linux/drivers/infiniband/hw/hfi1/sdma.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
   2/*
   3 * Copyright(c) 2015 - 2018 Intel Corporation.
   4 */
   5
   6#include <linux/spinlock.h>
   7#include <linux/seqlock.h>
   8#include <linux/netdevice.h>
   9#include <linux/moduleparam.h>
  10#include <linux/bitops.h>
  11#include <linux/timer.h>
  12#include <linux/vmalloc.h>
  13#include <linux/highmem.h>
  14
  15#include "hfi.h"
  16#include "common.h"
  17#include "qp.h"
  18#include "sdma.h"
  19#include "iowait.h"
  20#include "trace.h"
  21
  22/* must be a power of 2 >= 64 <= 32768 */
  23#define SDMA_DESCQ_CNT 2048
  24#define SDMA_DESC_INTR 64
  25#define INVALID_TAIL 0xffff
  26#define SDMA_PAD max_t(size_t, MAX_16B_PADDING, sizeof(u32))
  27
  28static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
  29module_param(sdma_descq_cnt, uint, S_IRUGO);
  30MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
  31
  32static uint sdma_idle_cnt = 250;
  33module_param(sdma_idle_cnt, uint, S_IRUGO);
  34MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
  35
  36uint mod_num_sdma;
  37module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
  38MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
  39
  40static uint sdma_desct_intr = SDMA_DESC_INTR;
  41module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
  42MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
  43
  44#define SDMA_WAIT_BATCH_SIZE 20
  45/* max wait time for a SDMA engine to indicate it has halted */
  46#define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
  47/* all SDMA engine errors that cause a halt */
  48
  49#define SD(name) SEND_DMA_##name
  50#define ALL_SDMA_ENG_HALT_ERRS \
  51        (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
  52        | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
  53        | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
  54        | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
  55        | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
  56        | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
  57        | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
  58        | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
  59        | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
  60        | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
  61        | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
  62        | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
  63        | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
  64        | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
  65        | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
  66        | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
  67        | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
  68        | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
  69
  70/* sdma_sendctrl operations */
  71#define SDMA_SENDCTRL_OP_ENABLE    BIT(0)
  72#define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
  73#define SDMA_SENDCTRL_OP_HALT      BIT(2)
  74#define SDMA_SENDCTRL_OP_CLEANUP   BIT(3)
  75
  76/* handle long defines */
  77#define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
  78SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
  79#define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
  80SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
  81
  82static const char * const sdma_state_names[] = {
  83        [sdma_state_s00_hw_down]                = "s00_HwDown",
  84        [sdma_state_s10_hw_start_up_halt_wait]  = "s10_HwStartUpHaltWait",
  85        [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
  86        [sdma_state_s20_idle]                   = "s20_Idle",
  87        [sdma_state_s30_sw_clean_up_wait]       = "s30_SwCleanUpWait",
  88        [sdma_state_s40_hw_clean_up_wait]       = "s40_HwCleanUpWait",
  89        [sdma_state_s50_hw_halt_wait]           = "s50_HwHaltWait",
  90        [sdma_state_s60_idle_halt_wait]         = "s60_IdleHaltWait",
  91        [sdma_state_s80_hw_freeze]              = "s80_HwFreeze",
  92        [sdma_state_s82_freeze_sw_clean]        = "s82_FreezeSwClean",
  93        [sdma_state_s99_running]                = "s99_Running",
  94};
  95
  96#ifdef CONFIG_SDMA_VERBOSITY
  97static const char * const sdma_event_names[] = {
  98        [sdma_event_e00_go_hw_down]   = "e00_GoHwDown",
  99        [sdma_event_e10_go_hw_start]  = "e10_GoHwStart",
 100        [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
 101        [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
 102        [sdma_event_e30_go_running]   = "e30_GoRunning",
 103        [sdma_event_e40_sw_cleaned]   = "e40_SwCleaned",
 104        [sdma_event_e50_hw_cleaned]   = "e50_HwCleaned",
 105        [sdma_event_e60_hw_halted]    = "e60_HwHalted",
 106        [sdma_event_e70_go_idle]      = "e70_GoIdle",
 107        [sdma_event_e80_hw_freeze]    = "e80_HwFreeze",
 108        [sdma_event_e81_hw_frozen]    = "e81_HwFrozen",
 109        [sdma_event_e82_hw_unfreeze]  = "e82_HwUnfreeze",
 110        [sdma_event_e85_link_down]    = "e85_LinkDown",
 111        [sdma_event_e90_sw_halted]    = "e90_SwHalted",
 112};
 113#endif
 114
 115static const struct sdma_set_state_action sdma_action_table[] = {
 116        [sdma_state_s00_hw_down] = {
 117                .go_s99_running_tofalse = 1,
 118                .op_enable = 0,
 119                .op_intenable = 0,
 120                .op_halt = 0,
 121                .op_cleanup = 0,
 122        },
 123        [sdma_state_s10_hw_start_up_halt_wait] = {
 124                .op_enable = 0,
 125                .op_intenable = 0,
 126                .op_halt = 1,
 127                .op_cleanup = 0,
 128        },
 129        [sdma_state_s15_hw_start_up_clean_wait] = {
 130                .op_enable = 0,
 131                .op_intenable = 1,
 132                .op_halt = 0,
 133                .op_cleanup = 1,
 134        },
 135        [sdma_state_s20_idle] = {
 136                .op_enable = 0,
 137                .op_intenable = 1,
 138                .op_halt = 0,
 139                .op_cleanup = 0,
 140        },
 141        [sdma_state_s30_sw_clean_up_wait] = {
 142                .op_enable = 0,
 143                .op_intenable = 0,
 144                .op_halt = 0,
 145                .op_cleanup = 0,
 146        },
 147        [sdma_state_s40_hw_clean_up_wait] = {
 148                .op_enable = 0,
 149                .op_intenable = 0,
 150                .op_halt = 0,
 151                .op_cleanup = 1,
 152        },
 153        [sdma_state_s50_hw_halt_wait] = {
 154                .op_enable = 0,
 155                .op_intenable = 0,
 156                .op_halt = 0,
 157                .op_cleanup = 0,
 158        },
 159        [sdma_state_s60_idle_halt_wait] = {
 160                .go_s99_running_tofalse = 1,
 161                .op_enable = 0,
 162                .op_intenable = 0,
 163                .op_halt = 1,
 164                .op_cleanup = 0,
 165        },
 166        [sdma_state_s80_hw_freeze] = {
 167                .op_enable = 0,
 168                .op_intenable = 0,
 169                .op_halt = 0,
 170                .op_cleanup = 0,
 171        },
 172        [sdma_state_s82_freeze_sw_clean] = {
 173                .op_enable = 0,
 174                .op_intenable = 0,
 175                .op_halt = 0,
 176                .op_cleanup = 0,
 177        },
 178        [sdma_state_s99_running] = {
 179                .op_enable = 1,
 180                .op_intenable = 1,
 181                .op_halt = 0,
 182                .op_cleanup = 0,
 183                .go_s99_running_totrue = 1,
 184        },
 185};
 186
 187#define SDMA_TAIL_UPDATE_THRESH 0x1F
 188
 189/* declare all statics here rather than keep sorting */
 190static void sdma_complete(struct kref *);
 191static void sdma_finalput(struct sdma_state *);
 192static void sdma_get(struct sdma_state *);
 193static void sdma_hw_clean_up_task(struct tasklet_struct *);
 194static void sdma_put(struct sdma_state *);
 195static void sdma_set_state(struct sdma_engine *, enum sdma_states);
 196static void sdma_start_hw_clean_up(struct sdma_engine *);
 197static void sdma_sw_clean_up_task(struct tasklet_struct *);
 198static void sdma_sendctrl(struct sdma_engine *, unsigned);
 199static void init_sdma_regs(struct sdma_engine *, u32, uint);
 200static void sdma_process_event(
 201        struct sdma_engine *sde,
 202        enum sdma_events event);
 203static void __sdma_process_event(
 204        struct sdma_engine *sde,
 205        enum sdma_events event);
 206static void dump_sdma_state(struct sdma_engine *sde);
 207static void sdma_make_progress(struct sdma_engine *sde, u64 status);
 208static void sdma_desc_avail(struct sdma_engine *sde, uint avail);
 209static void sdma_flush_descq(struct sdma_engine *sde);
 210
 211/**
 212 * sdma_state_name() - return state string from enum
 213 * @state: state
 214 */
 215static const char *sdma_state_name(enum sdma_states state)
 216{
 217        return sdma_state_names[state];
 218}
 219
 220static void sdma_get(struct sdma_state *ss)
 221{
 222        kref_get(&ss->kref);
 223}
 224
 225static void sdma_complete(struct kref *kref)
 226{
 227        struct sdma_state *ss =
 228                container_of(kref, struct sdma_state, kref);
 229
 230        complete(&ss->comp);
 231}
 232
 233static void sdma_put(struct sdma_state *ss)
 234{
 235        kref_put(&ss->kref, sdma_complete);
 236}
 237
 238static void sdma_finalput(struct sdma_state *ss)
 239{
 240        sdma_put(ss);
 241        wait_for_completion(&ss->comp);
 242}
 243
 244static inline void write_sde_csr(
 245        struct sdma_engine *sde,
 246        u32 offset0,
 247        u64 value)
 248{
 249        write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
 250}
 251
 252static inline u64 read_sde_csr(
 253        struct sdma_engine *sde,
 254        u32 offset0)
 255{
 256        return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
 257}
 258
 259/*
 260 * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
 261 * sdma engine 'sde' to drop to 0.
