linux/drivers/iio/adc/stm32-dfsdm-adc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * This file is the ADC part of the STM32 DFSDM driver
   4 *
   5 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
   6 * Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
   7 */
   8
   9#include <linux/dmaengine.h>
  10#include <linux/dma-mapping.h>
  11#include <linux/iio/adc/stm32-dfsdm-adc.h>
  12#include <linux/iio/buffer.h>
  13#include <linux/iio/hw-consumer.h>
  14#include <linux/iio/sysfs.h>
  15#include <linux/iio/timer/stm32-lptim-trigger.h>
  16#include <linux/iio/timer/stm32-timer-trigger.h>
  17#include <linux/iio/trigger.h>
  18#include <linux/iio/trigger_consumer.h>
  19#include <linux/iio/triggered_buffer.h>
  20#include <linux/interrupt.h>
  21#include <linux/module.h>
  22#include <linux/of_device.h>
  23#include <linux/platform_device.h>
  24#include <linux/regmap.h>
  25#include <linux/slab.h>
  26
  27#include "stm32-dfsdm.h"
  28
  29#define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)
  30
  31/* Conversion timeout */
  32#define DFSDM_TIMEOUT_US 100000
  33#define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))
  34
  35/* Oversampling attribute default */
  36#define DFSDM_DEFAULT_OVERSAMPLING  100
  37
  38/* Oversampling max values */
  39#define DFSDM_MAX_INT_OVERSAMPLING 256
  40#define DFSDM_MAX_FL_OVERSAMPLING 1024
  41
  42/* Limit filter output resolution to 31 bits. (i.e. sample range is +/-2^30) */
  43#define DFSDM_DATA_MAX BIT(30)
  44/*
  45 * Data are output as two's complement data in a 24 bit field.
  46 * Data from filters are in the range +/-2^(n-1)
  47 * 2^(n-1) maximum positive value cannot be coded in 2's complement n bits
  48 * An extra bit is required to avoid wrap-around of the binary code for 2^(n-1)
  49 * So, the resolution of samples from filter is actually limited to 23 bits
  50 */
  51#define DFSDM_DATA_RES 24
  52
  53/* Filter configuration */
  54#define DFSDM_CR1_CFG_MASK (DFSDM_CR1_RCH_MASK | DFSDM_CR1_RCONT_MASK | \
  55                            DFSDM_CR1_RSYNC_MASK | DFSDM_CR1_JSYNC_MASK | \
  56                            DFSDM_CR1_JSCAN_MASK)
  57
  58enum sd_converter_type {
  59        DFSDM_AUDIO,
  60        DFSDM_IIO,
  61};
  62
  63struct stm32_dfsdm_dev_data {
  64        int type;
  65        int (*init)(struct device *dev, struct iio_dev *indio_dev);
  66        unsigned int num_channels;
  67        const struct regmap_config *regmap_cfg;
  68};
  69
  70struct stm32_dfsdm_adc {
  71        struct stm32_dfsdm *dfsdm;
  72        const struct stm32_dfsdm_dev_data *dev_data;
  73        unsigned int fl_id;
  74        unsigned int nconv;
  75        unsigned long smask;
  76
  77        /* ADC specific */
  78        unsigned int oversamp;
  79        struct iio_hw_consumer *hwc;
  80        struct completion completion;
  81        u32 *buffer;
  82
  83        /* Audio specific */
  84        unsigned int spi_freq;  /* SPI bus clock frequency */
  85        unsigned int sample_freq; /* Sample frequency after filter decimation */
  86        int (*cb)(const void *data, size_t size, void *cb_priv);
  87        void *cb_priv;
  88
  89        /* DMA */
  90        u8 *rx_buf;
  91        unsigned int bufi; /* Buffer current position */
  92        unsigned int buf_sz; /* Buffer size */
  93        struct dma_chan *dma_chan;
  94        dma_addr_t dma_buf;
  95};
  96
  97struct stm32_dfsdm_str2field {
  98        const char      *name;
  99        unsigned int    val;
 100};
 101
 102/* DFSDM channel serial interface type */
 103static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
 104        { "SPI_R", 0 }, /* SPI with data on rising edge */
 105        { "SPI_F", 1 }, /* SPI with data on falling edge */
 106        { "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
 107        { "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
 108        {},
 109};
 110
 111/* DFSDM channel clock source */
 112static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
 113        /* External SPI clock (CLKIN x) */
 114        { "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
 115        /* Internal SPI clock (CLKOUT) */
 116        { "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
 117        /* Internal SPI clock divided by 2 (falling edge) */
 118        { "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
 119        /* Internal SPI clock divided by 2 (falling edge) */
 120        { "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
 121        {},
 122};
 123
 124static int stm32_dfsdm_str2val(const char *str,
 125                               const struct stm32_dfsdm_str2field *list)
 126{
 127        const struct stm32_dfsdm_str2field *p = list;
 128
 129        for (p = list; p && p->name; p++)
 130                if (!strcmp(p->name, str))
 131                        return p->val;
 132
 133        return -EINVAL;
 134}
 135
 136/**
 137 * struct stm32_dfsdm_trig_info - DFSDM trigger info
 138 * @name:               name of the trigger, corresponding to its source
 139 * @jextsel:            trigger signal selection
 140 */
 141struct stm32_dfsdm_trig_info {
 142        const char *name;
 143        unsigned int jextsel;
 144};
 145
 146/* hardware injected trigger enable, edge selection */
 147enum stm32_dfsdm_jexten {
 148        STM32_DFSDM_JEXTEN_DISABLED,
 149        STM32_DFSDM_JEXTEN_RISING_EDGE,
 150        STM32_DFSDM_JEXTEN_FALLING_EDGE,
 151        STM32_DFSDM_EXTEN_BOTH_EDGES,
 152};
 153
 154static const struct stm32_dfsdm_trig_info stm32_dfsdm_trigs[] = {
 155        { TIM1_TRGO, 0 },
 156        { TIM1_TRGO2, 1 },
 157        { TIM8_TRGO, 2 },
 158        { TIM8_TRGO2, 3 },
 159        { TIM3_TRGO, 4 },
 160        { TIM4_TRGO, 5 },
 161        { TIM16_OC1, 6 },
 162        { TIM6_TRGO, 7 },
 163        { TIM7_TRGO, 8 },
 164        { LPTIM1_OUT, 26 },
 165        { LPTIM2_OUT, 27 },
 166        { LPTIM3_OUT, 28 },
 167        {},
 168};
 169
 170static int stm32_dfsdm_get_jextsel(struct iio_dev *indio_dev,
 171                                   struct iio_trigger *trig)
 172{
 173        int i;
 174
 175        /* lookup triggers registered by stm32 timer trigger driver */
 176        for (i = 0; stm32_dfsdm_trigs[i].name; i++) {
 177                /**
 178                 * Checking both stm32 timer trigger type and trig name
 179                 * should be safe against arbitrary trigger names.
