATA_R_LENGTH  MLXBF_I2C_MASTER_DATA_DESC_SIZE
 251#define MLXBF_I2C_MASTER_DATA_W_LENGTH (MLXBF_I2C_MASTER_DATA_DESC_SIZE - 1)
 252
 253/* All bytes were transmitted. */
 254#define MLXBF_I2C_SMBUS_STATUS_BYTE_CNT_DONE      BIT(0)
 255/* NACK received. */
 256#define MLXBF_I2C_SMBUS_STATUS_NACK_RCV           BIT(1)
 257/* Slave's byte count >128 bytes. */
 258#define MLXBF_I2C_SMBUS_STATUS_READ_ERR           BIT(2)
 259/* Timeout occurred. */
 260#define MLXBF_I2C_SMBUS_STATUS_FW_TIMEOUT         BIT(3)
 261
 262#define MLXBF_I2C_SMBUS_MASTER_STATUS_MASK        GENMASK(3, 0)
 263
 264#define MLXBF_I2C_SMBUS_MASTER_STATUS_ERROR \
 265        (MLXBF_I2C_SMBUS_STATUS_NACK_RCV | \
 266         MLXBF_I2C_SMBUS_STATUS_READ_ERR | \
 267         MLXBF_I2C_SMBUS_STATUS_FW_TIMEOUT)
 268
 269#define MLXBF_I2C_SMBUS_MASTER_FSM_STOP_MASK      BIT(31)
 270#define MLXBF_I2C_SMBUS_MASTER_FSM_PS_STATE_MASK  BIT(15)
 271
 272/* SMBus slave GW. */
 273#define MLXBF_I2C_SMBUS_SLAVE_GW              0x400
 274/* Number of bytes received and sent from/to master. */
 275#define MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES 0x500
 276/* Packet error check (PEC) value. */
 277#define MLXBF_I2C_SMBUS_SLAVE_PEC             0x504
 278/* SMBus slave Finite State Machine (FSM). */
 279#define MLXBF_I2C_SMBUS_SLAVE_FSM             0x510
 280/*
 281 * Should be set when all raised causes handled, and cleared by HW on
 282 * every new cause.
 283 */
 284#define MLXBF_I2C_SMBUS_SLAVE_READY           0x52c
 285
 286/* SMBus slave GW control bits offset in MLXBF_I2C_SMBUS_SLAVE_GW[31:19]. */
 287#define MLXBF_I2C_SLAVE_BUSY_BIT         BIT(30) /* Busy bit. */
 288#define MLXBF_I2C_SLAVE_WRITE_BIT        BIT(29) /* Control write enable. */
 289
 290#define MLXBF_I2C_SLAVE_ENABLE \
 291        (MLXBF_I2C_SLAVE_BUSY_BIT | MLXBF_I2C_SLAVE_WRITE_BIT)
 292
 293#define MLXBF_I2C_SLAVE_WRITE_BYTES_SHIFT 22 /* Number of bytes to write. */
 294#define MLXBF_I2C_SLAVE_SEND_PEC_SHIFT    21 /* Send PEC byte shift. */
 295
 296/* SMBus slave GW Data descriptor. */
 297#define MLXBF_I2C_SLAVE_DATA_DESC_ADDR   0x480
 298#define MLXBF_I2C_SLAVE_DATA_DESC_SIZE   0x80 /* Size in bytes. */
 299
 300/* SMbus slave configuration registers. */
 301#define MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG        0x514
 302#define MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT        16
 303#define MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT     7
 304#define MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK       GENMASK(6, 0)
 305
 306#define MLXBF_I2C_SLAVE_ADDR_ENABLED(addr) \
 307        ((addr) & (1 << MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT))
 308
 309/*
 310 * Timeout is given in microsends. Note also that timeout handling is not
 311 * exact.
 312 */
 313#define MLXBF_I2C_SMBUS_TIMEOUT   (300 * 1000) /* 300ms */
 314
 315/* Encapsulates timing parameters. */
 316struct mlxbf_i2c_timings {
 317        u16 scl_high;           /* Clock high period. */
 318        u16 scl_low;            /* Clock low period. */
 319        u8 sda_rise;            /* Data rise time. */
 320        u8 sda_fall;            /* Data fall time. */
 321        u8 scl_rise;            /* Clock rise time. */
 322        u8 scl_fall;            /* Clock fall time. */
 323        u16 hold_start;         /* Hold time after (REPEATED) START. */
 324        u16 hold_data;          /* Data hold time. */
 325        u16 setup_start;        /* REPEATED START condition setup time. */
 326        u16 setup_stop;         /* STOP condition setup time. */
 327        u16 setup_data;         /* Data setup time. */
 328        u16 pad;                /* Padding. */
 329        u16 buf;                /* Bus free time between STOP and START. */
 330        u16 thigh_max;          /* Thigh max. */
 331        u32 timeout;            /* Detect clock low timeout. */
 332};
 333
 334enum {
 335        MLXBF_I2C_F_READ = BIT(0),
 336        MLXBF_I2C_F_WRITE = BIT(1),
 337        MLXBF_I2C_F_NORESTART = BIT(3),
 338        MLXBF_I2C_F_SMBUS_OPERATION = BIT(4),
 339        MLXBF_I2C_F_SMBUS_BLOCK = BIT(5),
 340        MLXBF_I2C_F_SMBUS_PEC = BIT(6),
 341        MLXBF_I2C_F_SMBUS_PROCESS_CALL = BIT(7),
 342};
 343
 344struct mlxbf_i2c_smbus_operation {
 345        u32 flags;
 346        u32 length; /* Buffer length in bytes. */
 347        u8 *buffer;
 348};
 349
 350#define MLXBF_I2C_SMBUS_OP_CNT_1        1
 351#define MLXBF_I2C_SMBUS_OP_CNT_2        2
 352#define MLXBF_I2C_SMBUS_OP_CNT_3        3
 353#define MLXBF_I2C_SMBUS_MAX_OP_CNT      MLXBF_I2C_SMBUS_OP_CNT_3
 354
 355struct mlxbf_i2c_smbus_request {
 356        u8 slave;
 357        u8 operation_cnt;
 358        struct mlxbf_i2c_smbus_operation operation[MLXBF_I2C_SMBUS_MAX_OP_CNT];
 359};
 360
 361struct mlxbf_i2c_resource {
 362        void __iomem *io;
 363        struct resource *params;
 364        struct mutex *lock; /* Mutex to protect mlxbf_i2c_resource. */
 365        u8 type;
 366};
 367
 368/* List of chip resources that are being accessed by the driver. */
 369enum {
 370        MLXBF_I2C_SMBUS_RES,
 371        MLXBF_I2C_MST_CAUSE_RES,
 372        MLXBF_I2C_SLV_CAUSE_RES,
 373        MLXBF_I2C_COALESCE_RES,
 374        MLXBF_I2C_COREPLL_RES,
 375        MLXBF_I2C_GPIO_RES,
 376        MLXBF_I2C_END_RES,
 377};
 378
 379/* Helper macro to define an I2C resource parameters. */
 380#define MLXBF_I2C_RES_PARAMS(addr, size, str) \
 381        { \
 382                .start = (addr), \
 383                .end = (addr) + (size) - 1, \
 384                .name = (str) \
 385        }
 386
 387static struct resource mlxbf_i2c_coalesce_tyu_params =
 388                MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COALESCE_TYU_ADDR,
 389                                     MLXBF_I2C_COALESCE_TYU_SIZE,
 390                                     "COALESCE_MEM");
 391static struct resource mlxbf_i2c_corepll_tyu_params =
 392                MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_TYU_ADDR,
 393                                     MLXBF_I2C_COREPLL_TYU_SIZE,
 394                                     "COREPLL_MEM");
 395static struct resource mlxbf_i2c_corepll_yu_params =
 396                MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_YU_ADDR,
 397                                     MLXBF_I2C_COREPLL_YU_SIZE,
 398                                     "COREPLL_MEM");
 399static struct resource mlxbf_i2c_gpio_tyu_params =
 400                MLXBF_I2C_RES_PARAMS(MLXBF_I2C_GPIO_TYU_ADDR,
 401                                     MLXBF_I2C_GPIO_TYU_SIZE,
 402                                     "GPIO_MEM");
 403
 404static struct mutex mlxbf_i2c_coalesce_lock;
 405static struct mutex mlxbf_i2c_corepll_lock;
 406static struct mutex mlxbf_i2c_gpio_lock;
 407
 408/* Mellanox BlueField chip type. */
 409enum mlxbf_i2c_chip_type {
 410        MLXBF_I2C_CHIP_TYPE_1, /* Mellanox BlueField-1 chip. */
 411        MLXBF_I2C_CHIP_TYPE_2, /* Mallanox BlueField-2 chip. */
 412};
 413
 414struct mlxbf_i2c_chip_info {
 415        enum mlxbf_i2c_chip_type type;
 416        /* Chip shared resources that are being used by the I2C controller. */
 417        struct mlxbf_i2c_resource *shared_res[MLXBF_I2C_SHARED_RES_MAX];
 418
 419        /* Callback to calculate the core PLL frequency. */
 420        u64 (*calculate_freq)(struct mlxbf_i2c_resource *corepll_res);
 421};
 422
 423struct mlxbf_i2c_priv {
 424        const struct mlxbf_i2c_chip_info *chip;
 425        struct i2c_adapter adap;
 426        struct mlxbf_i2c_resource *smbus;
 427        struct mlxbf_i2c_resource *mst_cause;
 428        struct mlxbf_i2c_resource *slv_cause;
 429        struct mlxbf_i2c_resource *coalesce;
 430        u64 frequency; /* Core frequency in Hz. */
 431        int bus; /* Physical bus identifier. */
 432        int irq;
 433        struct i2c_client *slave;
 434};
 435
 436static struct mlxbf_i2c_resource mlxbf_i2c_coalesce_res[] = {
 437        [MLXBF_I2C_CHIP_TYPE_1] = {
 438                .params = &mlxbf_i2c_coalesce_tyu_params,
 439                .lock = &mlxbf_i2c_coalesce_lock,
 440                .type = MLXBF_I2C_COALESCE_RES
 441        },
 442        {}
 443};
 444
 445static struct mlxbf_i2c_resource mlxbf_i2c_corepll_res[] = {
 446        [MLXBF_I2C_CHIP_TYPE_1] = {
 447                .params = &mlxbf_i2c_corepll_tyu_params,
 448                .lock = &mlxbf_i2c_corepll_lock,
 449                .type = MLXBF_I2C_COREPLL_RES
 450        },
 451        [MLXBF_I2C_CHIP_TYPE_2] = {
 452                .params = &mlxbf_i2c_corepll_yu_params,
 453                .lock = &mlxbf_i2c_corepll_lock,
 454                .type = MLXBF_I2C_COREPLL_RES,
 455        }
 456};
 457
 458static struct mlxbf_i2c_resource mlxbf_i2c_gpio_res[] = {
 459        [MLXBF_I2C_CHIP_TYPE_1] = {
 460                .params = &mlxbf_i2c_gpio_tyu_params,
 461                .lock = &mlxbf_i2c_gpio_lock,
 462                .type = MLXBF_I2C_GPIO_RES
 463        },
 464        {}
 465};
 466
 467static u8 mlxbf_i2c_bus_count;
 468
 469static struct mutex mlxbf_i2c_bus_lock;
 470
 471/* Polling frequency in microseconds. */
 472#define MLXBF_I2C_POLL_FREQ_IN_USEC        200
 473
 474#define MLXBF_I2C_SHIFT_0   0
 475#define MLXBF_I2C_SHIFT_8   8
 476#define MLXBF_I2C_SHIFT_16  16
 477#define MLXBF_I2C_SHIFT_24  24
 478
 479#define MLXBF_I2C_MASK_8    GENMASK(7, 0)
 480#define MLXBF_I2C_MASK_16   GENMASK(15, 0)
 481
 482#define MLXBF_I2C_FREQUENCY_1GHZ  1000000000
 483
 484/*
 485 * Function to poll a set of bits at a specific address; it checks whether
 486 * the bits are equal to zero when eq_zero is set to 'true', and not equal
 487 * to zero when eq_zero is set to 'false'.
