linux/drivers/infiniband/hw/cxgb4/t4.h
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
   3 *
   4 * This software is available to you under a choice of one of two
   5 * licenses.  You may choose to be licensed under the terms of the GNU
   6 * General Public License (GPL) Version 2, available from the file
   7 * COPYING in the main directory of this source tree, or the
   8 * OpenIB.org BSD license below:
   9 *
  10 *     Redistribution and use in source and binary forms, with or
  11 *     without modification, are permitted provided that the following
  12 *     conditions are met:
  13 *
  14 *      - Redistributions of source code must retain the above
  15 *        copyright notice, this list of conditions and the following
  16 *        disclaimer.
  17 *      - Redistributions in binary form must reproduce the above
  18 *        copyright notice, this list of conditions and the following
  19 *        disclaimer in the documentation and/or other materials
  20 *        provided with the distribution.
  21 *
  22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  29 * SOFTWARE.
  30 */
  31#ifndef __T4_H__
  32#define __T4_H__
  33
  34#include "t4_hw.h"
  35#include "t4_regs.h"
  36#include "t4_values.h"
  37#include "t4_msg.h"
  38#include "t4_tcb.h"
  39#include "t4fw_ri_api.h"
  40
  41#define T4_MAX_NUM_PD 65536
  42#define T4_MAX_MR_SIZE (~0ULL)
  43#define T4_PAGESIZE_MASK 0xffff000  /* 4KB-128MB */
  44#define T4_STAG_UNSET 0xffffffff
  45#define T4_FW_MAJ 0
  46#define PCIE_MA_SYNC_A 0x30b4
  47
  48struct t4_status_page {
  49        __be32 rsvd1;   /* flit 0 - hw owns */
  50        __be16 rsvd2;
  51        __be16 qid;
  52        __be16 cidx;
  53        __be16 pidx;
  54        u8 qp_err;      /* flit 1 - sw owns */
  55        u8 db_off;
  56        u8 pad[2];
  57        u16 host_wq_pidx;
  58        u16 host_cidx;
  59        u16 host_pidx;
  60        u16 pad2;
  61        u32 srqidx;
  62};
  63
  64#define T4_RQT_ENTRY_SHIFT 6
  65#define T4_RQT_ENTRY_SIZE  BIT(T4_RQT_ENTRY_SHIFT)
  66#define T4_EQ_ENTRY_SIZE 64
  67
  68#define T4_SQ_NUM_SLOTS 5
  69#define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
  70#define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
  71                        sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
  72#define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
  73                        sizeof(struct fw_ri_immd)))
  74#define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
  75                        sizeof(struct fw_ri_rdma_write_wr) - \
  76                        sizeof(struct fw_ri_immd)))
  77#define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
  78                        sizeof(struct fw_ri_rdma_write_wr) - \
  79                        sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
  80#define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
  81                        sizeof(struct fw_ri_immd)) & ~31UL)
  82#define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
  83#define T4_MAX_FR_DSGL 1024
  84#define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
  85
  86static inline int t4_max_fr_depth(int use_dsgl)
  87{
  88        return use_dsgl ? T4_MAX_FR_DSGL_DEPTH : T4_MAX_FR_IMMD_DEPTH;
  89}
  90
  91#define T4_RQ_NUM_SLOTS 2
  92#define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
  93#define T4_MAX_RECV_SGE 4
  94
  95#define T4_WRITE_CMPL_MAX_SGL 4
  96#define T4_WRITE_CMPL_MAX_CQE 16
  97
  98union t4_wr {
  99        struct fw_ri_res_wr res;
 100        struct fw_ri_wr ri;
 101        struct fw_ri_rdma_write_wr write;
 102        struct fw_ri_send_wr send;
 103        struct fw_ri_rdma_read_wr read;
 104        struct fw_ri_bind_mw_wr bind;
 105        struct fw_ri_fr_nsmr_wr fr;
 106        struct fw_ri_fr_nsmr_tpte_wr fr_tpte;
 107        struct fw_ri_inv_lstag_wr inv;
 108        struct fw_ri_rdma_write_cmpl_wr write_cmpl;
 109        struct t4_status_page status;
 110        __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
 111};
 112
 113union t4_recv_wr {
 114        struct fw_ri_recv_wr recv;
 115        struct t4_status_page status;
 116        __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
 117};
 118
 119static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
