linux/drivers/iio/adc/xilinx-xadc-core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Xilinx XADC driver
   4 *
   5 * Copyright 2013-2014 Analog Devices Inc.
   6 *  Author: Lars-Peter Clausen <lars@metafoo.de>
   7 *
   8 * Documentation for the parts can be found at:
   9 *  - XADC hardmacro: Xilinx UG480
  10 *  - ZYNQ XADC interface: Xilinx UG585
  11 *  - AXI XADC interface: Xilinx PG019
  12 */
  13
  14#include <linux/clk.h>
  15#include <linux/device.h>
  16#include <linux/err.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/kernel.h>
  20#include <linux/module.h>
  21#include <linux/of.h>
  22#include <linux/overflow.h>
  23#include <linux/platform_device.h>
  24#include <linux/slab.h>
  25#include <linux/sysfs.h>
  26
  27#include <linux/iio/buffer.h>
  28#include <linux/iio/events.h>
  29#include <linux/iio/iio.h>
  30#include <linux/iio/sysfs.h>
  31#include <linux/iio/trigger.h>
  32#include <linux/iio/trigger_consumer.h>
  33#include <linux/iio/triggered_buffer.h>
  34
  35#include "xilinx-xadc.h"
  36
  37static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500;
  38
  39/* ZYNQ register definitions */
  40#define XADC_ZYNQ_REG_CFG       0x00
  41#define XADC_ZYNQ_REG_INTSTS    0x04
  42#define XADC_ZYNQ_REG_INTMSK    0x08
  43#define XADC_ZYNQ_REG_STATUS    0x0c
  44#define XADC_ZYNQ_REG_CFIFO     0x10
  45#define XADC_ZYNQ_REG_DFIFO     0x14
  46#define XADC_ZYNQ_REG_CTL               0x18
  47
  48#define XADC_ZYNQ_CFG_ENABLE            BIT(31)
  49#define XADC_ZYNQ_CFG_CFIFOTH_MASK      (0xf << 20)
  50#define XADC_ZYNQ_CFG_CFIFOTH_OFFSET    20
  51#define XADC_ZYNQ_CFG_DFIFOTH_MASK      (0xf << 16)
  52#define XADC_ZYNQ_CFG_DFIFOTH_OFFSET    16
  53#define XADC_ZYNQ_CFG_WEDGE             BIT(13)
  54#define XADC_ZYNQ_CFG_REDGE             BIT(12)
  55#define XADC_ZYNQ_CFG_TCKRATE_MASK      (0x3 << 8)
  56#define XADC_ZYNQ_CFG_TCKRATE_DIV2      (0x0 << 8)
  57#define XADC_ZYNQ_CFG_TCKRATE_DIV4      (0x1 << 8)
  58#define XADC_ZYNQ_CFG_TCKRATE_DIV8      (0x2 << 8)
  59#define XADC_ZYNQ_CFG_TCKRATE_DIV16     (0x3 << 8)
  60#define XADC_ZYNQ_CFG_IGAP_MASK         0x1f
  61#define XADC_ZYNQ_CFG_IGAP(x)           (x)
  62
  63#define XADC_ZYNQ_INT_CFIFO_LTH         BIT(9)
  64#define XADC_ZYNQ_INT_DFIFO_GTH         BIT(8)
  65#define XADC_ZYNQ_INT_ALARM_MASK        0xff
  66#define XADC_ZYNQ_INT_ALARM_OFFSET      0
  67
  68#define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK (0xf << 16)
  69#define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET       16
  70#define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK (0xf << 12)
  71#define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET       12
  72#define XADC_ZYNQ_STATUS_CFIFOF         BIT(11)
  73#define XADC_ZYNQ_STATUS_CFIFOE         BIT(10)
  74#define XADC_ZYNQ_STATUS_DFIFOF         BIT(9)
  75#define XADC_ZYNQ_STATUS_DFIFOE         BIT(8)
  76#define XADC_ZYNQ_STATUS_OT             BIT(7)
  77#define XADC_ZYNQ_STATUS_ALM(x)         BIT(x)
  78
  79#define XADC_ZYNQ_CTL_RESET             BIT(4)
  80
  81#define XADC_ZYNQ_CMD_NOP               0x00
  82#define XADC_ZYNQ_CMD_READ              0x01
  83#define XADC_ZYNQ_CMD_WRITE             0x02
  84
  85#define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data))
  86
  87/* AXI register definitions */
  88#define XADC_AXI_REG_RESET              0x00
  89#define XADC_AXI_REG_STATUS             0x04
  90#define XADC_AXI_REG_ALARM_STATUS       0x08
  91#define XADC_AXI_REG_CONVST             0x0c
  92#define XADC_AXI_REG_XADC_RESET         0x10
  93#define XADC_AXI_REG_GIER               0x5c
  94#define XADC_AXI_REG_IPISR              0x60
  95#define XADC_AXI_REG_IPIER              0x68
  96
  97/* 7 Series */
  98#define XADC_7S_AXI_ADC_REG_OFFSET      0x200
  99
 100/* UltraScale */
 101#define XADC_US_AXI_ADC_REG_OFFSET      0x400
 102
 103#define XADC_AXI_RESET_MAGIC            0xa
 104#define XADC_AXI_GIER_ENABLE            BIT(31)
 105
 106#define XADC_AXI_INT_EOS                BIT(4)
 107#define XADC_AXI_INT_ALARM_MASK         0x3c0f
 108
 109#define XADC_FLAGS_BUFFERED BIT(0)
 110
 111/*
 112 * The XADC hardware supports a samplerate of up to 1MSPS. Unfortunately it does
 113 * not have a hardware FIFO. Which means an interrupt is generated for each
 114 * conversion sequence. At 1MSPS sample rate the CPU in ZYNQ7000 is completely
 115 * overloaded by the interrupts that it soft-lockups. For this reason the driver
 116 * limits the maximum samplerate 150kSPS. At this rate the CPU is fairly busy,
 117 * but still responsive.
