linux/drivers/iio/temperature/ltc2983.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Analog Devices LTC2983 Multi-Sensor Digital Temperature Measurement System
   4 * driver
   5 *
   6 * Copyright 2019 Analog Devices Inc.
   7 */
   8#include <linux/bitfield.h>
   9#include <linux/completion.h>
  10#include <linux/device.h>
  11#include <linux/kernel.h>
  12#include <linux/iio/iio.h>
  13#include <linux/interrupt.h>
  14#include <linux/list.h>
  15#include <linux/module.h>
  16#include <linux/of_gpio.h>
  17#include <linux/regmap.h>
  18#include <linux/spi/spi.h>
  19
  20/* register map */
  21#define LTC2983_STATUS_REG                      0x0000
  22#define LTC2983_TEMP_RES_START_REG              0x0010
  23#define LTC2983_TEMP_RES_END_REG                0x005F
  24#define LTC2983_GLOBAL_CONFIG_REG               0x00F0
  25#define LTC2983_MULT_CHANNEL_START_REG          0x00F4
  26#define LTC2983_MULT_CHANNEL_END_REG            0x00F7
  27#define LTC2983_MUX_CONFIG_REG                  0x00FF
  28#define LTC2983_CHAN_ASSIGN_START_REG           0x0200
  29#define LTC2983_CHAN_ASSIGN_END_REG             0x024F
  30#define LTC2983_CUST_SENS_TBL_START_REG         0x0250
  31#define LTC2983_CUST_SENS_TBL_END_REG           0x03CF
  32
  33#define LTC2983_DIFFERENTIAL_CHAN_MIN           2
  34#define LTC2983_MAX_CHANNELS_NR                 20
  35#define LTC2983_MIN_CHANNELS_NR                 1
  36#define LTC2983_SLEEP                           0x97
  37#define LTC2983_CUSTOM_STEINHART_SIZE           24
  38#define LTC2983_CUSTOM_SENSOR_ENTRY_SZ          6
  39#define LTC2983_CUSTOM_STEINHART_ENTRY_SZ       4
  40
  41#define LTC2983_CHAN_START_ADDR(chan) \
  42                        (((chan - 1) * 4) + LTC2983_CHAN_ASSIGN_START_REG)
  43#define LTC2983_CHAN_RES_ADDR(chan) \
  44                        (((chan - 1) * 4) + LTC2983_TEMP_RES_START_REG)
  45#define LTC2983_THERMOCOUPLE_DIFF_MASK          BIT(3)
  46#define LTC2983_THERMOCOUPLE_SGL(x) \
  47                                FIELD_PREP(LTC2983_THERMOCOUPLE_DIFF_MASK, x)
  48#define LTC2983_THERMOCOUPLE_OC_CURR_MASK       GENMASK(1, 0)
  49#define LTC2983_THERMOCOUPLE_OC_CURR(x) \
  50                                FIELD_PREP(LTC2983_THERMOCOUPLE_OC_CURR_MASK, x)
  51#define LTC2983_THERMOCOUPLE_OC_CHECK_MASK      BIT(2)
  52#define LTC2983_THERMOCOUPLE_OC_CHECK(x) \
  53                        FIELD_PREP(LTC2983_THERMOCOUPLE_OC_CHECK_MASK, x)
  54
  55#define LTC2983_THERMISTOR_DIFF_MASK            BIT(2)
  56#define LTC2983_THERMISTOR_SGL(x) \
  57                                FIELD_PREP(LTC2983_THERMISTOR_DIFF_MASK, x)
  58#define LTC2983_THERMISTOR_R_SHARE_MASK         BIT(1)
  59#define LTC2983_THERMISTOR_R_SHARE(x) \
  60                                FIELD_PREP(LTC2983_THERMISTOR_R_SHARE_MASK, x)
  61#define LTC2983_THERMISTOR_C_ROTATE_MASK        BIT(0)
  62#define LTC2983_THERMISTOR_C_ROTATE(x) \
  63                                FIELD_PREP(LTC2983_THERMISTOR_C_ROTATE_MASK, x)
  64
  65#define LTC2983_DIODE_DIFF_MASK                 BIT(2)
  66#define LTC2983_DIODE_SGL(x) \
  67                        FIELD_PREP(LTC2983_DIODE_DIFF_MASK, x)
  68#define LTC2983_DIODE_3_CONV_CYCLE_MASK         BIT(1)
  69#define LTC2983_DIODE_3_CONV_CYCLE(x) \
  70                                FIELD_PREP(LTC2983_DIODE_3_CONV_CYCLE_MASK, x)
  71#define LTC2983_DIODE_AVERAGE_ON_MASK           BIT(0)
  72#define LTC2983_DIODE_AVERAGE_ON(x) \
  73                                FIELD_PREP(LTC2983_DIODE_AVERAGE_ON_MASK, x)
  74
  75#define LTC2983_RTD_4_WIRE_MASK                 BIT(3)
  76#define LTC2983_RTD_ROTATION_MASK               BIT(1)
  77#define LTC2983_RTD_C_ROTATE(x) \
  78                        FIELD_PREP(LTC2983_RTD_ROTATION_MASK, x)
  79#define LTC2983_RTD_KELVIN_R_SENSE_MASK         GENMASK(3, 2)
  80#define LTC2983_RTD_N_WIRES_MASK                GENMASK(3, 2)
  81#define LTC2983_RTD_N_WIRES(x) \
  82                        FIELD_PREP(LTC2983_RTD_N_WIRES_MASK, x)
  83#define LTC2983_RTD_R_SHARE_MASK                BIT(0)
  84#define LTC2983_RTD_R_SHARE(x) \
  85                        FIELD_PREP(LTC2983_RTD_R_SHARE_MASK, 1)
  86
  87#define LTC2983_COMMON_HARD_FAULT_MASK  GENMASK(31, 30)
  88#define LTC2983_COMMON_SOFT_FAULT_MASK  GENMASK(27, 25)
  89
  90#define LTC2983_STATUS_START_MASK       BIT(7)
  91#define LTC2983_STATUS_START(x)         FIELD_PREP(LTC2983_STATUS_START_MASK, x)
  92#define LTC2983_STATUS_UP_MASK          GENMASK(7, 6)
  93#define LTC2983_STATUS_UP(reg)          FIELD_GET(LTC2983_STATUS_UP_MASK, reg)
  94
  95#define LTC2983_STATUS_CHAN_SEL_MASK    GENMASK(4, 0)
  96#define LTC2983_STATUS_CHAN_SEL(x) \
  97                                FIELD_PREP(LTC2983_STATUS_CHAN_SEL_MASK, x)
  98
  99#define LTC2983_TEMP_UNITS_MASK         BIT(2)
 100#define LTC2983_TEMP_UNITS(x)           FIELD_PREP(LTC2983_TEMP_UNITS_MASK, x)
 101
 102#define LTC2983_NOTCH_FREQ_MASK         GENMASK(1, 0)
 103#define LTC2983_NOTCH_FREQ(x)           FIELD_PREP(LTC2983_NOTCH_FREQ_MASK, x)
 104
 105#define LTC2983_RES_VALID_MASK          BIT(24)
 106#define LTC2983_DATA_MASK               GENMASK(23, 0)
 107#define LTC2983_DATA_SIGN_BIT           23
 108
 109#define LTC2983_CHAN_TYPE_MASK          GENMASK(31, 27)
 110#define LTC2983_CHAN_TYPE(x)            FIELD_PREP(LTC2983_CHAN_TYPE_MASK, x)
 111
 112/* cold junction for thermocouples and rsense for rtd's and thermistor's */
 113#define LTC2983_CHAN_ASSIGN_MASK        GENMASK(26, 22)
 114#define LTC2983_CHAN_ASSIGN(x)          FIELD_PREP(LTC2983_CHAN_ASSIGN_MASK, x)
 115
 116#define LTC2983_CUSTOM_LEN_MASK         GENMASK(5, 0)
 117#define LTC2983_CUSTOM_LEN(x)           FIELD_PREP(LTC2983_CUSTOM_LEN_MASK, x)
 118
 119#define LTC2983_CUSTOM_ADDR_MASK        GENMASK(11, 6)
 120#define LTC2983_CUSTOM_ADDR(x)          FIELD_PREP(LTC2983_CUSTOM_ADDR_MASK, x)