 180                 */
 181                if ((is_stm32_timer_trigger(trig) ||
 182                     is_stm32_lptim_trigger(trig)) &&
 183                    !strcmp(stm32_dfsdm_trigs[i].name, trig->name)) {
 184                        return stm32_dfsdm_trigs[i].jextsel;
 185                }
 186        }
 187
 188        return -EINVAL;
 189}
 190
 191static int stm32_dfsdm_compute_osrs(struct stm32_dfsdm_filter *fl,
 192                                    unsigned int fast, unsigned int oversamp)
 193{
 194        unsigned int i, d, fosr, iosr;
 195        u64 res, max;
 196        int bits, shift;
 197        unsigned int m = 1;     /* multiplication factor */
 198        unsigned int p = fl->ford;      /* filter order (ford) */
 199        struct stm32_dfsdm_filter_osr *flo = &fl->flo[fast];
 200
 201        pr_debug("Requested oversampling: %d\n", oversamp);
 202        /*
 203         * This function tries to compute filter oversampling and integrator
 204         * oversampling, base on oversampling ratio requested by user.
 205         *
 206         * Decimation d depends on the filter order and the oversampling ratios.
 207         * ford: filter order
 208         * fosr: filter over sampling ratio
 209         * iosr: integrator over sampling ratio
 210         */
 211        if (fl->ford == DFSDM_FASTSINC_ORDER) {
 212                m = 2;
 213                p = 2;
 214        }
 215
 216        /*
 217         * Look for filter and integrator oversampling ratios which allows
 218         * to maximize data output resolution.
 219         */
 220        for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
 221                for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
 222                        if (fast)
 223                                d = fosr * iosr;
 224                        else if (fl->ford == DFSDM_FASTSINC_ORDER)
 225                                d = fosr * (iosr + 3) + 2;
 226                        else
 227                                d = fosr * (iosr - 1 + p) + p;
 228
 229                        if (d > oversamp)
 230                                break;
 231                        else if (d != oversamp)
 232                                continue;
 233                        /*
 234                         * Check resolution (limited to signed 32 bits)
 235                         *   res <= 2^31
 236                         * Sincx filters:
 237                         *   res = m * fosr^p x iosr (with m=1, p=ford)
 238                         * FastSinc filter
 239                         *   res = m * fosr^p x iosr (with m=2, p=2)
 240                         */
 241                        res = fosr;
 242                        for (i = p - 1; i > 0; i--) {
 243                                res = res * (u64)fosr;
 244                                if (res > DFSDM_DATA_MAX)
 245                                        break;
 246                        }
 247                        if (res > DFSDM_DATA_MAX)
 248                                continue;
 249
 250                        res = res * (u64)m * (u64)iosr;
 251                        if (res > DFSDM_DATA_MAX)
 252                                continue;
 253
 254                        if (res >= flo->res) {
 255                                flo->res = res;
 256                                flo->fosr = fosr;
 257                                flo->iosr = iosr;
 258
 259                                bits = fls(flo->res);
 260                                /* 8 LBSs in data register contain chan info */
 261                                max = flo->res << 8;
 262
 263                                /* if resolution is not a power of two */
 264                                if (flo->res > BIT(bits - 1))
 265                                        bits++;
 266                                else
 267                                        max--;
 268
 269                                shift = DFSDM_DATA_RES - bits;
 270                                /*
 271                                 * Compute right/left shift
 272                                 * Right shift is performed by hardware
 273                                 * when transferring samples to data register.
 274                                 * Left shift is done by software on buffer
 275                                 */
 276                                if (shift > 0) {
 277                                        /* Resolution is lower than 24 bits */
 278                                        flo->rshift = 0;
 279                                        flo->lshift = shift;
 280                                } else {
 281                                        /*
 282                                         * If resolution is 24 bits or more,
 283                                         * max positive value may be ambiguous
 284                                         * (equal to max negative value as sign
 285                                         * bit is dropped).
 286                                         * Reduce resolution to 23 bits (rshift)
 287                                         * to keep the sign on bit 23 and treat
 288                                         * saturation before rescaling on 24
 289                                         * bits (lshift).
 290                                         */
 291                                        flo->rshift = 1 - shift;
 292                                        flo->lshift = 1;
 293                                        max >>= flo->rshift;
 294                                }
 295                                flo->max = (s32)max;
 296                                flo->bits = bits;
 297
 298                                pr_debug("fast %d, fosr %d, iosr %d, res 0x%llx/%d bits, rshift %d, lshift %d\n",
 299                                         fast, flo->fosr, flo->iosr,
 300                                         flo->res, bits, flo->rshift,
 301                                         flo->lshift);
 302                        }
 303                }
 304        }
 305
 306        if (!flo->res)
 307                return -EINVAL;
 308
 309        return 0;
 310}
 311
 312static int stm32_dfsdm_compute_all_osrs(struct iio_dev *indio_dev,
 313                                        unsigned int oversamp)
 314{
 315        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 316        struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
 317        int ret0, ret1;
 318
 319        memset(&fl->flo[0], 0, sizeof(fl->flo[0]));
 320        memset(&fl->flo[1], 0, sizeof(fl->flo[1]));
 321
 322        ret0 = stm32_dfsdm_compute_osrs(fl, 0, oversamp);
 323        ret1 = stm32_dfsdm_compute_osrs(fl, 1, oversamp);
 324        if (ret0 < 0 && ret1 < 0) {
 325                dev_err(&indio_dev->dev,
 326                        "Filter parameters not found: errors %d/%d\n",
 327                        ret0, ret1);
 328                return -EINVAL;
 329        }
 330
 331        return 0;
 332}
 333
 334static int stm32_dfsdm_start_channel(struct iio_dev *indio_dev)
 335{
 336        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 337        struct regmap *regmap = adc->dfsdm->regmap;
 338        const struct iio_chan_spec *chan;
 339        unsigned int bit;
 340        int ret;
 341
 342        for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
 343                chan = indio_dev->channels + bit;
 344                ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
 345                                         DFSDM_CHCFGR1_CHEN_MASK,
 346                                         DFSDM_CHCFGR1_CHEN(1));
 347                if (ret < 0)
 348                        return ret;
 349        }
 350
 351        return 0;
 352}
 353
 354static void stm32_dfsdm_stop_channel(struct iio_dev *indio_dev)
 355{
 356        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 357        struct regmap *regmap = adc->dfsdm->regmap;
 358        const struct iio_chan_spec *chan;
 359        unsigned int bit;
 360
 361        for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
 362                chan = indio_dev->channels + bit;
 363                regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
 364                                   DFSDM_CHCFGR1_CHEN_MASK,
 365                                   DFSDM_CHCFGR1_CHEN(0));
 366        }
 367}
 368
 369static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
 370                                      struct stm32_dfsdm_channel *ch)
 371{
 372        unsigned int id = ch->id;
 373        struct regmap *regmap = dfsdm->regmap;
 374        int ret;