 120                               enum fw_wr_opcodes opcode, u8 flags, u8 len16)
 121{
 122        wqe->send.opcode = (u8)opcode;
 123        wqe->send.flags = flags;
 124        wqe->send.wrid = wrid;
 125        wqe->send.r1[0] = 0;
 126        wqe->send.r1[1] = 0;
 127        wqe->send.r1[2] = 0;
 128        wqe->send.len16 = len16;
 129}
 130
 131/* CQE/AE status codes */
 132#define T4_ERR_SUCCESS                     0x0
 133#define T4_ERR_STAG                        0x1  /* STAG invalid: either the */
 134                                                /* STAG is offlimt, being 0, */
 135                                                /* or STAG_key mismatch */
 136#define T4_ERR_PDID                        0x2  /* PDID mismatch */
 137#define T4_ERR_QPID                        0x3  /* QPID mismatch */
 138#define T4_ERR_ACCESS                      0x4  /* Invalid access right */
 139#define T4_ERR_WRAP                        0x5  /* Wrap error */
 140#define T4_ERR_BOUND                       0x6  /* base and bounds voilation */
 141#define T4_ERR_INVALIDATE_SHARED_MR        0x7  /* attempt to invalidate a  */
 142                                                /* shared memory region */
 143#define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8  /* attempt to invalidate a  */
 144                                                /* shared memory region */
 145#define T4_ERR_ECC                         0x9  /* ECC error detected */
 146#define T4_ERR_ECC_PSTAG                   0xA  /* ECC error detected when  */
 147                                                /* reading PSTAG for a MW  */
 148                                                /* Invalidate */
 149#define T4_ERR_PBL_ADDR_BOUND              0xB  /* pbl addr out of bounds:  */
 150                                                /* software error */
 151#define T4_ERR_SWFLUSH                     0xC  /* SW FLUSHED */
 152#define T4_ERR_CRC                         0x10 /* CRC error */
 153#define T4_ERR_MARKER                      0x11 /* Marker error */
 154#define T4_ERR_PDU_LEN_ERR                 0x12 /* invalid PDU length */
 155#define T4_ERR_OUT_OF_RQE                  0x13 /* out of RQE */
 156#define T4_ERR_DDP_VERSION                 0x14 /* wrong DDP version */
 157#define T4_ERR_RDMA_VERSION                0x15 /* wrong RDMA version */
 158#define T4_ERR_OPCODE                      0x16 /* invalid rdma opcode */
 159#define T4_ERR_DDP_QUEUE_NUM               0x17 /* invalid ddp queue number */
 160#define T4_ERR_MSN                         0x18 /* MSN error */
 161#define T4_ERR_TBIT                        0x19 /* tag bit not set correctly */
 162#define T4_ERR_MO                          0x1A /* MO not 0 for TERMINATE  */
 163                                                /* or READ_REQ */
 164#define T4_ERR_MSN_GAP                     0x1B
 165#define T4_ERR_MSN_RANGE                   0x1C
 166#define T4_ERR_IRD_OVERFLOW                0x1D
 167#define T4_ERR_RQE_ADDR_BOUND              0x1E /* RQE addr out of bounds:  */
 168                                                /* software error */
 169#define T4_ERR_INTERNAL_ERR                0x1F /* internal error (opcode  */
 170                                                /* mismatch) */
 171/*
 172 * CQE defs
 173 */
 174struct t4_cqe {
 175        __be32 header;
 176        __be32 len;
 177        union {
 178                struct {
 179                        __be32 stag;
 180                        __be32 msn;
 181                } rcqe;
 182                struct {
 183                        __be32 stag;
 184                        u16 nada2;
 185                        u16 cidx;
 186                } scqe;
 187                struct {
 188                        __be32 wrid_hi;
 189                        __be32 wrid_low;
 190                } gen;
 191                struct {
 192                        __be32 stag;
 193                        __be32 msn;
 194                        __be32 reserved;
 195                        __be32 abs_rqe_idx;
 196                } srcqe;
 197                struct {
 198                        __be32 mo;
 199                        __be32 msn;
 200                        /*
 201                         * Use union for immediate data to be consistent with
 202                         * stack's 32 bit data and iWARP spec's 64 bit data.