 121
 122#define LTC2983_THERMOCOUPLE_CFG_MASK   GENMASK(21, 18)
 123#define LTC2983_THERMOCOUPLE_CFG(x) \
 124                                FIELD_PREP(LTC2983_THERMOCOUPLE_CFG_MASK, x)
 125#define LTC2983_THERMOCOUPLE_HARD_FAULT_MASK    GENMASK(31, 29)
 126#define LTC2983_THERMOCOUPLE_SOFT_FAULT_MASK    GENMASK(28, 25)
 127
 128#define LTC2983_RTD_CFG_MASK            GENMASK(21, 18)
 129#define LTC2983_RTD_CFG(x)              FIELD_PREP(LTC2983_RTD_CFG_MASK, x)
 130#define LTC2983_RTD_EXC_CURRENT_MASK    GENMASK(17, 14)
 131#define LTC2983_RTD_EXC_CURRENT(x) \
 132                                FIELD_PREP(LTC2983_RTD_EXC_CURRENT_MASK, x)
 133#define LTC2983_RTD_CURVE_MASK          GENMASK(13, 12)
 134#define LTC2983_RTD_CURVE(x)            FIELD_PREP(LTC2983_RTD_CURVE_MASK, x)
 135
 136#define LTC2983_THERMISTOR_CFG_MASK     GENMASK(21, 19)
 137#define LTC2983_THERMISTOR_CFG(x) \
 138                                FIELD_PREP(LTC2983_THERMISTOR_CFG_MASK, x)
 139#define LTC2983_THERMISTOR_EXC_CURRENT_MASK     GENMASK(18, 15)
 140#define LTC2983_THERMISTOR_EXC_CURRENT(x) \
 141                        FIELD_PREP(LTC2983_THERMISTOR_EXC_CURRENT_MASK, x)
 142
 143#define LTC2983_DIODE_CFG_MASK          GENMASK(26, 24)
 144#define LTC2983_DIODE_CFG(x)            FIELD_PREP(LTC2983_DIODE_CFG_MASK, x)
 145#define LTC2983_DIODE_EXC_CURRENT_MASK  GENMASK(23, 22)
 146#define LTC2983_DIODE_EXC_CURRENT(x) \
 147                                FIELD_PREP(LTC2983_DIODE_EXC_CURRENT_MASK, x)
 148#define LTC2983_DIODE_IDEAL_FACTOR_MASK GENMASK(21, 0)
 149#define LTC2983_DIODE_IDEAL_FACTOR(x) \
 150                                FIELD_PREP(LTC2983_DIODE_IDEAL_FACTOR_MASK, x)
 151
 152#define LTC2983_R_SENSE_VAL_MASK        GENMASK(26, 0)
 153#define LTC2983_R_SENSE_VAL(x)          FIELD_PREP(LTC2983_R_SENSE_VAL_MASK, x)
 154
 155#define LTC2983_ADC_SINGLE_ENDED_MASK   BIT(26)
 156#define LTC2983_ADC_SINGLE_ENDED(x) \
 157                                FIELD_PREP(LTC2983_ADC_SINGLE_ENDED_MASK, x)
 158
 159enum {
 160        LTC2983_SENSOR_THERMOCOUPLE = 1,
 161        LTC2983_SENSOR_THERMOCOUPLE_CUSTOM = 9,
 162        LTC2983_SENSOR_RTD = 10,
 163        LTC2983_SENSOR_RTD_CUSTOM = 18,
 164        LTC2983_SENSOR_THERMISTOR = 19,
 165        LTC2983_SENSOR_THERMISTOR_STEINHART = 26,
 166        LTC2983_SENSOR_THERMISTOR_CUSTOM = 27,
 167        LTC2983_SENSOR_DIODE = 28,
 168        LTC2983_SENSOR_SENSE_RESISTOR = 29,
 169        LTC2983_SENSOR_DIRECT_ADC = 30,
 170};
 171
 172#define to_thermocouple(_sensor) \
 173                container_of(_sensor, struct ltc2983_thermocouple, sensor)
 174
 175#define to_rtd(_sensor) \
 176                container_of(_sensor, struct ltc2983_rtd, sensor)
 177
 178#define to_thermistor(_sensor) \
 179                container_of(_sensor, struct ltc2983_thermistor, sensor)
 180
 181#define to_diode(_sensor) \
 182                container_of(_sensor, struct ltc2983_diode, sensor)
 183
 184#define to_rsense(_sensor) \
 185                container_of(_sensor, struct ltc2983_rsense, sensor)
 186
 187#define to_adc(_sensor) \
 188                container_of(_sensor, struct ltc2983_adc, sensor)
 189
 190struct ltc2983_data {
 191        struct regmap *regmap;
 192        struct spi_device *spi;
 193        struct mutex lock;
 194        struct completion completion;
 195        struct iio_chan_spec *iio_chan;
 196        struct ltc2983_sensor **sensors;
 197        u32 mux_delay_config;
 198        u32 filter_notch_freq;
 199        u16 custom_table_size;
 200        u8 num_channels;
 201        u8 iio_channels;
 202        /*
 203         * DMA (thus cache coherency maintenance) requires the
 204         * transfer buffers to live in their own cache lines.
 205         * Holds the converted temperature
 206         */
 207        __be32 temp ____cacheline_aligned;
 208};
 209
 210struct ltc2983_sensor {
 211        int (*fault_handler)(const struct ltc2983_data *st, const u32 result);
 212        int (*assign_chan)(struct ltc2983_data *st,
 213                           const struct ltc2983_sensor *sensor);
 214        /* specifies the sensor channel */
 215        u32 chan;
 216        /* sensor type */
 217        u32 type;
 218};
 219
 220struct ltc2983_custom_sensor {
 221        /* raw table sensor data */
 222        u8 *table;
 223        size_t size;
 224        /* address offset */
 225        s8 offset;
 226        bool is_steinhart;
 227};
 228
 229struct ltc2983_thermocouple {
 230        struct ltc2983_sensor sensor;
 231        struct ltc2983_custom_sensor *custom;
 232        u32 sensor_config;
 233        u32 cold_junction_chan;
 234};
 235
 236struct ltc2983_rtd {
 237        struct ltc2983_sensor sensor;
 238        struct ltc2983_custom_sensor *custom;
 239        u32 sensor_config;
 240        u32 r_sense_chan;
 241        u32 excitation_current;
 242        u32 rtd_curve;
 243};
 244
 245struct ltc2983_thermistor {
 246        struct ltc2983_sensor sensor;
 247        struct ltc2983_custom_sensor *custom;
 248        u32 sensor_config;
 249        u32 r_sense_chan;
 250        u32 excitation_current;
 251};
 252
 253struct ltc2983_diode {
 254        struct ltc2983_sensor sensor;
 255        u32 sensor_config;
 256        u32 excitation_current;
 257        u32 ideal_factor_value;
 258};
 259
 260struct ltc2983_rsense {
 261        struct ltc2983_sensor sensor;
 262        u32 r_sense_val;
 263};
 264
 265struct ltc2983_adc {
 266        struct ltc2983_sensor sensor;
 267        bool single_ended;
 268};
 269
 270/*
 271 * Convert to Q format numbers. These number's are integers where
 272 * the number of integer and fractional bits are specified. The resolution
 273 * is given by 1/@resolution and tell us the number of fractional bits. For
 274 * instance a resolution of 2^-10 means we have 10 fractional bits.