 262 */
 263static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
 264                                        int pause)
 265{
 266        u64 off = 8 * sde->this_idx;
 267        struct hfi1_devdata *dd = sde->dd;
 268        int lcnt = 0;
 269        u64 reg_prev;
 270        u64 reg = 0;
 271
 272        while (1) {
 273                reg_prev = reg;
 274                reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
 275
 276                reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
 277                reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
 278                if (reg == 0)
 279                        break;
 280                /* counter is reest if accupancy count changes */
 281                if (reg != reg_prev)
 282                        lcnt = 0;
 283                if (lcnt++ > 500) {
 284                        /* timed out - bounce the link */
 285                        dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
 286                                   __func__, sde->this_idx, (u32)reg);
 287                        queue_work(dd->pport->link_wq,
 288                                   &dd->pport->link_bounce_work);
 289                        break;
 290                }
 291                udelay(1);
 292        }
 293}
 294
 295/*
 296 * sdma_wait() - wait for packet egress to complete for all SDMA engines,
 297 * and pause for credit return.
 298 */
 299void sdma_wait(struct hfi1_devdata *dd)
 300{
 301        int i;
 302
 303        for (i = 0; i < dd->num_sdma; i++) {
 304                struct sdma_engine *sde = &dd->per_sdma[i];
 305
 306                sdma_wait_for_packet_egress(sde, 0);
 307        }
 308}
 309
 310static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
 311{
 312        u64 reg;
 313
 314        if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
 315                return;
 316        reg = cnt;
 317        reg &= SD(DESC_CNT_CNT_MASK);
 318        reg <<= SD(DESC_CNT_CNT_SHIFT);
 319        write_sde_csr(sde, SD(DESC_CNT), reg);
 320}
 321
 322static inline void complete_tx(struct sdma_engine *sde,
 323                               struct sdma_txreq *tx,
 324                               int res)
 325{
 326        /* protect against complete modifying */
 327        struct iowait *wait = tx->wait;
 328        callback_t complete = tx->complete;
 329
 330#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
 331        trace_hfi1_sdma_out_sn(sde, tx->sn);
 332        if (WARN_ON_ONCE(sde->head_sn != tx->sn))
 333                dd_dev_err(sde->dd, "expected %llu got %llu\n",
 334                           sde->head_sn, tx->sn);
 335        sde->head_sn++;
 336#endif
 337        __sdma_txclean(sde->dd, tx);
 338        if (complete)
 339                (*complete)(tx, res);
 340        if (iowait_sdma_dec(wait))
 341                iowait_drain_wakeup(wait);
 342}
 343
 344/*
 345 * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
 346 *
 347 * Depending on timing there can be txreqs in two places:
 348 * - in the descq ring
 349 * - in the flush list
 350 *
 351 * To avoid ordering issues the descq ring needs to be flushed
 352 * first followed by the flush list.
 353 *
 354 * This routine is called from two places
 355 * - From a work queue item
 356 * - Directly from the state machine just before setting the
 357 *   state to running
 358 *
 359 * Must be called with head_lock held
 360 *
 361 */
 362static void sdma_flush(struct sdma_engine *sde)
 363{
 364        struct sdma_txreq *txp, *txp_next;
 365        LIST_HEAD(flushlist);
 366        unsigned long flags;
 367        uint seq;
 368
 369        /* flush from head to tail */
 370        sdma_flush_descq(sde);
 371        spin_lock_irqsave(&sde->flushlist_lock, flags);
 372        /* copy flush list */
 373        list_splice_init(&sde->flushlist, &flushlist);
 374        spin_unlock_irqrestore(&sde->flushlist_lock, flags);
 375        /* flush from flush list */
 376        list_for_each_entry_safe(txp, txp_next, &flushlist, list)
 377                complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
 378        /* wakeup QPs orphaned on the dmawait list */
 379        do {
 380                struct iowait *w, *nw;
 381
 382                seq = read_seqbegin(&sde->waitlock);
 383                if (!list_empty(&sde->dmawait)) {
 384                        write_seqlock(&sde->waitlock);
 385                        list_for_each_entry_safe(w, nw, &sde->dmawait, list) {
 386                                if (w->wakeup) {
 387                                        w->wakeup(w, SDMA_AVAIL_REASON);
 388                                        list_del_init(&w->list);
 389                                }
 390                        }
 391                        write_sequnlock(&sde->waitlock);
 392                }
 393        } while (read_seqretry(&sde->waitlock, seq));
 394}
 395
 396/*
 397 * Fields a work request for flushing the descq ring
 398 * and the flush list
 399 *
 400 * If the engine has been brought to running during
 401 * the scheduling delay, the flush is ignored, assuming
 402 * that the process of bringing the engine to running
 403 * would have done this flush prior to going to running.
 404 *
 405 */
 406static void sdma_field_flush(struct work_struct *work)
 407{
 408        unsigned long flags;
 409        struct sdma_engine *sde =
 410                container_of(work, struct sdma_engine, flush_worker);
 411
 412        write_seqlock_irqsave(&sde->head_lock, flags);
 413        if (!__sdma_running(sde))
 414                sdma_flush(sde);
 415        write_sequnlock_irqrestore(&sde->head_lock, flags);
 416}
 417
 418static void sdma_err_halt_wait(struct work_struct *work)
 419{
 420        struct sdma_engine *sde = container_of(work, struct sdma_engine,
 421                                                err_halt_worker);
 422        u64 statuscsr;
 423        unsigned long timeout;
 424
 425        timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
 426        while (1) {
 427                statuscsr = read_sde_csr(sde, SD(STATUS));
 428                statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
 429                if (statuscsr)
 430                        break;
 431                if (time_after(jiffies, timeout)) {
 432                        dd_dev_err(sde->dd,
 433                                   "SDMA engine %d - timeout waiting for engine to halt\n",
 434                                   sde->this_idx);
 435                        /*
 436                         * Continue anyway.  This could happen if there was
 437                         * an uncorrectable error in the wrong spot.