 118 */
 119#define XADC_MAX_SAMPLERATE 150000
 120
 121static void xadc_write_reg(struct xadc *xadc, unsigned int reg,
 122        uint32_t val)
 123{
 124        writel(val, xadc->base + reg);
 125}
 126
 127static void xadc_read_reg(struct xadc *xadc, unsigned int reg,
 128        uint32_t *val)
 129{
 130        *val = readl(xadc->base + reg);
 131}
 132
 133/*
 134 * The ZYNQ interface uses two asynchronous FIFOs for communication with the
 135 * XADC. Reads and writes to the XADC register are performed by submitting a
 136 * request to the command FIFO (CFIFO), once the request has been completed the
 137 * result can be read from the data FIFO (DFIFO). The method currently used in
 138 * this driver is to submit the request for a read/write operation, then go to
 139 * sleep and wait for an interrupt that signals that a response is available in
 140 * the data FIFO.
 141 */
 142
 143static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd,
 144        unsigned int n)
 145{
 146        unsigned int i;
 147
 148        for (i = 0; i < n; i++)
 149                xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]);
 150}
 151
 152static void xadc_zynq_drain_fifo(struct xadc *xadc)
 153{
 154        uint32_t status, tmp;
 155
 156        xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
 157
 158        while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) {
 159                xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
 160                xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
 161        }
 162}
 163
 164static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask,
 165        unsigned int val)
 166{
 167        xadc->zynq_intmask &= ~mask;
 168        xadc->zynq_intmask |= val;
 169
 170        xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK,
 171                xadc->zynq_intmask | xadc->zynq_masked_alarm);
 172}
 173
 174static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg,
 175        uint16_t val)
 176{
 177        uint32_t cmd[1];
 178        uint32_t tmp;
 179        int ret;
 180
 181        spin_lock_irq(&xadc->lock);
 182        xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
 183                        XADC_ZYNQ_INT_DFIFO_GTH);
 184
 185        reinit_completion(&xadc->completion);
 186
 187        cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val);
 188        xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
 189        xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
 190        tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
 191        tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
 192        xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
 193
 194        xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
 195        spin_unlock_irq(&xadc->lock);
 196
 197        ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
 198        if (ret == 0)
 199                ret = -EIO;
 200        else
 201                ret = 0;
 202
 203        xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
 204
 205        return ret;
 206}
 207
 208static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg,
 209        uint16_t *val)
 210{
 211        uint32_t cmd[2];
 212        uint32_t resp, tmp;
 213        int ret;
 214
 215        cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0);
 216        cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0);
 217
 218        spin_lock_irq(&xadc->lock);
 219        xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
 220                        XADC_ZYNQ_INT_DFIFO_GTH);
 221        xadc_zynq_drain_fifo(xadc);
 222        reinit_completion(&xadc->completion);
 223
 224        xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
 225        xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
 226        tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
 227        tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
 228        xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
 229
 230        xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
 231        spin_unlock_irq(&xadc->lock);
 232        ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
 233        if (ret == 0)
 234                ret = -EIO;
 235        if (ret < 0)
 236                return ret;
 237
 238        xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
 239        xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
 240
 241        *val = resp & 0xffff;
 242
 243        return 0;
 244}
 245
 246static unsigned int xadc_zynq_transform_alarm(unsigned int alarm)
 247{
 248        return ((alarm & 0x80) >> 4) |
 249                ((alarm & 0x78) << 1) |
 250                (alarm & 0x07);
 251}
 252
 253/*
 254 * The ZYNQ threshold interrupts are level sensitive. Since we can't make the
 255 * threshold condition go way from within the interrupt handler, this means as
 256 * soon as a threshold condition is present we would enter the interrupt handler
 257 * again and again. To work around this we mask all active thresholds interrupts
 258 * in the interrupt handler and start a timer. In this timer we poll the
 259 * interrupt status and only if the interrupt is inactive we unmask it again.
 260 */
 261static void xadc_zynq_unmask_worker(struct work_struct *work)
 262{
 263        struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work);
 264        unsigned int misc_sts, unmask;
 265
 266        xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts);
 267
 268        misc_sts &= XADC_ZYNQ_INT_ALARM_MASK;
 269
 270        spin_lock_irq(&xadc->lock);
 271
 272        /* Clear those bits which are not active anymore */
 273        unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm;
 274        xadc->zynq_masked_alarm &= misc_sts;
 275
 276        /* Also clear those which are masked out anyway */
 277        xadc->zynq_masked_alarm &= ~xadc->zynq_intmask;
 278
 279        /* Clear the interrupts before we unmask them */
 280        xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask);
 281
 282        xadc_zynq_update_intmsk(xadc, 0, 0);
 283
 284        spin_unlock_irq(&xadc->lock);
 285
 286        /* if still pending some alarm re-trigger the timer */
 287        if (xadc->zynq_masked_alarm) {
 288                schedule_delayed_work(&xadc->zynq_unmask_work,
 289                                msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
 290        }
 291
 292}
 293
 294static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid)
 295{
 296        struct iio_dev *indio_dev = devid;
 297        struct xadc *xadc = iio_priv(indio_dev);
 298        uint32_t status;
 299
 300        xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
 301
 302        status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm);
 303
 304        if (!status)
 305                return IRQ_NONE;
 306
 307        spin_lock(&xadc->lock);
 308
 309        xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status);
 310
 311        if (status & XADC_ZYNQ_INT_DFIFO_GTH) {
 312                xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
 313                        XADC_ZYNQ_INT_DFIFO_GTH);
 314                complete(&xadc->completion);
 315        }
 316
 317        status &= XADC_ZYNQ_INT_ALARM_MASK;
 318        if (status) {
 319                xadc->zynq_masked_alarm |= status;
 320                /*
 321                 * mask the current event interrupt,
 322                 * unmask it when the interrupt is no more active.