 275 */
 276static u32 __convert_to_raw(const u64 val, const u32 resolution)
 277{
 278        u64 __res = val * resolution;
 279
 280        /* all values are multiplied by 1000000 to remove the fraction */
 281        do_div(__res, 1000000);
 282
 283        return __res;
 284}
 285
 286static u32 __convert_to_raw_sign(const u64 val, const u32 resolution)
 287{
 288        s64 __res = -(s32)val;
 289
 290        __res = __convert_to_raw(__res, resolution);
 291
 292        return (u32)-__res;
 293}
 294
 295static int __ltc2983_fault_handler(const struct ltc2983_data *st,
 296                                   const u32 result, const u32 hard_mask,
 297                                   const u32 soft_mask)
 298{
 299        const struct device *dev = &st->spi->dev;
 300
 301        if (result & hard_mask) {
 302                dev_err(dev, "Invalid conversion: Sensor HARD fault\n");
 303                return -EIO;
 304        } else if (result & soft_mask) {
 305                /* just print a warning */
 306                dev_warn(dev, "Suspicious conversion: Sensor SOFT fault\n");
 307        }
 308
 309        return 0;
 310}
 311
 312static int __ltc2983_chan_assign_common(const struct ltc2983_data *st,
 313                                        const struct ltc2983_sensor *sensor,
 314                                        u32 chan_val)
 315{
 316        u32 reg = LTC2983_CHAN_START_ADDR(sensor->chan);
 317        __be32 __chan_val;
 318
 319        chan_val |= LTC2983_CHAN_TYPE(sensor->type);
 320        dev_dbg(&st->spi->dev, "Assign reg:0x%04X, val:0x%08X\n", reg,
 321                chan_val);
 322        __chan_val = cpu_to_be32(chan_val);
 323        return regmap_bulk_write(st->regmap, reg, &__chan_val,
 324                                 sizeof(__chan_val));
 325}
 326
 327static int __ltc2983_chan_custom_sensor_assign(struct ltc2983_data *st,
 328                                          struct ltc2983_custom_sensor *custom,
 329                                          u32 *chan_val)
 330{
 331        u32 reg;
 332        u8 mult = custom->is_steinhart ? LTC2983_CUSTOM_STEINHART_ENTRY_SZ :
 333                LTC2983_CUSTOM_SENSOR_ENTRY_SZ;
 334        const struct device *dev = &st->spi->dev;
 335        /*
 336         * custom->size holds the raw size of the table. However, when
 337         * configuring the sensor channel, we must write the number of
 338         * entries of the table minus 1. For steinhart sensors 0 is written
 339         * since the size is constant!
 340         */
 341        const u8 len = custom->is_steinhart ? 0 :
 342                (custom->size / LTC2983_CUSTOM_SENSOR_ENTRY_SZ) - 1;
 343        /*
 344         * Check if the offset was assigned already. It should be for steinhart
 345         * sensors. When coming from sleep, it should be assigned for all.
 346         */
 347        if (custom->offset < 0) {
 348                /*
 349                 * This needs to be done again here because, from the moment
 350                 * when this test was done (successfully) for this custom
 351                 * sensor, a steinhart sensor might have been added changing
 352                 * custom_table_size...
 353                 */
 354                if (st->custom_table_size + custom->size >
 355                    (LTC2983_CUST_SENS_TBL_END_REG -
 356                     LTC2983_CUST_SENS_TBL_START_REG) + 1) {
 357                        dev_err(dev,
 358                                "Not space left(%d) for new custom sensor(%zu)",
 359                                st->custom_table_size,
 360                                custom->size);
 361                        return -EINVAL;
 362                }
 363
 364                custom->offset = st->custom_table_size /
 365                                        LTC2983_CUSTOM_SENSOR_ENTRY_SZ;
 366                st->custom_table_size += custom->size;
 367        }
 368
 369        reg = (custom->offset * mult) + LTC2983_CUST_SENS_TBL_START_REG;
 370
 371        *chan_val |= LTC2983_CUSTOM_LEN(len);
 372        *chan_val |= LTC2983_CUSTOM_ADDR(custom->offset);
 373        dev_dbg(dev, "Assign custom sensor, reg:0x%04X, off:%d, sz:%zu",
 374                reg, custom->offset,
 375                custom->size);
 376        /* write custom sensor table */
 377        return regmap_bulk_write(st->regmap, reg, custom->table, custom->size);
 378}
 379
 380static struct ltc2983_custom_sensor *__ltc2983_custom_sensor_new(
 381                                                struct ltc2983_data *st,
 382                                                const struct device_node *np,
 383                                                const char *propname,
 384                                                const bool is_steinhart,
 385                                                const u32 resolution,
 386                                                const bool has_signed)
 387{
 388        struct ltc2983_custom_sensor *new_custom;
 389        u8 index, n_entries, tbl = 0;
 390        struct device *dev = &st->spi->dev;
 391        /*
 392         * For custom steinhart, the full u32 is taken. For all the others
 393         * the MSB is discarded.
 394         */
 395        const u8 n_size = is_steinhart ? 4 : 3;
 396        const u8 e_size = is_steinhart ? sizeof(u32) : sizeof(u64);
 397
 398        n_entries = of_property_count_elems_of_size(np, propname, e_size);
 399        /* n_entries must be an even number */
 400        if (!n_entries || (n_entries % 2) != 0) {
 401                dev_err(dev, "Number of entries either 0 or not even\n");
 402                return ERR_PTR(-EINVAL);
 403        }
 404
 405        new_custom = devm_kzalloc(dev, sizeof(*new_custom), GFP_KERNEL);
 406        if (!new_custom)
 407                return ERR_PTR(-ENOMEM);
 408
 409        new_custom->size = n_entries * n_size;
 410        /* check Steinhart size */
 411        if (is_steinhart && new_custom->size != LTC2983_CUSTOM_STEINHART_SIZE) {
 412                dev_err(dev, "Steinhart sensors size(%zu) must be 24",
 413                                                        new_custom->size);
 414                return ERR_PTR(-EINVAL);
 415        }
 416        /* Check space on the table. */
 417        if (st->custom_table_size + new_custom->size >
 418            (LTC2983_CUST_SENS_TBL_END_REG -
 419             LTC2983_CUST_SENS_TBL_START_REG) + 1) {
 420                dev_err(dev, "No space left(%d) for new custom sensor(%zu)",
 421                                st->custom_table_size, new_custom->size);
 422                return ERR_PTR(-EINVAL);
 423        }
 424
 425        /* allocate the table */
 426        new_custom->table = devm_kzalloc(dev, new_custom->size, GFP_KERNEL);
 427        if (!new_custom->table)
 428                return ERR_PTR(-ENOMEM);
 429
 430        for (index = 0; index < n_entries; index++) {
 431                u64 temp = 0, j;
 432                /*
 433                 * Steinhart sensors are configured with raw values in the
 434                 * devicetree. For the other sensors we must convert the
 435                 * value to raw. The odd index's correspond to temperarures
 436                 * and always have 1/1024 of resolution. Temperatures also
 437                 * come in kelvin, so signed values is not possible
 438                 */
 439                if (!is_steinhart) {
 440                        of_property_read_u64_index(np, propname, index, &temp);
 441
 442                        if ((index % 2) != 0)
 443                                temp = __convert_to_raw(temp, 1024);
 444                        else if (has_signed && (s64)temp < 0)
 445                                temp = __convert_to_raw_sign(temp, resolution);
 446                        else
 447                                temp = __convert_to_raw(temp, resolution);
 448                } else {
 449                        u32 t32;
 450
 451                        of_property_read_u32_index(np, propname, index, &t32);
 452                        temp = t32;
 453                }
 454
 455                for (j = 0; j < n_size; j++)
 456                        new_custom->table[tbl++] =
 457                                temp >> (8 * (n_size - j - 1));
 458        }
 459
 460        new_custom->is_steinhart = is_steinhart;
 461        /*
 462         * This is done to first add all the steinhart sensors to the table,
 463         * in order to maximize the table usage. If we mix adding steinhart
 464         * with the other sensors, we might have to do some roundup to make
 465         * sure that sensor_addr - 0x250(start address) is a multiple of 4
 466         * (for steinhart), and a multiple of 6 for all the other sensors.
 467         * Since we have const 24 bytes for steinhart sensors and 24 is
 468         * also a multiple of 6, we guarantee that the first non-steinhart
 469         * sensor will sit in a correct address without the need of filling
 470         * addresses.