 375
 376        ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
 377                                 DFSDM_CHCFGR1_SITP_MASK,
 378                                 DFSDM_CHCFGR1_SITP(ch->type));
 379        if (ret < 0)
 380                return ret;
 381        ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
 382                                 DFSDM_CHCFGR1_SPICKSEL_MASK,
 383                                 DFSDM_CHCFGR1_SPICKSEL(ch->src));
 384        if (ret < 0)
 385                return ret;
 386        return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
 387                                  DFSDM_CHCFGR1_CHINSEL_MASK,
 388                                  DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
 389}
 390
 391static int stm32_dfsdm_start_filter(struct stm32_dfsdm_adc *adc,
 392                                    unsigned int fl_id,
 393                                    struct iio_trigger *trig)
 394{
 395        struct stm32_dfsdm *dfsdm = adc->dfsdm;
 396        int ret;
 397
 398        /* Enable filter */
 399        ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
 400                                 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
 401        if (ret < 0)
 402                return ret;
 403
 404        /* Nothing more to do for injected (scan mode/triggered) conversions */
 405        if (adc->nconv > 1 || trig)
 406                return 0;
 407
 408        /* Software start (single or continuous) regular conversion */
 409        return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
 410                                  DFSDM_CR1_RSWSTART_MASK,
 411                                  DFSDM_CR1_RSWSTART(1));
 412}
 413
 414static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm,
 415                                    unsigned int fl_id)
 416{
 417        /* Disable conversion */
 418        regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
 419                           DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
 420}
 421
 422static int stm32_dfsdm_filter_set_trig(struct iio_dev *indio_dev,
 423                                       unsigned int fl_id,
 424                                       struct iio_trigger *trig)
 425{
 426        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 427        struct regmap *regmap = adc->dfsdm->regmap;
 428        u32 jextsel = 0, jexten = STM32_DFSDM_JEXTEN_DISABLED;
 429        int ret;
 430
 431        if (trig) {
 432                ret = stm32_dfsdm_get_jextsel(indio_dev, trig);
 433                if (ret < 0)
 434                        return ret;
 435
 436                /* set trigger source and polarity (default to rising edge) */
 437                jextsel = ret;
 438                jexten = STM32_DFSDM_JEXTEN_RISING_EDGE;
 439        }
 440
 441        ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
 442                                 DFSDM_CR1_JEXTSEL_MASK | DFSDM_CR1_JEXTEN_MASK,
 443                                 DFSDM_CR1_JEXTSEL(jextsel) |
 444                                 DFSDM_CR1_JEXTEN(jexten));
 445        if (ret < 0)
 446                return ret;
 447
 448        return 0;
 449}
 450
 451static int stm32_dfsdm_channels_configure(struct iio_dev *indio_dev,
 452                                          unsigned int fl_id,
 453                                          struct iio_trigger *trig)
 454{
 455        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 456        struct regmap *regmap = adc->dfsdm->regmap;
 457        struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
 458        struct stm32_dfsdm_filter_osr *flo = &fl->flo[0];
 459        const struct iio_chan_spec *chan;
 460        unsigned int bit;
 461        int ret;
 462
 463        fl->fast = 0;
 464
 465        /*
 466         * In continuous mode, use fast mode configuration,
 467         * if it provides a better resolution.
 468         */
 469        if (adc->nconv == 1 && !trig &&
 470            (indio_dev->currentmode & INDIO_BUFFER_SOFTWARE)) {
 471                if (fl->flo[1].res >= fl->flo[0].res) {
 472                        fl->fast = 1;
 473                        flo = &fl->flo[1];
 474                }
 475        }
 476
 477        if (!flo->res)
 478                return -EINVAL;
 479
 480        dev_dbg(&indio_dev->dev, "Samples actual resolution: %d bits",
 481                min(flo->bits, (u32)DFSDM_DATA_RES - 1));
 482
 483        for_each_set_bit(bit, &adc->smask,
 484                         sizeof(adc->smask) * BITS_PER_BYTE) {
 485                chan = indio_dev->channels + bit;
 486
 487                ret = regmap_update_bits(regmap,
 488                                         DFSDM_CHCFGR2(chan->channel),
 489                                         DFSDM_CHCFGR2_DTRBS_MASK,
 490                                         DFSDM_CHCFGR2_DTRBS(flo->rshift));
 491                if (ret)
 492                        return ret;
 493        }
 494
 495        return 0;
 496}
 497
 498static int stm32_dfsdm_filter_configure(struct iio_dev *indio_dev,
 499                                        unsigned int fl_id,
 500                                        struct iio_trigger *trig)
 501{
 502        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 503        struct regmap *regmap = adc->dfsdm->regmap;
 504        struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
 505        struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
 506        u32 cr1;
 507        const struct iio_chan_spec *chan;
 508        unsigned int bit, jchg = 0;
 509        int ret;
 510
 511        /* Average integrator oversampling */
 512        ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
 513                                 DFSDM_FCR_IOSR(flo->iosr - 1));
 514        if (ret)
 515                return ret;
 516
 517        /* Filter order and Oversampling */
 518        ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
 519                                 DFSDM_FCR_FOSR(flo->fosr - 1));
 520        if (ret)
 521                return ret;
 522
 523        ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
 524                                 DFSDM_FCR_FORD(fl->ford));
 525        if (ret)
 526                return ret;
 527
 528        ret = stm32_dfsdm_filter_set_trig(indio_dev, fl_id, trig);
 529        if (ret)
 530                return ret;
 531
 532        ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
 533                                 DFSDM_CR1_FAST_MASK,
 534                                 DFSDM_CR1_FAST(fl->fast));
 535        if (ret)
 536                return ret;
 537
 538        /*
 539         * DFSDM modes configuration W.R.T audio/iio type modes
 540         * ----------------------------------------------------------------
 541         * Modes         | regular |  regular     | injected | injected   |
 542         *               |         |  continuous  |          | + scan     |
 543         * --------------|---------|--------------|----------|------------|
 544         * single conv   |    x    |              |          |            |
 545         * (1 chan)      |         |              |          |            |
 546         * --------------|---------|--------------|----------|------------|
 547         * 1 Audio chan  |         | sample freq  |          |            |
 548         *               |         | or sync_mode |          |            |
 549         * --------------|---------|--------------|----------|------------|
 550         * 1 IIO chan    |         | sample freq  | trigger  |            |
 551         *               |         | or sync_mode |          |            |
 552         * --------------|---------|--------------|----------|------------|
 553         * 2+ IIO chans  |         |              |          | trigger or |
 554         *               |         |              |          | sync_mode  |
 555         * ----------------------------------------------------------------
 556         */
 557        if (adc->nconv == 1 && !trig) {
 558                bit = __ffs(adc->smask);
 559                chan = indio_dev->channels + bit;
 560
 561                /* Use regular conversion for single channel without trigger */
 562                cr1 = DFSDM_CR1_RCH(chan->channel);
 563
 564                /* Continuous conversions triggered by SPI clk in buffer mode */
 565                if (indio_dev->currentmode & INDIO_BUFFER_SOFTWARE)
 566                        cr1 |= DFSDM_CR1_RCONT(1);
 567
 568                cr1 |= DFSDM_CR1_RSYNC(fl->sync_mode);
 569        } else {
 570                /* Use injected conversion for multiple channels */