 323                 */
 324                xadc_zynq_update_intmsk(xadc, 0, 0);
 325
 326                xadc_handle_events(indio_dev,
 327                                xadc_zynq_transform_alarm(status));
 328
 329                /* unmask the required interrupts in timer. */
 330                schedule_delayed_work(&xadc->zynq_unmask_work,
 331                                msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
 332        }
 333        spin_unlock(&xadc->lock);
 334
 335        return IRQ_HANDLED;
 336}
 337
 338#define XADC_ZYNQ_TCK_RATE_MAX 50000000
 339#define XADC_ZYNQ_IGAP_DEFAULT 20
 340#define XADC_ZYNQ_PCAP_RATE_MAX 200000000
 341
 342static int xadc_zynq_setup(struct platform_device *pdev,
 343        struct iio_dev *indio_dev, int irq)
 344{
 345        struct xadc *xadc = iio_priv(indio_dev);
 346        unsigned long pcap_rate;
 347        unsigned int tck_div;
 348        unsigned int div;
 349        unsigned int igap;
 350        unsigned int tck_rate;
 351        int ret;
 352
 353        /* TODO: Figure out how to make igap and tck_rate configurable */
 354        igap = XADC_ZYNQ_IGAP_DEFAULT;
 355        tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
 356
 357        xadc->zynq_intmask = ~0;
 358
 359        pcap_rate = clk_get_rate(xadc->clk);
 360        if (!pcap_rate)
 361                return -EINVAL;
 362
 363        if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
 364                ret = clk_set_rate(xadc->clk,
 365                                   (unsigned long)XADC_ZYNQ_PCAP_RATE_MAX);
 366                if (ret)
 367                        return ret;
 368        }
 369
 370        if (tck_rate > pcap_rate / 2) {
 371                div = 2;
 372        } else {
 373                div = pcap_rate / tck_rate;
 374                if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX)
 375                        div++;
 376        }
 377
 378        if (div <= 3)
 379                tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2;
 380        else if (div <= 7)
 381                tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4;
 382        else if (div <= 15)
 383                tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8;
 384        else
 385                tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16;
 386
 387        xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET);
 388        xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0);
 389        xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0);
 390        xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask);
 391        xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE |
 392                        XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE |
 393                        tck_div | XADC_ZYNQ_CFG_IGAP(igap));
 394
 395        if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
 396                ret = clk_set_rate(xadc->clk, pcap_rate);
 397                if (ret)
 398                        return ret;
 399        }
 400
 401        return 0;
 402}
 403
 404static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc)
 405{
 406        unsigned int div;
 407        uint32_t val;
 408
 409        xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val);
 410
 411        switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) {
 412        case XADC_ZYNQ_CFG_TCKRATE_DIV4:
 413                div = 4;
 414                break;
 415        case XADC_ZYNQ_CFG_TCKRATE_DIV8:
 416                div = 8;
 417                break;
 418        case XADC_ZYNQ_CFG_TCKRATE_DIV16:
 419                div = 16;
 420                break;
 421        default:
 422                div = 2;
 423                break;
 424        }
 425
 426        return clk_get_rate(xadc->clk) / div;
 427}
 428
 429static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm)
 430{
 431        unsigned long flags;
 432        uint32_t status;
 433
 434        /* Move OT to bit 7 */
 435        alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07);
 436
 437        spin_lock_irqsave(&xadc->lock, flags);
 438
 439        /* Clear previous interrupts if any. */
 440        xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
 441        xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm);
 442
 443        xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK,
 444                ~alarm & XADC_ZYNQ_INT_ALARM_MASK);
 445
 446        spin_unlock_irqrestore(&xadc->lock, flags);
 447}
 448
 449static const struct xadc_ops xadc_zynq_ops = {
 450        .read = xadc_zynq_read_adc_reg,
 451        .write = xadc_zynq_write_adc_reg,
 452        .setup = xadc_zynq_setup,
 453        .get_dclk_rate = xadc_zynq_get_dclk_rate,
 454        .interrupt_handler = xadc_zynq_interrupt_handler,
 455        .update_alarm = xadc_zynq_update_alarm,
 456        .type = XADC_TYPE_S7,
 457};
 458
 459static const unsigned int xadc_axi_reg_offsets[] = {
 460        [XADC_TYPE_S7] = XADC_7S_AXI_ADC_REG_OFFSET,
 461        [XADC_TYPE_US] = XADC_US_AXI_ADC_REG_OFFSET,
 462};
 463
 464static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg,
 465        uint16_t *val)
 466{
 467        uint32_t val32;
 468
 469        xadc_read_reg(xadc, xadc_axi_reg_offsets[xadc->ops->type] + reg * 4,
 470                &val32);
 471        *val = val32 & 0xffff;
 472
 473        return 0;
 474}
 475
 476static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg,
 477        uint16_t val)
 478{
 479        xadc_write_reg(xadc, xadc_axi_reg_offsets[xadc->ops->type] + reg * 4,
 480                val);
 481
 482        return 0;
 483}
 484
 485static int xadc_axi_setup(struct platform_device *pdev,
 486        struct iio_dev *indio_dev, int irq)
 487{
 488        struct xadc *xadc = iio_priv(indio_dev);
 489
 490        xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC);
 491        xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE);
 492
 493        return 0;
 494}
 495
 496static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid)
 497{
 498        struct iio_dev *indio_dev = devid;
 499        struct xadc *xadc = iio_priv(indio_dev);
 500        uint32_t status, mask;
 501        unsigned int events;
 502
 503        xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status);
 504        xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask);
 505        status &= mask;
 506
 507        if (!status)
 508                return IRQ_NONE;
 509
 510        if ((status & XADC_AXI_INT_EOS) && xadc->trigger)
 511                iio_trigger_poll(xadc->trigger);
 512
 513        if (status & XADC_AXI_INT_ALARM_MASK) {
 514                /*
 515                 * The order of the bits in the AXI-XADC status register does
 516                 * not match the order of the bits in the XADC alarm enable
 517                 * register. xadc_handle_events() expects the events to be in
 518                 * the same order as the XADC alarm enable register.
 519                 */
 520                events = (status & 0x000e) >> 1;
 521                events |= (status & 0x0001) << 3;
 522                events |= (status & 0x3c00) >> 6;
 523                xadc_handle_events(indio_dev, events);
 524        }
 525
 526        xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status);
 527
 528        return IRQ_HANDLED;
 529}
 530
 531static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm)
 532{
 533        uint32_t val;
 534        unsigned long flags;
 535
 536        /*
 537         * The order of the bits in the AXI-XADC status register does not match
 538         * the order of the bits in the XADC alarm enable register. We get
 539         * passed the alarm mask in the same order as in the XADC alarm enable
 540         * register.