 488 * Note that the timeout is given in microseconds.
 489 */
 490static u32 mlxbf_smbus_poll(void __iomem *io, u32 addr, u32 mask,
 491                            bool eq_zero, u32  timeout)
 492{
 493        u32 bits;
 494
 495        timeout = (timeout / MLXBF_I2C_POLL_FREQ_IN_USEC) + 1;
 496
 497        do {
 498                bits = readl(io + addr) & mask;
 499                if (eq_zero ? bits == 0 : bits != 0)
 500                        return eq_zero ? 1 : bits;
 501                udelay(MLXBF_I2C_POLL_FREQ_IN_USEC);
 502        } while (timeout-- != 0);
 503
 504        return 0;
 505}
 506
 507/*
 508 * SW must make sure that the SMBus Master GW is idle before starting
 509 * a transaction. Accordingly, this function polls the Master FSM stop
 510 * bit; it returns false when the bit is asserted, true if not.
 511 */
 512static bool mlxbf_smbus_master_wait_for_idle(struct mlxbf_i2c_priv *priv)
 513{
 514        u32 mask = MLXBF_I2C_SMBUS_MASTER_FSM_STOP_MASK;
 515        u32 addr = MLXBF_I2C_SMBUS_MASTER_FSM;
 516        u32 timeout = MLXBF_I2C_SMBUS_TIMEOUT;
 517
 518        if (mlxbf_smbus_poll(priv->smbus->io, addr, mask, true, timeout))
 519                return true;
 520
 521        return false;
 522}
 523
 524static bool mlxbf_i2c_smbus_transaction_success(u32 master_status,
 525                                                u32 cause_status)
 526{
 527        /*
 528         * When transaction ended with STOP, all bytes were transmitted,
 529         * and no NACK received, then the transaction ended successfully.
 530         * On the other hand, when the GW is configured with the stop bit
 531         * de-asserted then the SMBus expects the following GW configuration
 532         * for transfer continuation.
 533         */
 534        if ((cause_status & MLXBF_I2C_CAUSE_WAIT_FOR_FW_DATA) ||
 535            ((cause_status & MLXBF_I2C_CAUSE_TRANSACTION_ENDED) &&
 536             (master_status & MLXBF_I2C_SMBUS_STATUS_BYTE_CNT_DONE) &&
 537             !(master_status & MLXBF_I2C_SMBUS_STATUS_NACK_RCV)))
 538                return true;
 539
 540        return false;
 541}
 542
 543/*
 544 * Poll SMBus master status and return transaction status,
 545 * i.e. whether succeeded or failed. I2C and SMBus fault codes
 546 * are returned as negative numbers from most calls, with zero
 547 * or some positive number indicating a non-fault return.
 548 */
 549static int mlxbf_i2c_smbus_check_status(struct mlxbf_i2c_priv *priv)
 550{
 551        u32 master_status_bits;
 552        u32 cause_status_bits;
 553
 554        /*
 555         * GW busy bit is raised by the driver and cleared by the HW
 556         * when the transaction is completed. The busy bit is a good
 557         * indicator of transaction status. So poll the busy bit, and
 558         * then read the cause and master status bits to determine if
 559         * errors occurred during the transaction.
 560         */
 561        mlxbf_smbus_poll(priv->smbus->io, MLXBF_I2C_SMBUS_MASTER_GW,
 562                         MLXBF_I2C_MASTER_BUSY_BIT, true,
 563                         MLXBF_I2C_SMBUS_TIMEOUT);
 564
 565        /* Read cause status bits. */
 566        cause_status_bits = readl(priv->mst_cause->io +
 567                                        MLXBF_I2C_CAUSE_ARBITER);
 568        cause_status_bits &= MLXBF_I2C_CAUSE_MASTER_ARBITER_BITS_MASK;
 569
 570        /*
 571         * Parse both Cause and Master GW bits, then return transaction status.
 572         */
 573
 574        master_status_bits = readl(priv->smbus->io +
 575                                        MLXBF_I2C_SMBUS_MASTER_STATUS);
 576        master_status_bits &= MLXBF_I2C_SMBUS_MASTER_STATUS_MASK;
 577
 578        if (mlxbf_i2c_smbus_transaction_success(master_status_bits,
 579                                                cause_status_bits))
 580                return 0;
 581
 582        /*
 583         * In case of timeout on GW busy, the ISR will clear busy bit but
 584         * transaction ended bits cause will not be set so the transaction
 585         * fails. Then, we must check Master GW status bits.
 586         */
 587        if ((master_status_bits & MLXBF_I2C_SMBUS_MASTER_STATUS_ERROR) &&
 588            (cause_status_bits & (MLXBF_I2C_CAUSE_TRANSACTION_ENDED |
 589                                  MLXBF_I2C_CAUSE_M_GW_BUSY_FALL)))
 590                return -EIO;
 591
 592        if (cause_status_bits & MLXBF_I2C_CAUSE_MASTER_STATUS_ERROR)
 593                return -EAGAIN;
 594
 595        return -ETIMEDOUT;
 596}
 597
 598static void mlxbf_i2c_smbus_write_data(struct mlxbf_i2c_priv *priv,
 599                                       const u8 *data, u8 length, u32 addr)
 600{
 601        u8 offset, aligned_length;
 602        u32 data32;
 603
 604        aligned_length = round_up(length, 4);
 605
 606        /*
 607         * Copy data bytes from 4-byte aligned source buffer.
 608         * Data copied to the Master GW Data Descriptor MUST be shifted
 609         * left so the data starts at the MSB of the descriptor registers
 610         * as required by the underlying hardware. Enable byte swapping
 611         * when writing data bytes to the 32 * 32-bit HW Data registers
 612         * a.k.a Master GW Data Descriptor.
 613         */
 614        for (offset = 0; offset < aligned_length; offset += sizeof(u32)) {
 615                data32 = *((u32 *)(data + offset));
 616                iowrite32be(data32, priv->smbus->io + addr + offset);
 617        }
 618}
 619
 620static void mlxbf_i2c_smbus_read_data(struct mlxbf_i2c_priv *priv,
 621                                      u8 *data, u8 length, u32 addr)
 622{
 623        u32 data32, mask;
 624        u8 byte, offset;
 625
 626        mask = sizeof(u32) - 1;
 627
 628        /*
 629         * Data bytes in the Master GW Data Descriptor are shifted left
 630         * so the data starts at the MSB of the descriptor registers as
 631         * set by the underlying hardware. Enable byte swapping while
 632         * reading data bytes from the 32 * 32-bit HW Data registers
 633         * a.k.a Master GW Data Descriptor.
 634         */
 635
 636        for (offset = 0; offset < (length & ~mask); offset += sizeof(u32)) {
 637                data32 = ioread32be(priv->smbus->io + addr + offset);
 638                *((u32 *)(data + offset)) = data32;
 639        }
 640
 641        if (!(length & mask))
 642                return;
 643
 644        data32 = ioread32be(priv->smbus->io + addr + offset);
 645
 646        for (byte = 0; byte < (length & mask); byte++) {
 647                data[offset + byte] = data32 & GENMASK(7, 0);
 648                data32 = ror32(data32, MLXBF_I2C_SHIFT_8);
 649        }
 650}
 651
 652static int mlxbf_i2c_smbus_enable(struct mlxbf_i2c_priv *priv, u8 slave,
 653                                  u8 len, u8 block_en, u8 pec_en, bool read)
 654{
 655        u32 command;
 656
 657        /* Set Master GW control word. */
 658        if (read) {
 659                command = MLXBF_I2C_MASTER_ENABLE_READ;
 660                command |= rol32(len, MLXBF_I2C_MASTER_READ_SHIFT);
 661        } else {
 662                command = MLXBF_I2C_MASTER_ENABLE_WRITE;
 663                command |= rol32(len, MLXBF_I2C_MASTER_WRITE_SHIFT);
 664        }
 665        command |= rol32(slave, MLXBF_I2C_MASTER_SLV_ADDR_SHIFT);
 666        command |= rol32(block_en, MLXBF_I2C_MASTER_PARSE_EXP_SHIFT);
 667        command |= rol32(pec_en, MLXBF_I2C_MASTER_SEND_PEC_SHIFT);
 668
 669        /* Clear status bits. */
 670        writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_STATUS);
 671        /* Set the cause data. */
 672        writel(~0x0, priv->smbus->io + MLXBF_I2C_CAUSE_OR_CLEAR);
 673        /* Zero PEC byte. */
 674        writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_PEC);
 675        /* Zero byte count. */
 676        writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_RS_BYTES);
 677
 678        /* GW activation. */
 679        writel(command, priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_GW);
 680
 681        /*
 682         * Poll master status and check status bits. An ACK is sent when
 683         * completing writing data to the bus (Master 'byte_count_done' bit
 684         * is set to 1).
 685         */
 686        return mlxbf_i2c_smbus_check_status(priv);
 687}
 688
 689static int
 690mlxbf_i2c_smbus_start_transaction(struct mlxbf_i2c_priv *priv,
 691                                  struct mlxbf_i2c_smbus_request *request)
 692{
 693        u8 data_desc[MLXBF_I2C_MASTER_DATA_DESC_SIZE] = { 0 };
 694        u8 op_idx, data_idx, data_len, write_len, read_len;
 695        struct mlxbf_i2c_smbus_operation *operation;
 696        u8 read_en, write_en, block_en, pec_en;
 697        u8 slave, flags, addr;
 698        u8 *read_buf;
 699        int ret = 0;
 700
 701        if (request->operation_cnt > MLXBF_I2C_SMBUS_MAX_OP_CNT)
 702                return -EINVAL;
 703
 704        read_buf = NULL;
 705        data_idx = 0;
 706        read_en = 0;
 707        write_en = 0;
 708        write_len = 0;
 709        read_len = 0;
 710        block_en = 0;
 711        pec_en = 0;
 712        slave = request->slave & GENMASK(6, 0);
 713        addr = slave << 1;
 714
 715        /* First of all, check whether the HW is idle. */
 716        if (WARN_ON(!mlxbf_smbus_master_wait_for_idle(priv)))
 717                return -EBUSY;
 718
 719        /* Set first byte. */
 720        data_desc[data_idx++] = addr;
 721
 722        for (op_idx = 0; op_idx < request->operation_cnt; op_idx++) {
 723                operation = &request->operation[op_idx];
 724                flags = operation->flags;
 725
 726                /*
 727                 * Note that read and write operations might be handled by a
 728                 * single command. If the MLXBF_I2C_F_SMBUS_OPERATION is set
 729                 * then write command byte and set the optional SMBus specific
 730                 * bits such as block_en and pec_en. These bits MUST be
 731                 * submitted by the first operation only.