 571                for_each_set_bit(bit, &adc->smask,
 572                                 sizeof(adc->smask) * BITS_PER_BYTE) {
 573                        chan = indio_dev->channels + bit;
 574                        jchg |= BIT(chan->channel);
 575                }
 576                ret = regmap_write(regmap, DFSDM_JCHGR(fl_id), jchg);
 577                if (ret < 0)
 578                        return ret;
 579
 580                /* Use scan mode for multiple channels */
 581                cr1 = DFSDM_CR1_JSCAN((adc->nconv > 1) ? 1 : 0);
 582
 583                /*
 584                 * Continuous conversions not supported in injected mode,
 585                 * either use:
 586                 * - conversions in sync with filter 0
 587                 * - triggered conversions
 588                 */
 589                if (!fl->sync_mode && !trig)
 590                        return -EINVAL;
 591                cr1 |= DFSDM_CR1_JSYNC(fl->sync_mode);
 592        }
 593
 594        return regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_CFG_MASK,
 595                                  cr1);
 596}
 597
 598static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
 599                                        struct iio_dev *indio_dev,
 600                                        struct iio_chan_spec *ch)
 601{
 602        struct stm32_dfsdm_channel *df_ch;
 603        const char *of_str;
 604        int chan_idx = ch->scan_index;
 605        int ret, val;
 606
 607        ret = of_property_read_u32_index(indio_dev->dev.of_node,
 608                                         "st,adc-channels", chan_idx,
 609                                         &ch->channel);
 610        if (ret < 0) {
 611                dev_err(&indio_dev->dev,
 612                        " Error parsing 'st,adc-channels' for idx %d\n",
 613                        chan_idx);
 614                return ret;
 615        }
 616        if (ch->channel >= dfsdm->num_chs) {
 617                dev_err(&indio_dev->dev,
 618                        " Error bad channel number %d (max = %d)\n",
 619                        ch->channel, dfsdm->num_chs);
 620                return -EINVAL;
 621        }
 622
 623        ret = of_property_read_string_index(indio_dev->dev.of_node,
 624                                            "st,adc-channel-names", chan_idx,
 625                                            &ch->datasheet_name);
 626        if (ret < 0) {
 627                dev_err(&indio_dev->dev,
 628                        " Error parsing 'st,adc-channel-names' for idx %d\n",
 629                        chan_idx);
 630                return ret;
 631        }
 632
 633        df_ch =  &dfsdm->ch_list[ch->channel];
 634        df_ch->id = ch->channel;
 635
 636        ret = of_property_read_string_index(indio_dev->dev.of_node,
 637                                            "st,adc-channel-types", chan_idx,
 638                                            &of_str);
 639        if (!ret) {
 640                val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
 641                if (val < 0)
 642                        return val;
 643        } else {
 644                val = 0;
 645        }
 646        df_ch->type = val;
 647
 648        ret = of_property_read_string_index(indio_dev->dev.of_node,
 649                                            "st,adc-channel-clk-src", chan_idx,
 650                                            &of_str);
 651        if (!ret) {
 652                val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
 653                if (val < 0)
 654                        return val;
 655        } else {
 656                val = 0;
 657        }
 658        df_ch->src = val;
 659
 660        ret = of_property_read_u32_index(indio_dev->dev.of_node,
 661                                         "st,adc-alt-channel", chan_idx,
 662                                         &df_ch->alt_si);
 663        if (ret < 0)
 664                df_ch->alt_si = 0;
 665
 666        return 0;
 667}
 668
 669static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
 670                                          uintptr_t priv,
 671                                          const struct iio_chan_spec *chan,
 672                                          char *buf)
 673{
 674        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 675
 676        return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
 677}
 678
 679static int dfsdm_adc_set_samp_freq(struct iio_dev *indio_dev,
 680                                   unsigned int sample_freq,
 681                                   unsigned int spi_freq)
 682{
 683        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 684        unsigned int oversamp;
 685        int ret;
 686
 687        oversamp = DIV_ROUND_CLOSEST(spi_freq, sample_freq);
 688        if (spi_freq % sample_freq)
 689                dev_dbg(&indio_dev->dev,
 690                        "Rate not accurate. requested (%u), actual (%u)\n",
 691                        sample_freq, spi_freq / oversamp);
 692
 693        ret = stm32_dfsdm_compute_all_osrs(indio_dev, oversamp);
 694        if (ret < 0)
 695                return ret;
 696
 697        adc->sample_freq = spi_freq / oversamp;
 698        adc->oversamp = oversamp;
 699
 700        return 0;
 701}
 702
 703static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
 704                                          uintptr_t priv,
 705                                          const struct iio_chan_spec *chan,
 706                                          const char *buf, size_t len)
 707{
 708        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 709        struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
 710        unsigned int sample_freq = adc->sample_freq;
 711        unsigned int spi_freq;
 712        int ret;
 713
 714        dev_err(&indio_dev->dev, "enter %s\n", __func__);
 715        /* If DFSDM is master on SPI, SPI freq can not be updated */
 716        if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
 717                return -EPERM;
 718
 719        ret = kstrtoint(buf, 0, &spi_freq);
 720        if (ret)
 721                return ret;
 722
 723        if (!spi_freq)
 724                return -EINVAL;
 725
 726        if (sample_freq) {
 727                ret = dfsdm_adc_set_samp_freq(indio_dev, sample_freq, spi_freq);
 728                if (ret < 0)
 729                        return ret;
 730        }
 731        adc->spi_freq = spi_freq;
 732
 733        return len;
 734}
 735
 736static int stm32_dfsdm_start_conv(struct iio_dev *indio_dev,
 737                                  struct iio_trigger *trig)
 738{
 739        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 740        struct regmap *regmap = adc->dfsdm->regmap;
 741        int ret;
 742
 743        ret = stm32_dfsdm_channels_configure(indio_dev, adc->fl_id, trig);
 744        if (ret < 0)
 745                return ret;
 746
 747        ret = stm32_dfsdm_start_channel(indio_dev);
 748        if (ret < 0)
 749                return ret;
 750
 751        ret = stm32_dfsdm_filter_configure(indio_dev, adc->fl_id, trig);
 752        if (ret < 0)
 753                goto stop_channels;
 754
 755        ret = stm32_dfsdm_start_filter(adc, adc->fl_id, trig);
 756        if (ret < 0)
 757                goto filter_unconfigure;
 758
 759        return 0;
 760
 761filter_unconfigure:
 762        regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
 763                           DFSDM_CR1_CFG_MASK, 0);
 764stop_channels:
 765        stm32_dfsdm_stop_channel(indio_dev);
 766
 767        return ret;
 768}
 769
 770static void stm32_dfsdm_stop_conv(struct iio_dev *indio_dev)
 771{
 772        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 773        struct regmap *regmap = adc->dfsdm->regmap;
 774
 775        stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);
 776
 777        regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
 778                           DFSDM_CR1_CFG_MASK, 0);
 779
 780        stm32_dfsdm_stop_channel(indio_dev);
 781}
 782
 783static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
 784                                     unsigned int val)
 785{
 786        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 787        unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
 788        unsigned int rx_buf_sz = DFSDM_DMA_BUFFER_SIZE;
 789
 790        /*
 791         * DMA cyclic transfers are used, buffer is split into two periods.
 792         * There should be :
 793         * - always one buffer (period) DMA is working on
 794         * - one buffer (period) driver pushed to ASoC side.