 438                         */
 439                        break;
 440                }
 441                usleep_range(80, 120);
 442        }
 443
 444        sdma_process_event(sde, sdma_event_e15_hw_halt_done);
 445}
 446
 447static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
 448{
 449        if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
 450                unsigned index;
 451                struct hfi1_devdata *dd = sde->dd;
 452
 453                for (index = 0; index < dd->num_sdma; index++) {
 454                        struct sdma_engine *curr_sdma = &dd->per_sdma[index];
 455
 456                        if (curr_sdma != sde)
 457                                curr_sdma->progress_check_head =
 458                                                        curr_sdma->descq_head;
 459                }
 460                dd_dev_err(sde->dd,
 461                           "SDMA engine %d - check scheduled\n",
 462                                sde->this_idx);
 463                mod_timer(&sde->err_progress_check_timer, jiffies + 10);
 464        }
 465}
 466
 467static void sdma_err_progress_check(struct timer_list *t)
 468{
 469        unsigned index;
 470        struct sdma_engine *sde = from_timer(sde, t, err_progress_check_timer);
 471
 472        dd_dev_err(sde->dd, "SDE progress check event\n");
 473        for (index = 0; index < sde->dd->num_sdma; index++) {
 474                struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
 475                unsigned long flags;
 476
 477                /* check progress on each engine except the current one */
 478                if (curr_sde == sde)
 479                        continue;
 480                /*
 481                 * We must lock interrupts when acquiring sde->lock,
 482                 * to avoid a deadlock if interrupt triggers and spins on
 483                 * the same lock on same CPU
 484                 */
 485                spin_lock_irqsave(&curr_sde->tail_lock, flags);
 486                write_seqlock(&curr_sde->head_lock);
 487
 488                /* skip non-running queues */
 489                if (curr_sde->state.current_state != sdma_state_s99_running) {
 490                        write_sequnlock(&curr_sde->head_lock);
 491                        spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
 492                        continue;
 493                }
 494
 495                if ((curr_sde->descq_head != curr_sde->descq_tail) &&
 496                    (curr_sde->descq_head ==
 497                                curr_sde->progress_check_head))
 498                        __sdma_process_event(curr_sde,
 499                                             sdma_event_e90_sw_halted);
 500                write_sequnlock(&curr_sde->head_lock);
 501                spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
 502        }
 503        schedule_work(&sde->err_halt_worker);
 504}
 505
 506static void sdma_hw_clean_up_task(struct tasklet_struct *t)
 507{
 508        struct sdma_engine *sde = from_tasklet(sde, t,
 509                                               sdma_hw_clean_up_task);
 510        u64 statuscsr;
 511
 512        while (1) {
 513#ifdef CONFIG_SDMA_VERBOSITY
 514                dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
 515                           sde->this_idx, slashstrip(__FILE__), __LINE__,
 516                        __func__);
 517#endif
 518                statuscsr = read_sde_csr(sde, SD(STATUS));
 519                statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
 520                if (statuscsr)
 521                        break;
 522                udelay(10);
 523        }
 524
 525        sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
 526}
 527
 528static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
 529{
 530        return sde->tx_ring[sde->tx_head & sde->sdma_mask];
 531}
 532
 533/*
 534 * flush ring for recovery
 535 */
 536static void sdma_flush_descq(struct sdma_engine *sde)
 537{
 538        u16 head, tail;
 539        int progress = 0;
 540        struct sdma_txreq *txp = get_txhead(sde);
 541
 542        /* The reason for some of the complexity of this code is that
 543         * not all descriptors have corresponding txps.  So, we have to
 544         * be able to skip over descs until we wander into the range of
 545         * the next txp on the list.
 546         */
 547        head = sde->descq_head & sde->sdma_mask;
 548        tail = sde->descq_tail & sde->sdma_mask;
 549        while (head != tail) {
 550                /* advance head, wrap if needed */
 551                head = ++sde->descq_head & sde->sdma_mask;
 552                /* if now past this txp's descs, do the callback */
 553                if (txp && txp->next_descq_idx == head) {
 554                        /* remove from list */
 555                        sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
 556                        complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
 557                        trace_hfi1_sdma_progress(sde, head, tail, txp);
 558                        txp = get_txhead(sde);
 559                }
 560                progress++;
 561        }
 562        if (progress)
 563                sdma_desc_avail(sde, sdma_descq_freecnt(sde));
 564}
 565
 566static void sdma_sw_clean_up_task(struct tasklet_struct *t)
 567{
 568        struct sdma_engine *sde = from_tasklet(sde, t, sdma_sw_clean_up_task);
 569        unsigned long flags;
 570
 571        spin_lock_irqsave(&sde->tail_lock, flags);
 572        write_seqlock(&sde->head_lock);
 573
 574        /*
 575         * At this point, the following should always be true:
 576         * - We are halted, so no more descriptors are getting retired.
 577         * - We are not running, so no one is submitting new work.
 578         * - Only we can send the e40_sw_cleaned, so we can't start
 579         *   running again until we say so.  So, the active list and
 580         *   descq are ours to play with.
 581         */
 582
 583        /*
 584         * In the error clean up sequence, software clean must be called
 585         * before the hardware clean so we can use the hardware head in
 586         * the progress routine.  A hardware clean or SPC unfreeze will
 587         * reset the hardware head.
 588         *
 589         * Process all retired requests. The progress routine will use the
 590         * latest physical hardware head - we are not running so speed does
 591         * not matter.
 592         */
 593        sdma_make_progress(sde, 0);
 594
 595        sdma_flush(sde);
 596
 597        /*
 598         * Reset our notion of head and tail.
 599         * Note that the HW registers have been reset via an earlier
 600         * clean up.
 601         */
 602        sde->descq_tail = 0;
 603        sde->descq_head = 0;
 604        sde->desc_avail = sdma_descq_freecnt(sde);
 605        *sde->head_dma = 0;
 606
 607        __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
 608
 609        write_sequnlock(&sde->head_lock);
 610        spin_unlock_irqrestore(&sde->tail_lock, flags);
 611}
 612
 613static void sdma_sw_tear_down(struct sdma_engine *sde)
 614{
 615        struct sdma_state *ss = &sde->state;
 616
 617        /* Releasing this reference means the state machine has stopped. */
 618        sdma_put(ss);
 619
 620        /* stop waiting for all unfreeze events to complete */
 621        atomic_set(&sde->dd->sdma_unfreeze_count, -1);
 622        wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
 623}
 624
 625static void sdma_start_hw_clean_up(struct sdma_engine *sde)
 626{
 627        tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
 628}
 629
 630static void sdma_set_state(struct sdma_engine *sde,
 631                           enum sdma_states next_state)
 632{
 633        struct sdma_state *ss = &sde->state;
 634        const struct sdma_set_state_action *action = sdma_action_table;
 635        unsigned op = 0;
 636
 637        trace_hfi1_sdma_state(
 638                sde,
 639                sdma_state_names[ss->current_state],
 640                sdma_state_names[next_state]);
 641
 642        /* debugging bookkeeping */
 643        ss->previous_state = ss->current_state;
 644        ss->previous_op = ss->current_op;
 645        ss->current_state = next_state;
 646
 647        if (ss->previous_state != sdma_state_s99_running &&
 648            next_state == sdma_state_s99_running)
 649                sdma_flush(sde);
 650
 651        if (action[next_state].op_enable)
 652                op |= SDMA_SENDCTRL_OP_ENABLE;
 653
 654        if (action[next_state].op_intenable)
 655                op |= SDMA_SENDCTRL_OP_INTENABLE;
 656
 657        if (action[next_state].op_halt)
 658                op |= SDMA_SENDCTRL_OP_HALT;
 659
 660        if (action[next_state].op_cleanup)
 661                op |= SDMA_SENDCTRL_OP_CLEANUP;
 662
 663        if (action[next_state].go_s99_running_tofalse)
 664                ss->go_s99_running = 0;
 665
 666        if (action[next_state].go_s99_running_totrue)
 667                ss->go_s99_running = 1;
 668
 669        ss->current_op = op;
 670        sdma_sendctrl(sde, ss->current_op);
 671}
 672
 673/**
 674 * sdma_get_descq_cnt() - called when device probed
 675 *
 676 * Return a validated descq count.