 732                 */
 733                if (op_idx == 0 && flags & MLXBF_I2C_F_SMBUS_OPERATION) {
 734                        block_en = flags & MLXBF_I2C_F_SMBUS_BLOCK;
 735                        pec_en = flags & MLXBF_I2C_F_SMBUS_PEC;
 736                }
 737
 738                if (flags & MLXBF_I2C_F_WRITE) {
 739                        write_en = 1;
 740                        write_len += operation->length;
 741                        memcpy(data_desc + data_idx,
 742                               operation->buffer, operation->length);
 743                        data_idx += operation->length;
 744                }
 745                /*
 746                 * We assume that read operations are performed only once per
 747                 * SMBus transaction. *TBD* protect this statement so it won't
 748                 * be executed twice? or return an error if we try to read more
 749                 * than once?
 750                 */
 751                if (flags & MLXBF_I2C_F_READ) {
 752                        read_en = 1;
 753                        /* Subtract 1 as required by HW. */
 754                        read_len = operation->length - 1;
 755                        read_buf = operation->buffer;
 756                }
 757        }
 758
 759        /* Set Master GW data descriptor. */
 760        data_len = write_len + 1; /* Add one byte of the slave address. */
 761        /*
 762         * Note that data_len cannot be 0. Indeed, the slave address byte
 763         * must be written to the data registers.
 764         */
 765        mlxbf_i2c_smbus_write_data(priv, (const u8 *)data_desc, data_len,
 766                                   MLXBF_I2C_MASTER_DATA_DESC_ADDR);
 767
 768        if (write_en) {
 769                ret = mlxbf_i2c_smbus_enable(priv, slave, write_len, block_en,
 770                                         pec_en, 0);
 771                if (ret)
 772                        return ret;
 773        }
 774
 775        if (read_en) {
 776                /* Write slave address to Master GW data descriptor. */
 777                mlxbf_i2c_smbus_write_data(priv, (const u8 *)&addr, 1,
 778                                           MLXBF_I2C_MASTER_DATA_DESC_ADDR);
 779                ret = mlxbf_i2c_smbus_enable(priv, slave, read_len, block_en,
 780                                         pec_en, 1);
 781                if (!ret) {
 782                        /* Get Master GW data descriptor. */
 783                        mlxbf_i2c_smbus_read_data(priv, data_desc, read_len + 1,
 784                                             MLXBF_I2C_MASTER_DATA_DESC_ADDR);
 785
 786                        /* Get data from Master GW data descriptor. */
 787                        memcpy(read_buf, data_desc, read_len + 1);
 788                }
 789
 790                /*
 791                 * After a read operation the SMBus FSM ps (present state)
 792                 * needs to be 'manually' reset. This should be removed in
 793                 * next tag integration.
 794                 */
 795                writel(MLXBF_I2C_SMBUS_MASTER_FSM_PS_STATE_MASK,
 796                        priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_FSM);
 797        }
 798
 799        return ret;
 800}
 801
 802/* I2C SMBus protocols. */
 803
 804static void
 805mlxbf_i2c_smbus_quick_command(struct mlxbf_i2c_smbus_request *request,
 806                              u8 read)
 807{
 808        request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_1;
 809
 810        request->operation[0].length = 0;
 811        request->operation[0].flags = MLXBF_I2C_F_WRITE;
 812        request->operation[0].flags |= read ? MLXBF_I2C_F_READ : 0;
 813}
 814
 815static void mlxbf_i2c_smbus_byte_func(struct mlxbf_i2c_smbus_request *request,
 816                                      u8 *data, bool read, bool pec_check)
 817{
 818        request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_1;
 819
 820        request->operation[0].length = 1;
 821        request->operation[0].length += pec_check;
 822
 823        request->operation[0].flags = MLXBF_I2C_F_SMBUS_OPERATION;
 824        request->operation[0].flags |= read ?
 825                                MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
 826        request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
 827
 828        request->operation[0].buffer = data;
 829}
 830
 831static void
 832mlxbf_i2c_smbus_data_byte_func(struct mlxbf_i2c_smbus_request *request,
 833                               u8 *command, u8 *data, bool read, bool pec_check)
 834{
 835        request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
 836
 837        request->operation[0].length = 1;
 838        request->operation[0].flags =
 839                        MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
 840        request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
 841        request->operation[0].buffer = command;
 842
 843        request->operation[1].length = 1;
 844        request->operation[1].length += pec_check;
 845        request->operation[1].flags = read ?
 846                                MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
 847        request->operation[1].buffer = data;
 848}
 849
 850static void
 851mlxbf_i2c_smbus_data_word_func(struct mlxbf_i2c_smbus_request *request,
 852                               u8 *command, u8 *data, bool read, bool pec_check)
 853{
 854        request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
 855
 856        request->operation[0].length = 1;
 857        request->operation[0].flags =
 858                        MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
 859        request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
 860        request->operation[0].buffer = command;
 861
 862        request->operation[1].length = 2;
 863        request->operation[1].length += pec_check;
 864        request->operation[1].flags = read ?
 865                                MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
 866        request->operation[1].buffer = data;
 867}
 868
 869static void
 870mlxbf_i2c_smbus_i2c_block_func(struct mlxbf_i2c_smbus_request *request,
 871                               u8 *command, u8 *data, u8 *data_len, bool read,
 872                               bool pec_check)
 873{
 874        request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
 875
 876        request->operation[0].length = 1;
 877        request->operation[0].flags =
 878                        MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
 879        request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
 880        request->operation[0].buffer = command;
 881
 882        /*
 883         * As specified in the standard, the max number of bytes to read/write
 884         * per block operation is 32 bytes. In Golan code, the controller can
 885         * read up to 128 bytes and write up to 127 bytes.
 886         */
 887        request->operation[1].length =
 888            (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
 889            I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
 890        request->operation[1].flags = read ?
 891                                MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
 892        /*
 893         * Skip the first data byte, which corresponds to the number of bytes
 894         * to read/write.
 895         */
 896        request->operation[1].buffer = data + 1;
 897
 898        *data_len = request->operation[1].length;
 899
 900        /* Set the number of byte to read. This will be used by userspace. */
 901        if (read)
 902                data[0] = *data_len;
 903}
 904
 905static void mlxbf_i2c_smbus_block_func(struct mlxbf_i2c_smbus_request *request,
 906                                       u8 *command, u8 *data, u8 *data_len,
 907                                       bool read, bool pec_check)
 908{
 909        request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
 910
 911        request->operation[0].length = 1;
 912        request->operation[0].flags =
 913                        MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
 914        request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
 915        request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
 916        request->operation[0].buffer = command;
 917
 918        request->operation[1].length =
 919            (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
 920            I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
 921        request->operation[1].flags = read ?
 922                                MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
 923        request->operation[1].buffer = data + 1;
 924
 925        *data_len = request->operation[1].length;
 926
 927        /* Set the number of bytes to read. This will be used by userspace. */
 928        if (read)
 929                data[0] = *data_len;
 930}
 931
 932static void
 933mlxbf_i2c_smbus_process_call_func(struct mlxbf_i2c_smbus_request *request,
 934                                  u8 *command, u8 *data, bool pec_check)
 935{
 936        request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_3;
 937
 938        request->operation[0].length = 1;
 939        request->operation[0].flags =
 940                        MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
 941        request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
 942        request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
 943        request->operation[0].buffer = command;
 944
 945        request->operation[1].length = 2;
 946        request->operation[1].flags = MLXBF_I2C_F_WRITE;
 947        request->operation[1].buffer = data;
 948
 949        request->operation[2].length = 3;
 950        request->operation[2].flags = MLXBF_I2C_F_READ;
 951        request->operation[2].buffer = data;
 952}
 953
 954static void
 955mlxbf_i2c_smbus_blk_process_call_func(struct mlxbf_i2c_smbus_request *request,
 956                                      u8 *command, u8 *data, u8 *data_len,
 957                                      bool pec_check)
 958{
 959        u32 length;
 960
 961        request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_3;
 962
 963        request->operation[0].length = 1;
 964        request->operation[0].flags =
 965                        MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
 966        request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
 967        request->operation[0].flags |= (pec_check) ? MLXBF_I2C_F_SMBUS_PEC : 0;
 968        request->operation[0].buffer = command;
 969
 970        length = (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
 971            I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
 972
 973        request->operation[1].length = length - pec_check;
 974        request->operation[1].flags = MLXBF_I2C_F_WRITE;
 975        request->operation[1].buffer = data;
 976
 977        request->operation[2].length = length;
 978        request->operation[2].flags = MLXBF_I2C_F_READ;
 979        request->operation[2].buffer = data;
 980
 981        *data_len = length; /* including PEC byte. */
 982}
 983
 984/* Initialization functions. */
 985
 986static bool mlxbf_i2c_has_chip_type(struct mlxbf_i2c_priv *priv, u8 type)
 987{
 988        return priv->chip->type == type;
 989}
 990
 991static struct mlxbf_i2c_resource *
 992mlxbf_i2c_get_shared_resource(struct mlxbf_i2c_priv *priv, u8 type)
 993{
 994        const struct mlxbf_i2c_chip_info *chip = priv->chip;
 995        struct mlxbf_i2c_resource *res;
 996        u8 res_idx = 0;
 997
 998        for (res_idx = 0; res_idx < MLXBF_I2C_SHARED_RES_MAX; res_idx++) {
 999                res = chip->shared_res[res_idx];
1000                if (res && res->type == type)
1001                        return res;
1002        }
1003
1004        return NULL;
1005}
1006
1007static int mlxbf_i2c_init_resource(struct platform_device *pdev,
1008                                   struct mlxbf_i2c_resource **res,
1009                                   u8 type)
1010{
1011        struct mlxbf_i2c_resource *tmp_res;
1012        struct device *dev = &pdev->dev;
1013
1014        if (!res || *res || type >= MLXBF_I2C_END_RES)
1015                return -EINVAL;
1016
1017        tmp_res = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_resource),
1018                               GFP_KERNEL);
1019        if (!tmp_res)
1020                return -ENOMEM;
1021
1022        tmp_res->params = platform_get_resource(pdev, IORESOURCE_MEM, type);
1023        if (!tmp_res->params) {
1024                devm_kfree(dev, tmp_res);
1025                return -EIO;
1026        }
1027
1028        tmp_res->io = devm_ioremap_resource(dev, tmp_res->params);
1029        if (IS_ERR(tmp_res->io)) {
1030                devm_kfree(dev, tmp_res);
1031                return PTR_ERR(tmp_res->io);
1032        }
1033
1034        tmp_res->type = type;
1035
1036        *res = tmp_res;
1037
1038        return 0;
1039}
1040
1041static u32 mlxbf_i2c_get_ticks(struct mlxbf_i2c_priv *priv, u64 nanoseconds,
1042                               bool minimum)
1043{
1044        u64 frequency;
1045        u32 ticks;
1046
1047        /*
1048         * Compute ticks as follow:
1049         *
1050         *           Ticks
1051         * Time = --------- x 10^9    =>    Ticks = Time x Frequency x 10^-9
1052         *         Frequency
1053         */
1054        frequency = priv->frequency;
1055        ticks = (nanoseconds * frequency) / MLXBF_I2C_FREQUENCY_1GHZ;
1056        /*
1057         * The number of ticks is rounded down and if minimum is equal to 1
1058         * then add one tick.