 541         */
 542        alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) |
 543                        ((alarm & 0xf0) << 6);
 544
 545        spin_lock_irqsave(&xadc->lock, flags);
 546        xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
 547        val &= ~XADC_AXI_INT_ALARM_MASK;
 548        val |= alarm;
 549        xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
 550        spin_unlock_irqrestore(&xadc->lock, flags);
 551}
 552
 553static unsigned long xadc_axi_get_dclk(struct xadc *xadc)
 554{
 555        return clk_get_rate(xadc->clk);
 556}
 557
 558static const struct xadc_ops xadc_7s_axi_ops = {
 559        .read = xadc_axi_read_adc_reg,
 560        .write = xadc_axi_write_adc_reg,
 561        .setup = xadc_axi_setup,
 562        .get_dclk_rate = xadc_axi_get_dclk,
 563        .update_alarm = xadc_axi_update_alarm,
 564        .interrupt_handler = xadc_axi_interrupt_handler,
 565        .flags = XADC_FLAGS_BUFFERED,
 566        .type = XADC_TYPE_S7,
 567};
 568
 569static const struct xadc_ops xadc_us_axi_ops = {
 570        .read = xadc_axi_read_adc_reg,
 571        .write = xadc_axi_write_adc_reg,
 572        .setup = xadc_axi_setup,
 573        .get_dclk_rate = xadc_axi_get_dclk,
 574        .update_alarm = xadc_axi_update_alarm,
 575        .interrupt_handler = xadc_axi_interrupt_handler,
 576        .flags = XADC_FLAGS_BUFFERED,
 577        .type = XADC_TYPE_US,
 578};
 579
 580static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
 581        uint16_t mask, uint16_t val)
 582{
 583        uint16_t tmp;
 584        int ret;
 585
 586        ret = _xadc_read_adc_reg(xadc, reg, &tmp);
 587        if (ret)
 588                return ret;
 589
 590        return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val);
 591}
 592
 593static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
 594        uint16_t mask, uint16_t val)
 595{
 596        int ret;
 597
 598        mutex_lock(&xadc->mutex);
 599        ret = _xadc_update_adc_reg(xadc, reg, mask, val);
 600        mutex_unlock(&xadc->mutex);
 601
 602        return ret;
 603}
 604
 605static unsigned long xadc_get_dclk_rate(struct xadc *xadc)
 606{
 607        return xadc->ops->get_dclk_rate(xadc);
 608}
 609
 610static int xadc_update_scan_mode(struct iio_dev *indio_dev,
 611        const unsigned long *mask)
 612{
 613        struct xadc *xadc = iio_priv(indio_dev);
 614        size_t new_size, n;
 615        void *data;
 616
 617        n = bitmap_weight(mask, indio_dev->masklength);
 618
 619        if (check_mul_overflow(n, sizeof(*xadc->data), &new_size))
 620                return -ENOMEM;
 621
 622        data = devm_krealloc(indio_dev->dev.parent, xadc->data,
 623                             new_size, GFP_KERNEL);
 624        if (!data)
 625                return -ENOMEM;
 626
 627        memset(data, 0, new_size);
 628        xadc->data = data;
 629
 630        return 0;
 631}
 632
 633static unsigned int xadc_scan_index_to_channel(unsigned int scan_index)
 634{
 635        switch (scan_index) {
 636        case 5:
 637                return XADC_REG_VCCPINT;
 638        case 6:
 639                return XADC_REG_VCCPAUX;
 640        case 7:
 641                return XADC_REG_VCCO_DDR;
 642        case 8:
 643                return XADC_REG_TEMP;
 644        case 9:
 645                return XADC_REG_VCCINT;
 646        case 10:
 647                return XADC_REG_VCCAUX;
 648        case 11:
 649                return XADC_REG_VPVN;
 650        case 12:
 651                return XADC_REG_VREFP;
 652        case 13:
 653                return XADC_REG_VREFN;
 654        case 14:
 655                return XADC_REG_VCCBRAM;
 656        default:
 657                return XADC_REG_VAUX(scan_index - 16);
 658        }
 659}
 660
 661static irqreturn_t xadc_trigger_handler(int irq, void *p)
 662{
 663        struct iio_poll_func *pf = p;
 664        struct iio_dev *indio_dev = pf->indio_dev;
 665        struct xadc *xadc = iio_priv(indio_dev);
 666        unsigned int chan;
 667        int i, j;
 668
 669        if (!xadc->data)
 670                goto out;
 671
 672        j = 0;
 673        for_each_set_bit(i, indio_dev->active_scan_mask,
 674                indio_dev->masklength) {
 675                chan = xadc_scan_index_to_channel(i);
 676                xadc_read_adc_reg(xadc, chan, &xadc->data[j]);
 677                j++;
 678        }
 679
 680        iio_push_to_buffers(indio_dev, xadc->data);
 681
 682out:
 683        iio_trigger_notify_done(indio_dev->trig);
 684
 685        return IRQ_HANDLED;
 686}
 687
 688static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state)
 689{
 690        struct xadc *xadc = iio_trigger_get_drvdata(trigger);
 691        unsigned long flags;
 692        unsigned int convst;
 693        unsigned int val;
 694        int ret = 0;
 695
 696        mutex_lock(&xadc->mutex);
 697
 698        if (state) {
 699                /* Only one of the two triggers can be active at a time. */
 700                if (xadc->trigger != NULL) {
 701                        ret = -EBUSY;
 702                        goto err_out;
 703                } else {
 704                        xadc->trigger = trigger;
 705                        if (trigger == xadc->convst_trigger)
 706                                convst = XADC_CONF0_EC;
 707                        else
 708                                convst = 0;
 709                }
 710                ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC,
 711                                        convst);
 712                if (ret)
 713                        goto err_out;
 714        } else {
 715                xadc->trigger = NULL;
 716        }
 717
 718        spin_lock_irqsave(&xadc->lock, flags);
 719        xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
 720        xadc_write_reg(xadc, XADC_AXI_REG_IPISR, XADC_AXI_INT_EOS);
 721        if (state)
 722                val |= XADC_AXI_INT_EOS;
 723        else
 724                val &= ~XADC_AXI_INT_EOS;
 725        xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
 726        spin_unlock_irqrestore(&xadc->lock, flags);
 727
 728err_out:
 729        mutex_unlock(&xadc->mutex);
 730
 731        return ret;
 732}
 733
 734static const struct iio_trigger_ops xadc_trigger_ops = {
 735        .set_trigger_state = &xadc_trigger_set_state,
 736};
 737
 738static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev,
 739        const char *name)
 740{
 741        struct device *dev = indio_dev->dev.parent;
 742        struct iio_trigger *trig;
 743        int ret;
 744
 745        trig = devm_iio_trigger_alloc(dev, "%s%d-%s", indio_dev->name,
 746                                      iio_device_id(indio_dev), name);
 747        if (trig == NULL)
 748                return ERR_PTR(-ENOMEM);
 749
 750        trig->ops = &xadc_trigger_ops;
 751        iio_trigger_set_drvdata(trig, iio_priv(indio_dev));
 752
 753        ret = devm_iio_trigger_register(dev, trig);
 754        if (ret)
 755                return ERR_PTR(ret);
 756
 757        return trig;
 758}
 759
 760static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode)
 761{
 762        uint16_t val;
 763
 764        /*
 765         * As per datasheet the power-down bits are don't care in the
 766         * UltraScale, but as per reality setting the power-down bit for the
 767         * non-existing ADC-B powers down the main ADC, so just return and don't
 768         * do anything.