 203                         */
 204                        union {
 205                                struct {
 206                                        __be32 imm_data32;
 207                                        u32 reserved;
 208                                } ib_imm_data;
 209                                __be64 imm_data64;
 210                        } iw_imm_data;
 211                } imm_data_rcqe;
 212
 213                u64 drain_cookie;
 214                __be64 flits[3];
 215        } u;
 216        __be64 reserved[3];
 217        __be64 bits_type_ts;
 218};
 219
 220/* macros for flit 0 of the cqe */
 221
 222#define CQE_QPID_S        12
 223#define CQE_QPID_M        0xFFFFF
 224#define CQE_QPID_G(x)     ((((x) >> CQE_QPID_S)) & CQE_QPID_M)
 225#define CQE_QPID_V(x)     ((x)<<CQE_QPID_S)
 226
 227#define CQE_SWCQE_S       11
 228#define CQE_SWCQE_M       0x1
 229#define CQE_SWCQE_G(x)    ((((x) >> CQE_SWCQE_S)) & CQE_SWCQE_M)
 230#define CQE_SWCQE_V(x)    ((x)<<CQE_SWCQE_S)
 231
 232#define CQE_DRAIN_S       10
 233#define CQE_DRAIN_M       0x1
 234#define CQE_DRAIN_G(x)    ((((x) >> CQE_DRAIN_S)) & CQE_DRAIN_M)
 235#define CQE_DRAIN_V(x)    ((x)<<CQE_DRAIN_S)
 236
 237#define CQE_STATUS_S      5
 238#define CQE_STATUS_M      0x1F
 239#define CQE_STATUS_G(x)   ((((x) >> CQE_STATUS_S)) & CQE_STATUS_M)
 240#define CQE_STATUS_V(x)   ((x)<<CQE_STATUS_S)
 241
 242#define CQE_TYPE_S        4
 243#define CQE_TYPE_M        0x1
 244#define CQE_TYPE_G(x)     ((((x) >> CQE_TYPE_S)) & CQE_TYPE_M)
 245#define CQE_TYPE_V(x)     ((x)<<CQE_TYPE_S)
 246
 247#define CQE_OPCODE_S      0
 248#define CQE_OPCODE_M      0xF
 249#define CQE_OPCODE_G(x)   ((((x) >> CQE_OPCODE_S)) & CQE_OPCODE_M)
 250#define CQE_OPCODE_V(x)   ((x)<<CQE_OPCODE_S)
 251
 252#define SW_CQE(x)         (CQE_SWCQE_G(be32_to_cpu((x)->header)))
 253#define DRAIN_CQE(x)      (CQE_DRAIN_G(be32_to_cpu((x)->header)))
 254#define CQE_QPID(x)       (CQE_QPID_G(be32_to_cpu((x)->header)))
 255#define CQE_TYPE(x)       (CQE_TYPE_G(be32_to_cpu((x)->header)))
 256#define SQ_TYPE(x)        (CQE_TYPE((x)))
 257#define RQ_TYPE(x)        (!CQE_TYPE((x)))
 258#define CQE_STATUS(x)     (CQE_STATUS_G(be32_to_cpu((x)->header)))
 259#define CQE_OPCODE(x)     (CQE_OPCODE_G(be32_to_cpu((x)->header)))
 260
 261#define CQE_SEND_OPCODE(x)( \
 262        (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
 263        (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
 264        (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
 265        (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
 266
 267#define CQE_LEN(x)        (be32_to_cpu((x)->len))
 268
 269/* used for RQ completion processing */
 270#define CQE_WRID_STAG(x)  (be32_to_cpu((x)->u.rcqe.stag))
 271#define CQE_WRID_MSN(x)   (be32_to_cpu((x)->u.rcqe.msn))
 272#define CQE_ABS_RQE_IDX(x) (be32_to_cpu((x)->u.srcqe.abs_rqe_idx))
 273#define CQE_IMM_DATA(x)( \
 274        (x)->u.imm_data_rcqe.iw_imm_data.ib_imm_data.imm_data32)
 275
 276/* used for SQ completion processing */
 277#define CQE_WRID_SQ_IDX(x)      ((x)->u.scqe.cidx)
 278#define CQE_WRID_FR_STAG(x)     (be32_to_cpu((x)->u.scqe.stag))
 279
 280/* generic accessor macros */
 281#define CQE_WRID_HI(x)          (be32_to_cpu((x)->u.gen.wrid_hi))
 282#define CQE_WRID_LOW(x)         (be32_to_cpu((x)->u.gen.wrid_low))
 283#define CQE_DRAIN_COOKIE(x)     ((x)->u.drain_cookie)