 677 *
 678 * This is currently only used in the verbs initialization to build the tx
 679 * list.
 680 *
 681 * This will probably be deleted in favor of a more scalable approach to
 682 * alloc tx's.
 683 *
 684 */
 685u16 sdma_get_descq_cnt(void)
 686{
 687        u16 count = sdma_descq_cnt;
 688
 689        if (!count)
 690                return SDMA_DESCQ_CNT;
 691        /* count must be a power of 2 greater than 64 and less than
 692         * 32768.   Otherwise return default.
 693         */
 694        if (!is_power_of_2(count))
 695                return SDMA_DESCQ_CNT;
 696        if (count < 64 || count > 32768)
 697                return SDMA_DESCQ_CNT;
 698        return count;
 699}
 700
 701/**
 702 * sdma_engine_get_vl() - return vl for a given sdma engine
 703 * @sde: sdma engine
 704 *
 705 * This function returns the vl mapped to a given engine, or an error if
 706 * the mapping can't be found. The mapping fields are protected by RCU.
 707 */
 708int sdma_engine_get_vl(struct sdma_engine *sde)
 709{
 710        struct hfi1_devdata *dd = sde->dd;
 711        struct sdma_vl_map *m;
 712        u8 vl;
 713
 714        if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
 715                return -EINVAL;
 716
 717        rcu_read_lock();
 718        m = rcu_dereference(dd->sdma_map);
 719        if (unlikely(!m)) {
 720                rcu_read_unlock();
 721                return -EINVAL;
 722        }
 723        vl = m->engine_to_vl[sde->this_idx];
 724        rcu_read_unlock();
 725
 726        return vl;
 727}
 728
 729/**
 730 * sdma_select_engine_vl() - select sdma engine
 731 * @dd: devdata
 732 * @selector: a spreading factor
 733 * @vl: this vl
 734 *
 735 *
 736 * This function returns an engine based on the selector and a vl.  The
 737 * mapping fields are protected by RCU.
 738 */
 739struct sdma_engine *sdma_select_engine_vl(
 740        struct hfi1_devdata *dd,
 741        u32 selector,
 742        u8 vl)
 743{
 744        struct sdma_vl_map *m;
 745        struct sdma_map_elem *e;
 746        struct sdma_engine *rval;
 747
 748        /* NOTE This should only happen if SC->VL changed after the initial
 749         *      checks on the QP/AH
 750         *      Default will return engine 0 below
 751         */
 752        if (vl >= num_vls) {
 753                rval = NULL;
 754                goto done;
 755        }
 756
 757        rcu_read_lock();
 758        m = rcu_dereference(dd->sdma_map);
 759        if (unlikely(!m)) {
 760                rcu_read_unlock();
 761                return &dd->per_sdma[0];
 762        }
 763        e = m->map[vl & m->mask];
 764        rval = e->sde[selector & e->mask];
 765        rcu_read_unlock();
 766
 767done:
 768        rval =  !rval ? &dd->per_sdma[0] : rval;
 769        trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
 770        return rval;
 771}
 772
 773/**
 774 * sdma_select_engine_sc() - select sdma engine
 775 * @dd: devdata
 776 * @selector: a spreading factor
 777 * @sc5: the 5 bit sc
 778 *
 779 *
 780 * This function returns an engine based on the selector and an sc.
 781 */
 782struct sdma_engine *sdma_select_engine_sc(
 783        struct hfi1_devdata *dd,
 784        u32 selector,
 785        u8 sc5)
 786{
 787        u8 vl = sc_to_vlt(dd, sc5);
 788
 789        return sdma_select_engine_vl(dd, selector, vl);
 790}
 791
 792struct sdma_rht_map_elem {
 793        u32 mask;
 794        u8 ctr;
 795        struct sdma_engine *sde[];
 796};
 797
 798struct sdma_rht_node {
 799        unsigned long cpu_id;
 800        struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
 801        struct rhash_head node;
 802};
 803
 804#define NR_CPUS_HINT 192
 805
 806static const struct rhashtable_params sdma_rht_params = {
 807        .nelem_hint = NR_CPUS_HINT,
 808        .head_offset = offsetof(struct sdma_rht_node, node),
 809        .key_offset = offsetof(struct sdma_rht_node, cpu_id),
 810        .key_len = sizeof_field(struct sdma_rht_node, cpu_id),
 811        .max_size = NR_CPUS,
 812        .min_size = 8,
 813        .automatic_shrinking = true,
 814};
 815
 816/*
 817 * sdma_select_user_engine() - select sdma engine based on user setup
 818 * @dd: devdata
 819 * @selector: a spreading factor
 820 * @vl: this vl
 821 *
 822 * This function returns an sdma engine for a user sdma request.
 823 * User defined sdma engine affinity setting is honored when applicable,
 824 * otherwise system default sdma engine mapping is used. To ensure correct
 825 * ordering, the mapping from <selector, vl> to sde must remain unchanged.
 826 */
 827struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
 828                                            u32 selector, u8 vl)
 829{
 830        struct sdma_rht_node *rht_node;
 831        struct sdma_engine *sde = NULL;
 832        unsigned long cpu_id;
 833
 834        /*
 835         * To ensure that always the same sdma engine(s) will be
 836         * selected make sure the process is pinned to this CPU only.