 769         */
 770        if (xadc->ops->type == XADC_TYPE_US)
 771                return 0;
 772
 773        /* Powerdown the ADC-B when it is not needed. */
 774        switch (seq_mode) {
 775        case XADC_CONF1_SEQ_SIMULTANEOUS:
 776        case XADC_CONF1_SEQ_INDEPENDENT:
 777                val = 0;
 778                break;
 779        default:
 780                val = XADC_CONF2_PD_ADC_B;
 781                break;
 782        }
 783
 784        return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK,
 785                val);
 786}
 787
 788static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode)
 789{
 790        unsigned int aux_scan_mode = scan_mode >> 16;
 791
 792        /* UltraScale has only one ADC and supports only continuous mode */
 793        if (xadc->ops->type == XADC_TYPE_US)
 794                return XADC_CONF1_SEQ_CONTINUOUS;
 795
 796        if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL)
 797                return XADC_CONF1_SEQ_SIMULTANEOUS;
 798
 799        if ((aux_scan_mode & 0xff00) == 0 ||
 800                (aux_scan_mode & 0x00ff) == 0)
 801                return XADC_CONF1_SEQ_CONTINUOUS;
 802
 803        return XADC_CONF1_SEQ_SIMULTANEOUS;
 804}
 805
 806static int xadc_postdisable(struct iio_dev *indio_dev)
 807{
 808        struct xadc *xadc = iio_priv(indio_dev);
 809        unsigned long scan_mask;
 810        int ret;
 811        int i;
 812
 813        scan_mask = 1; /* Run calibration as part of the sequence */
 814        for (i = 0; i < indio_dev->num_channels; i++)
 815                scan_mask |= BIT(indio_dev->channels[i].scan_index);
 816
 817        /* Enable all channels and calibration */
 818        ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
 819        if (ret)
 820                return ret;
 821
 822        ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
 823        if (ret)
 824                return ret;
 825
 826        ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
 827                XADC_CONF1_SEQ_CONTINUOUS);
 828        if (ret)
 829                return ret;
 830
 831        return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS);
 832}
 833
 834static int xadc_preenable(struct iio_dev *indio_dev)
 835{
 836        struct xadc *xadc = iio_priv(indio_dev);
 837        unsigned long scan_mask;
 838        int seq_mode;
 839        int ret;
 840
 841        ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
 842                XADC_CONF1_SEQ_DEFAULT);
 843        if (ret)
 844                goto err;
 845
 846        scan_mask = *indio_dev->active_scan_mask;
 847        seq_mode = xadc_get_seq_mode(xadc, scan_mask);
 848
 849        ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
 850        if (ret)
 851                goto err;
 852
 853        /*
 854         * In simultaneous mode the upper and lower aux channels are samples at
 855         * the same time. In this mode the upper 8 bits in the sequencer
 856         * register are don't care and the lower 8 bits control two channels
 857         * each. As such we must set the bit if either the channel in the lower
 858         * group or the upper group is enabled.
 859         */
 860        if (seq_mode == XADC_CONF1_SEQ_SIMULTANEOUS)
 861                scan_mask = ((scan_mask >> 8) | scan_mask) & 0xff0000;
 862
 863        ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
 864        if (ret)
 865                goto err;
 866
 867        ret = xadc_power_adc_b(xadc, seq_mode);
 868        if (ret)
 869                goto err;
 870
 871        ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
 872                seq_mode);
 873        if (ret)
 874                goto err;
 875
 876        return 0;
 877err:
 878        xadc_postdisable(indio_dev);
 879        return ret;
 880}
 881
 882static const struct iio_buffer_setup_ops xadc_buffer_ops = {
 883        .preenable = &xadc_preenable,
 884        .postdisable = &xadc_postdisable,
 885};
 886
 887static int xadc_read_samplerate(struct xadc *xadc)
 888{
 889        unsigned int div;
 890        uint16_t val16;
 891        int ret;
 892
 893        ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16);
 894        if (ret)
 895                return ret;
 896
 897        div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET;
 898        if (div < 2)
 899                div = 2;
 900
 901        return xadc_get_dclk_rate(xadc) / div / 26;
 902}
 903
 904static int xadc_read_raw(struct iio_dev *indio_dev,
 905        struct iio_chan_spec const *chan, int *val, int *val2, long info)
 906{
 907        struct xadc *xadc = iio_priv(indio_dev);
 908        unsigned int bits = chan->scan_type.realbits;
 909        uint16_t val16;
 910        int ret;
 911
 912        switch (info) {
 913        case IIO_CHAN_INFO_RAW:
 914                if (iio_buffer_enabled(indio_dev))
 915                        return -EBUSY;
 916                ret = xadc_read_adc_reg(xadc, chan->address, &val16);
 917                if (ret < 0)
 918                        return ret;
 919
 920                val16 >>= chan->scan_type.shift;
 921                if (chan->scan_type.sign == 'u')
 922                        *val = val16;
 923                else
 924                        *val = sign_extend32(val16, bits - 1);
 925
 926                return IIO_VAL_INT;
 927        case IIO_CHAN_INFO_SCALE:
 928                switch (chan->type) {
 929                case IIO_VOLTAGE:
 930                        /* V = (val * 3.0) / 2**bits */
 931                        switch (chan->address) {
 932                        case XADC_REG_VCCINT:
 933                        case XADC_REG_VCCAUX:
 934                        case XADC_REG_VREFP:
 935                        case XADC_REG_VREFN:
 936                        case XADC_REG_VCCBRAM:
 937                        case XADC_REG_VCCPINT:
 938                        case XADC_REG_VCCPAUX:
 939                        case XADC_REG_VCCO_DDR:
 940                                *val = 3000;
 941                                break;
 942                        default:
 943                                *val = 1000;
 944                                break;
 945                        }
 946                        *val2 = chan->scan_type.realbits;
 947                        return IIO_VAL_FRACTIONAL_LOG2;
 948                case IIO_TEMP:
 949                        /* Temp in C = (val * 503.975) / 2**bits - 273.15 */
 950                        *val = 503975;
 951                        *val2 = bits;
 952                        return IIO_VAL_FRACTIONAL_LOG2;
 953                default:
 954                        return -EINVAL;
 955                }
 956        case IIO_CHAN_INFO_OFFSET:
 957                /* Only the temperature channel has an offset */
 958                *val = -((273150 << bits) / 503975);
 959                return IIO_VAL_INT;
 960        case IIO_CHAN_INFO_SAMP_FREQ:
 961                ret = xadc_read_samplerate(xadc);
 962                if (ret < 0)
 963                        return ret;
 964
 965                *val = ret;