 284
 285/* macros for flit 3 of the cqe */
 286#define CQE_GENBIT_S    63
 287#define CQE_GENBIT_M    0x1
 288#define CQE_GENBIT_G(x) (((x) >> CQE_GENBIT_S) & CQE_GENBIT_M)
 289#define CQE_GENBIT_V(x) ((x)<<CQE_GENBIT_S)
 290
 291#define CQE_OVFBIT_S    62
 292#define CQE_OVFBIT_M    0x1
 293#define CQE_OVFBIT_G(x) ((((x) >> CQE_OVFBIT_S)) & CQE_OVFBIT_M)
 294
 295#define CQE_IQTYPE_S    60
 296#define CQE_IQTYPE_M    0x3
 297#define CQE_IQTYPE_G(x) ((((x) >> CQE_IQTYPE_S)) & CQE_IQTYPE_M)
 298
 299#define CQE_TS_M        0x0fffffffffffffffULL
 300#define CQE_TS_G(x)     ((x) & CQE_TS_M)
 301
 302#define CQE_OVFBIT(x)   ((unsigned)CQE_OVFBIT_G(be64_to_cpu((x)->bits_type_ts)))
 303#define CQE_GENBIT(x)   ((unsigned)CQE_GENBIT_G(be64_to_cpu((x)->bits_type_ts)))
 304#define CQE_TS(x)       (CQE_TS_G(be64_to_cpu((x)->bits_type_ts)))
 305
 306struct t4_swsqe {
 307        u64                     wr_id;
 308        struct t4_cqe           cqe;
 309        int                     read_len;
 310        int                     opcode;
 311        int                     complete;
 312        int                     signaled;
 313        u16                     idx;
 314        int                     flushed;
 315        ktime_t                 host_time;
 316        u64                     sge_ts;
 317};
 318
 319static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
 320{
 321#if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
 322        return pgprot_writecombine(prot);
 323#else
 324        return pgprot_noncached(prot);
 325#endif
 326}
 327
 328enum {
 329        T4_SQ_ONCHIP = (1<<0),
 330};
 331
 332struct t4_sq {
 333        union t4_wr *queue;
 334        dma_addr_t dma_addr;
 335        DEFINE_DMA_UNMAP_ADDR(mapping);
 336        unsigned long phys_addr;
 337        struct t4_swsqe *sw_sq;
 338        struct t4_swsqe *oldest_read;
 339        void __iomem *bar2_va;
 340        u64 bar2_pa;
 341        size_t memsize;
 342        u32 bar2_qid;
 343        u32 qid;
 344        u16 in_use;
 345        u16 size;
 346        u16 cidx;
 347        u16 pidx;
 348        u16 wq_pidx;
 349        u16 wq_pidx_inc;
 350        u16 flags;
 351        short flush_cidx;
 352};
 353
 354struct t4_swrqe {
 355        u64 wr_id;
 356        ktime_t host_time;
 357        u64 sge_ts;
 358        int valid;
 359};
 360
 361struct t4_rq {
 362        union  t4_recv_wr *queue;
 363        dma_addr_t dma_addr;
 364        DEFINE_DMA_UNMAP_ADDR(mapping);
 365        struct t4_swrqe *sw_rq;
 366        void __iomem *bar2_va;
 367        u64 bar2_pa;
 368        size_t memsize;
 369        u32 bar2_qid;
 370        u32 qid;
 371        u32 msn;
 372        u32 rqt_hwaddr;
 373        u16 rqt_size;
 374        u16 in_use;
 375        u16 size;
 376        u16 cidx;
 377        u16 pidx;
 378        u16 wq_pidx;
 379        u16 wq_pidx_inc;
 380};
 381
 382struct t4_wq {
 383        struct t4_sq sq;
 384        struct t4_rq rq;
 385        void __iomem *db;
 386        struct c4iw_rdev *rdev;
 387        int flushed;
 388        u8 *qp_errp;
 389        u32 *srqidxp;
 390};
 391
 392struct t4_srq_pending_wr {
 393        u64 wr_id;
 394        union t4_recv_wr wqe;
 395        u8 len16;
 396};
 397
 398struct t4_srq {
 399        union t4_recv_wr *queue;
 400        dma_addr_t dma_addr;
 401        DEFINE_DMA_UNMAP_ADDR(mapping);