 471         */
 472        if (is_steinhart) {
 473                new_custom->offset = st->custom_table_size /
 474                                        LTC2983_CUSTOM_STEINHART_ENTRY_SZ;
 475                st->custom_table_size += new_custom->size;
 476        } else {
 477                /* mark as unset. This is checked later on the assign phase */
 478                new_custom->offset = -1;
 479        }
 480
 481        return new_custom;
 482}
 483
 484static int ltc2983_thermocouple_fault_handler(const struct ltc2983_data *st,
 485                                              const u32 result)
 486{
 487        return __ltc2983_fault_handler(st, result,
 488                                       LTC2983_THERMOCOUPLE_HARD_FAULT_MASK,
 489                                       LTC2983_THERMOCOUPLE_SOFT_FAULT_MASK);
 490}
 491
 492static int ltc2983_common_fault_handler(const struct ltc2983_data *st,
 493                                        const u32 result)
 494{
 495        return __ltc2983_fault_handler(st, result,
 496                                       LTC2983_COMMON_HARD_FAULT_MASK,
 497                                       LTC2983_COMMON_SOFT_FAULT_MASK);
 498}
 499
 500static int ltc2983_thermocouple_assign_chan(struct ltc2983_data *st,
 501                                const struct ltc2983_sensor *sensor)
 502{
 503        struct ltc2983_thermocouple *thermo = to_thermocouple(sensor);
 504        u32 chan_val;
 505
 506        chan_val = LTC2983_CHAN_ASSIGN(thermo->cold_junction_chan);
 507        chan_val |= LTC2983_THERMOCOUPLE_CFG(thermo->sensor_config);
 508
 509        if (thermo->custom) {
 510                int ret;
 511
 512                ret = __ltc2983_chan_custom_sensor_assign(st, thermo->custom,
 513                                                          &chan_val);
 514                if (ret)
 515                        return ret;
 516        }
 517        return __ltc2983_chan_assign_common(st, sensor, chan_val);
 518}
 519
 520static int ltc2983_rtd_assign_chan(struct ltc2983_data *st,
 521                                   const struct ltc2983_sensor *sensor)
 522{
 523        struct ltc2983_rtd *rtd = to_rtd(sensor);
 524        u32 chan_val;
 525
 526        chan_val = LTC2983_CHAN_ASSIGN(rtd->r_sense_chan);
 527        chan_val |= LTC2983_RTD_CFG(rtd->sensor_config);
 528        chan_val |= LTC2983_RTD_EXC_CURRENT(rtd->excitation_current);
 529        chan_val |= LTC2983_RTD_CURVE(rtd->rtd_curve);
 530
 531        if (rtd->custom) {
 532                int ret;
 533
 534                ret = __ltc2983_chan_custom_sensor_assign(st, rtd->custom,
 535                                                          &chan_val);
 536                if (ret)
 537                        return ret;
 538        }
 539        return __ltc2983_chan_assign_common(st, sensor, chan_val);
 540}
 541
 542static int ltc2983_thermistor_assign_chan(struct ltc2983_data *st,
 543                                          const struct ltc2983_sensor *sensor)
 544{
 545        struct ltc2983_thermistor *thermistor = to_thermistor(sensor);
 546        u32 chan_val;
 547
 548        chan_val = LTC2983_CHAN_ASSIGN(thermistor->r_sense_chan);
 549        chan_val |= LTC2983_THERMISTOR_CFG(thermistor->sensor_config);
 550        chan_val |=
 551                LTC2983_THERMISTOR_EXC_CURRENT(thermistor->excitation_current);
 552
 553        if (thermistor->custom) {
 554                int ret;
 555
 556                ret = __ltc2983_chan_custom_sensor_assign(st,
 557                                                          thermistor->custom,
 558                                                          &chan_val);
 559                if (ret)
 560                        return ret;
 561        }
 562        return __ltc2983_chan_assign_common(st, sensor, chan_val);
 563}
 564
 565static int ltc2983_diode_assign_chan(struct ltc2983_data *st,
 566                                     const struct ltc2983_sensor *sensor)
 567{
 568        struct ltc2983_diode *diode = to_diode(sensor);
 569        u32 chan_val;
 570
 571        chan_val = LTC2983_DIODE_CFG(diode->sensor_config);
 572        chan_val |= LTC2983_DIODE_EXC_CURRENT(diode->excitation_current);
 573        chan_val |= LTC2983_DIODE_IDEAL_FACTOR(diode->ideal_factor_value);
 574
 575        return __ltc2983_chan_assign_common(st, sensor, chan_val);
 576}
 577
 578static int ltc2983_r_sense_assign_chan(struct ltc2983_data *st,
 579                                       const struct ltc2983_sensor *sensor)
 580{
 581        struct ltc2983_rsense *rsense = to_rsense(sensor);
 582        u32 chan_val;
 583
 584        chan_val = LTC2983_R_SENSE_VAL(rsense->r_sense_val);
 585
 586        return __ltc2983_chan_assign_common(st, sensor, chan_val);
 587}
 588
 589static int ltc2983_adc_assign_chan(struct ltc2983_data *st,
 590                                   const struct ltc2983_sensor *sensor)
 591{
 592        struct ltc2983_adc *adc = to_adc(sensor);
 593        u32 chan_val;
 594
 595        chan_val = LTC2983_ADC_SINGLE_ENDED(adc->single_ended);
 596
 597        return __ltc2983_chan_assign_common(st, sensor, chan_val);
 598}
 599
 600static struct ltc2983_sensor *ltc2983_thermocouple_new(
 601                                        const struct device_node *child,
 602                                        struct ltc2983_data *st,
 603                                        const struct ltc2983_sensor *sensor)
 604{
 605        struct ltc2983_thermocouple *thermo;
 606        struct device_node *phandle;
 607        u32 oc_current;
 608        int ret;
 609
 610        thermo = devm_kzalloc(&st->spi->dev, sizeof(*thermo), GFP_KERNEL);
 611        if (!thermo)
 612                return ERR_PTR(-ENOMEM);
 613
 614        if (of_property_read_bool(child, "adi,single-ended"))
 615                thermo->sensor_config = LTC2983_THERMOCOUPLE_SGL(1);
 616
 617        ret = of_property_read_u32(child, "adi,sensor-oc-current-microamp",
 618                                   &oc_current);
 619        if (!ret) {
 620                switch (oc_current) {
 621                case 10:
 622                        thermo->sensor_config |=
 623                                        LTC2983_THERMOCOUPLE_OC_CURR(0);
 624                        break;
 625                case 100:
 626                        thermo->sensor_config |=
 627                                        LTC2983_THERMOCOUPLE_OC_CURR(1);
 628                        break;
 629                case 500:
 630                        thermo->sensor_config |=
 631                                        LTC2983_THERMOCOUPLE_OC_CURR(2);
 632                        break;
 633                case 1000:
 634                        thermo->sensor_config |=
 635                                        LTC2983_THERMOCOUPLE_OC_CURR(3);
 636                        break;
 637                default:
 638                        dev_err(&st->spi->dev,
 639                                "Invalid open circuit current:%u", oc_current);
 640                        return ERR_PTR(-EINVAL);
 641                }
 642
 643                thermo->sensor_config |= LTC2983_THERMOCOUPLE_OC_CHECK(1);
 644        }
 645        /* validate channel index */
 646        if (!(thermo->sensor_config & LTC2983_THERMOCOUPLE_DIFF_MASK) &&
 647            sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
 648                dev_err(&st->spi->dev,
 649                        "Invalid chann:%d for differential thermocouple",
 650                        sensor->chan);
 651                return ERR_PTR(-EINVAL);
 652        }
 653
 654        phandle = of_parse_phandle(child, "adi,cold-junction-handle", 0);
 655        if (phandle) {
 656                int ret;
 657
 658                ret = of_property_read_u32(phandle, "reg",
 659                                           &thermo->cold_junction_chan);
 660                if (ret) {
 661                        /*
 662                         * This would be catched later but we can just return
 663                         * the error right away.