 795         */
 796        watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
 797        adc->buf_sz = min(rx_buf_sz, watermark * 2 * adc->nconv);
 798
 799        return 0;
 800}
 801
 802static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
 803{
 804        struct dma_tx_state state;
 805        enum dma_status status;
 806
 807        status = dmaengine_tx_status(adc->dma_chan,
 808                                     adc->dma_chan->cookie,
 809                                     &state);
 810        if (status == DMA_IN_PROGRESS) {
 811                /* Residue is size in bytes from end of buffer */
 812                unsigned int i = adc->buf_sz - state.residue;
 813                unsigned int size;
 814
 815                /* Return available bytes */
 816                if (i >= adc->bufi)
 817                        size = i - adc->bufi;
 818                else
 819                        size = adc->buf_sz + i - adc->bufi;
 820
 821                return size;
 822        }
 823
 824        return 0;
 825}
 826
 827static inline void stm32_dfsdm_process_data(struct stm32_dfsdm_adc *adc,
 828                                            s32 *buffer)
 829{
 830        struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
 831        struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
 832        unsigned int i = adc->nconv;
 833        s32 *ptr = buffer;
 834
 835        while (i--) {
 836                /* Mask 8 LSB that contains the channel ID */
 837                *ptr &= 0xFFFFFF00;
 838                /* Convert 2^(n-1) sample to 2^(n-1)-1 to avoid wrap-around */
 839                if (*ptr > flo->max)
 840                        *ptr -= 1;
 841                /*
 842                 * Samples from filter are retrieved with 23 bits resolution
 843                 * or less. Shift left to align MSB on 24 bits.
 844                 */
 845                *ptr <<= flo->lshift;
 846
 847                ptr++;
 848        }
 849}
 850
 851static void stm32_dfsdm_dma_buffer_done(void *data)
 852{
 853        struct iio_dev *indio_dev = data;
 854        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 855        int available = stm32_dfsdm_adc_dma_residue(adc);
 856        size_t old_pos;
 857
 858        /*
 859         * FIXME: In Kernel interface does not support cyclic DMA buffer,and
 860         * offers only an interface to push data samples per samples.
 861         * For this reason IIO buffer interface is not used and interface is
 862         * bypassed using a private callback registered by ASoC.
 863         * This should be a temporary solution waiting a cyclic DMA engine
 864         * support in IIO.
 865         */
 866
 867        dev_dbg(&indio_dev->dev, "pos = %d, available = %d\n",
 868                adc->bufi, available);
 869        old_pos = adc->bufi;
 870
 871        while (available >= indio_dev->scan_bytes) {
 872                s32 *buffer = (s32 *)&adc->rx_buf[adc->bufi];
 873
 874                stm32_dfsdm_process_data(adc, buffer);
 875
 876                available -= indio_dev->scan_bytes;
 877                adc->bufi += indio_dev->scan_bytes;
 878                if (adc->bufi >= adc->buf_sz) {
 879                        if (adc->cb)
 880                                adc->cb(&adc->rx_buf[old_pos],
 881                                         adc->buf_sz - old_pos, adc->cb_priv);
 882                        adc->bufi = 0;
 883                        old_pos = 0;
 884                }
 885                /*
 886                 * In DMA mode the trigger services of IIO are not used
 887                 * (e.g. no call to iio_trigger_poll).
 888                 * Calling irq handler associated to the hardware trigger is not
 889                 * relevant as the conversions have already been done. Data
 890                 * transfers are performed directly in DMA callback instead.
 891                 * This implementation avoids to call trigger irq handler that
 892                 * may sleep, in an atomic context (DMA irq handler context).
 893                 */
 894                if (adc->dev_data->type == DFSDM_IIO)
 895                        iio_push_to_buffers(indio_dev, buffer);
 896        }
 897        if (adc->cb)
 898                adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
 899                        adc->cb_priv);
 900}
 901
 902static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
 903{
 904        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 905        /*
 906         * The DFSDM supports half-word transfers. However, for 16 bits record,
 907         * 4 bytes buswidth is kept, to avoid losing samples LSBs when left
 908         * shift is required.
 909         */
 910        struct dma_slave_config config = {
 911                .src_addr = (dma_addr_t)adc->dfsdm->phys_base,
 912                .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 913        };
 914        struct dma_async_tx_descriptor *desc;
 915        dma_cookie_t cookie;
 916        int ret;
 917
 918        if (!adc->dma_chan)
 919                return -EINVAL;
 920
 921        dev_dbg(&indio_dev->dev, "size=%d watermark=%d\n",
 922                adc->buf_sz, adc->buf_sz / 2);
 923
 924        if (adc->nconv == 1 && !indio_dev->trig)
 925                config.src_addr += DFSDM_RDATAR(adc->fl_id);
 926        else
 927                config.src_addr += DFSDM_JDATAR(adc->fl_id);
 928        ret = dmaengine_slave_config(adc->dma_chan, &config);
 929        if (ret)
 930                return ret;
 931
 932        /* Prepare a DMA cyclic transaction */
 933        desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
 934                                         adc->dma_buf,
 935                                         adc->buf_sz, adc->buf_sz / 2,
 936                                         DMA_DEV_TO_MEM,
 937                                         DMA_PREP_INTERRUPT);
 938        if (!desc)
 939                return -EBUSY;
 940
 941        desc->callback = stm32_dfsdm_dma_buffer_done;
 942        desc->callback_param = indio_dev;
 943
 944        cookie = dmaengine_submit(desc);
 945        ret = dma_submit_error(cookie);
 946        if (ret)
 947                goto err_stop_dma;
 948
 949        /* Issue pending DMA requests */
 950        dma_async_issue_pending(adc->dma_chan);
 951
 952        if (adc->nconv == 1 && !indio_dev->trig) {
 953                /* Enable regular DMA transfer*/
 954                ret = regmap_update_bits(adc->dfsdm->regmap,
 955                                         DFSDM_CR1(adc->fl_id),
 956                                         DFSDM_CR1_RDMAEN_MASK,
 957                                         DFSDM_CR1_RDMAEN_MASK);
 958        } else {
 959                /* Enable injected DMA transfer*/
 960                ret = regmap_update_bits(adc->dfsdm->regmap,
 961                                         DFSDM_CR1(adc->fl_id),
 962                                         DFSDM_CR1_JDMAEN_MASK,
 963                                         DFSDM_CR1_JDMAEN_MASK);
 964        }
 965
 966        if (ret < 0)
 967                goto err_stop_dma;
 968
 969        return 0;
 970
 971err_stop_dma:
 972        dmaengine_terminate_all(adc->dma_chan);
 973
 974        return ret;
 975}
 976
 977static void stm32_dfsdm_adc_dma_stop(struct iio_dev *indio_dev)
 978{
 979        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 980
 981        if (!adc->dma_chan)
 982                return;
 983
 984        regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR1(adc->fl_id),
 985                           DFSDM_CR1_RDMAEN_MASK | DFSDM_CR1_JDMAEN_MASK, 0);
 986        dmaengine_terminate_all(adc->dma_chan);
 987}
 988
 989static int stm32_dfsdm_update_scan_mode(struct iio_dev *indio_dev,
 990                                        const unsigned long *scan_mask)
 991{
 992        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 993
 994        adc->nconv = bitmap_weight(scan_mask, indio_dev->masklength);
 995        adc->smask = *scan_mask;
 996
 997        dev_dbg(&indio_dev->dev, "nconv=%d mask=%lx\n", adc->nconv, *scan_mask);
 998
 999        return 0;
1000}
1001
1002static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
1003{
1004        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1005        int ret;
1006
1007        /* Reset adc buffer index */
1008        adc->bufi = 0;
1009
1010        if (adc->hwc) {
1011                ret = iio_hw_consumer_enable(adc->hwc);
1012                if (ret < 0)
1013                        return ret;
1014        }
1015
1016        ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1017        if (ret < 0)
1018                goto err_stop_hwc;
1019
1020        ret = stm32_dfsdm_adc_dma_start(indio_dev);
1021        if (ret) {
1022                dev_err(&indio_dev->dev, "Can't start DMA\n");
1023                goto stop_dfsdm;
1024        }
1025
1026        ret = stm32_dfsdm_start_conv(indio_dev, indio_dev->trig);
1027        if (ret) {
1028                dev_err(&indio_dev->dev, "Can't start conversion\n");
1029                goto err_stop_dma;
1030        }
1031
1032        return 0;
1033
1034err_stop_dma:
1035        stm32_dfsdm_adc_dma_stop(indio_dev);
1036stop_dfsdm:
1037        stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1038err_stop_hwc:
1039        if (adc->hwc)
1040                iio_hw_consumer_disable(adc->hwc);
1041
1042        return ret;
1043}
1044
1045static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
1046{
1047        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1048
1049        stm32_dfsdm_stop_conv(indio_dev);
1050
1051        stm32_dfsdm_adc_dma_stop(indio_dev);
1052
1053        stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1054
1055        if (adc->hwc)
1056                iio_hw_consumer_disable(adc->hwc);
1057
1058        return 0;
1059}
1060
1061static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
1062        .postenable = &stm32_dfsdm_postenable,
1063        .predisable = &stm32_dfsdm_predisable,
1064};
1065
1066/**
1067 * stm32_dfsdm_get_buff_cb() - register a callback that will be called when
1068 *                             DMA transfer period is achieved.