 837         */
 838        if (current->nr_cpus_allowed != 1)
 839                goto out;
 840
 841        cpu_id = smp_processor_id();
 842        rcu_read_lock();
 843        rht_node = rhashtable_lookup(dd->sdma_rht, &cpu_id,
 844                                     sdma_rht_params);
 845
 846        if (rht_node && rht_node->map[vl]) {
 847                struct sdma_rht_map_elem *map = rht_node->map[vl];
 848
 849                sde = map->sde[selector & map->mask];
 850        }
 851        rcu_read_unlock();
 852
 853        if (sde)
 854                return sde;
 855
 856out:
 857        return sdma_select_engine_vl(dd, selector, vl);
 858}
 859
 860static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
 861{
 862        int i;
 863
 864        for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
 865                map->sde[map->ctr + i] = map->sde[i];
 866}
 867
 868static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
 869                                 struct sdma_engine *sde)
 870{
 871        unsigned int i, pow;
 872
 873        /* only need to check the first ctr entries for a match */
 874        for (i = 0; i < map->ctr; i++) {
 875                if (map->sde[i] == sde) {
 876                        memmove(&map->sde[i], &map->sde[i + 1],
 877                                (map->ctr - i - 1) * sizeof(map->sde[0]));
 878                        map->ctr--;
 879                        pow = roundup_pow_of_two(map->ctr ? : 1);
 880                        map->mask = pow - 1;
 881                        sdma_populate_sde_map(map);
 882                        break;
 883                }
 884        }
 885}
 886
 887/*
 888 * Prevents concurrent reads and writes of the sdma engine cpu_mask
 889 */
 890static DEFINE_MUTEX(process_to_sde_mutex);
 891
 892ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
 893                                size_t count)
 894{
 895        struct hfi1_devdata *dd = sde->dd;
 896        cpumask_var_t mask, new_mask;
 897        unsigned long cpu;
 898        int ret, vl, sz;
 899        struct sdma_rht_node *rht_node;
 900
 901        vl = sdma_engine_get_vl(sde);
 902        if (unlikely(vl < 0 || vl >= ARRAY_SIZE(rht_node->map)))
 903                return -EINVAL;
 904
 905        ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
 906        if (!ret)
 907                return -ENOMEM;
 908
 909        ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
 910        if (!ret) {
 911                free_cpumask_var(mask);
 912                return -ENOMEM;
 913        }
 914        ret = cpulist_parse(buf, mask);
 915        if (ret)
 916                goto out_free;
 917
 918        if (!cpumask_subset(mask, cpu_online_mask)) {
 919                dd_dev_warn(sde->dd, "Invalid CPU mask\n");
 920                ret = -EINVAL;
 921                goto out_free;
 922        }
 923
 924        sz = sizeof(struct sdma_rht_map_elem) +
 925                        (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
 926
 927        mutex_lock(&process_to_sde_mutex);
 928
 929        for_each_cpu(cpu, mask) {
 930                /* Check if we have this already mapped */
 931                if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
 932                        cpumask_set_cpu(cpu, new_mask);
 933                        continue;
 934                }
 935
 936                rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
 937                                                  sdma_rht_params);
 938                if (!rht_node) {
 939                        rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
 940                        if (!rht_node) {
 941                                ret = -ENOMEM;
 942                                goto out;
 943                        }
 944
 945                        rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
 946                        if (!rht_node->map[vl]) {
 947                                kfree(rht_node);
 948                                ret = -ENOMEM;
 949                                goto out;
 950                        }
 951                        rht_node->cpu_id = cpu;
 952                        rht_node->map[vl]->mask = 0;
 953                        rht_node->map[vl]->ctr = 1;
 954                        rht_node->map[vl]->sde[0] = sde;
 955
 956                        ret = rhashtable_insert_fast(dd->sdma_rht,
 957                                                     &rht_node->node,
 958                                                     sdma_rht_params);
 959                        if (ret) {
 960                                kfree(rht_node->map[vl]);
 961                                kfree(rht_node);
 962                                dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
 963                                           cpu);
 964                                goto out;
 965                        }
 966
 967                } else {
 968                        int ctr, pow;
 969
 970                        /* Add new user mappings */
 971                        if (!rht_node->map[vl])
 972                                rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
 973
 974                        if (!rht_node->map[vl]) {
 975                                ret = -ENOMEM;
 976                                goto out;
 977                        }
 978
 979                        rht_node->map[vl]->ctr++;
 980                        ctr = rht_node->map[vl]->ctr;
 981                        rht_node->map[vl]->sde[ctr - 1] = sde;
 982                        pow = roundup_pow_of_two(ctr);
 983                        rht_node->map[vl]->mask = pow - 1;
 984
 985                        /* Populate the sde map table */
 986                        sdma_populate_sde_map(rht_node->map[vl]);
 987                }
 988                cpumask_set_cpu(cpu, new_mask);
 989        }
 990
 991        /* Clean up old mappings */
 992        for_each_cpu(cpu, cpu_online_mask) {
 993                struct sdma_rht_node *rht_node;
 994
 995                /* Don't cleanup sdes that are set in the new mask */
 996                if (cpumask_test_cpu(cpu, mask))
 997                        continue;
 998
 999                rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
1000                                                  sdma_rht_params);
1001                if (rht_node) {
1002                        bool empty = true;
1003                        int i;
1004
1005                        /* Remove mappings for old sde */
1006                        for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1007                                if (rht_node->map[i])
1008                                        sdma_cleanup_sde_map(rht_node->map[i],
1009                                                             sde);
1010
1011                        /* Free empty hash table entries */
1012                        for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1013                                if (!rht_node->map[i])
1014                                        continue;
1015
1016                                if (rht_node->map[i]->ctr) {
1017                                        empty = false;
1018                                        break;
1019                                }
1020                        }
1021
1022                        if (empty) {
1023                                ret = rhashtable_remove_fast(dd->sdma_rht,
1024                                                             &rht_node->node,
1025                                                             sdma_rht_params);
1026                                WARN_ON(ret);
1027
1028                                for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1029                                        kfree(rht_node->map[i]);
1030
1031                                kfree(rht_node);
1032                        }
1033                }
1034        }
1035
1036        cpumask_copy(&sde->cpu_mask, new_mask);
1037out:
1038        mutex_unlock(&process_to_sde_mutex);
1039out_free:
1040        free_cpumask_var(mask);
1041        free_cpumask_var(new_mask);
1042        return ret ? : strnlen(buf, PAGE_SIZE);
1043}
1044
1045ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
1046{
1047        mutex_lock(&process_to_sde_mutex);
1048        if (cpumask_empty(&sde->cpu_mask))
1049                snprintf(buf, PAGE_SIZE, "%s\n", "empty");
1050        else
1051                cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
1052        mutex_unlock(&process_to_sde_mutex);
1053        return strnlen(buf, PAGE_SIZE);
1054}
1055
1056static void sdma_rht_free(void *ptr, void *arg)
1057{
1058        struct sdma_rht_node *rht_node = ptr;
1059        int i;
1060
1061        for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1062                kfree(rht_node->map[i]);
1063
1064        kfree(rht_node);
1065}
1066
1067/**
1068 * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1069 * @s: seq file
1070 * @dd: hfi1_devdata
1071 * @cpuid: cpu id
1072 *
1073 * This routine dumps the process to sde mappings per cpu
1074 */
1075void sdma_seqfile_dump_cpu_list(struct seq_file *s,
1076                                struct hfi1_devdata *dd,
1077                                unsigned long cpuid)
1078{
1079        struct sdma_rht_node *rht_node;
1080        int i, j;
1081
1082        rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
1083                                          sdma_rht_params);
1084        if (!rht_node)
1085                return;
1086
1087        seq_printf(s, "cpu%3lu: ", cpuid);
1088        for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1089                if (!rht_node->map[i] || !rht_node->map[i]->ctr)
1090                        continue;
1091
1092                seq_printf(s, " vl%d: [", i);
1093
1094                for (j = 0; j < rht_node->map[i]->ctr; j++) {
1095                        if (!rht_node->map[i]->sde[j])
1096                                continue;
1097
1098                        if (j > 0)
1099                                seq_puts(s, ",");
1100
1101                        seq_printf(s, " sdma%2d",
1102                                   rht_node->map[i]->sde[j]->this_idx);
1103                }
1104                seq_puts(s, " ]");
1105        }
1106
1107        seq_puts(s, "\n");
1108}
1109
1110/*
1111 * Free the indicated map struct
1112 */
1113static void sdma_map_free(struct sdma_vl_map *m)
1114{
1115        int i;
1116
1117        for (i = 0; m && i < m->actual_vls; i++)
1118                kfree(m->map[i]);
1119        kfree(m);
1120}
1121
1122/*
1123 * Handle RCU callback
1124 */
1125static void sdma_map_rcu_callback(struct rcu_head *list)
1126{
1127        struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
1128
1129        sdma_map_free(m);
1130}
1131
1132/**
1133 * sdma_map_init - called when # vls change
1134 * @dd: hfi1_devdata
1135 * @port: port number
1136 * @num_vls: number of vls
1137 * @vl_engines: per vl engine mapping (optional)
1138 *
1139 * This routine changes the mapping based on the number of vls.