 664                         */
 665                        dev_err(&st->spi->dev, "Property reg must be given\n");
 666                        of_node_put(phandle);
 667                        return ERR_PTR(-EINVAL);
 668                }
 669        }
 670
 671        /* check custom sensor */
 672        if (sensor->type == LTC2983_SENSOR_THERMOCOUPLE_CUSTOM) {
 673                const char *propname = "adi,custom-thermocouple";
 674
 675                thermo->custom = __ltc2983_custom_sensor_new(st, child,
 676                                                             propname, false,
 677                                                             16384, true);
 678                if (IS_ERR(thermo->custom)) {
 679                        of_node_put(phandle);
 680                        return ERR_CAST(thermo->custom);
 681                }
 682        }
 683
 684        /* set common parameters */
 685        thermo->sensor.fault_handler = ltc2983_thermocouple_fault_handler;
 686        thermo->sensor.assign_chan = ltc2983_thermocouple_assign_chan;
 687
 688        of_node_put(phandle);
 689        return &thermo->sensor;
 690}
 691
 692static struct ltc2983_sensor *ltc2983_rtd_new(const struct device_node *child,
 693                                          struct ltc2983_data *st,
 694                                          const struct ltc2983_sensor *sensor)
 695{
 696        struct ltc2983_rtd *rtd;
 697        int ret = 0;
 698        struct device *dev = &st->spi->dev;
 699        struct device_node *phandle;
 700        u32 excitation_current = 0, n_wires = 0;
 701
 702        rtd = devm_kzalloc(dev, sizeof(*rtd), GFP_KERNEL);
 703        if (!rtd)
 704                return ERR_PTR(-ENOMEM);
 705
 706        phandle = of_parse_phandle(child, "adi,rsense-handle", 0);
 707        if (!phandle) {
 708                dev_err(dev, "Property adi,rsense-handle missing or invalid");
 709                return ERR_PTR(-EINVAL);
 710        }
 711
 712        ret = of_property_read_u32(phandle, "reg", &rtd->r_sense_chan);
 713        if (ret) {
 714                dev_err(dev, "Property reg must be given\n");
 715                goto fail;
 716        }
 717
 718        ret = of_property_read_u32(child, "adi,number-of-wires", &n_wires);
 719        if (!ret) {
 720                switch (n_wires) {
 721                case 2:
 722                        rtd->sensor_config = LTC2983_RTD_N_WIRES(0);
 723                        break;
 724                case 3:
 725                        rtd->sensor_config = LTC2983_RTD_N_WIRES(1);
 726                        break;
 727                case 4:
 728                        rtd->sensor_config = LTC2983_RTD_N_WIRES(2);
 729                        break;
 730                case 5:
 731                        /* 4 wires, Kelvin Rsense */
 732                        rtd->sensor_config = LTC2983_RTD_N_WIRES(3);
 733                        break;
 734                default:
 735                        dev_err(dev, "Invalid number of wires:%u\n", n_wires);
 736                        ret = -EINVAL;
 737                        goto fail;
 738                }
 739        }
 740
 741        if (of_property_read_bool(child, "adi,rsense-share")) {
 742                /* Current rotation is only available with rsense sharing */
 743                if (of_property_read_bool(child, "adi,current-rotate")) {
 744                        if (n_wires == 2 || n_wires == 3) {
 745                                dev_err(dev,
 746                                        "Rotation not allowed for 2/3 Wire RTDs");
 747                                ret = -EINVAL;
 748                                goto fail;
 749                        }
 750                        rtd->sensor_config |= LTC2983_RTD_C_ROTATE(1);
 751                } else {
 752                        rtd->sensor_config |= LTC2983_RTD_R_SHARE(1);
 753                }
 754        }
 755        /*
 756         * rtd channel indexes are a bit more complicated to validate.
 757         * For 4wire RTD with rotation, the channel selection cannot be
 758         * >=19 since the chann + 1 is used in this configuration.
 759         * For 4wire RTDs with kelvin rsense, the rsense channel cannot be
 760         * <=1 since chanel - 1 and channel - 2 are used.
 761         */
 762        if (rtd->sensor_config & LTC2983_RTD_4_WIRE_MASK) {
 763                /* 4-wire */
 764                u8 min = LTC2983_DIFFERENTIAL_CHAN_MIN,
 765                        max = LTC2983_MAX_CHANNELS_NR;
 766
 767                if (rtd->sensor_config & LTC2983_RTD_ROTATION_MASK)
 768                        max = LTC2983_MAX_CHANNELS_NR - 1;
 769
 770                if (((rtd->sensor_config & LTC2983_RTD_KELVIN_R_SENSE_MASK)
 771                     == LTC2983_RTD_KELVIN_R_SENSE_MASK) &&
 772                    (rtd->r_sense_chan <=  min)) {
 773                        /* kelvin rsense*/
 774                        dev_err(dev,
 775                                "Invalid rsense chann:%d to use in kelvin rsense",
 776                                rtd->r_sense_chan);
 777
 778                        ret = -EINVAL;
 779                        goto fail;
 780                }
 781
 782                if (sensor->chan < min || sensor->chan > max) {
 783                        dev_err(dev, "Invalid chann:%d for the rtd config",
 784                                sensor->chan);
 785
 786                        ret = -EINVAL;
 787                        goto fail;
 788                }
 789        } else {
 790                /* same as differential case */
 791                if (sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
 792                        dev_err(&st->spi->dev,
 793                                "Invalid chann:%d for RTD", sensor->chan);
 794
 795                        ret = -EINVAL;
 796                        goto fail;
 797                }
 798        }
 799
 800        /* check custom sensor */
 801        if (sensor->type == LTC2983_SENSOR_RTD_CUSTOM) {
 802                rtd->custom = __ltc2983_custom_sensor_new(st, child,
 803                                                          "adi,custom-rtd",
 804                                                          false, 2048, false);
 805                if (IS_ERR(rtd->custom)) {
 806                        of_node_put(phandle);
 807                        return ERR_CAST(rtd->custom);
 808                }
 809        }
 810
 811        /* set common parameters */
 812        rtd->sensor.fault_handler = ltc2983_common_fault_handler;
 813        rtd->sensor.assign_chan = ltc2983_rtd_assign_chan;
 814
 815        ret = of_property_read_u32(child, "adi,excitation-current-microamp",
 816                                   &excitation_current);
 817        if (ret) {
 818                /* default to 5uA */
 819                rtd->excitation_current = 1;
 820        } else {
 821                switch (excitation_current) {
 822                case 5:
 823                        rtd->excitation_current = 0x01;
 824                        break;
 825                case 10:
 826                        rtd->excitation_current = 0x02;
 827                        break;
 828                case 25:
 829                        rtd->excitation_current = 0x03;
 830                        break;
 831                case 50:
 832                        rtd->excitation_current = 0x04;
 833                        break;
 834                case 100:
 835                        rtd->excitation_current = 0x05;
 836                        break;
 837                case 250:
 838                        rtd->excitation_current = 0x06;
 839                        break;
 840                case 500:
 841                        rtd->excitation_current = 0x07;
 842                        break;
 843                case 1000:
 844                        rtd->excitation_current = 0x08;
 845                        break;
 846                default:
 847                        dev_err(&st->spi->dev,
 848                                "Invalid value for excitation current(%u)",
 849                                excitation_current);
 850                        ret = -EINVAL;
 851                        goto fail;
 852                }
 853        }
 854
 855        of_property_read_u32(child, "adi,rtd-curve", &rtd->rtd_curve);
 856
 857        of_node_put(phandle);
 858        return &rtd->sensor;
 859fail:
 860        of_node_put(phandle);
 861        return ERR_PTR(ret);
 862}
 863
 864static struct ltc2983_sensor *ltc2983_thermistor_new(
 865                                        const struct device_node *child,
 866                                        struct ltc2983_data *st,
 867                                        const struct ltc2983_sensor *sensor)
 868{
 869        struct ltc2983_thermistor *thermistor;
 870        struct device *dev = &st->spi->dev;
 871        struct device_node *phandle;
 872        u32 excitation_current = 0;
 873        int ret = 0;
 874
 875        thermistor = devm_kzalloc(dev, sizeof(*thermistor), GFP_KERNEL);
 876        if (!thermistor)
 877                return ERR_PTR(-ENOMEM);
 878
 879        phandle = of_parse_phandle(child, "adi,rsense-handle", 0);
 880        if (!phandle) {
 881                dev_err(dev, "Property adi,rsense-handle missing or invalid");
 882                return ERR_PTR(-EINVAL);
 883        }
 884
 885        ret = of_property_read_u32(phandle, "reg", &thermistor->r_sense_chan);
 886        if (ret) {
 887                dev_err(dev, "rsense channel must be configured...\n");
 888                goto fail;
 889        }
 890
 891        if (of_property_read_bool(child, "adi,single-ended")) {
 892                thermistor->sensor_config = LTC2983_THERMISTOR_SGL(1);
 893        } else if (of_property_read_bool(child, "adi,rsense-share")) {
 894                /* rotation is only possible if sharing rsense */
 895                if (of_property_read_bool(child, "adi,current-rotate"))
 896                        thermistor->sensor_config =
 897                                                LTC2983_THERMISTOR_C_ROTATE(1);
 898                else
 899                        thermistor->sensor_config =
 900                                                LTC2983_THERMISTOR_R_SHARE(1);
 901        }
 902        /* validate channel index */
 903        if (!(thermistor->sensor_config & LTC2983_THERMISTOR_DIFF_MASK) &&
 904            sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
 905                dev_err(&st->spi->dev,
 906                        "Invalid chann:%d for differential thermistor",
 907                        sensor->chan);