 402        struct t4_swrqe *sw_rq;
 403        void __iomem *bar2_va;
 404        u64 bar2_pa;
 405        size_t memsize;
 406        u32 bar2_qid;
 407        u32 qid;
 408        u32 msn;
 409        u32 rqt_hwaddr;
 410        u32 rqt_abs_idx;
 411        u16 rqt_size;
 412        u16 size;
 413        u16 cidx;
 414        u16 pidx;
 415        u16 wq_pidx;
 416        u16 wq_pidx_inc;
 417        u16 in_use;
 418        struct t4_srq_pending_wr *pending_wrs;
 419        u16 pending_cidx;
 420        u16 pending_pidx;
 421        u16 pending_in_use;
 422        u16 ooo_count;
 423};
 424
 425static inline u32 t4_srq_avail(struct t4_srq *srq)
 426{
 427        return srq->size - 1 - srq->in_use;
 428}
 429
 430static inline void t4_srq_produce(struct t4_srq *srq, u8 len16)
 431{
 432        srq->in_use++;
 433        if (++srq->pidx == srq->size)
 434                srq->pidx = 0;
 435        srq->wq_pidx += DIV_ROUND_UP(len16 * 16, T4_EQ_ENTRY_SIZE);
 436        if (srq->wq_pidx >= srq->size * T4_RQ_NUM_SLOTS)
 437                srq->wq_pidx %= srq->size * T4_RQ_NUM_SLOTS;
 438        srq->queue[srq->size].status.host_pidx = srq->pidx;
 439}
 440
 441static inline void t4_srq_produce_pending_wr(struct t4_srq *srq)
 442{
 443        srq->pending_in_use++;
 444        srq->in_use++;
 445        if (++srq->pending_pidx == srq->size)
 446                srq->pending_pidx = 0;
 447}
 448
 449static inline void t4_srq_consume_pending_wr(struct t4_srq *srq)
 450{
 451        srq->pending_in_use--;
 452        srq->in_use--;
 453        if (++srq->pending_cidx == srq->size)
 454                srq->pending_cidx = 0;
 455}
 456
 457static inline void t4_srq_produce_ooo(struct t4_srq *srq)
 458{
 459        srq->in_use--;
 460        srq->ooo_count++;
 461}
 462
 463static inline void t4_srq_consume_ooo(struct t4_srq *srq)
 464{
 465        srq->cidx++;
 466        if (srq->cidx == srq->size)
 467                srq->cidx  = 0;
 468        srq->queue[srq->size].status.host_cidx = srq->cidx;
 469        srq->ooo_count--;
 470}
 471
 472static inline void t4_srq_consume(struct t4_srq *srq)
 473{
 474        srq->in_use--;
 475        if (++srq->cidx == srq->size)
 476                srq->cidx = 0;
 477        srq->queue[srq->size].status.host_cidx = srq->cidx;
 478}
 479
 480static inline int t4_rqes_posted(struct t4_wq *wq)
 481{
 482        return wq->rq.in_use;
 483}
 484
 485static inline int t4_rq_empty(struct t4_wq *wq)
 486{
 487        return wq->rq.in_use == 0;
 488}
 489
 490static inline u32 t4_rq_avail(struct t4_wq *wq)
 491{
 492        return wq->rq.size - 1 - wq->rq.in_use;
 493}
 494
 495static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
 496{
 497        wq->rq.in_use++;
 498        if (++wq->rq.pidx == wq->rq.size)
 499                wq->rq.pidx = 0;
 500        wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
 501        if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
 502                wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
 503}
 504
 505static inline void t4_rq_consume(struct t4_wq *wq)
 506{
 507        wq->rq.in_use--;
 508        if (++wq->rq.cidx == wq->rq.size)
 509                wq->rq.cidx = 0;
 510}
 511
 512static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
 513{
 514        return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