1059         */
1060        if (minimum)
1061                ticks++;
1062
1063        return ticks;
1064}
1065
1066static u32 mlxbf_i2c_set_timer(struct mlxbf_i2c_priv *priv, u64 nsec, bool opt,
1067                               u32 mask, u8 shift)
1068{
1069        u32 val = (mlxbf_i2c_get_ticks(priv, nsec, opt) & mask) << shift;
1070
1071        return val;
1072}
1073
1074static void mlxbf_i2c_set_timings(struct mlxbf_i2c_priv *priv,
1075                                  const struct mlxbf_i2c_timings *timings)
1076{
1077        u32 timer;
1078
1079        timer = mlxbf_i2c_set_timer(priv, timings->scl_high,
1080                                    false, MLXBF_I2C_MASK_16,
1081                                    MLXBF_I2C_SHIFT_0);
1082        timer |= mlxbf_i2c_set_timer(priv, timings->scl_low,
1083                                     false, MLXBF_I2C_MASK_16,
1084                                     MLXBF_I2C_SHIFT_16);
1085        writel(timer, priv->smbus->io +
1086                MLXBF_I2C_SMBUS_TIMER_SCL_LOW_SCL_HIGH);
1087
1088        timer = mlxbf_i2c_set_timer(priv, timings->sda_rise, false,
1089                                    MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_0);
1090        timer |= mlxbf_i2c_set_timer(priv, timings->sda_fall, false,
1091                                     MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_8);
1092        timer |= mlxbf_i2c_set_timer(priv, timings->scl_rise, false,
1093                                     MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_16);
1094        timer |= mlxbf_i2c_set_timer(priv, timings->scl_fall, false,
1095                                     MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_24);
1096        writel(timer, priv->smbus->io +
1097                MLXBF_I2C_SMBUS_TIMER_FALL_RISE_SPIKE);
1098
1099        timer = mlxbf_i2c_set_timer(priv, timings->hold_start, true,
1100                                    MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1101        timer |= mlxbf_i2c_set_timer(priv, timings->hold_data, true,
1102                                     MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1103        writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_TIMER_THOLD);
1104
1105        timer = mlxbf_i2c_set_timer(priv, timings->setup_start, true,
1106                                    MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1107        timer |= mlxbf_i2c_set_timer(priv, timings->setup_stop, true,
1108                                     MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1109        writel(timer, priv->smbus->io +
1110                MLXBF_I2C_SMBUS_TIMER_TSETUP_START_STOP);
1111
1112        timer = mlxbf_i2c_set_timer(priv, timings->setup_data, true,
1113                                    MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1114        writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_TIMER_TSETUP_DATA);
1115
1116        timer = mlxbf_i2c_set_timer(priv, timings->buf, false,
1117                                    MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1118        timer |= mlxbf_i2c_set_timer(priv, timings->thigh_max, false,
1119                                     MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1120        writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_THIGH_MAX_TBUF);
1121
1122        timer = timings->timeout;
1123        writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_SCL_LOW_TIMEOUT);
1124}
1125
1126enum mlxbf_i2c_timings_config {
1127        MLXBF_I2C_TIMING_CONFIG_100KHZ,
1128        MLXBF_I2C_TIMING_CONFIG_400KHZ,
1129        MLXBF_I2C_TIMING_CONFIG_1000KHZ,
1130};
1131
1132/*
1133 * Note that the mlxbf_i2c_timings->timeout value is not related to the
1134 * bus frequency, it is impacted by the time it takes the driver to
1135 * complete data transmission before transaction abort.
1136 */
1137static const struct mlxbf_i2c_timings mlxbf_i2c_timings[] = {
1138        [MLXBF_I2C_TIMING_CONFIG_100KHZ] = {
1139                .scl_high = 4810,
1140                .scl_low = 5000,
1141                .hold_start = 4000,
1142                .setup_start = 4800,
1143                .setup_stop = 4000,
1144                .setup_data = 250,
1145                .sda_rise = 50,
1146                .sda_fall = 50,
1147                .scl_rise = 50,
1148                .scl_fall = 50,
1149                .hold_data = 300,
1150                .buf = 20000,
1151                .thigh_max = 5000,
1152                .timeout = 106500
1153        },
1154        [MLXBF_I2C_TIMING_CONFIG_400KHZ] = {
1155                .scl_high = 1011,
1156                .scl_low = 1300,
1157                .hold_start = 600,
1158                .setup_start = 700,
1159                .setup_stop = 600,
1160                .setup_data = 100,
1161                .sda_rise = 50,
1162                .sda_fall = 50,
1163                .scl_rise = 50,
1164                .scl_fall = 50,
1165                .hold_data = 300,
1166                .buf = 20000,
1167                .thigh_max = 5000,
1168                .timeout = 106500
1169        },
1170        [MLXBF_I2C_TIMING_CONFIG_1000KHZ] = {
1171                .scl_high = 600,
1172                .scl_low = 1300,
1173                .hold_start = 600,
1174                .setup_start = 600,
1175                .setup_stop = 600,
1176                .setup_data = 100,
1177                .sda_rise = 50,
1178                .sda_fall = 50,
1179                .scl_rise = 50,
1180                .scl_fall = 50,
1181                .hold_data = 300,
1182                .buf = 20000,
1183                .thigh_max = 5000,
1184                .timeout = 106500
1185        }
1186};
1187
1188static int mlxbf_i2c_init_timings(struct platform_device *pdev,
1189                                  struct mlxbf_i2c_priv *priv)
1190{
1191        enum mlxbf_i2c_timings_config config_idx;
1192        struct device *dev = &pdev->dev;
1193        u32 config_khz;
1194
1195        int ret;
1196
1197        ret = device_property_read_u32(dev, "clock-frequency", &config_khz);
1198        if (ret < 0)
1199                config_khz = I2C_MAX_STANDARD_MODE_FREQ;
1200
1201        switch (config_khz) {
1202        default:
1203                /* Default settings is 100 KHz. */
1204                pr_warn("Illegal value %d: defaulting to 100 KHz\n",
1205                        config_khz);
1206                fallthrough;
1207        case I2C_MAX_STANDARD_MODE_FREQ:
1208                config_idx = MLXBF_I2C_TIMING_CONFIG_100KHZ;
1209                break;
1210
1211        case I2C_MAX_FAST_MODE_FREQ:
1212                config_idx = MLXBF_I2C_TIMING_CONFIG_400KHZ;
1213                break;
1214
1215        case I2C_MAX_FAST_MODE_PLUS_FREQ:
1216                config_idx = MLXBF_I2C_TIMING_CONFIG_1000KHZ;
1217                break;
1218        }
1219
1220        mlxbf_i2c_set_timings(priv, &mlxbf_i2c_timings[config_idx]);
1221
1222        return 0;
1223}
1224
1225static int mlxbf_i2c_get_gpio(struct platform_device *pdev,
1226                              struct mlxbf_i2c_priv *priv)
1227{
1228        struct mlxbf_i2c_resource *gpio_res;
1229        struct device *dev = &pdev->dev;
1230        struct resource *params;
1231        resource_size_t size;
1232
1233        gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1234        if (!gpio_res)
1235                return -EPERM;
1236
1237        /*
1238         * The GPIO region in TYU space is shared among I2C busses.
1239         * This function MUST be serialized to avoid racing when
1240         * claiming the memory region and/or setting up the GPIO.
1241         */
1242        lockdep_assert_held(gpio_res->lock);
1243
1244        /* Check whether the memory map exist. */
1245        if (gpio_res->io)
1246                return 0;
1247
1248        params = gpio_res->params;
1249        size = resource_size(params);
1250
1251        if (!devm_request_mem_region(dev, params->start, size, params->name))
1252                return -EFAULT;
1253
1254        gpio_res->io = devm_ioremap(dev, params->start, size);
1255        if (!gpio_res->io) {
1256                devm_release_mem_region(dev, params->start, size);
1257                return -ENOMEM;
1258        }
1259
1260        return 0;
1261}
1262
1263static int mlxbf_i2c_release_gpio(struct platform_device *pdev,
1264                                  struct mlxbf_i2c_priv *priv)
1265{
1266        struct mlxbf_i2c_resource *gpio_res;
1267        struct device *dev = &pdev->dev;
1268        struct resource *params;
1269
1270        gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1271        if (!gpio_res)
1272                return 0;
1273
1274        mutex_lock(gpio_res->lock);
1275
1276        if (gpio_res->io) {
1277                /* Release the GPIO resource. */
1278                params = gpio_res->params;
1279                devm_iounmap(dev, gpio_res->io);
1280                devm_release_mem_region(dev, params->start,
1281                                        resource_size(params));
1282        }
1283
1284        mutex_unlock(gpio_res->lock);
1285
1286        return 0;
1287}
1288
1289static int mlxbf_i2c_get_corepll(struct platform_device *pdev,
1290                                 struct mlxbf_i2c_priv *priv)
1291{
1292        struct mlxbf_i2c_resource *corepll_res;
1293        struct device *dev = &pdev->dev;
1294        struct resource *params;
1295        resource_size_t size;
1296
1297        corepll_res = mlxbf_i2c_get_shared_resource(priv,
1298                                                    MLXBF_I2C_COREPLL_RES);
1299        if (!corepll_res)
1300                return -EPERM;
1301
1302        /*
1303         * The COREPLL region in TYU space is shared among I2C busses.
1304         * This function MUST be serialized to avoid racing when
1305         * claiming the memory region.
1306         */
1307        lockdep_assert_held(corepll_res->lock);
1308
1309        /* Check whether the memory map exist. */
1310        if (corepll_res->io)
1311                return 0;
1312
1313        params = corepll_res->params;
1314        size = resource_size(params);
1315
1316        if (!devm_request_mem_region(dev, params->start, size, params->name))
1317                return -EFAULT;
1318
1319        corepll_res->io = devm_ioremap(dev, params->start, size);
1320        if (!corepll_res->io) {
1321                devm_release_mem_region(dev, params->start, size);
1322                return -ENOMEM;
1323        }
1324
1325        return 0;
1326}
1327
1328static int mlxbf_i2c_release_corepll(struct platform_device *pdev,
1329                                     struct mlxbf_i2c_priv *priv)
1330{
1331        struct mlxbf_i2c_resource *corepll_res;
1332        struct device *dev = &pdev->dev;
1333        struct resource *params;
1334
1335        corepll_res = mlxbf_i2c_get_shared_resource(priv,
1336                                                    MLXBF_I2C_COREPLL_RES);
1337
1338        mutex_lock(corepll_res->lock);
1339
1340        if (corepll_res->io) {
1341                /* Release the CorePLL resource. */
1342                params = corepll_res->params;
1343                devm_iounmap(dev, corepll_res->io);
1344                devm_release_mem_region(dev, params->start,
1345                                        resource_size(params));
1346        }
1347
1348        mutex_unlock(corepll_res->lock);
1349
1350        return 0;
1351}
1352
1353static int mlxbf_i2c_init_master(struct platform_device *pdev,
1354                                 struct mlxbf_i2c_priv *priv)
1355{
1356        struct mlxbf_i2c_resource *gpio_res;
1357        struct device *dev = &pdev->dev;
1358        u32 config_reg;
1359        int ret;
1360
1361        /* This configuration is only needed for BlueField 1. */
1362        if (!mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1))
1363                return 0;
1364
1365        gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1366        if (!gpio_res)
1367                return -EPERM;
1368
1369        /*
1370         * The GPIO region in TYU space is shared among I2C busses.