1140 *
1141 * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1142 * implies auto computing the loading and giving each VLs a uniform
1143 * distribution of engines per VL.
1144 *
1145 * The auto algorithm computes the sde_per_vl and the number of extra
1146 * engines.  Any extra engines are added from the last VL on down.
1147 *
1148 * rcu locking is used here to control access to the mapping fields.
1149 *
1150 * If either the num_vls or num_sdma are non-power of 2, the array sizes
1151 * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1152 * up to the next highest power of 2 and the first entry is reused
1153 * in a round robin fashion.
1154 *
1155 * If an error occurs the map change is not done and the mapping is
1156 * not changed.
1157 *
1158 */
1159int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
1160{
1161        int i, j;
1162        int extra, sde_per_vl;
1163        int engine = 0;
1164        u8 lvl_engines[OPA_MAX_VLS];
1165        struct sdma_vl_map *oldmap, *newmap;
1166
1167        if (!(dd->flags & HFI1_HAS_SEND_DMA))
1168                return 0;
1169
1170        if (!vl_engines) {
1171                /* truncate divide */
1172                sde_per_vl = dd->num_sdma / num_vls;
1173                /* extras */
1174                extra = dd->num_sdma % num_vls;
1175                vl_engines = lvl_engines;
1176                /* add extras from last vl down */
1177                for (i = num_vls - 1; i >= 0; i--, extra--)
1178                        vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
1179        }
1180        /* build new map */
1181        newmap = kzalloc(
1182                sizeof(struct sdma_vl_map) +
1183                        roundup_pow_of_two(num_vls) *
1184                        sizeof(struct sdma_map_elem *),
1185                GFP_KERNEL);
1186        if (!newmap)
1187                goto bail;
1188        newmap->actual_vls = num_vls;
1189        newmap->vls = roundup_pow_of_two(num_vls);
1190        newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1191        /* initialize back-map */
1192        for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
1193                newmap->engine_to_vl[i] = -1;
1194        for (i = 0; i < newmap->vls; i++) {
1195                /* save for wrap around */
1196                int first_engine = engine;
1197
1198                if (i < newmap->actual_vls) {
1199                        int sz = roundup_pow_of_two(vl_engines[i]);
1200
1201                        /* only allocate once */
1202                        newmap->map[i] = kzalloc(
1203                                sizeof(struct sdma_map_elem) +
1204                                        sz * sizeof(struct sdma_engine *),
1205                                GFP_KERNEL);
1206                        if (!newmap->map[i])
1207                                goto bail;
1208                        newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1209                        /* assign engines */
1210                        for (j = 0; j < sz; j++) {
1211                                newmap->map[i]->sde[j] =
1212                                        &dd->per_sdma[engine];
1213                                if (++engine >= first_engine + vl_engines[i])
1214                                        /* wrap back to first engine */
1215                                        engine = first_engine;
1216                        }
1217                        /* assign back-map */
1218                        for (j = 0; j < vl_engines[i]; j++)
1219                                newmap->engine_to_vl[first_engine + j] = i;
1220                } else {
1221                        /* just re-use entry without allocating */
1222                        newmap->map[i] = newmap->map[i % num_vls];
1223                }
1224                engine = first_engine + vl_engines[i];
1225        }
1226        /* newmap in hand, save old map */
1227        spin_lock_irq(&dd->sde_map_lock);
1228        oldmap = rcu_dereference_protected(dd->sdma_map,
1229                                           lockdep_is_held(&dd->sde_map_lock));
1230
1231        /* publish newmap */
1232        rcu_assign_pointer(dd->sdma_map, newmap);
1233
1234        spin_unlock_irq(&dd->sde_map_lock);
1235        /* success, free any old map after grace period */
1236        if (oldmap)
1237                call_rcu(&oldmap->list, sdma_map_rcu_callback);
1238        return 0;
1239bail:
1240        /* free any partial allocation */
1241        sdma_map_free(newmap);
1242        return -ENOMEM;
1243}
1244
1245/**
1246 * sdma_clean - Clean up allocated memory
1247 * @dd:          struct hfi1_devdata
1248 * @num_engines: num sdma engines
1249 *
1250 * This routine can be called regardless of the success of
1251 * sdma_init()
1252 */
1253void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
1254{
1255        size_t i;
1256        struct sdma_engine *sde;
1257
1258        if (dd->sdma_pad_dma) {
1259                dma_free_coherent(&dd->pcidev->dev, SDMA_PAD,
1260                                  (void *)dd->sdma_pad_dma,
1261                                  dd->sdma_pad_phys);
1262                dd->sdma_pad_dma = NULL;
1263                dd->sdma_pad_phys = 0;
1264        }
1265        if (dd->sdma_heads_dma) {
1266                dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
1267                                  (void *)dd->sdma_heads_dma,
1268                                  dd->sdma_heads_phys);
1269                dd->sdma_heads_dma = NULL;
1270                dd->sdma_heads_phys = 0;
1271        }
1272        for (i = 0; dd->per_sdma && i < num_engines; ++i) {
1273                sde = &dd->per_sdma[i];
1274
1275                sde->head_dma = NULL;
1276                sde->head_phys = 0;
1277
1278                if (sde->descq) {
1279                        dma_free_coherent(
1280                                &dd->pcidev->dev,
1281                                sde->descq_cnt * sizeof(u64[2]),
1282                                sde->descq,
1283                                sde->descq_phys
1284                        );
1285                        sde->descq = NULL;
1286                        sde->descq_phys = 0;
1287                }
1288                kvfree(sde->tx_ring);
1289                sde->tx_ring = NULL;
1290        }
1291        spin_lock_irq(&dd->sde_map_lock);
1292        sdma_map_free(rcu_access_pointer(dd->sdma_map));
1293        RCU_INIT_POINTER(dd->sdma_map, NULL);
1294        spin_unlock_irq(&dd->sde_map_lock);
1295        synchronize_rcu();
1296        kfree(dd->per_sdma);
1297        dd->per_sdma = NULL;
1298
1299        if (dd->sdma_rht) {
1300                rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
1301                kfree(dd->sdma_rht);
1302                dd->sdma_rht = NULL;
1303        }
1304}
1305
1306/**
1307 * sdma_init() - called when device probed
1308 * @dd: hfi1_devdata
1309 * @port: port number (currently only zero)
1310 *
1311 * Initializes each sde and its csrs.
1312 * Interrupts are not required to be enabled.