 515}
 516
 517static inline u16 t4_rq_wq_size(struct t4_wq *wq)
 518{
 519                return wq->rq.size * T4_RQ_NUM_SLOTS;
 520}
 521
 522static inline int t4_sq_onchip(struct t4_sq *sq)
 523{
 524        return sq->flags & T4_SQ_ONCHIP;
 525}
 526
 527static inline int t4_sq_empty(struct t4_wq *wq)
 528{
 529        return wq->sq.in_use == 0;
 530}
 531
 532static inline u32 t4_sq_avail(struct t4_wq *wq)
 533{
 534        return wq->sq.size - 1 - wq->sq.in_use;
 535}
 536
 537static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
 538{
 539        wq->sq.in_use++;
 540        if (++wq->sq.pidx == wq->sq.size)
 541                wq->sq.pidx = 0;
 542        wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
 543        if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
 544                wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
 545}
 546
 547static inline void t4_sq_consume(struct t4_wq *wq)
 548{
 549        if (wq->sq.cidx == wq->sq.flush_cidx)
 550                wq->sq.flush_cidx = -1;
 551        wq->sq.in_use--;
 552        if (++wq->sq.cidx == wq->sq.size)
 553                wq->sq.cidx = 0;
 554}
 555
 556static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
 557{
 558        return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
 559}
 560
 561static inline u16 t4_sq_wq_size(struct t4_wq *wq)
 562{
 563                return wq->sq.size * T4_SQ_NUM_SLOTS;
 564}
 565
 566/* This function copies 64 byte coalesced work request to memory
 567 * mapped BAR2 space. For coalesced WRs, the SGE fetches data
 568 * from the FIFO instead of from Host.
 569 */
 570static inline void pio_copy(u64 __iomem *dst, u64 *src)
 571{
 572        int count = 8;
 573
 574        while (count) {
 575                writeq(*src, dst);
 576                src++;
 577                dst++;
 578                count--;
 579        }
 580}
 581
 582static inline void t4_ring_srq_db(struct t4_srq *srq, u16 inc, u8 len16,
 583                                  union t4_recv_wr *wqe)
 584{
 585        /* Flush host queue memory writes. */
 586        wmb();
 587        if (inc == 1 && srq->bar2_qid == 0 && wqe) {
 588                pr_debug("%s : WC srq->pidx = %d; len16=%d\n",
 589                         __func__, srq->pidx, len16);
 590                pio_copy(srq->bar2_va + SGE_UDB_WCDOORBELL, (u64 *)wqe);
 591        } else {
 592                pr_debug("%s: DB srq->pidx = %d; len16=%d\n",
 593                         __func__, srq->pidx, len16);
 594                writel(PIDX_T5_V(inc) | QID_V(srq->bar2_qid),
 595                       srq->bar2_va + SGE_UDB_KDOORBELL);
 596        }
 597        /* Flush user doorbell area writes. */
 598        wmb();
 599}
 600
 601static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc, union t4_wr *wqe)
 602{
 603
 604        /* Flush host queue memory writes. */
 605        wmb();
 606        if (wq->sq.bar2_va) {
 607                if (inc == 1 && wq->sq.bar2_qid == 0 && wqe) {
 608                        pr_debug("WC wq->sq.pidx = %d\n", wq->sq.pidx);
 609                        pio_copy((u64 __iomem *)
 610                                 (wq->sq.bar2_va + SGE_UDB_WCDOORBELL),
 611                                 (u64 *)wqe);
 612                } else {
 613                        pr_debug("DB wq->sq.pidx = %d\n", wq->sq.pidx);