 966                return IIO_VAL_INT;
 967        default:
 968                return -EINVAL;
 969        }
 970}
 971
 972static int xadc_write_samplerate(struct xadc *xadc, int val)
 973{
 974        unsigned long clk_rate = xadc_get_dclk_rate(xadc);
 975        unsigned int div;
 976
 977        if (!clk_rate)
 978                return -EINVAL;
 979
 980        if (val <= 0)
 981                return -EINVAL;
 982
 983        /* Max. 150 kSPS */
 984        if (val > XADC_MAX_SAMPLERATE)
 985                val = XADC_MAX_SAMPLERATE;
 986
 987        val *= 26;
 988
 989        /* Min 1MHz */
 990        if (val < 1000000)
 991                val = 1000000;
 992
 993        /*
 994         * We want to round down, but only if we do not exceed the 150 kSPS
 995         * limit.
 996         */
 997        div = clk_rate / val;
 998        if (clk_rate / div / 26 > XADC_MAX_SAMPLERATE)
 999                div++;
1000        if (div < 2)
1001                div = 2;
1002        else if (div > 0xff)
1003                div = 0xff;
1004
1005        return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK,
1006                div << XADC_CONF2_DIV_OFFSET);
1007}
1008
1009static int xadc_write_raw(struct iio_dev *indio_dev,
1010        struct iio_chan_spec const *chan, int val, int val2, long info)
1011{
1012        struct xadc *xadc = iio_priv(indio_dev);
1013
1014        if (info != IIO_CHAN_INFO_SAMP_FREQ)
1015                return -EINVAL;
1016
1017        return xadc_write_samplerate(xadc, val);
1018}
1019
1020static const struct iio_event_spec xadc_temp_events[] = {
1021        {
1022                .type = IIO_EV_TYPE_THRESH,
1023                .dir = IIO_EV_DIR_RISING,
1024                .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
1025                                BIT(IIO_EV_INFO_VALUE) |
1026                                BIT(IIO_EV_INFO_HYSTERESIS),
1027        },
1028};
1029
1030/* Separate values for upper and lower thresholds, but only a shared enabled */
1031static const struct iio_event_spec xadc_voltage_events[] = {
1032        {
1033                .type = IIO_EV_TYPE_THRESH,
1034                .dir = IIO_EV_DIR_RISING,
1035                .mask_separate = BIT(IIO_EV_INFO_VALUE),
1036        }, {
1037                .type = IIO_EV_TYPE_THRESH,
1038                .dir = IIO_EV_DIR_FALLING,
1039                .mask_separate = BIT(IIO_EV_INFO_VALUE),
1040        }, {
1041                .type = IIO_EV_TYPE_THRESH,
1042                .dir = IIO_EV_DIR_EITHER,
1043                .mask_separate = BIT(IIO_EV_INFO_ENABLE),
1044        },
1045};
1046
1047#define XADC_CHAN_TEMP(_chan, _scan_index, _addr, _bits) { \
1048        .type = IIO_TEMP, \
1049        .indexed = 1, \
1050        .channel = (_chan), \
1051        .address = (_addr), \
1052        .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1053                BIT(IIO_CHAN_INFO_SCALE) | \
1054                BIT(IIO_CHAN_INFO_OFFSET), \
1055        .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1056        .event_spec = xadc_temp_events, \
1057        .num_event_specs = ARRAY_SIZE(xadc_temp_events), \
1058        .scan_index = (_scan_index), \
1059        .scan_type = { \
1060                .sign = 'u', \
1061                .realbits = (_bits), \
1062                .storagebits = 16, \
1063                .shift = 16 - (_bits), \
1064                .endianness = IIO_CPU, \
1065        }, \
1066}
1067
1068#define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _bits, _ext, _alarm) { \
1069        .type = IIO_VOLTAGE, \
1070        .indexed = 1, \
1071        .channel = (_chan), \
1072        .address = (_addr), \
1073        .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1074                BIT(IIO_CHAN_INFO_SCALE), \
1075        .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1076        .event_spec = (_alarm) ? xadc_voltage_events : NULL, \
1077        .num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \
1078        .scan_index = (_scan_index), \
1079        .scan_type = { \
1080                .sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \
1081                .realbits = (_bits), \
1082                .storagebits = 16, \
1083                .shift = 16 - (_bits), \
1084                .endianness = IIO_CPU, \
1085        }, \
1086        .extend_name = _ext, \
1087}
1088
1089/* 7 Series */
1090#define XADC_7S_CHAN_TEMP(_chan, _scan_index, _addr) \
1091        XADC_CHAN_TEMP(_chan, _scan_index, _addr, 12)
1092#define XADC_7S_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) \
1093        XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, 12, _ext, _alarm)
1094
1095static const struct iio_chan_spec xadc_7s_channels[] = {
1096        XADC_7S_CHAN_TEMP(0, 8, XADC_REG_TEMP),
1097        XADC_7S_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
1098        XADC_7S_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
1099        XADC_7S_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
1100        XADC_7S_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true),
1101        XADC_7S_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true),
1102        XADC_7S_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true),
1103        XADC_7S_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
1104        XADC_7S_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
1105        XADC_7S_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
1106        XADC_7S_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
1107        XADC_7S_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
1108        XADC_7S_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
1109        XADC_7S_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
1110        XADC_7S_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
1111        XADC_7S_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
1112        XADC_7S_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
1113        XADC_7S_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
1114        XADC_7S_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
1115        XADC_7S_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
1116        XADC_7S_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
1117        XADC_7S_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
1118        XADC_7S_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
1119        XADC_7S_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
1120        XADC_7S_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
1121        XADC_7S_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
1122};
1123
1124/* UltraScale */
1125#define XADC_US_CHAN_TEMP(_chan, _scan_index, _addr) \
1126        XADC_CHAN_TEMP(_chan, _scan_index, _addr, 10)
1127#define XADC_US_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) \
1128        XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, 10, _ext, _alarm)
1129
1130static const struct iio_chan_spec xadc_us_channels[] = {
1131        XADC_US_CHAN_TEMP(0, 8, XADC_REG_TEMP),