 908                ret = -EINVAL;
 909                goto fail;
 910        }
 911
 912        /* check custom sensor */
 913        if (sensor->type >= LTC2983_SENSOR_THERMISTOR_STEINHART) {
 914                bool steinhart = false;
 915                const char *propname;
 916
 917                if (sensor->type == LTC2983_SENSOR_THERMISTOR_STEINHART) {
 918                        steinhart = true;
 919                        propname = "adi,custom-steinhart";
 920                } else {
 921                        propname = "adi,custom-thermistor";
 922                }
 923
 924                thermistor->custom = __ltc2983_custom_sensor_new(st, child,
 925                                                                 propname,
 926                                                                 steinhart,
 927                                                                 64, false);
 928                if (IS_ERR(thermistor->custom)) {
 929                        of_node_put(phandle);
 930                        return ERR_CAST(thermistor->custom);
 931                }
 932        }
 933        /* set common parameters */
 934        thermistor->sensor.fault_handler = ltc2983_common_fault_handler;
 935        thermistor->sensor.assign_chan = ltc2983_thermistor_assign_chan;
 936
 937        ret = of_property_read_u32(child, "adi,excitation-current-nanoamp",
 938                                   &excitation_current);
 939        if (ret) {
 940                /* Auto range is not allowed for custom sensors */
 941                if (sensor->type >= LTC2983_SENSOR_THERMISTOR_STEINHART)
 942                        /* default to 1uA */
 943                        thermistor->excitation_current = 0x03;
 944                else
 945                        /* default to auto-range */
 946                        thermistor->excitation_current = 0x0c;
 947        } else {
 948                switch (excitation_current) {
 949                case 0:
 950                        /* auto range */
 951                        if (sensor->type >=
 952                            LTC2983_SENSOR_THERMISTOR_STEINHART) {
 953                                dev_err(&st->spi->dev,
 954                                        "Auto Range not allowed for custom sensors\n");
 955                                ret = -EINVAL;
 956                                goto fail;
 957                        }
 958                        thermistor->excitation_current = 0x0c;
 959                        break;
 960                case 250:
 961                        thermistor->excitation_current = 0x01;
 962                        break;
 963                case 500:
 964                        thermistor->excitation_current = 0x02;
 965                        break;
 966                case 1000:
 967                        thermistor->excitation_current = 0x03;
 968                        break;
 969                case 5000:
 970                        thermistor->excitation_current = 0x04;
 971                        break;
 972                case 10000:
 973                        thermistor->excitation_current = 0x05;
 974                        break;
 975                case 25000:
 976                        thermistor->excitation_current = 0x06;
 977                        break;
 978                case 50000:
 979                        thermistor->excitation_current = 0x07;
 980                        break;
 981                case 100000:
 982                        thermistor->excitation_current = 0x08;
 983                        break;
 984                case 250000:
 985                        thermistor->excitation_current = 0x09;
 986                        break;
 987                case 500000:
 988                        thermistor->excitation_current = 0x0a;
 989                        break;
 990                case 1000000:
 991                        thermistor->excitation_current = 0x0b;
 992                        break;
 993                default:
 994                        dev_err(&st->spi->dev,
 995                                "Invalid value for excitation current(%u)",
 996                                excitation_current);
 997                        ret = -EINVAL;
 998                        goto fail;
 999                }
1000        }
1001
1002        of_node_put(phandle);
1003        return &thermistor->sensor;
1004fail:
1005        of_node_put(phandle);
1006        return ERR_PTR(ret);
1007}
1008
1009static struct ltc2983_sensor *ltc2983_diode_new(
1010                                        const struct device_node *child,
1011                                        const struct ltc2983_data *st,
1012                                        const struct ltc2983_sensor *sensor)
1013{
1014        struct ltc2983_diode *diode;
1015        u32 temp = 0, excitation_current = 0;
1016        int ret;
1017
1018        diode = devm_kzalloc(&st->spi->dev, sizeof(*diode), GFP_KERNEL);
1019        if (!diode)
1020                return ERR_PTR(-ENOMEM);
1021
1022        if (of_property_read_bool(child, "adi,single-ended"))
1023                diode->sensor_config = LTC2983_DIODE_SGL(1);
1024
1025        if (of_property_read_bool(child, "adi,three-conversion-cycles"))
1026                diode->sensor_config |= LTC2983_DIODE_3_CONV_CYCLE(1);
1027
1028        if (of_property_read_bool(child, "adi,average-on"))
1029                diode->sensor_config |= LTC2983_DIODE_AVERAGE_ON(1);
1030
1031        /* validate channel index */
1032        if (!(diode->sensor_config & LTC2983_DIODE_DIFF_MASK) &&
1033            sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
1034                dev_err(&st->spi->dev,
1035                        "Invalid chann:%d for differential thermistor",
1036                        sensor->chan);
1037                return ERR_PTR(-EINVAL);
1038        }
1039        /* set common parameters */
1040        diode->sensor.fault_handler = ltc2983_common_fault_handler;
1041        diode->sensor.assign_chan = ltc2983_diode_assign_chan;
1042
1043        ret = of_property_read_u32(child, "adi,excitation-current-microamp",
1044                                   &excitation_current);
1045        if (!ret) {
1046                switch (excitation_current) {
1047                case 10:
1048                        diode->excitation_current = 0x00;
1049                        break;
1050                case 20:
1051                        diode->excitation_current = 0x01;
1052                        break;
1053                case 40:
1054                        diode->excitation_current = 0x02;
1055                        break;
1056                case 80:
1057                        diode->excitation_current = 0x03;
1058                        break;
1059                default:
1060                        dev_err(&st->spi->dev,
1061                                "Invalid value for excitation current(%u)",
1062                                excitation_current);
1063                        return ERR_PTR(-EINVAL);
1064                }
1065        }
1066
1067        of_property_read_u32(child, "adi,ideal-factor-value", &temp);
1068
1069        /* 2^20 resolution */
1070        diode->ideal_factor_value = __convert_to_raw(temp, 1048576);
1071
1072        return &diode->sensor;
1073}
1074
1075static struct ltc2983_sensor *ltc2983_r_sense_new(struct device_node *child,
1076                                        struct ltc2983_data *st,
1077                                        const struct ltc2983_sensor *sensor)
1078{
1079        struct ltc2983_rsense *rsense;
1080        int ret;
1081        u32 temp;
1082
1083        rsense = devm_kzalloc(&st->spi->dev, sizeof(*rsense), GFP_KERNEL);
1084        if (!rsense)
1085                return ERR_PTR(-ENOMEM);
1086
1087        /* validate channel index */
1088        if (sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
1089                dev_err(&st->spi->dev, "Invalid chann:%d for r_sense",
1090                        sensor->chan);
1091                return ERR_PTR(-EINVAL);
1092        }
1093
1094        ret = of_property_read_u32(child, "adi,rsense-val-milli-ohms", &temp);
1095        if (ret) {
1096                dev_err(&st->spi->dev, "Property adi,rsense-val-milli-ohms missing\n");
1097                return ERR_PTR(-EINVAL);
1098        }
1099        /*
1100         * Times 1000 because we have milli-ohms and __convert_to_raw
1101         * expects scales of 1000000 which are used for all other
1102         * properties.
1103         * 2^10 resolution
1104         */
1105        rsense->r_sense_val = __convert_to_raw((u64)temp * 1000, 1024);
1106
1107        /* set common parameters */
1108        rsense->sensor.assign_chan = ltc2983_r_sense_assign_chan;
1109
1110        return &rsense->sensor;
1111}
1112
1113static struct ltc2983_sensor *ltc2983_adc_new(struct device_node *child,
1114                                         struct ltc2983_data *st,
1115                                         const struct ltc2983_sensor *sensor)
1116{
1117        struct ltc2983_adc *adc;
1118
1119        adc = devm_kzalloc(&st->spi->dev, sizeof(*adc), GFP_KERNEL);
1120        if (!adc)
1121                return ERR_PTR(-ENOMEM);
1122
1123        if (of_property_read_bool(child, "adi,single-ended"))
1124                adc->single_ended = true;
1125
1126        if (!adc->single_ended &&
1127            sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
1128                dev_err(&st->spi->dev, "Invalid chan:%d for differential adc\n",
1129                        sensor->chan);
1130                return ERR_PTR(-EINVAL);
1131        }
1132        /* set common parameters */
1133        adc->sensor.assign_chan = ltc2983_adc_assign_chan;
1134        adc->sensor.fault_handler = ltc2983_common_fault_handler;
1135
1136        return &adc->sensor;
1137}
1138
1139static int ltc2983_chan_read(struct ltc2983_data *st,
1140                        const struct ltc2983_sensor *sensor, int *val)
1141{
1142        u32 start_conversion = 0;
1143        int ret;
1144        unsigned long time;
1145
1146        start_conversion = LTC2983_STATUS_START(true);
1147        start_conversion |= LTC2983_STATUS_CHAN_SEL(sensor->chan);
1148        dev_dbg(&st->spi->dev, "Start conversion on chan:%d, status:%02X\n",
1149                sensor->chan, start_conversion);
1150        /* start conversion */
1151        ret = regmap_write(st->regmap, LTC2983_STATUS_REG, start_conversion);
1152        if (ret)
1153                return ret;
1154
1155        reinit_completion(&st->completion);
1156        /*
1157         * wait for conversion to complete.