1069 *
1070 * @iio_dev: Handle to IIO device.
1071 * @cb: Pointer to callback function:
1072 *      - data: pointer to data buffer
1073 *      - size: size in byte of the data buffer
1074 *      - private: pointer to consumer private structure.
1075 * @private: Pointer to consumer private structure.
1076 */
1077int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
1078                            int (*cb)(const void *data, size_t size,
1079                                      void *private),
1080                            void *private)
1081{
1082        struct stm32_dfsdm_adc *adc;
1083
1084        if (!iio_dev)
1085                return -EINVAL;
1086        adc = iio_priv(iio_dev);
1087
1088        adc->cb = cb;
1089        adc->cb_priv = private;
1090
1091        return 0;
1092}
1093EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);
1094
1095/**
1096 * stm32_dfsdm_release_buff_cb - unregister buffer callback
1097 *
1098 * @iio_dev: Handle to IIO device.
1099 */
1100int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
1101{
1102        struct stm32_dfsdm_adc *adc;
1103
1104        if (!iio_dev)
1105                return -EINVAL;
1106        adc = iio_priv(iio_dev);
1107
1108        adc->cb = NULL;
1109        adc->cb_priv = NULL;
1110
1111        return 0;
1112}
1113EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);
1114
1115static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
1116                                   const struct iio_chan_spec *chan, int *res)
1117{
1118        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1119        long timeout;
1120        int ret;
1121
1122        reinit_completion(&adc->completion);
1123
1124        adc->buffer = res;
1125
1126        ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1127        if (ret < 0)
1128                return ret;
1129
1130        ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1131                                 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
1132        if (ret < 0)
1133                goto stop_dfsdm;
1134
1135        adc->nconv = 1;
1136        adc->smask = BIT(chan->scan_index);
1137        ret = stm32_dfsdm_start_conv(indio_dev, NULL);
1138        if (ret < 0) {
1139                regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1140                                   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1141                goto stop_dfsdm;
1142        }
1143
1144        timeout = wait_for_completion_interruptible_timeout(&adc->completion,
1145                                                            DFSDM_TIMEOUT);
1146
1147        /* Mask IRQ for regular conversion achievement*/
1148        regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1149                           DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1150
1151        if (timeout == 0)
1152                ret = -ETIMEDOUT;
1153        else if (timeout < 0)
1154                ret = timeout;
1155        else
1156                ret = IIO_VAL_INT;
1157
1158        stm32_dfsdm_stop_conv(indio_dev);
1159
1160        stm32_dfsdm_process_data(adc, res);
1161
1162stop_dfsdm:
1163        stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1164
1165        return ret;
1166}
1167
1168static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
1169                                 struct iio_chan_spec const *chan,
1170                                 int val, int val2, long mask)
1171{
1172        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1173        struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
1174        unsigned int spi_freq;
1175        int ret = -EINVAL;
1176
1177        switch (ch->src) {
1178        case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL:
1179                spi_freq = adc->dfsdm->spi_master_freq;
1180                break;
1181        case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING:
1182        case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING:
1183                spi_freq = adc->dfsdm->spi_master_freq / 2;
1184                break;
1185        default:
1186                spi_freq = adc->spi_freq;
1187        }
1188
1189        switch (mask) {
1190        case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1191                ret = iio_device_claim_direct_mode(indio_dev);
1192                if (ret)
1193                        return ret;
1194
1195                ret = stm32_dfsdm_compute_all_osrs(indio_dev, val);
1196                if (!ret) {
1197                        dev_dbg(&indio_dev->dev,
1198                                "Sampling rate changed from (%u) to (%u)\n",
1199                                adc->sample_freq, spi_freq / val);
1200                        adc->oversamp = val;
1201                        adc->sample_freq = spi_freq / val;
1202                }
1203                iio_device_release_direct_mode(indio_dev);
1204                return ret;
1205
1206        case IIO_CHAN_INFO_SAMP_FREQ:
1207                if (!val)
1208                        return -EINVAL;
1209
1210                ret = iio_device_claim_direct_mode(indio_dev);
1211                if (ret)
1212                        return ret;
1213
1214                ret = dfsdm_adc_set_samp_freq(indio_dev, val, spi_freq);
1215                iio_device_release_direct_mode(indio_dev);
1216                return ret;
1217        }
1218
1219        return -EINVAL;
1220}
1221
1222static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
1223                                struct iio_chan_spec const *chan, int *val,
1224                                int *val2, long mask)
1225{
1226        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1227        int ret;
1228
1229        switch (mask) {
1230        case IIO_CHAN_INFO_RAW:
1231                ret = iio_device_claim_direct_mode(indio_dev);
1232                if (ret)
1233                        return ret;
1234                ret = iio_hw_consumer_enable(adc->hwc);
1235                if (ret < 0) {
1236                        dev_err(&indio_dev->dev,
1237                                "%s: IIO enable failed (channel %d)\n",
1238                                __func__, chan->channel);
1239                        iio_device_release_direct_mode(indio_dev);
1240                        return ret;
1241                }
1242                ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
1243                iio_hw_consumer_disable(adc->hwc);
1244                if (ret < 0) {
1245                        dev_err(&indio_dev->dev,
1246                                "%s: Conversion failed (channel %d)\n",
1247                                __func__, chan->channel);
1248                        iio_device_release_direct_mode(indio_dev);
1249                        return ret;
1250                }
1251                iio_device_release_direct_mode(indio_dev);
1252                return IIO_VAL_INT;
1253
1254        case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1255                *val = adc->oversamp;
1256
1257                return IIO_VAL_INT;
1258
1259        case IIO_CHAN_INFO_SAMP_FREQ:
1260                *val = adc->sample_freq;
1261
1262                return IIO_VAL_INT;
1263        }
1264
1265        return -EINVAL;
1266}
1267
1268static int stm32_dfsdm_validate_trigger(struct iio_dev *indio_dev,
1269                                        struct iio_trigger *trig)
1270{
1271        return stm32_dfsdm_get_jextsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1272}