 614                        writel(PIDX_T5_V(inc) | QID_V(wq->sq.bar2_qid),
 615                               wq->sq.bar2_va + SGE_UDB_KDOORBELL);
 616                }
 617
 618                /* Flush user doorbell area writes. */
 619                wmb();
 620                return;
 621        }
 622        writel(QID_V(wq->sq.qid) | PIDX_V(inc), wq->db);
 623}
 624
 625static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc,
 626                                 union t4_recv_wr *wqe)
 627{
 628
 629        /* Flush host queue memory writes. */
 630        wmb();
 631        if (wq->rq.bar2_va) {
 632                if (inc == 1 && wq->rq.bar2_qid == 0 && wqe) {
 633                        pr_debug("WC wq->rq.pidx = %d\n", wq->rq.pidx);
 634                        pio_copy((u64 __iomem *)
 635                                 (wq->rq.bar2_va + SGE_UDB_WCDOORBELL),
 636                                 (void *)wqe);
 637                } else {
 638                        pr_debug("DB wq->rq.pidx = %d\n", wq->rq.pidx);
 639                        writel(PIDX_T5_V(inc) | QID_V(wq->rq.bar2_qid),
 640                               wq->rq.bar2_va + SGE_UDB_KDOORBELL);
 641                }
 642
 643                /* Flush user doorbell area writes. */
 644                wmb();
 645                return;
 646        }
 647        writel(QID_V(wq->rq.qid) | PIDX_V(inc), wq->db);
 648}
 649
 650static inline int t4_wq_in_error(struct t4_wq *wq)
 651{
 652        return *wq->qp_errp;
 653}
 654
 655static inline void t4_set_wq_in_error(struct t4_wq *wq, u32 srqidx)
 656{
 657        if (srqidx)
 658                *wq->srqidxp = srqidx;
 659        *wq->qp_errp = 1;
 660}
 661
 662static inline void t4_disable_wq_db(struct t4_wq *wq)
 663{
 664        wq->rq.queue[wq->rq.size].status.db_off = 1;
 665}
 666
 667static inline void t4_enable_wq_db(struct t4_wq *wq)
 668{
 669        wq->rq.queue[wq->rq.size].status.db_off = 0;
 670}
 671
 672enum t4_cq_flags {
 673        CQ_ARMED        = 1,
 674};
 675
 676struct t4_cq {
 677        struct t4_cqe *queue;
 678        dma_addr_t dma_addr;
 679        DEFINE_DMA_UNMAP_ADDR(mapping);
 680        struct t4_cqe *sw_queue;
 681        void __iomem *gts;
 682        void __iomem *bar2_va;
 683        u64 bar2_pa;
 684        u32 bar2_qid;
 685        struct c4iw_rdev *rdev;
 686        size_t memsize;
 687        __be64 bits_type_ts;
 688        u32 cqid;
 689        u32 qid_mask;
 690        int vector;
 691        u16 size; /* including status page */
 692        u16 cidx;
 693        u16 sw_pidx;
 694        u16 sw_cidx;
 695        u16 sw_in_use;
 696        u16 cidx_inc;
 697        u8 gen;
 698        u8 error;
 699        u8 *qp_errp;
 700        unsigned long flags;
 701};
 702
 703static inline void write_gts(struct t4_cq *cq, u32 val)
 704{
 705        if (cq->bar2_va)
 706                writel(val | INGRESSQID_V(cq->bar2_qid),
 707                       cq->bar2_va + SGE_UDB_GTS);
 708        else
 709                writel(val | INGRESSQID_V(cq->cqid), cq->gts);
 710}
 711
 712static inline int t4_clear_cq_armed(struct t4_cq *cq)
 713{
 714        return test_and_clear_bit(CQ_ARMED, &cq->flags);
 715}
 716
 717static inline int t4_arm_cq(struct t4_cq *cq, int se)
 718{
 719        u32 val;
 720
 721        set_bit(CQ_ARMED, &cq->flags);
 722        while (cq->cidx_inc > CIDXINC_M) {