1158         * 300 ms should be more than enough to complete the conversion.
1159         * Depending on the sensor configuration, there are 2/3 conversions
1160         * cycles of 82ms.
1161         */
1162        time = wait_for_completion_timeout(&st->completion,
1163                                           msecs_to_jiffies(300));
1164        if (!time) {
1165                dev_warn(&st->spi->dev, "Conversion timed out\n");
1166                return -ETIMEDOUT;
1167        }
1168
1169        /* read the converted data */
1170        ret = regmap_bulk_read(st->regmap, LTC2983_CHAN_RES_ADDR(sensor->chan),
1171                               &st->temp, sizeof(st->temp));
1172        if (ret)
1173                return ret;
1174
1175        *val = __be32_to_cpu(st->temp);
1176
1177        if (!(LTC2983_RES_VALID_MASK & *val)) {
1178                dev_err(&st->spi->dev, "Invalid conversion detected\n");
1179                return -EIO;
1180        }
1181
1182        ret = sensor->fault_handler(st, *val);
1183        if (ret)
1184                return ret;
1185
1186        *val = sign_extend32((*val) & LTC2983_DATA_MASK, LTC2983_DATA_SIGN_BIT);
1187        return 0;
1188}
1189
1190static int ltc2983_read_raw(struct iio_dev *indio_dev,
1191                            struct iio_chan_spec const *chan,
1192                            int *val, int *val2, long mask)
1193{
1194        struct ltc2983_data *st = iio_priv(indio_dev);
1195        int ret;
1196
1197        /* sanity check */
1198        if (chan->address >= st->num_channels) {
1199                dev_err(&st->spi->dev, "Invalid chan address:%ld",
1200                        chan->address);
1201                return -EINVAL;
1202        }
1203
1204        switch (mask) {
1205        case IIO_CHAN_INFO_RAW:
1206                mutex_lock(&st->lock);
1207                ret = ltc2983_chan_read(st, st->sensors[chan->address], val);
1208                mutex_unlock(&st->lock);
1209                return ret ?: IIO_VAL_INT;
1210        case IIO_CHAN_INFO_SCALE:
1211                switch (chan->type) {
1212                case IIO_TEMP:
1213                        /* value in milli degrees */
1214                        *val = 1000;
1215                        /* 2^10 */
1216                        *val2 = 1024;
1217                        return IIO_VAL_FRACTIONAL;
1218                case IIO_VOLTAGE:
1219                        /* value in millivolt */
1220                        *val = 1000;
1221                        /* 2^21 */
1222                        *val2 = 2097152;
1223                        return IIO_VAL_FRACTIONAL;
1224                default:
1225                        return -EINVAL;
1226                }
1227        }
1228
1229        return -EINVAL;
1230}
1231
1232static int ltc2983_reg_access(struct iio_dev *indio_dev,
1233                              unsigned int reg,
1234                              unsigned int writeval,
1235                              unsigned int *readval)
1236{
1237        struct ltc2983_data *st = iio_priv(indio_dev);
1238
1239        if (readval)
1240                return regmap_read(st->regmap, reg, readval);
1241        else
1242                return regmap_write(st->regmap, reg, writeval);
1243}
1244
1245static irqreturn_t ltc2983_irq_handler(int irq, void *data)
1246{
1247        struct ltc2983_data *st = data;
1248
1249        complete(&st->completion);
1250        return IRQ_HANDLED;
1251}
1252
1253#define LTC2983_CHAN(__type, index, __address) ({ \
1254        struct iio_chan_spec __chan = { \
1255                .type = __type, \
1256                .indexed = 1, \
1257                .channel = index, \
1258                .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
1259                .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
1260                .address = __address, \
1261        }; \
1262        __chan; \
1263})
1264
1265static int ltc2983_parse_dt(struct ltc2983_data *st)
1266{
1267        struct device_node *child;
1268        struct device *dev = &st->spi->dev;
1269        int ret = 0, chan = 0, channel_avail_mask = 0;
1270
1271        of_property_read_u32(dev->of_node, "adi,mux-delay-config-us",
1272                             &st->mux_delay_config);
1273
1274        of_property_read_u32(dev->of_node, "adi,filter-notch-freq",
1275                             &st->filter_notch_freq);
1276
1277        st->num_channels = of_get_available_child_count(dev->of_node);
1278        st->sensors = devm_kcalloc(dev, st->num_channels, sizeof(*st->sensors),
1279                                   GFP_KERNEL);
1280        if (!st->sensors)
1281                return -ENOMEM;
1282
1283        st->iio_channels = st->num_channels;
1284        for_each_available_child_of_node(dev->of_node, child) {
1285                struct ltc2983_sensor sensor;
1286
1287                ret = of_property_read_u32(child, "reg", &sensor.chan);
1288                if (ret) {
1289                        dev_err(dev, "reg property must given for child nodes\n");
1290                        goto put_child;
1291                }
1292
1293                /* check if we have a valid channel */
1294                if (sensor.chan < LTC2983_MIN_CHANNELS_NR ||
1295                    sensor.chan > LTC2983_MAX_CHANNELS_NR) {
1296                        ret = -EINVAL;
1297                        dev_err(dev,
1298                                "chan:%d must be from 1 to 20\n", sensor.chan);
1299                        goto put_child;
1300                } else if (channel_avail_mask & BIT(sensor.chan)) {
1301                        ret = -EINVAL;
1302                        dev_err(dev, "chan:%d already in use\n", sensor.chan);
1303                        goto put_child;
1304                }
1305
1306                ret = of_property_read_u32(child, "adi,sensor-type",
1307                                               &sensor.type);
1308                if (ret) {
1309                        dev_err(dev,
1310                                "adi,sensor-type property must given for child nodes\n");
1311                        goto put_child;
1312                }
1313
1314                dev_dbg(dev, "Create new sensor, type %u, chann %u",
1315                                                                sensor.type,
1316                                                                sensor.chan);
1317
1318                if (sensor.type >= LTC2983_SENSOR_THERMOCOUPLE &&
1319                    sensor.type <= LTC2983_SENSOR_THERMOCOUPLE_CUSTOM) {
1320                        st->sensors[chan] = ltc2983_thermocouple_new(child, st,
1321                                                                     &sensor);
1322                } else if (sensor.type >= LTC2983_SENSOR_RTD &&
1323                           sensor.type <= LTC2983_SENSOR_RTD_CUSTOM) {
1324                        st->sensors[chan] = ltc2983_rtd_new(child, st, &sensor);
1325                } else if (sensor.type >= LTC2983_SENSOR_THERMISTOR &&
1326                           sensor.type <= LTC2983_SENSOR_THERMISTOR_CUSTOM) {
1327                        st->sensors[chan] = ltc2983_thermistor_new(child, st,
1328                                                                   &sensor);
1329                } else if (sensor.type == LTC2983_SENSOR_DIODE) {
1330                        st->sensors[chan] = ltc2983_diode_new(child, st,
1331                                                              &sensor);
1332                } else if (sensor.type == LTC2983_SENSOR_SENSE_RESISTOR) {
1333                        st->sensors[chan] = ltc2983_r_sense_new(child, st,
1334                                                                &sensor);
1335                        /* don't add rsense to iio */
1336                        st->iio_channels--;
1337                } else if (sensor.type == LTC2983_SENSOR_DIRECT_ADC) {
1338                        st->sensors[chan] = ltc2983_adc_new(child, st, &sensor);
1339                } else {
1340                        dev_err(dev, "Unknown sensor type %d\n", sensor.type);
1341                        ret = -EINVAL;
1342                        goto put_child;
1343                }
1344
1345                if (IS_ERR(st->sensors[chan])) {
1346                        dev_err(dev, "Failed to create sensor %ld",
1347                                PTR_ERR(st->sensors[chan]));
1348                        ret = PTR_ERR(st->sensors[chan]);
1349                        goto put_child;
1350                }
1351                /* set generic sensor parameters */
1352                st->sensors[chan]->chan = sensor.chan;
1353                st->sensors[chan]->type = sensor.type;
1354
1355                channel_avail_mask |= BIT(sensor.chan);
1356                chan++;
1357        }
1358
1359        return 0;
1360put_child:
1361        of_node_put(child);
1362        return ret;
1363}
1364
1365static int ltc2983_setup(struct ltc2983_data *st, bool assign_iio)
1366{
1367        u32 iio_chan_t = 0, iio_chan_v = 0, chan, iio_idx = 0, status;
1368        int ret;
1369
1370        /* make sure the device is up: start bit (7) is 0 and done bit (6) is 1 */
1371        ret = regmap_read_poll_timeout(st->regmap, LTC2983_STATUS_REG, status,
1372                                       LTC2983_STATUS_UP(status) == 1, 25000,
1373                                       25000 * 10);
1374        if (ret) {
1375                dev_err(&st->spi->dev, "Device startup timed out\n");
1376                return ret;
1377        }
1378
1379        st->iio_chan = devm_kzalloc(&st->spi->dev,
1380                                    st->iio_channels * sizeof(*st->iio_chan),
1381                                    GFP_KERNEL);
1382
1383        if (!st->iio_chan)
1384                return -ENOMEM;
1385
1386        ret = regmap_update_bits(st->regmap, LTC2983_GLOBAL_CONFIG_REG,
1387                                 LTC2983_NOTCH_FREQ_MASK,
1388                                 LTC2983_NOTCH_FREQ(st->filter_notch_freq));
1389        if (ret)
1390                return ret;
1391
1392        ret = regmap_write(st->regmap, LTC2983_MUX_CONFIG_REG,
1393                           st->mux_delay_config);
1394        if (ret)
1395                return ret;
1396
1397        for (chan = 0; chan < st->num_channels; chan++) {
1398                u32 chan_type = 0, *iio_chan;
1399
1400                ret = st->sensors[chan]->assign_chan(st, st->sensors[chan]);
1401                if (ret)
1402                        return ret;
1403                /*
1404                 * The assign_iio flag is necessary for when the device is
1405                 * coming out of sleep. In that case, we just need to
1406                 * re-configure the device channels.