1273
1274static const struct iio_info stm32_dfsdm_info_audio = {
1275        .hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1276        .read_raw = stm32_dfsdm_read_raw,
1277        .write_raw = stm32_dfsdm_write_raw,
1278        .update_scan_mode = stm32_dfsdm_update_scan_mode,
1279};
1280
1281static const struct iio_info stm32_dfsdm_info_adc = {
1282        .hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1283        .read_raw = stm32_dfsdm_read_raw,
1284        .write_raw = stm32_dfsdm_write_raw,
1285        .update_scan_mode = stm32_dfsdm_update_scan_mode,
1286        .validate_trigger = stm32_dfsdm_validate_trigger,
1287};
1288
1289static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
1290{
1291        struct iio_dev *indio_dev = arg;
1292        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1293        struct regmap *regmap = adc->dfsdm->regmap;
1294        unsigned int status, int_en;
1295
1296        regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
1297        regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);
1298
1299        if (status & DFSDM_ISR_REOCF_MASK) {
1300                /* Read the data register clean the IRQ status */
1301                regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
1302                complete(&adc->completion);
1303        }
1304
1305        if (status & DFSDM_ISR_ROVRF_MASK) {
1306                if (int_en & DFSDM_CR2_ROVRIE_MASK)
1307                        dev_warn(&indio_dev->dev, "Overrun detected\n");
1308                regmap_update_bits(regmap, DFSDM_ICR(adc->fl_id),
1309                                   DFSDM_ICR_CLRROVRF_MASK,
1310                                   DFSDM_ICR_CLRROVRF_MASK);
1311        }
1312
1313        return IRQ_HANDLED;
1314}
1315
1316/*
1317 * Define external info for SPI Frequency and audio sampling rate that can be
1318 * configured by ASoC driver through consumer.h API
1319 */
1320static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
1321        /* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
1322        {
1323                .name = "spi_clk_freq",
1324                .shared = IIO_SHARED_BY_TYPE,
1325                .read = dfsdm_adc_audio_get_spiclk,
1326                .write = dfsdm_adc_audio_set_spiclk,
1327        },
1328        {},
1329};
1330
1331static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
1332{
1333        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1334
1335        if (adc->dma_chan) {
1336                dma_free_coherent(adc->dma_chan->device->dev,
1337                                  DFSDM_DMA_BUFFER_SIZE,
1338                                  adc->rx_buf, adc->dma_buf);
1339                dma_release_channel(adc->dma_chan);
1340        }
1341}
1342
1343static int stm32_dfsdm_dma_request(struct device *dev,
1344                                   struct iio_dev *indio_dev)
1345{
1346        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1347
1348        adc->dma_chan = dma_request_chan(dev, "rx");
1349        if (IS_ERR(adc->dma_chan)) {
1350                int ret = PTR_ERR(adc->dma_chan);
1351
1352                adc->dma_chan = NULL;
1353                return ret;
1354        }
1355
1356        adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1357                                         DFSDM_DMA_BUFFER_SIZE,
1358                                         &adc->dma_buf, GFP_KERNEL);
1359        if (!adc->rx_buf) {
1360                dma_release_channel(adc->dma_chan);
1361                return -ENOMEM;
1362        }
1363
1364        indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1365        indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;
1366
1367        return 0;
1368}
1369
1370static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev,
1371                                         struct iio_chan_spec *ch)
1372{
1373        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1374        int ret;
1375
1376        ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
1377        if (ret < 0)
1378                return ret;
1379
1380        ch->type = IIO_VOLTAGE;
1381        ch->indexed = 1;
1382
1383        /*
1384         * IIO_CHAN_INFO_RAW: used to compute regular conversion
1385         * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
1386         */
1387        ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1388        ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) |
1389                                        BIT(IIO_CHAN_INFO_SAMP_FREQ);
1390
1391        if (adc->dev_data->type == DFSDM_AUDIO) {
1392                ch->ext_info = dfsdm_adc_audio_ext_info;
1393        } else {
1394                ch->scan_type.shift = 8;
1395        }
1396        ch->scan_type.sign = 's';
1397        ch->scan_type.realbits = 24;
1398        ch->scan_type.storagebits = 32;
1399
1400        return stm32_dfsdm_chan_configure(adc->dfsdm,
1401                                          &adc->dfsdm->ch_list[ch->channel]);
1402}
1403
1404static int stm32_dfsdm_audio_init(struct device *dev, struct iio_dev *indio_dev)
1405{
1406        struct iio_chan_spec *ch;
1407        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1408        struct stm32_dfsdm_channel *d_ch;
1409        int ret;
1410
1411        ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
1412        if (!ch)
1413                return -ENOMEM;
1414
1415        ch->scan_index = 0;
1416
1417        ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch);
1418        if (ret < 0) {
1419                dev_err(&indio_dev->dev, "Channels init failed\n");
1420                return ret;
1421        }
1422        ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);
1423
1424        d_ch = &adc->dfsdm->ch_list[ch->channel];
1425        if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
1426                adc->spi_freq = adc->dfsdm->spi_master_freq;
1427
1428        indio_dev->num_channels = 1;
1429        indio_dev->channels = ch;
1430
1431        return stm32_dfsdm_dma_request(dev, indio_dev);
1432}
1433
1434static int stm32_dfsdm_adc_init(struct device *dev, struct iio_dev *indio_dev)
1435{
1436        struct iio_chan_spec *ch;
1437        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1438        int num_ch;
1439        int ret, chan_idx;
1440
1441        adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
1442        ret = stm32_dfsdm_compute_all_osrs(indio_dev, adc->oversamp);
1443        if (ret < 0)
1444                return ret;
1445
1446        num_ch = of_property_count_u32_elems(indio_dev->dev.of_node,
1447                                             "st,adc-channels");
1448        if (num_ch < 0 || num_ch > adc->dfsdm->num_chs) {
1449                dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
1450                return num_ch < 0 ? num_ch : -EINVAL;
1451        }
1452
1453        /* Bind to SD modulator IIO device */
1454        adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
1455        if (IS_ERR(adc->hwc))
1456                return -EPROBE_DEFER;
1457
1458        ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch),
1459                          GFP_KERNEL);
1460        if (!ch)
1461                return -ENOMEM;
1462
1463        for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
1464                ch[chan_idx].scan_index = chan_idx;
1465                ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &ch[chan_idx]);
1466                if (ret < 0) {