1371         * This function MUST be serialized to avoid racing when
1372         * claiming the memory region and/or setting up the GPIO.
1373         */
1374
1375        mutex_lock(gpio_res->lock);
1376
1377        ret = mlxbf_i2c_get_gpio(pdev, priv);
1378        if (ret < 0) {
1379                dev_err(dev, "Failed to get gpio resource");
1380                mutex_unlock(gpio_res->lock);
1381                return ret;
1382        }
1383
1384        /*
1385         * TYU - Configuration for GPIO pins. Those pins must be asserted in
1386         * MLXBF_I2C_GPIO_0_FUNC_EN_0, i.e. GPIO 0 is controlled by HW, and must
1387         * be reset in MLXBF_I2C_GPIO_0_FORCE_OE_EN, i.e. GPIO_OE will be driven
1388         * instead of HW_OE.
1389         * For now, we do not reset the GPIO state when the driver is removed.
1390         * First, it is not necessary to disable the bus since we are using
1391         * the same busses. Then, some busses might be shared among Linux and
1392         * platform firmware; disabling the bus might compromise the system
1393         * functionality.
1394         */
1395        config_reg = readl(gpio_res->io + MLXBF_I2C_GPIO_0_FUNC_EN_0);
1396        config_reg = MLXBF_I2C_GPIO_SMBUS_GW_ASSERT_PINS(priv->bus,
1397                                                         config_reg);
1398        writel(config_reg, gpio_res->io + MLXBF_I2C_GPIO_0_FUNC_EN_0);
1399
1400        config_reg = readl(gpio_res->io + MLXBF_I2C_GPIO_0_FORCE_OE_EN);
1401        config_reg = MLXBF_I2C_GPIO_SMBUS_GW_RESET_PINS(priv->bus,
1402                                                        config_reg);
1403        writel(config_reg, gpio_res->io + MLXBF_I2C_GPIO_0_FORCE_OE_EN);
1404
1405        mutex_unlock(gpio_res->lock);
1406
1407        return 0;
1408}
1409
1410static u64 mlxbf_calculate_freq_from_tyu(struct mlxbf_i2c_resource *corepll_res)
1411{
1412        u64 core_frequency, pad_frequency;
1413        u8 core_od, core_r;
1414        u32 corepll_val;
1415        u16 core_f;
1416
1417        pad_frequency = MLXBF_I2C_PLL_IN_FREQ;
1418
1419        corepll_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG1);
1420
1421        /* Get Core PLL configuration bits. */
1422        core_f = rol32(corepll_val, MLXBF_I2C_COREPLL_CORE_F_TYU_SHIFT) &
1423                        MLXBF_I2C_COREPLL_CORE_F_TYU_MASK;
1424        core_od = rol32(corepll_val, MLXBF_I2C_COREPLL_CORE_OD_TYU_SHIFT) &
1425                        MLXBF_I2C_COREPLL_CORE_OD_TYU_MASK;
1426        core_r = rol32(corepll_val, MLXBF_I2C_COREPLL_CORE_R_TYU_SHIFT) &
1427                        MLXBF_I2C_COREPLL_CORE_R_TYU_MASK;
1428
1429        /*
1430         * Compute PLL output frequency as follow:
1431         *
1432         *                                       CORE_F + 1
1433         * PLL_OUT_FREQ = PLL_IN_FREQ * ----------------------------
1434         *                              (CORE_R + 1) * (CORE_OD + 1)
1435         *
1436         * Where PLL_OUT_FREQ and PLL_IN_FREQ refer to CoreFrequency
1437         * and PadFrequency, respectively.
1438         */
1439        core_frequency = pad_frequency * (++core_f);
1440        core_frequency /= (++core_r) * (++core_od);
1441
1442        return core_frequency;
1443}
1444
1445static u64 mlxbf_calculate_freq_from_yu(struct mlxbf_i2c_resource *corepll_res)
1446{
1447        u32 corepll_reg1_val, corepll_reg2_val;
1448        u64 corepll_frequency, pad_frequency;
1449        u8 core_od, core_r;
1450        u32 core_f;
1451
1452        pad_frequency = MLXBF_I2C_PLL_IN_FREQ;
1453
1454        corepll_reg1_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG1);
1455        corepll_reg2_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG2);
1456
1457        /* Get Core PLL configuration bits */
1458        core_f = rol32(corepll_reg1_val, MLXBF_I2C_COREPLL_CORE_F_YU_SHIFT) &
1459                        MLXBF_I2C_COREPLL_CORE_F_YU_MASK;
1460        core_r = rol32(corepll_reg1_val, MLXBF_I2C_COREPLL_CORE_R_YU_SHIFT) &
1461                        MLXBF_I2C_COREPLL_CORE_R_YU_MASK;
1462        core_od = rol32(corepll_reg2_val,  MLXBF_I2C_COREPLL_CORE_OD_YU_SHIFT) &
1463                        MLXBF_I2C_COREPLL_CORE_OD_YU_MASK;
1464
1465        /*
1466         * Compute PLL output frequency as follow:
1467         *
1468         *                                     CORE_F / 16384
1469         * PLL_OUT_FREQ = PLL_IN_FREQ * ----------------------------
1470         *                              (CORE_R + 1) * (CORE_OD + 1)
1471         *
1472         * Where PLL_OUT_FREQ and PLL_IN_FREQ refer to CoreFrequency
1473         * and PadFrequency, respectively.
1474         */
1475        corepll_frequency = (pad_frequency * core_f) / MLNXBF_I2C_COREPLL_CONST;
1476        corepll_frequency /= (++core_r) * (++core_od);
1477
1478        return corepll_frequency;
1479}
1480
1481static int mlxbf_i2c_calculate_corepll_freq(struct platform_device *pdev,
1482                                            struct mlxbf_i2c_priv *priv)
1483{
1484        const struct mlxbf_i2c_chip_info *chip = priv->chip;
1485        struct mlxbf_i2c_resource *corepll_res;
1486        struct device *dev = &pdev->dev;
1487        u64 *freq = &priv->frequency;
1488        int ret;
1489
1490        corepll_res = mlxbf_i2c_get_shared_resource(priv,
1491                                                    MLXBF_I2C_COREPLL_RES);
1492        if (!corepll_res)
1493                return -EPERM;
1494
1495        /*
1496         * First, check whether the TYU core Clock frequency is set.
1497         * The TYU core frequency is the same for all I2C busses; when
1498         * the first device gets probed the frequency is determined and
1499         * stored into a globally visible variable. So, first of all,
1500         * check whether the frequency is already set. Here, we assume
1501         * that the frequency is expected to be greater than 0.
1502         */
1503        mutex_lock(corepll_res->lock);
1504        if (!mlxbf_i2c_corepll_frequency) {
1505                if (!chip->calculate_freq) {
1506                        mutex_unlock(corepll_res->lock);
1507                        return -EPERM;
1508                }
1509
1510                ret = mlxbf_i2c_get_corepll(pdev, priv);
1511                if (ret < 0) {
1512                        dev_err(dev, "Failed to get corePLL resource");
1513                        mutex_unlock(corepll_res->lock);
1514                        return ret;
1515                }
1516
1517                mlxbf_i2c_corepll_frequency = chip->calculate_freq(corepll_res);
1518        }
1519        mutex_unlock(corepll_res->lock);
1520
1521        *freq = mlxbf_i2c_corepll_frequency;
1522
1523        return 0;
1524}
1525
1526static int mlxbf_slave_enable(struct mlxbf_i2c_priv *priv, u8 addr)
1527{
1528        u32 slave_reg, slave_reg_tmp, slave_reg_avail, slave_addr_mask;
1529        u8 reg, reg_cnt, byte, addr_tmp, reg_avail, byte_avail;
1530        bool avail, disabled;
1531
1532        disabled = false;
1533        avail = false;
1534
1535        if (!priv)
1536                return -EPERM;
1537
1538        reg_cnt = MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT >> 2;
1539        slave_addr_mask = MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK;
1540
1541        /*
1542         * Read the slave registers. There are 4 * 32-bit slave registers.
1543         * Each slave register can hold up to 4 * 8-bit slave configuration
1544         * (7-bit address, 1 status bit (1 if enabled, 0 if not)).
1545         */
1546        for (reg = 0; reg < reg_cnt; reg++) {
1547                slave_reg = readl(priv->smbus->io +
1548                                MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4);
1549                /*
1550                 * Each register holds 4 slave addresses. So, we have to keep
1551                 * the byte order consistent with the value read in order to
1552                 * update the register correctly, if needed.
1553                 */
1554                slave_reg_tmp = slave_reg;
1555                for (byte = 0; byte < 4; byte++) {
1556                        addr_tmp = slave_reg_tmp & GENMASK(7, 0);
1557
1558                        /*
1559                         * Mark the first available slave address slot, i.e. its
1560                         * enabled bit should be unset. This slot might be used
1561                         * later on to register our slave.
1562                         */
1563                        if (!avail && !MLXBF_I2C_SLAVE_ADDR_ENABLED(addr_tmp)) {
1564                                avail = true;
1565                                reg_avail = reg;
1566                                byte_avail = byte;
1567                                slave_reg_avail = slave_reg;
1568                        }
1569
1570                        /*
1571                         * Parse slave address bytes and check whether the
1572                         * slave address already exists and it's enabled,
1573                         * i.e. most significant bit is set.
1574                         */
1575                        if ((addr_tmp & slave_addr_mask) == addr) {
1576                                if (MLXBF_I2C_SLAVE_ADDR_ENABLED(addr_tmp))
1577                                        return 0;
1578                                disabled = true;
1579                                break;
1580                        }
1581
1582                        /* Parse next byte. */
1583                        slave_reg_tmp >>= 8;
1584                }
1585
1586                /* Exit the loop if the slave address is found. */
1587                if (disabled)
1588                        break;
1589        }
1590
1591        if (!avail && !disabled)
1592                return -EINVAL; /* No room for a new slave address. */
1593
1594        if (avail && !disabled) {
1595                reg = reg_avail;
1596                byte = byte_avail;
1597                /* Set the slave address. */
1598                slave_reg_avail &= ~(slave_addr_mask << (byte * 8));
1599                slave_reg_avail |= addr << (byte * 8);
1600                slave_reg = slave_reg_avail;
1601        }
1602
1603        /* Enable the slave address and update the register. */
1604        slave_reg |= (1 << MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT) << (byte * 8);
1605        writel(slave_reg, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG +
1606                reg * 0x4);
1607
1608        return 0;
1609}
1610
1611static int mlxbf_slave_disable(struct mlxbf_i2c_priv *priv)
1612{
1613        u32 slave_reg, slave_reg_tmp, slave_addr_mask;
1614        u8 addr, addr_tmp, reg, reg_cnt, slave_byte;
1615        struct i2c_client *client = priv->slave;
1616        bool exist;
1617
1618        exist = false;
1619
1620        addr = client->addr;
1621        reg_cnt = MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT >> 2;
1622        slave_addr_mask = MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK;
1623
1624        /*
1625         * Read the slave registers. There are 4 * 32-bit slave registers.