1132        XADC_US_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
1133        XADC_US_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
1134        XADC_US_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
1135        XADC_US_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpsintlp", true),
1136        XADC_US_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpsintfp", true),
1137        XADC_US_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccpsaux", true),
1138        XADC_US_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
1139        XADC_US_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
1140        XADC_US_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
1141        XADC_US_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
1142        XADC_US_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
1143        XADC_US_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
1144        XADC_US_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
1145        XADC_US_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
1146        XADC_US_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
1147        XADC_US_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
1148        XADC_US_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
1149        XADC_US_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
1150        XADC_US_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
1151        XADC_US_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
1152        XADC_US_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
1153        XADC_US_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
1154        XADC_US_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
1155        XADC_US_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
1156        XADC_US_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
1157};
1158
1159static const struct iio_info xadc_info = {
1160        .read_raw = &xadc_read_raw,
1161        .write_raw = &xadc_write_raw,
1162        .read_event_config = &xadc_read_event_config,
1163        .write_event_config = &xadc_write_event_config,
1164        .read_event_value = &xadc_read_event_value,
1165        .write_event_value = &xadc_write_event_value,
1166        .update_scan_mode = &xadc_update_scan_mode,
1167};
1168
1169static const struct of_device_id xadc_of_match_table[] = {
1170        {
1171                .compatible = "xlnx,zynq-xadc-1.00.a",
1172                .data = &xadc_zynq_ops
1173        }, {
1174                .compatible = "xlnx,axi-xadc-1.00.a",
1175                .data = &xadc_7s_axi_ops
1176        }, {
1177                .compatible = "xlnx,system-management-wiz-1.3",
1178                .data = &xadc_us_axi_ops
1179        },
1180        { },
1181};
1182MODULE_DEVICE_TABLE(of, xadc_of_match_table);
1183
1184static int xadc_parse_dt(struct iio_dev *indio_dev, struct device_node *np,
1185        unsigned int *conf)
1186{
1187        struct device *dev = indio_dev->dev.parent;
1188        struct xadc *xadc = iio_priv(indio_dev);
1189        const struct iio_chan_spec *channel_templates;
1190        struct iio_chan_spec *channels, *chan;
1191        struct device_node *chan_node, *child;
1192        unsigned int max_channels;
1193        unsigned int num_channels;
1194        const char *external_mux;
1195        u32 ext_mux_chan;
1196        u32 reg;
1197        int ret;
1198
1199        *conf = 0;
1200
1201        ret = of_property_read_string(np, "xlnx,external-mux", &external_mux);
1202        if (ret < 0 || strcasecmp(external_mux, "none") == 0)
1203                xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE;
1204        else if (strcasecmp(external_mux, "single") == 0)
1205                xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE;
1206        else if (strcasecmp(external_mux, "dual") == 0)
1207                xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL;
1208        else
1209                return -EINVAL;
1210
1211        if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) {
1212                ret = of_property_read_u32(np, "xlnx,external-mux-channel",
1213                                        &ext_mux_chan);
1214                if (ret < 0)
1215                        return ret;
1216
1217                if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) {
1218                        if (ext_mux_chan == 0)
1219                                ext_mux_chan = XADC_REG_VPVN;
1220                        else if (ext_mux_chan <= 16)
1221                                ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1222                        else
1223                                return -EINVAL;
1224                } else {
1225                        if (ext_mux_chan > 0 && ext_mux_chan <= 8)
1226                                ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1227                        else
1228                                return -EINVAL;
1229                }
1230
1231                *conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan);
1232        }
1233        if (xadc->ops->type == XADC_TYPE_S7) {
1234                channel_templates = xadc_7s_channels;
1235                max_channels = ARRAY_SIZE(xadc_7s_channels);
1236        } else {
1237                channel_templates = xadc_us_channels;
1238                max_channels = ARRAY_SIZE(xadc_us_channels);
1239        }
1240        channels = devm_kmemdup(dev, channel_templates,
1241                                sizeof(channels[0]) * max_channels, GFP_KERNEL);
1242        if (!channels)
1243                return -ENOMEM;
1244
1245        num_channels = 9;
1246        chan = &channels[9];
1247
1248        chan_node = of_get_child_by_name(np, "xlnx,channels");
1249        if (chan_node) {
1250                for_each_child_of_node(chan_node, child) {
1251                        if (num_channels >= max_channels) {
1252                                of_node_put(child);
1253                                break;
1254                        }
1255
1256                        ret = of_property_read_u32(child, "reg", &reg);
1257                        if (ret || reg > 16)
1258                                continue;
1259
1260                        if (of_property_read_bool(child, "xlnx,bipolar"))
1261                                chan->scan_type.sign = 's';
1262
1263                        if (reg == 0) {
1264                                chan->scan_index = 11;
1265                                chan->address = XADC_REG_VPVN;
1266                        } else {
1267                                chan->scan_index = 15 + reg;
1268                                chan->address = XADC_REG_VAUX(reg - 1);
1269                        }
1270                        num_channels++;
1271                        chan++;
1272                }
1273        }
1274        of_node_put(chan_node);
1275
1276        indio_dev->num_channels = num_channels;
1277        indio_dev->channels = devm_krealloc(dev, channels,
1278                                            sizeof(*channels) * num_channels,