1313 *
1314 * Returns:
1315 * 0 - success, -errno on failure
1316 */
1317int sdma_init(struct hfi1_devdata *dd, u8 port)
1318{
1319        unsigned this_idx;
1320        struct sdma_engine *sde;
1321        struct rhashtable *tmp_sdma_rht;
1322        u16 descq_cnt;
1323        void *curr_head;
1324        struct hfi1_pportdata *ppd = dd->pport + port;
1325        u32 per_sdma_credits;
1326        uint idle_cnt = sdma_idle_cnt;
1327        size_t num_engines = chip_sdma_engines(dd);
1328        int ret = -ENOMEM;
1329
1330        if (!HFI1_CAP_IS_KSET(SDMA)) {
1331                HFI1_CAP_CLEAR(SDMA_AHG);
1332                return 0;
1333        }
1334        if (mod_num_sdma &&
1335            /* can't exceed chip support */
1336            mod_num_sdma <= chip_sdma_engines(dd) &&
1337            /* count must be >= vls */
1338            mod_num_sdma >= num_vls)
1339                num_engines = mod_num_sdma;
1340
1341        dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1342        dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", chip_sdma_engines(dd));
1343        dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1344                    chip_sdma_mem_size(dd));
1345
1346        per_sdma_credits =
1347                chip_sdma_mem_size(dd) / (num_engines * SDMA_BLOCK_SIZE);
1348
1349        /* set up freeze waitqueue */
1350        init_waitqueue_head(&dd->sdma_unfreeze_wq);
1351        atomic_set(&dd->sdma_unfreeze_count, 0);
1352
1353        descq_cnt = sdma_get_descq_cnt();
1354        dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1355                    num_engines, descq_cnt);
1356
1357        /* alloc memory for array of send engines */
1358        dd->per_sdma = kcalloc_node(num_engines, sizeof(*dd->per_sdma),
1359                                    GFP_KERNEL, dd->node);
1360        if (!dd->per_sdma)
1361                return ret;
1362
1363        idle_cnt = ns_to_cclock(dd, idle_cnt);
1364        if (idle_cnt)
1365                dd->default_desc1 =
1366                        SDMA_DESC1_HEAD_TO_HOST_FLAG;
1367        else
1368                dd->default_desc1 =
1369                        SDMA_DESC1_INT_REQ_FLAG;
1370
1371        if (!sdma_desct_intr)
1372                sdma_desct_intr = SDMA_DESC_INTR;
1373
1374        /* Allocate memory for SendDMA descriptor FIFOs */
1375        for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1376                sde = &dd->per_sdma[this_idx];
1377                sde->dd = dd;
1378                sde->ppd = ppd;
1379                sde->this_idx = this_idx;
1380                sde->descq_cnt = descq_cnt;
1381                sde->desc_avail = sdma_descq_freecnt(sde);
1382                sde->sdma_shift = ilog2(descq_cnt);
1383                sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1384
1385                /* Create a mask specifically for each interrupt source */
1386                sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1387                                           this_idx);
1388                sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1389                                                this_idx);
1390                sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1391                                            this_idx);
1392                /* Create a combined mask to cover all 3 interrupt sources */
1393                sde->imask = sde->int_mask | sde->progress_mask |
1394                             sde->idle_mask;
1395
1396                spin_lock_init(&sde->tail_lock);
1397                seqlock_init(&sde->head_lock);
1398                spin_lock_init(&sde->senddmactrl_lock);
1399                spin_lock_init(&sde->flushlist_lock);
1400                seqlock_init(&sde->waitlock);
1401                /* insure there is always a zero bit */
1402                sde->ahg_bits = 0xfffffffe00000000ULL;
1403
1404                sdma_set_state(sde, sdma_state_s00_hw_down);
1405
1406                /* set up reference counting */
1407                kref_init(&sde->state.kref);
1408                init_completion(&sde->state.comp);
1409
1410                INIT_LIST_HEAD(&sde->flushlist);
1411                INIT_LIST_HEAD(&sde->dmawait);
1412
1413                sde->tail_csr =
1414                        get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1415
1416                tasklet_setup(&sde->sdma_hw_clean_up_task,
1417                              sdma_hw_clean_up_task);
1418                tasklet_setup(&sde->sdma_sw_clean_up_task,
1419                              sdma_sw_clean_up_task);
1420                INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1421                INIT_WORK(&sde->flush_worker, sdma_field_flush);
1422
1423                sde->progress_check_head = 0;
1424
1425                timer_setup(&sde->err_progress_check_timer,
1426                            sdma_err_progress_check, 0);
1427
1428                sde->descq = dma_alloc_coherent(&dd->pcidev->dev,
1429                                                descq_cnt * sizeof(u64[2]),
1430                                                &sde->descq_phys, GFP_KERNEL);
1431                if (!sde->descq)
1432                        goto bail;
1433                sde->tx_ring =
1434                        kvzalloc_node(array_size(descq_cnt,
1435                                                 sizeof(struct sdma_txreq *)),
1436                                      GFP_KERNEL, dd->node);
1437                if (!sde->tx_ring)
1438                        goto bail;
1439        }
1440
1441        dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1442        /* Allocate memory for DMA of head registers to memory */
1443        dd->sdma_heads_dma = dma_alloc_coherent(&dd->pcidev->dev,
1444                                                dd->sdma_heads_size,
1445                                                &dd->sdma_heads_phys,
1446                                                GFP_KERNEL);
1447        if (!dd->sdma_heads_dma) {
1448                dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1449                goto bail;
1450        }
1451
1452        /* Allocate memory for pad */
1453        dd->sdma_pad_dma = dma_alloc_coherent(&dd->pcidev->dev, SDMA_PAD,
1454                                              &dd->sdma_pad_phys, GFP_KERNEL);
1455        if (!dd->sdma_pad_dma) {
1456                dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1457                goto bail;
1458        }
1459
1460        /* assign each engine to different cacheline and init registers */
1461        curr_head = (void *)dd->sdma_heads_dma;
1462        for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1463                unsigned long phys_offset;
1464
1465                sde = &dd->per_sdma[this_idx];
1466
1467                sde->head_dma = curr_head;
1468                curr_head += L1_CACHE_BYTES;
1469                phys_offset = (unsigned long)sde->head_dma -
1470                              (unsigned long)dd->sdma_heads_dma;
1471                sde->head_phys = dd->sdma_heads_phys + phys_offset;
1472                init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1473        }
1474        dd->flags |= HFI1_HAS_SEND_DMA;
1475        dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1476        dd->num_sdma = num_engines;
1477        ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
1478        if (ret < 0)
1479                goto bail;
1480
1481        tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
1482        if (!tmp_sdma_rht) {
1483                ret = -ENOMEM;
1484                goto bail;
1485        }
1486
1487        ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
1488        if (ret < 0) {
1489                kfree(tmp_sdma_rht);
1490                goto bail;
1491        }
1492
1493        dd->sdma_rht = tmp_sdma_rht;
1494
1495        dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1496        return 0;
1497
1498bail:
1499        sdma_clean(dd, num_engines);
1500        return ret;
1501}
1502
1503/**
1504 * sdma_all_running() - called when the link goes up
1505 * @dd: hfi1_devdata
1506 *
1507 * This routine moves all engines to the running state.
1508 */
1509void sdma_all_running(struct hfi1_devdata *dd)
1510{
1511        struct sdma_engine *sde;
1512        unsigned int i;
1513
1514        /* move all engines to running */
1515        for (i = 0; i < dd->num_sdma; ++i) {
1516                sde = &dd->per_sdma[i];
1517                sdma_process_event(sde, sdma_event_e30_go_running);
1518        }
1519}
1520
1521/**
1522 * sdma_all_idle() - called when the link goes down
1523 * @dd: hfi1_devdata
1524 *
1525 * This routine moves all engines to the idle state.
1526 */
1527void sdma_all_idle(struct hfi1_devdata *dd)
1528{
1529        struct sdma_engine *sde;
1530        unsigned int i;
1531
1532        /* idle all engines */
1533        for (i = 0; i < dd->num_sdma; ++i) {
1534                sde = &dd->per_sdma[i];
1535                sdma_process_event(sde, sdma_event_e70_go_idle);
1536        }
1537}
1538
1539/**
1540 * sdma_start() - called to kick off state processing for all engines
1541 * @dd: hfi1_devdata
1542 *
1543 * This routine is for kicking off the state processing for all required
1544 * sdma engines.  Interrupts need to be working at this point.