1626         * Each slave register can hold up to 4 * 8-bit slave configuration
1627         * (7-bit address, 1 status bit (1 if enabled, 0 if not)).
1628         */
1629        for (reg = 0; reg < reg_cnt; reg++) {
1630                slave_reg = readl(priv->smbus->io +
1631                                MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4);
1632
1633                /* Check whether the address slots are empty. */
1634                if (slave_reg == 0)
1635                        continue;
1636
1637                /*
1638                 * Each register holds 4 slave addresses. So, we have to keep
1639                 * the byte order consistent with the value read in order to
1640                 * update the register correctly, if needed.
1641                 */
1642                slave_reg_tmp = slave_reg;
1643                slave_byte = 0;
1644                while (slave_reg_tmp != 0) {
1645                        addr_tmp = slave_reg_tmp & slave_addr_mask;
1646                        /*
1647                         * Parse slave address bytes and check whether the
1648                         * slave address already exists.
1649                         */
1650                        if (addr_tmp == addr) {
1651                                exist = true;
1652                                break;
1653                        }
1654
1655                        /* Parse next byte. */
1656                        slave_reg_tmp >>= 8;
1657                        slave_byte += 1;
1658                }
1659
1660                /* Exit the loop if the slave address is found. */
1661                if (exist)
1662                        break;
1663        }
1664
1665        if (!exist)
1666                return 0; /* Slave is not registered, nothing to do. */
1667
1668        /* Cleanup the slave address slot. */
1669        slave_reg &= ~(GENMASK(7, 0) << (slave_byte * 8));
1670        writel(slave_reg, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG +
1671                reg * 0x4);
1672
1673        return 0;
1674}
1675
1676static int mlxbf_i2c_init_coalesce(struct platform_device *pdev,
1677                                   struct mlxbf_i2c_priv *priv)
1678{
1679        struct mlxbf_i2c_resource *coalesce_res;
1680        struct resource *params;
1681        resource_size_t size;
1682        int ret = 0;
1683
1684        /*
1685         * Unlike BlueField-1 platform, the coalesce registers is a dedicated
1686         * resource in the next generations of BlueField.
1687         */
1688        if (mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1)) {
1689                coalesce_res = mlxbf_i2c_get_shared_resource(priv,
1690                                                MLXBF_I2C_COALESCE_RES);
1691                if (!coalesce_res)
1692                        return -EPERM;
1693
1694                /*
1695                 * The Cause Coalesce group in TYU space is shared among
1696                 * I2C busses. This function MUST be serialized to avoid
1697                 * racing when claiming the memory region.
1698                 */
1699                lockdep_assert_held(mlxbf_i2c_gpio_res->lock);
1700
1701                /* Check whether the memory map exist. */
1702                if (coalesce_res->io) {
1703                        priv->coalesce = coalesce_res;
1704                        return 0;
1705                }
1706
1707                params = coalesce_res->params;
1708                size = resource_size(params);
1709
1710                if (!request_mem_region(params->start, size, params->name))
1711                        return -EFAULT;
1712
1713                coalesce_res->io = ioremap(params->start, size);
1714                if (!coalesce_res->io) {
1715                        release_mem_region(params->start, size);
1716                        return -ENOMEM;
1717                }
1718
1719                priv->coalesce = coalesce_res;
1720
1721        } else {
1722                ret = mlxbf_i2c_init_resource(pdev, &priv->coalesce,
1723                                              MLXBF_I2C_COALESCE_RES);
1724        }
1725
1726        return ret;
1727}
1728
1729static int mlxbf_i2c_release_coalesce(struct platform_device *pdev,
1730                                      struct mlxbf_i2c_priv *priv)
1731{
1732        struct mlxbf_i2c_resource *coalesce_res;
1733        struct device *dev = &pdev->dev;
1734        struct resource *params;
1735        resource_size_t size;
1736
1737        coalesce_res = priv->coalesce;
1738
1739        if (coalesce_res->io) {
1740                params = coalesce_res->params;
1741                size = resource_size(params);
1742                if (mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1)) {
1743                        mutex_lock(coalesce_res->lock);
1744                        iounmap(coalesce_res->io);
1745                        release_mem_region(params->start, size);
1746                        mutex_unlock(coalesce_res->lock);
1747                } else {
1748                        devm_release_mem_region(dev, params->start, size);
1749                }
1750        }
1751
1752        return 0;
1753}
1754
1755static int mlxbf_i2c_init_slave(struct platform_device *pdev,
1756                                struct mlxbf_i2c_priv *priv)
1757{
1758        struct device *dev = &pdev->dev;
1759        u32 int_reg;
1760        int ret;
1761
1762        /* Reset FSM. */
1763        writel(0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_FSM);
1764
1765        /*
1766         * Enable slave cause interrupt bits. Drive
1767         * MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE and
1768         * MLXBF_I2C_CAUSE_WRITE_SUCCESS, these are enabled when an external
1769         * masters issue a Read and Write, respectively. But, clear all
1770         * interrupts first.
1771         */
1772        writel(~0, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR);
1773        int_reg = MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE;
1774        int_reg |= MLXBF_I2C_CAUSE_WRITE_SUCCESS;
1775        writel(int_reg, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_EVTEN0);
1776
1777        /* Finally, set the 'ready' bit to start handling transactions. */
1778        writel(0x1, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_READY);
1779
1780        /* Initialize the cause coalesce resource. */
1781        ret = mlxbf_i2c_init_coalesce(pdev, priv);
1782        if (ret < 0) {
1783                dev_err(dev, "failed to initialize cause coalesce\n");
1784                return ret;
1785        }
1786
1787        return 0;
1788}
1789
1790static bool mlxbf_i2c_has_coalesce(struct mlxbf_i2c_priv *priv, bool *read,
1791                                   bool *write)
1792{
1793        const struct mlxbf_i2c_chip_info *chip = priv->chip;
1794        u32 coalesce0_reg, cause_reg;
1795        u8 slave_shift, is_set;
1796
1797        *write = false;
1798        *read = false;
1799
1800        slave_shift = chip->type != MLXBF_I2C_CHIP_TYPE_1 ?
1801                                MLXBF_I2C_CAUSE_YU_SLAVE_BIT :
1802                                priv->bus + MLXBF_I2C_CAUSE_TYU_SLAVE_BIT;
1803
1804        coalesce0_reg = readl(priv->coalesce->io + MLXBF_I2C_CAUSE_COALESCE_0);
1805        is_set = coalesce0_reg & (1 << slave_shift);
1806
1807        if (!is_set)
1808                return false;
1809
1810        /* Check the source of the interrupt, i.e. whether a Read or Write. */
1811        cause_reg = readl(priv->slv_cause->io + MLXBF_I2C_CAUSE_ARBITER);
1812        if (cause_reg & MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE)
1813                *read = true;
1814        else if (cause_reg & MLXBF_I2C_CAUSE_WRITE_SUCCESS)
1815                *write = true;
1816
1817        /* Clear cause bits. */
1818        writel(~0x0, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR);
1819
1820        return true;
1821}
1822
1823static bool mlxbf_smbus_slave_wait_for_idle(struct mlxbf_i2c_priv *priv,
1824                                            u32 timeout)
1825{
1826        u32 mask = MLXBF_I2C_CAUSE_S_GW_BUSY_FALL;
1827        u32 addr = MLXBF_I2C_CAUSE_ARBITER;
1828
1829        if (mlxbf_smbus_poll(priv->slv_cause->io, addr, mask, false, timeout))
1830                return true;
1831
1832        return false;
1833}
1834
1835/* Send byte to 'external' smbus master. */
1836static int mlxbf_smbus_irq_send(struct mlxbf_i2c_priv *priv, u8 recv_bytes)
1837{
1838        u8 data_desc[MLXBF_I2C_SLAVE_DATA_DESC_SIZE] = { 0 };
1839        u8 write_size, pec_en, addr, byte, value, byte_cnt, desc_size;
1840        struct i2c_client *slave = priv->slave;
1841        u32 control32, data32;
1842        int ret;
1843
1844        if (!slave)
1845                return -EINVAL;
1846
1847        addr = 0;
1848        byte = 0;
1849        desc_size = MLXBF_I2C_SLAVE_DATA_DESC_SIZE;
1850
1851        /*
1852         * Read bytes received from the external master. These bytes should
1853         * be located in the first data descriptor register of the slave GW.
1854         * These bytes are the slave address byte and the internal register
1855         * address, if supplied.
1856         */
1857        if (recv_bytes > 0) {
1858                data32 = ioread32be(priv->smbus->io +
1859                                        MLXBF_I2C_SLAVE_DATA_DESC_ADDR);
1860
1861                /* Parse the received bytes. */
1862                switch (recv_bytes) {
1863                case 2:
1864                        byte = (data32 >> 8) & GENMASK(7, 0);
1865                        fallthrough;
1866                case 1:
1867                        addr = (data32 & GENMASK(7, 0)) >> 1;
1868                }
1869
1870                /* Check whether it's our slave address. */
1871                if (slave->addr != addr)
1872                        return -EINVAL;
1873        }
1874
1875        /*
1876         * I2C read transactions may start by a WRITE followed by a READ.
1877         * Indeed, most slave devices would expect the internal address
1878         * following the slave address byte. So, write that byte first,
1879         * and then, send the requested data bytes to the master.
1880         */
1881        if (recv_bytes > 1) {
1882                i2c_slave_event(slave, I2C_SLAVE_WRITE_REQUESTED, &value);
1883                value = byte;
1884                ret = i2c_slave_event(slave, I2C_SLAVE_WRITE_RECEIVED,
1885                                      &value);
1886                i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
1887
1888                if (ret < 0)
1889                        return ret;
1890        }
1891
1892        /*
1893         * Now, send data to the master; currently, the driver supports
1894         * READ_BYTE, READ_WORD and BLOCK READ protocols. Note that the
1895         * hardware can send up to 128 bytes per transfer. That is the
1896         * size of its data registers.