 723                val = SEINTARM_V(0) | CIDXINC_V(CIDXINC_M) | TIMERREG_V(7);
 724                write_gts(cq, val);
 725                cq->cidx_inc -= CIDXINC_M;
 726        }
 727        val = SEINTARM_V(se) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(6);
 728        write_gts(cq, val);
 729        cq->cidx_inc = 0;
 730        return 0;
 731}
 732
 733static inline void t4_swcq_produce(struct t4_cq *cq)
 734{
 735        cq->sw_in_use++;
 736        if (cq->sw_in_use == cq->size) {
 737                pr_warn("%s cxgb4 sw cq overflow cqid %u\n",
 738                        __func__, cq->cqid);
 739                cq->error = 1;
 740                cq->sw_in_use--;
 741                return;
 742        }
 743        if (++cq->sw_pidx == cq->size)
 744                cq->sw_pidx = 0;
 745}
 746
 747static inline void t4_swcq_consume(struct t4_cq *cq)
 748{
 749        cq->sw_in_use--;
 750        if (++cq->sw_cidx == cq->size)
 751                cq->sw_cidx = 0;
 752}
 753
 754static inline void t4_hwcq_consume(struct t4_cq *cq)
 755{
 756        cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
 757        if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == CIDXINC_M) {
 758                u32 val;
 759
 760                val = SEINTARM_V(0) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(7);
 761                write_gts(cq, val);
 762                cq->cidx_inc = 0;
 763        }
 764        if (++cq->cidx == cq->size) {
 765                cq->cidx = 0;
 766                cq->gen ^= 1;
 767        }
 768}
 769
 770static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
 771{
 772        return (CQE_GENBIT(cqe) == cq->gen);
 773}
 774
 775static inline int t4_cq_notempty(struct t4_cq *cq)
 776{
 777        return cq->sw_in_use || t4_valid_cqe(cq, &cq->queue[cq->cidx]);
 778}
 779
 780static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
 781{
 782        int ret;
 783        u16 prev_cidx;
 784
 785        if (cq->cidx == 0)
 786                prev_cidx = cq->size - 1;
 787        else
 788                prev_cidx = cq->cidx - 1;
 789
 790        if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
 791                ret = -EOVERFLOW;
 792                cq->error = 1;
 793                pr_err("cq overflow cqid %u\n", cq->cqid);
 794        } else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
 795
 796                /* Ensure CQE is flushed to memory */
 797                rmb();
 798                *cqe = &cq->queue[cq->cidx];
 799                ret = 0;
 800        } else
 801                ret = -ENODATA;
 802        return ret;
 803}
 804
 805static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
 806{
 807        int ret = 0;
 808
 809        if (cq->error)
 810                ret = -ENODATA;
 811        else if (cq->sw_in_use)
 812                *cqe = &cq->sw_queue[cq->sw_cidx];
 813        else
 814                ret = t4_next_hw_cqe(cq, cqe);
 815        return ret;
 816}
 817
 818static inline void t4_set_cq_in_error(struct t4_cq *cq)
 819{
 820        *cq->qp_errp = 1;
 821}
 822#endif
 823
 824struct t4_dev_status_page {
 825        u8 db_off;
 826        u8 write_cmpl_supported;
 827        u16 pad2;
 828        u32 pad3;
 829        u64 qp_start;
 830        u64 qp_size;
 831        u64 cq_start;
 832        u64 cq_size;
 833};
 834