1407                 * We also don't assign iio channels for rsense.
1408                 */
1409                if (st->sensors[chan]->type == LTC2983_SENSOR_SENSE_RESISTOR ||
1410                    !assign_iio)
1411                        continue;
1412
1413                /* assign iio channel */
1414                if (st->sensors[chan]->type != LTC2983_SENSOR_DIRECT_ADC) {
1415                        chan_type = IIO_TEMP;
1416                        iio_chan = &iio_chan_t;
1417                } else {
1418                        chan_type = IIO_VOLTAGE;
1419                        iio_chan = &iio_chan_v;
1420                }
1421
1422                /*
1423                 * add chan as the iio .address so that, we can directly
1424                 * reference the sensor given the iio_chan_spec
1425                 */
1426                st->iio_chan[iio_idx++] = LTC2983_CHAN(chan_type, (*iio_chan)++,
1427                                                       chan);
1428        }
1429
1430        return 0;
1431}
1432
1433static const struct regmap_range ltc2983_reg_ranges[] = {
1434        regmap_reg_range(LTC2983_STATUS_REG, LTC2983_STATUS_REG),
1435        regmap_reg_range(LTC2983_TEMP_RES_START_REG, LTC2983_TEMP_RES_END_REG),
1436        regmap_reg_range(LTC2983_GLOBAL_CONFIG_REG, LTC2983_GLOBAL_CONFIG_REG),
1437        regmap_reg_range(LTC2983_MULT_CHANNEL_START_REG,
1438                         LTC2983_MULT_CHANNEL_END_REG),
1439        regmap_reg_range(LTC2983_MUX_CONFIG_REG, LTC2983_MUX_CONFIG_REG),
1440        regmap_reg_range(LTC2983_CHAN_ASSIGN_START_REG,
1441                         LTC2983_CHAN_ASSIGN_END_REG),
1442        regmap_reg_range(LTC2983_CUST_SENS_TBL_START_REG,
1443                         LTC2983_CUST_SENS_TBL_END_REG),
1444};
1445
1446static const struct regmap_access_table ltc2983_reg_table = {
1447        .yes_ranges = ltc2983_reg_ranges,
1448        .n_yes_ranges = ARRAY_SIZE(ltc2983_reg_ranges),
1449};
1450
1451/*
1452 *  The reg_bits are actually 12 but the device needs the first *complete*
1453 *  byte for the command (R/W).
1454 */
1455static const struct regmap_config ltc2983_regmap_config = {
1456        .reg_bits = 24,
1457        .val_bits = 8,
1458        .wr_table = &ltc2983_reg_table,
1459        .rd_table = &ltc2983_reg_table,
1460        .read_flag_mask = GENMASK(1, 0),
1461        .write_flag_mask = BIT(1),
1462};
1463
1464static const struct  iio_info ltc2983_iio_info = {
1465        .read_raw = ltc2983_read_raw,
1466        .debugfs_reg_access = ltc2983_reg_access,
1467};
1468
1469static int ltc2983_probe(struct spi_device *spi)
1470{
1471        struct ltc2983_data *st;
1472        struct iio_dev *indio_dev;
1473        const char *name = spi_get_device_id(spi)->name;
1474        int ret;
1475
1476        indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
1477        if (!indio_dev)
1478                return -ENOMEM;
1479
1480        st = iio_priv(indio_dev);
1481
1482        st->regmap = devm_regmap_init_spi(spi, &ltc2983_regmap_config);
1483        if (IS_ERR(st->regmap)) {
1484                dev_err(&spi->dev, "Failed to initialize regmap\n");
1485                return PTR_ERR(st->regmap);
1486        }
1487
1488        mutex_init(&st->lock);
1489        init_completion(&st->completion);
1490        st->spi = spi;
1491        spi_set_drvdata(spi, st);
1492
1493        ret = ltc2983_parse_dt(st);
1494        if (ret)
1495                return ret;
1496
1497        ret = ltc2983_setup(st, true);
1498        if (ret)
1499                return ret;
1500
1501        ret = devm_request_irq(&spi->dev, spi->irq, ltc2983_irq_handler,
1502                               IRQF_TRIGGER_RISING, name, st);
1503        if (ret) {
1504                dev_err(&spi->dev, "failed to request an irq, %d", ret);
1505                return ret;
1506        }
1507
1508        indio_dev->name = name;
1509        indio_dev->num_channels = st->iio_channels;
1510        indio_dev->channels = st->iio_chan;
1511        indio_dev->modes = INDIO_DIRECT_MODE;
1512        indio_dev->info = &ltc2983_iio_info;
1513
1514        return devm_iio_device_register(&spi->dev, indio_dev);
1515}
1516
1517static int __maybe_unused ltc2983_resume(struct device *dev)
1518{
1519        struct ltc2983_data *st = spi_get_drvdata(to_spi_device(dev));
1520        int dummy;
1521
1522        /* dummy read to bring the device out of sleep */
1523        regmap_read(st->regmap, LTC2983_STATUS_REG, &dummy);
1524        /* we need to re-assign the channels */
1525        return ltc2983_setup(st, false);
1526}
1527
1528static int __maybe_unused ltc2983_suspend(struct device *dev)
1529{
1530        struct ltc2983_data *st = spi_get_drvdata(to_spi_device(dev));
1531
1532        return regmap_write(st->regmap, LTC2983_STATUS_REG, LTC2983_SLEEP);
1533}
1534
1535static SIMPLE_DEV_PM_OPS(ltc2983_pm_ops, ltc2983_suspend, ltc2983_resume);
1536
1537static const struct spi_device_id ltc2983_id_table[] = {
1538        { "ltc2983" },
1539        {},
1540};
1541MODULE_DEVICE_TABLE(spi, ltc2983_id_table);
1542
1543static const struct of_device_id ltc2983_of_match[] = {
1544        { .compatible = "adi,ltc2983" },
1545        {},
1546};
1547MODULE_DEVICE_TABLE(of, ltc2983_of_match);
1548
1549static struct spi_driver ltc2983_driver = {
1550        .driver = {
1551                .name = "ltc2983",
1552                .of_match_table = ltc2983_of_match,
1553                .pm = &ltc2983_pm_ops,
1554        },
1555        .probe = ltc2983_probe,
1556        .id_table = ltc2983_id_table,
1557};
1558
1559module_spi_driver(ltc2983_driver);
1560
1561MODULE_AUTHOR("Nuno Sa <nuno.sa@analog.com>");
1562MODULE_DESCRIPTION("Analog Devices LTC2983 SPI Temperature sensors");
1563MODULE_LICENSE("GPL");
1564