1897         */
1898        i2c_slave_event(slave, I2C_SLAVE_READ_REQUESTED, &value);
1899
1900        for (byte_cnt = 0; byte_cnt < desc_size; byte_cnt++) {
1901                data_desc[byte_cnt] = value;
1902                i2c_slave_event(slave, I2C_SLAVE_READ_PROCESSED, &value);
1903        }
1904
1905        /* Send a stop condition to the backend. */
1906        i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
1907
1908        /* Handle the actual transfer. */
1909
1910        /* Set the number of bytes to write to master. */
1911        write_size = (byte_cnt - 1) & 0x7f;
1912
1913        /* Write data to Slave GW data descriptor. */
1914        mlxbf_i2c_smbus_write_data(priv, data_desc, byte_cnt,
1915                                   MLXBF_I2C_SLAVE_DATA_DESC_ADDR);
1916
1917        pec_en = 0; /* Disable PEC since it is not supported. */
1918
1919        /* Prepare control word. */
1920        control32 = MLXBF_I2C_SLAVE_ENABLE;
1921        control32 |= rol32(write_size, MLXBF_I2C_SLAVE_WRITE_BYTES_SHIFT);
1922        control32 |= rol32(pec_en, MLXBF_I2C_SLAVE_SEND_PEC_SHIFT);
1923
1924        writel(control32, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_GW);
1925
1926        /*
1927         * Wait until the transfer is completed; the driver will wait
1928         * until the GW is idle, a cause will rise on fall of GW busy.
1929         */
1930        mlxbf_smbus_slave_wait_for_idle(priv, MLXBF_I2C_SMBUS_TIMEOUT);
1931
1932        /* Release the Slave GW. */
1933        writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
1934        writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_PEC);
1935        writel(0x1, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_READY);
1936
1937        return 0;
1938}
1939
1940/* Receive bytes from 'external' smbus master. */
1941static int mlxbf_smbus_irq_recv(struct mlxbf_i2c_priv *priv, u8 recv_bytes)
1942{
1943        u8 data_desc[MLXBF_I2C_SLAVE_DATA_DESC_SIZE] = { 0 };
1944        struct i2c_client *slave = priv->slave;
1945        u8 value, byte, addr;
1946        int ret = 0;
1947
1948        if (!slave)
1949                return -EINVAL;
1950
1951        /* Read data from Slave GW data descriptor. */
1952        mlxbf_i2c_smbus_read_data(priv, data_desc, recv_bytes,
1953                                  MLXBF_I2C_SLAVE_DATA_DESC_ADDR);
1954
1955        /* Check whether its our slave address. */
1956        addr = data_desc[0] >> 1;
1957        if (slave->addr != addr)
1958                return -EINVAL;
1959
1960        /*
1961         * Notify the slave backend; another I2C master wants to write data
1962         * to us. This event is sent once the slave address and the write bit
1963         * is detected.
1964         */
1965        i2c_slave_event(slave, I2C_SLAVE_WRITE_REQUESTED, &value);
1966
1967        /* Send the received data to the slave backend. */
1968        for (byte = 1; byte < recv_bytes; byte++) {
1969                value = data_desc[byte];
1970                ret = i2c_slave_event(slave, I2C_SLAVE_WRITE_RECEIVED,
1971                                      &value);
1972                if (ret < 0)
1973                        break;
1974        }
1975
1976        /* Send a stop condition to the backend. */
1977        i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
1978
1979        /* Release the Slave GW. */
1980        writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
1981        writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_PEC);
1982        writel(0x1, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_READY);
1983
1984        return ret;
1985}
1986
1987static irqreturn_t mlxbf_smbus_irq(int irq, void *ptr)
1988{
1989        struct mlxbf_i2c_priv *priv = ptr;
1990        bool read, write, irq_is_set;
1991        u32 rw_bytes_reg;
1992        u8 recv_bytes;
1993
1994        /*
1995         * Read TYU interrupt register and determine the source of the
1996         * interrupt. Based on the source of the interrupt one of the
1997         * following actions are performed:
1998         *  - Receive data and send response to master.
1999         *  - Send data and release slave GW.
2000         *
2001         * Handle read/write transaction only. CRmaster and Iarp requests
2002         * are ignored for now.
2003         */
2004        irq_is_set = mlxbf_i2c_has_coalesce(priv, &read, &write);
2005        if (!irq_is_set || (!read && !write)) {
2006                /* Nothing to do here, interrupt was not from this device. */
2007                return IRQ_NONE;
2008        }
2009
2010        /*
2011         * The MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES includes the number of
2012         * bytes from/to master. These are defined by 8-bits each. If the lower
2013         * 8 bits are set, then the master expect to read N bytes from the
2014         * slave, if the higher 8 bits are sent then the slave expect N bytes
2015         * from the master.
2016         */
2017        rw_bytes_reg = readl(priv->smbus->io +
2018                                MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
2019        recv_bytes = (rw_bytes_reg >> 8) & GENMASK(7, 0);
2020
2021        /*
2022         * For now, the slave supports 128 bytes transfer. Discard remaining
2023         * data bytes if the master wrote more than
2024         * MLXBF_I2C_SLAVE_DATA_DESC_SIZE, i.e, the actual size of the slave
2025         * data descriptor.
2026         *
2027         * Note that we will never expect to transfer more than 128 bytes; as
2028         * specified in the SMBus standard, block transactions cannot exceed
2029         * 32 bytes.
2030         */
2031        recv_bytes = recv_bytes > MLXBF_I2C_SLAVE_DATA_DESC_SIZE ?
2032                MLXBF_I2C_SLAVE_DATA_DESC_SIZE : recv_bytes;
2033
2034        if (read)
2035                mlxbf_smbus_irq_send(priv, recv_bytes);
2036        else
2037                mlxbf_smbus_irq_recv(priv, recv_bytes);
2038
2039        return IRQ_HANDLED;
2040}
2041
2042/* Return negative errno on error. */
2043static s32 mlxbf_i2c_smbus_xfer(struct i2c_adapter *adap, u16 addr,
2044                                unsigned short flags, char read_write,
2045                                u8 command, int size,
2046                                union i2c_smbus_data *data)
2047{
2048        struct mlxbf_i2c_smbus_request request = { 0 };
2049        struct mlxbf_i2c_priv *priv;
2050        bool read, pec;
2051        u8 byte_cnt;
2052
2053        request.slave = addr;
2054
2055        read = (read_write == I2C_SMBUS_READ);
2056        pec = flags & I2C_FUNC_SMBUS_PEC;
2057
2058        switch (size) {
2059        case I2C_SMBUS_QUICK:
2060                mlxbf_i2c_smbus_quick_command(&request, read);
2061                dev_dbg(&adap->dev, "smbus quick, slave 0x%02x\n", addr);
2062                break;
2063
2064        case I2C_SMBUS_BYTE:
2065                mlxbf_i2c_smbus_byte_func(&request,
2066                                          read ? &data->byte : &command, read,
2067                                          pec);
2068                dev_dbg(&adap->dev, "smbus %s byte, slave 0x%02x.\n",
2069                        read ? "read" : "write", addr);
2070                break;
2071
2072        case I2C_SMBUS_BYTE_DATA:
2073                mlxbf_i2c_smbus_data_byte_func(&request, &command, &data->byte,
2074                                               read, pec);
2075                dev_dbg(&adap->dev, "smbus %s byte data at 0x%02x, slave 0x%02x.\n",
2076                        read ? "read" : "write", command, addr);
2077                break;
2078
2079        case I2C_SMBUS_WORD_DATA:
2080                mlxbf_i2c_smbus_data_word_func(&request, &command,
2081                                               (u8 *)&data->word, read, pec);
2082                dev_dbg(&adap->dev, "smbus %s word data at 0x%02x, slave 0x%02x.\n",
2083                        read ? "read" : "write", command, addr);
2084                break;
2085
2086        case I2C_SMBUS_I2C_BLOCK_DATA:
2087                byte_cnt = data->block[0];
2088                mlxbf_i2c_smbus_i2c_block_func(&request, &command, data->block,
2089                                               &byte_cnt, read, pec);
2090                dev_dbg(&adap->dev, "i2c %s block data, %d bytes at 0x%02x, slave 0x%02x.\n",
2091                        read ? "read" : "write", byte_cnt, command, addr);
2092                break;
2093
2094        case I2C_SMBUS_BLOCK_DATA:
2095                byte_cnt = read ? I2C_SMBUS_BLOCK_MAX : data->block[0];
2096                mlxbf_i2c_smbus_block_func(&request, &command, data->block,
2097                                           &byte_cnt, read, pec);
2098                dev_dbg(&adap->dev, "smbus %s block data, %d bytes at 0x%02x, slave 0x%02x.\n",
2099                        read ? "read" : "write", byte_cnt, command, addr);
2100                break;
2101
2102        case I2C_FUNC_SMBUS_PROC_CALL:
2103                mlxbf_i2c_smbus_process_call_func(&request, &command,
2104                                                  (u8 *)&data->word, pec);
2105                dev_dbg(&adap->dev, "process call, wr/rd at 0x%02x, slave 0x%02x.\n",
2106                        command, addr);
2107                break;
2108
2109        case I2C_FUNC_SMBUS_BLOCK_PROC_CALL:
2110                byte_cnt = data->block[0];
2111                mlxbf_i2c_smbus_blk_process_call_func(&request, &command,
2112                                                      data->block, &byte_cnt,
2113                                                      pec);
2114                dev_dbg(&adap->dev, "block process call, wr/rd %d bytes, slave 0x%02x.\n",
2115                        byte_cnt, addr);
2116                break;
2117
2118        default:
2119                dev_dbg(&adap->dev, "Unsupported I2C/SMBus command %d\n",
2120                        size);
2121                return -EOPNOTSUPP;
2122        }
2123
2124        priv = i2c_get_adapdata(adap);
2125
2126        return mlxbf_i2c_smbus_start_transaction(priv, &request);
2127}
2128
2129static int mlxbf_i2c_reg_slave(struct i2c_client *slave)
2130{
2131        struct mlxbf_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
2132        int ret;
2133
2134        if (priv->slave)
2135                return -EBUSY;
2136
2137        /*
2138         * Do not support ten bit chip address and do not use Packet Error
2139         * Checking (PEC).