1279                                            GFP_KERNEL);
1280        /* If we can't resize the channels array, just use the original */
1281        if (!indio_dev->channels)
1282                indio_dev->channels = channels;
1283
1284        return 0;
1285}
1286
1287static const char * const xadc_type_names[] = {
1288        [XADC_TYPE_S7] = "xadc",
1289        [XADC_TYPE_US] = "xilinx-system-monitor",
1290};
1291
1292static void xadc_clk_disable_unprepare(void *data)
1293{
1294        struct clk *clk = data;
1295
1296        clk_disable_unprepare(clk);
1297}
1298
1299static void xadc_cancel_delayed_work(void *data)
1300{
1301        struct delayed_work *work = data;
1302
1303        cancel_delayed_work_sync(work);
1304}
1305
1306static int xadc_probe(struct platform_device *pdev)
1307{
1308        struct device *dev = &pdev->dev;
1309        const struct of_device_id *id;
1310        struct iio_dev *indio_dev;
1311        unsigned int bipolar_mask;
1312        unsigned int conf0;
1313        struct xadc *xadc;
1314        int ret;
1315        int irq;
1316        int i;
1317
1318        if (!dev->of_node)
1319                return -ENODEV;
1320
1321        id = of_match_node(xadc_of_match_table, dev->of_node);
1322        if (!id)
1323                return -EINVAL;
1324
1325        irq = platform_get_irq(pdev, 0);
1326        if (irq <= 0)
1327                return -ENXIO;
1328
1329        indio_dev = devm_iio_device_alloc(dev, sizeof(*xadc));
1330        if (!indio_dev)
1331                return -ENOMEM;
1332
1333        xadc = iio_priv(indio_dev);
1334        xadc->ops = id->data;
1335        xadc->irq = irq;
1336        init_completion(&xadc->completion);
1337        mutex_init(&xadc->mutex);
1338        spin_lock_init(&xadc->lock);
1339        INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker);
1340
1341        xadc->base = devm_platform_ioremap_resource(pdev, 0);
1342        if (IS_ERR(xadc->base))
1343                return PTR_ERR(xadc->base);
1344
1345        indio_dev->name = xadc_type_names[xadc->ops->type];
1346        indio_dev->modes = INDIO_DIRECT_MODE;
1347        indio_dev->info = &xadc_info;
1348
1349        ret = xadc_parse_dt(indio_dev, dev->of_node, &conf0);
1350        if (ret)
1351                return ret;
1352
1353        if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1354                ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
1355                                                      &iio_pollfunc_store_time,
1356                                                      &xadc_trigger_handler,
1357                                                      &xadc_buffer_ops);
1358                if (ret)
1359                        return ret;
1360
1361                xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst");
1362                if (IS_ERR(xadc->convst_trigger))
1363                        return PTR_ERR(xadc->convst_trigger);
1364
1365                xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev,
1366                        "samplerate");
1367                if (IS_ERR(xadc->samplerate_trigger))
1368                        return PTR_ERR(xadc->samplerate_trigger);
1369        }
1370
1371        xadc->clk = devm_clk_get(dev, NULL);
1372        if (IS_ERR(xadc->clk))
1373                return PTR_ERR(xadc->clk);
1374
1375        ret = clk_prepare_enable(xadc->clk);
1376        if (ret)
1377                return ret;
1378
1379        ret = devm_add_action_or_reset(dev,
1380                                       xadc_clk_disable_unprepare, xadc->clk);
1381        if (ret)
1382                return ret;
1383
1384        /*
1385         * Make sure not to exceed the maximum samplerate since otherwise the
1386         * resulting interrupt storm will soft-lock the system.
1387         */
1388        if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1389                ret = xadc_read_samplerate(xadc);
1390                if (ret < 0)
1391                        return ret;
1392
1393                if (ret > XADC_MAX_SAMPLERATE) {
1394                        ret = xadc_write_samplerate(xadc, XADC_MAX_SAMPLERATE);
1395                        if (ret < 0)
1396                                return ret;
1397                }
1398        }
1399
1400        ret = devm_request_irq(dev, xadc->irq, xadc->ops->interrupt_handler, 0,
1401                               dev_name(dev), indio_dev);
1402        if (ret)
1403                return ret;
1404
1405        ret = devm_add_action_or_reset(dev, xadc_cancel_delayed_work,
1406                                       &xadc->zynq_unmask_work);
1407        if (ret)
1408                return ret;
1409
1410        ret = xadc->ops->setup(pdev, indio_dev, xadc->irq);
1411        if (ret)
1412                return ret;
1413
1414        for (i = 0; i < 16; i++)
1415                xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1416                        &xadc->threshold[i]);
1417
1418        ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0);
1419        if (ret)
1420                return ret;
1421
1422        bipolar_mask = 0;
1423        for (i = 0; i < indio_dev->num_channels; i++) {
1424                if (indio_dev->channels[i].scan_type.sign == 's')
1425                        bipolar_mask |= BIT(indio_dev->channels[i].scan_index);
1426        }
1427
1428        ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask);
1429        if (ret)
1430                return ret;
1431
1432        ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1),
1433                bipolar_mask >> 16);
1434        if (ret)
1435                return ret;
1436
1437        /* Disable all alarms */
1438        ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_ALARM_MASK,
1439                                  XADC_CONF1_ALARM_MASK);
1440        if (ret)
1441                return ret;
1442
1443        /* Set thresholds to min/max */
1444        for (i = 0; i < 16; i++) {
1445                /*
1446                 * Set max voltage threshold and both temperature thresholds to
1447                 * 0xffff, min voltage threshold to 0.
1448                 */
1449                if (i % 8 < 4 || i == 7)
1450                        xadc->threshold[i] = 0xffff;
1451                else
1452                        xadc->threshold[i] = 0;
1453                ret = xadc_write_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1454                        xadc->threshold[i]);
1455                if (ret)
1456                        return ret;
1457        }
1458
1459        /* Go to non-buffered mode */
1460        xadc_postdisable(indio_dev);
1461
1462        return devm_iio_device_register(dev, indio_dev);
1463}
1464
1465static struct platform_driver xadc_driver = {
1466        .probe = xadc_probe,
1467        .driver = {
1468                .name = "xadc",
1469                .of_match_table = xadc_of_match_table,
1470        },
1471};
1472module_platform_driver(xadc_driver);
1473
1474MODULE_LICENSE("GPL v2");
1475MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
1476MODULE_DESCRIPTION("Xilinx XADC IIO driver");
1477