1467                        dev_err(&indio_dev->dev, "Channels init failed\n");
1468                        return ret;
1469                }
1470        }
1471
1472        indio_dev->num_channels = num_ch;
1473        indio_dev->channels = ch;
1474
1475        init_completion(&adc->completion);
1476
1477        /* Optionally request DMA */
1478        ret = stm32_dfsdm_dma_request(dev, indio_dev);
1479        if (ret) {
1480                if (ret != -ENODEV)
1481                        return dev_err_probe(dev, ret,
1482                                             "DMA channel request failed with\n");
1483
1484                dev_dbg(dev, "No DMA support\n");
1485                return 0;
1486        }
1487
1488        ret = iio_triggered_buffer_setup(indio_dev,
1489                                         &iio_pollfunc_store_time, NULL,
1490                                         &stm32_dfsdm_buffer_setup_ops);
1491        if (ret) {
1492                stm32_dfsdm_dma_release(indio_dev);
1493                dev_err(&indio_dev->dev, "buffer setup failed\n");
1494                return ret;
1495        }
1496
1497        /* lptimer/timer hardware triggers */
1498        indio_dev->modes |= INDIO_HARDWARE_TRIGGERED;
1499
1500        return 0;
1501}
1502
1503static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
1504        .type = DFSDM_IIO,
1505        .init = stm32_dfsdm_adc_init,
1506};
1507
1508static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
1509        .type = DFSDM_AUDIO,
1510        .init = stm32_dfsdm_audio_init,
1511};
1512
1513static const struct of_device_id stm32_dfsdm_adc_match[] = {
1514        {
1515                .compatible = "st,stm32-dfsdm-adc",
1516                .data = &stm32h7_dfsdm_adc_data,
1517        },
1518        {
1519                .compatible = "st,stm32-dfsdm-dmic",
1520                .data = &stm32h7_dfsdm_audio_data,
1521        },
1522        {}
1523};
1524
1525static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
1526{
1527        struct device *dev = &pdev->dev;
1528        struct stm32_dfsdm_adc *adc;
1529        struct device_node *np = dev->of_node;
1530        const struct stm32_dfsdm_dev_data *dev_data;
1531        struct iio_dev *iio;
1532        char *name;
1533        int ret, irq, val;
1534
1535        dev_data = of_device_get_match_data(dev);
1536        iio = devm_iio_device_alloc(dev, sizeof(*adc));
1537        if (!iio) {
1538                dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
1539                return -ENOMEM;
1540        }
1541
1542        adc = iio_priv(iio);
1543        adc->dfsdm = dev_get_drvdata(dev->parent);
1544
1545        iio->dev.of_node = np;
1546        iio->modes = INDIO_DIRECT_MODE;
1547
1548        platform_set_drvdata(pdev, iio);
1549
1550        ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
1551        if (ret != 0 || adc->fl_id >= adc->dfsdm->num_fls) {
1552                dev_err(dev, "Missing or bad reg property\n");
1553                return -EINVAL;
1554        }
1555
1556        name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
1557        if (!name)
1558                return -ENOMEM;
1559        if (dev_data->type == DFSDM_AUDIO) {
1560                iio->info = &stm32_dfsdm_info_audio;
1561                snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
1562        } else {
1563                iio->info = &stm32_dfsdm_info_adc;
1564                snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
1565        }
1566        iio->name = name;
1567
1568        /*
1569         * In a first step IRQs generated for channels are not treated.
1570         * So IRQ associated to filter instance 0 is dedicated to the Filter 0.
1571         */
1572        irq = platform_get_irq(pdev, 0);
1573        if (irq < 0)
1574                return irq;
1575
1576        ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
1577                               0, pdev->name, iio);
1578        if (ret < 0) {
1579                dev_err(dev, "Failed to request IRQ\n");
1580                return ret;
1581        }
1582
1583        ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
1584        if (ret < 0) {
1585                dev_err(dev, "Failed to set filter order\n");
1586                return ret;
1587        }
1588
1589        adc->dfsdm->fl_list[adc->fl_id].ford = val;
1590
1591        ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
1592        if (!ret)
1593                adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;
1594
1595        adc->dev_data = dev_data;
1596        ret = dev_data->init(dev, iio);
1597        if (ret < 0)
1598                return ret;
1599
1600        ret = iio_device_register(iio);
1601        if (ret < 0)
1602                goto err_cleanup;
1603
1604        if (dev_data->type == DFSDM_AUDIO) {
1605                ret = of_platform_populate(np, NULL, NULL, dev);
1606                if (ret < 0) {
1607                        dev_err(dev, "Failed to find an audio DAI\n");
1608                        goto err_unregister;
1609                }
1610        }
1611
1612        return 0;
1613
1614err_unregister:
1615        iio_device_unregister(iio);
1616err_cleanup:
1617        stm32_dfsdm_dma_release(iio);
1618
1619        return ret;
1620}
1621
1622static int stm32_dfsdm_adc_remove(struct platform_device *pdev)
1623{
1624        struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1625        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1626
1627        if (adc->dev_data->type == DFSDM_AUDIO)
1628                of_platform_depopulate(&pdev->dev);
1629        iio_device_unregister(indio_dev);
1630        stm32_dfsdm_dma_release(indio_dev);
1631
1632        return 0;
1633}
1634
1635static int __maybe_unused stm32_dfsdm_adc_suspend(struct device *dev)
1636{
1637        struct iio_dev *indio_dev = dev_get_drvdata(dev);
1638
1639        if (iio_buffer_enabled(indio_dev))
1640                stm32_dfsdm_predisable(indio_dev);
1641
1642        return 0;
1643}
1644
1645static int __maybe_unused stm32_dfsdm_adc_resume(struct device *dev)
1646{
1647        struct iio_dev *indio_dev = dev_get_drvdata(dev);
1648        struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1649        const struct iio_chan_spec *chan;
1650        struct stm32_dfsdm_channel *ch;
1651        int i, ret;
1652
1653        /* restore channels configuration */
1654        for (i = 0; i < indio_dev->num_channels; i++) {
1655                chan = indio_dev->channels + i;
1656                ch = &adc->dfsdm->ch_list[chan->channel];
1657                ret = stm32_dfsdm_chan_configure(adc->dfsdm, ch);
1658                if (ret)
1659                        return ret;
1660        }
1661
1662        if (iio_buffer_enabled(indio_dev))
1663                stm32_dfsdm_postenable(indio_dev);
1664
1665        return 0;
1666}
1667
1668static SIMPLE_DEV_PM_OPS(stm32_dfsdm_adc_pm_ops,
1669                         stm32_dfsdm_adc_suspend, stm32_dfsdm_adc_resume);
1670
1671static struct platform_driver stm32_dfsdm_adc_driver = {
1672        .driver = {
1673                .name = "stm32-dfsdm-adc",
1674                .of_match_table = stm32_dfsdm_adc_match,
1675                .pm = &stm32_dfsdm_adc_pm_ops,
1676        },
1677        .probe = stm32_dfsdm_adc_probe,
1678        .remove = stm32_dfsdm_adc_remove,
1679};
1680module_platform_driver(stm32_dfsdm_adc_driver);
1681
1682MODULE_DESCRIPTION("STM32 sigma delta ADC");
1683MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
1684MODULE_LICENSE("GPL v2");
1685