2140         */
2141        if (slave->flags & (I2C_CLIENT_TEN | I2C_CLIENT_PEC))
2142                return -EAFNOSUPPORT;
2143
2144        ret = mlxbf_slave_enable(priv, slave->addr);
2145        if (ret < 0)
2146                return ret;
2147
2148        priv->slave = slave;
2149
2150        return 0;
2151}
2152
2153static int mlxbf_i2c_unreg_slave(struct i2c_client *slave)
2154{
2155        struct mlxbf_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
2156        int ret;
2157
2158        WARN_ON(!priv->slave);
2159
2160        /* Unregister slave, i.e. disable the slave address in hardware. */
2161        ret = mlxbf_slave_disable(priv);
2162        if (ret < 0)
2163                return ret;
2164
2165        priv->slave = NULL;
2166
2167        return 0;
2168}
2169
2170static u32 mlxbf_i2c_functionality(struct i2c_adapter *adap)
2171{
2172        return MLXBF_I2C_FUNC_ALL;
2173}
2174
2175static struct mlxbf_i2c_chip_info mlxbf_i2c_chip[] = {
2176        [MLXBF_I2C_CHIP_TYPE_1] = {
2177                .type = MLXBF_I2C_CHIP_TYPE_1,
2178                .shared_res = {
2179                        [0] = &mlxbf_i2c_coalesce_res[MLXBF_I2C_CHIP_TYPE_1],
2180                        [1] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_1],
2181                        [2] = &mlxbf_i2c_gpio_res[MLXBF_I2C_CHIP_TYPE_1]
2182                },
2183                .calculate_freq = mlxbf_calculate_freq_from_tyu
2184        },
2185        [MLXBF_I2C_CHIP_TYPE_2] = {
2186                .type = MLXBF_I2C_CHIP_TYPE_2,
2187                .shared_res = {
2188                        [0] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_2]
2189                },
2190                .calculate_freq = mlxbf_calculate_freq_from_yu
2191        }
2192};
2193
2194static const struct i2c_algorithm mlxbf_i2c_algo = {
2195        .smbus_xfer = mlxbf_i2c_smbus_xfer,
2196        .functionality = mlxbf_i2c_functionality,
2197        .reg_slave = mlxbf_i2c_reg_slave,
2198        .unreg_slave = mlxbf_i2c_unreg_slave,
2199};
2200
2201static struct i2c_adapter_quirks mlxbf_i2c_quirks = {
2202        .max_read_len = MLXBF_I2C_MASTER_DATA_R_LENGTH,
2203        .max_write_len = MLXBF_I2C_MASTER_DATA_W_LENGTH,
2204};
2205
2206static const struct of_device_id mlxbf_i2c_dt_ids[] = {
2207        {
2208                .compatible = "mellanox,i2c-mlxbf1",
2209                .data = &mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_1]
2210        },
2211        {
2212                .compatible = "mellanox,i2c-mlxbf2",
2213                .data = &mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_2]
2214        },
2215        {},
2216};
2217
2218MODULE_DEVICE_TABLE(of, mlxbf_i2c_dt_ids);
2219
2220#ifdef CONFIG_ACPI
2221static const struct acpi_device_id mlxbf_i2c_acpi_ids[] = {
2222        { "MLNXBF03", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_1] },
2223        { "MLNXBF23", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_2] },
2224        {},
2225};
2226
2227MODULE_DEVICE_TABLE(acpi, mlxbf_i2c_acpi_ids);
2228
2229static int mlxbf_i2c_acpi_probe(struct device *dev, struct mlxbf_i2c_priv *priv)
2230{
2231        const struct acpi_device_id *aid;
2232        struct acpi_device *adev;
2233        unsigned long bus_id = 0;
2234        const char *uid;
2235        int ret;
2236
2237        if (acpi_disabled)
2238                return -ENOENT;
2239
2240        adev = ACPI_COMPANION(dev);
2241        if (!adev)
2242                return -ENXIO;
2243
2244        aid = acpi_match_device(mlxbf_i2c_acpi_ids, dev);
2245        if (!aid)
2246                return -ENODEV;
2247
2248        priv->chip = (struct mlxbf_i2c_chip_info *)aid->driver_data;
2249
2250        uid = acpi_device_uid(adev);
2251        if (!uid || !(*uid)) {
2252                dev_err(dev, "Cannot retrieve UID\n");
2253                return -ENODEV;
2254        }
2255
2256        ret = kstrtoul(uid, 0, &bus_id);
2257        if (!ret)
2258                priv->bus = bus_id;
2259
2260        return ret;
2261}
2262#else
2263static int mlxbf_i2c_acpi_probe(struct device *dev, struct mlxbf_i2c_priv *priv)
2264{
2265        return -ENOENT;
2266}
2267#endif /* CONFIG_ACPI */
2268
2269static int mlxbf_i2c_of_probe(struct device *dev, struct mlxbf_i2c_priv *priv)
2270{
2271        const struct of_device_id *oid;
2272        int bus_id = -1;
2273
2274        if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
2275                oid = of_match_node(mlxbf_i2c_dt_ids, dev->of_node);
2276                if (!oid)
2277                        return -ENODEV;
2278
2279                priv->chip = oid->data;
2280
2281                bus_id = of_alias_get_id(dev->of_node, "i2c");
2282                if (bus_id >= 0)
2283                        priv->bus = bus_id;
2284        }
2285
2286        if (bus_id < 0) {
2287                dev_err(dev, "Cannot get bus id");
2288                return bus_id;
2289        }
2290
2291        return 0;
2292}
2293
2294static int mlxbf_i2c_probe(struct platform_device *pdev)
2295{
2296        struct device *dev = &pdev->dev;
2297        struct mlxbf_i2c_priv *priv;
2298        struct i2c_adapter *adap;
2299        int irq, ret;
2300
2301        priv = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_priv), GFP_KERNEL);
2302        if (!priv)
2303                return -ENOMEM;
2304
2305        ret = mlxbf_i2c_acpi_probe(dev, priv);
2306        if (ret < 0 && ret != -ENOENT && ret != -ENXIO)
2307                ret = mlxbf_i2c_of_probe(dev, priv);
2308
2309        if (ret < 0)
2310                return ret;
2311
2312        ret = mlxbf_i2c_init_resource(pdev, &priv->smbus,
2313                                      MLXBF_I2C_SMBUS_RES);
2314        if (ret < 0) {
2315                dev_err(dev, "Cannot fetch smbus resource info");
2316                return ret;
2317        }
2318
2319        ret = mlxbf_i2c_init_resource(pdev, &priv->mst_cause,
2320                                      MLXBF_I2C_MST_CAUSE_RES);
2321        if (ret < 0) {
2322                dev_err(dev, "Cannot fetch cause master resource info");
2323                return ret;
2324        }
2325
2326        ret = mlxbf_i2c_init_resource(pdev, &priv->slv_cause,
2327                                      MLXBF_I2C_SLV_CAUSE_RES);
2328        if (ret < 0) {
2329                dev_err(dev, "Cannot fetch cause slave resource info");
2330                return ret;
2331        }
2332
2333        adap = &priv->adap;
2334        adap->owner = THIS_MODULE;
2335        adap->class = I2C_CLASS_HWMON;
2336        adap->algo = &mlxbf_i2c_algo;
2337        adap->quirks = &mlxbf_i2c_quirks;
2338        adap->dev.parent = dev;
2339        adap->dev.of_node = dev->of_node;
2340        adap->nr = priv->bus;
2341
2342        snprintf(adap->name, sizeof(adap->name), "i2c%d", adap->nr);
2343        i2c_set_adapdata(adap, priv);
2344
2345        /* Read Core PLL frequency. */
2346        ret = mlxbf_i2c_calculate_corepll_freq(pdev, priv);
2347        if (ret < 0) {
2348                dev_err(dev, "cannot get core clock frequency\n");
2349                /* Set to default value. */
2350                priv->frequency = MLXBF_I2C_COREPLL_FREQ;
2351        }
2352
2353        /*
2354         * Initialize master.
2355         * Note that a physical bus might be shared among Linux and firmware
2356         * (e.g., ATF). Thus, the bus should be initialized and ready and
2357         * bus initialization would be unnecessary. This requires additional
2358         * knowledge about physical busses. But, since an extra initialization
2359         * does not really hurt, then keep the code as is.
2360         */
2361        ret = mlxbf_i2c_init_master(pdev, priv);
2362        if (ret < 0) {
2363                dev_err(dev, "failed to initialize smbus master %d",
2364                        priv->bus);
2365                return ret;
2366        }
2367
2368        mlxbf_i2c_init_timings(pdev, priv);
2369
2370        mlxbf_i2c_init_slave(pdev, priv);
2371
2372        irq = platform_get_irq(pdev, 0);
2373        if (irq < 0)
2374                return irq;
2375        ret = devm_request_irq(dev, irq, mlxbf_smbus_irq,
2376                               IRQF_ONESHOT | IRQF_SHARED | IRQF_PROBE_SHARED,
2377                               dev_name(dev), priv);
2378        if (ret < 0) {
2379                dev_err(dev, "Cannot get irq %d\n", irq);
2380                return ret;
2381        }
2382
2383        priv->irq = irq;
2384
2385        platform_set_drvdata(pdev, priv);
2386
2387        ret = i2c_add_numbered_adapter(adap);
2388        if (ret < 0)
2389                return ret;
2390
2391        mutex_lock(&mlxbf_i2c_bus_lock);
2392        mlxbf_i2c_bus_count++;
2393        mutex_unlock(&mlxbf_i2c_bus_lock);
2394
2395        return 0;
2396}
2397
2398static int mlxbf_i2c_remove(struct platform_device *pdev)
2399{
2400        struct mlxbf_i2c_priv *priv = platform_get_drvdata(pdev);
2401        struct device *dev = &pdev->dev;
2402        struct resource *params;
2403
2404        params = priv->smbus->params;
2405        devm_release_mem_region(dev, params->start, resource_size(params));
2406
2407        params = priv->mst_cause->params;
2408        devm_release_mem_region(dev, params->start, resource_size(params));
2409
2410        params = priv->slv_cause->params;
2411        devm_release_mem_region(dev, params->start, resource_size(params));
2412
2413        /*
2414         * Release shared resources. This should be done when releasing
2415         * the I2C controller.
2416         */
2417        mutex_lock(&mlxbf_i2c_bus_lock);
2418        if (--mlxbf_i2c_bus_count == 0) {
2419                mlxbf_i2c_release_coalesce(pdev, priv);
2420                mlxbf_i2c_release_corepll(pdev, priv);
2421                mlxbf_i2c_release_gpio(pdev, priv);
2422        }
2423        mutex_unlock(&mlxbf_i2c_bus_lock);
2424
2425        devm_free_irq(dev, priv->irq, priv);
2426
2427        i2c_del_adapter(&priv->adap);
2428
2429        return 0;
2430}
2431
2432static struct platform_driver mlxbf_i2c_driver = {
2433        .probe = mlxbf_i2c_probe,
2434        .remove = mlxbf_i2c_remove,
2435        .driver = {
2436                .name = "i2c-mlxbf",
2437                .of_match_table = mlxbf_i2c_dt_ids,
2438#ifdef CONFIG_ACPI
2439                .acpi_match_table = ACPI_PTR(mlxbf_i2c_acpi_ids),
2440#endif /* CONFIG_ACPI  */
2441        },
2442};
2443
2444static int __init mlxbf_i2c_init(void)
2445{
2446        mutex_init(&mlxbf_i2c_coalesce_lock);
2447        mutex_init(&mlxbf_i2c_corepll_lock);
2448        mutex_init(&mlxbf_i2c_gpio_lock);
2449
2450        mutex_init(&mlxbf_i2c_bus_lock);
2451
2452        return platform_driver_register(&mlxbf_i2c_driver);
2453}
2454module_init(mlxbf_i2c_init);
2455
2456static void __exit mlxbf_i2c_exit(void)
2457{
2458        platform_driver_unregister(&mlxbf_i2c_driver);
2459
2460        mutex_destroy(&mlxbf_i2c_bus_lock);
2461
2462        mutex_destroy(&mlxbf_i2c_gpio_lock);
2463        mutex_destroy(&mlxbf_i2c_corepll_lock);
2464        mutex_destroy(&mlxbf_i2c_coalesce_lock);
2465}
2466module_exit(mlxbf_i2c_exit);
2467
2468MODULE_DESCRIPTION("Mellanox BlueField I2C bus driver");
2469MODULE_AUTHOR("Khalil Blaiech <kblaiech@nvidia.com>");
2470MODULE_LICENSE("GPL v2");
2471