1545 *
1546 */
1547void sdma_start(struct hfi1_devdata *dd)
1548{
1549        unsigned i;
1550        struct sdma_engine *sde;
1551
1552        /* kick off the engines state processing */
1553        for (i = 0; i < dd->num_sdma; ++i) {
1554                sde = &dd->per_sdma[i];
1555                sdma_process_event(sde, sdma_event_e10_go_hw_start);
1556        }
1557}
1558
1559/**
1560 * sdma_exit() - used when module is removed
1561 * @dd: hfi1_devdata
1562 */
1563void sdma_exit(struct hfi1_devdata *dd)
1564{
1565        unsigned this_idx;
1566        struct sdma_engine *sde;
1567
1568        for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1569                        ++this_idx) {
1570                sde = &dd->per_sdma[this_idx];
1571                if (!list_empty(&sde->dmawait))
1572                        dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1573                                   sde->this_idx);
1574                sdma_process_event(sde, sdma_event_e00_go_hw_down);
1575
1576                del_timer_sync(&sde->err_progress_check_timer);
1577
1578                /*
1579                 * This waits for the state machine to exit so it is not
1580                 * necessary to kill the sdma_sw_clean_up_task to make sure
1581                 * it is not running.
1582                 */
1583                sdma_finalput(&sde->state);
1584        }
1585}
1586
1587/*
1588 * unmap the indicated descriptor
1589 */
1590static inline void sdma_unmap_desc(
1591        struct hfi1_devdata *dd,
1592        struct sdma_desc *descp)
1593{
1594        switch (sdma_mapping_type(descp)) {
1595        case SDMA_MAP_SINGLE:
1596                dma_unmap_single(
1597                        &dd->pcidev->dev,
1598                        sdma_mapping_addr(descp),
1599                        sdma_mapping_len(descp),
1600                        DMA_TO_DEVICE);
1601                break;
1602        case SDMA_MAP_PAGE:
1603                dma_unmap_page(
1604                        &dd->pcidev->dev,
1605                        sdma_mapping_addr(descp),
1606                        sdma_mapping_len(descp),
1607                        DMA_TO_DEVICE);
1608                break;
1609        }
1610}
1611
1612/*
1613 * return the mode as indicated by the first
1614 * descriptor in the tx.
1615 */
1616static inline u8 ahg_mode(struct sdma_txreq *tx)
1617{
1618        return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1619                >> SDMA_DESC1_HEADER_MODE_SHIFT;
1620}
1621
1622/**
1623 * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
1624 * @dd: hfi1_devdata for unmapping
1625 * @tx: tx request to clean
1626 *
1627 * This is used in the progress routine to clean the tx or
1628 * by the ULP to toss an in-process tx build.
1629 *
1630 * The code can be called multiple times without issue.
1631 *
1632 */
1633void __sdma_txclean(
1634        struct hfi1_devdata *dd,
1635        struct sdma_txreq *tx)
1636{
1637        u16 i;
1638
1639        if (tx->num_desc) {
1640                u8 skip = 0, mode = ahg_mode(tx);
1641
1642                /* unmap first */
1643                sdma_unmap_desc(dd, &tx->descp[0]);
1644                /* determine number of AHG descriptors to skip */
1645                if (mode > SDMA_AHG_APPLY_UPDATE1)
1646                        skip = mode >> 1;
1647                for (i = 1 + skip; i < tx->num_desc; i++)
1648                        sdma_unmap_desc(dd, &tx->descp[i]);
1649                tx->num_desc = 0;
1650        }
1651        kfree(tx->coalesce_buf);
1652        tx->coalesce_buf = NULL;
1653        /* kmalloc'ed descp */
1654        if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1655                tx->desc_limit = ARRAY_SIZE(tx->descs);
1656                kfree(tx->descp);
1657        }
1658}
1659
1660static inline u16 sdma_gethead(struct sdma_engine *sde)
1661{
1662        struct hfi1_devdata *dd = sde->dd;
1663        int use_dmahead;
1664        u16 hwhead;
1665
1666#ifdef CONFIG_SDMA_VERBOSITY
1667        dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1668                   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1669#endif
1670
1671retry:
1672        use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1673                                        (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1674        hwhead = use_dmahead ?
1675                (u16)le64_to_cpu(*sde->head_dma) :
1676                (u16)read_sde_csr(sde, SD(HEAD));
1677
1678        if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1679                u16 cnt;
1680                u16 swtail;
1681                u16 swhead;
1682                int sane;
1683
1684                swhead = sde->descq_head & sde->sdma_mask;
1685                /* this code is really bad for cache line trading */
1686                swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1687                cnt = sde->descq_cnt;
1688
1689                if (swhead < swtail)
1690                        /* not wrapped */
1691                        sane = (hwhead >= swhead) & (hwhead <= swtail);
1692                else if (swhead > swtail)
1693                        /* wrapped around */
1694                        sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1695                                (hwhead <= swtail);
1696                else
1697                        /* empty */
1698                        sane = (hwhead == swhead);
1699
1700                if (unlikely(!sane)) {
1701                        dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%u swhd=%u swtl=%u cnt=%u\n",
1702                                   sde->this_idx,
1703                                   use_dmahead ? "dma" : "kreg",
1704                                   hwhead, swhead, swtail, cnt);
1705                        if (use_dmahead) {
1706                                /* try one more time, using csr */
1707                                use_dmahead = 0;
1708                                goto retry;
1709                        }
1710                        /* proceed as if no progress */
1711                        hwhead = swhead;
1712                }
1713        }
1714        return hwhead;
1715}
1716
1717/*
1718 * This is called when there are send DMA descriptors that might be
1719 * available.
1720 *
1721 * This is called with head_lock held.
1722 */
1723static void sdma_desc_avail(struct sdma_engine *sde, uint avail)
1724{
1725        struct iowait *wait, *nw, *twait;
1726        struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1727        uint i, n = 0, seq, tidx = 0;
1728
1729#ifdef CONFIG_SDMA_VERBOSITY
1730        dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1731                   slashstrip(__FILE__), __LINE__, __func__);
1732        dd_dev_err(sde->dd, "avail: %u\n", avail);
1733#endif
1734
1735        do {
1736                seq = read_seqbegin(&sde->waitlock);
1737                if (!list_empty(&sde->dmawait)) {
1738                        /* at least one item */
1739                        write_seqlock(&sde->waitlock);
1740                        /* Harvest waiters wanting DMA descriptors */
1741                        list_for_each_entry_safe(
1742                                        wait,
1743                                        nw,
1744                                        &sde->dmawait,
1745                                        list) {
1746                                u32 num_desc;
1747
1748                                if (!wait->wakeup)
1749                                        continue;
1750                                if (n == ARRAY_SIZE(waits))
1751                                        break;
1752                                iowait_init_priority(wait);
1753                                num_desc = iowait_get_all_desc(wait);
1754                                if (num_desc > avail)
1755                                        break;
1756                                avail -= num_desc;
1757                                /* Find the top-priority wait memeber */
1758                                if (n) {
1759                                        twait = waits[tidx];
1760                                        tidx =
1761                                            iowait_priority_update_top(wait,
1762                                                                       twait,
1763                                                                       n,
1764                                                                       tidx);
1765                                }
1766                                list_del_init(&wait->list);
1767                                waits[n++] = wait;
1768                        }
1769                        write_sequnlock(&sde->waitlock);
1770                        break;
1771                }
1772        } while (read_seqretry(&sde->waitlock, seq));
1773
1774        /* Schedule the top-priority entry first */
1775        if (n)
1776                waits[tidx]->wakeup(waits[tidx], SDMA_AVAIL_REASON);
1777
1778        for (i = 0; i < n; i++)
1779                if (i != tidx)
1780                        waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1781}
1782
1783/* head_lock must be held */
1784static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1785{
1786        struct sdma_txreq *txp = NULL;
1787        int progress = 0;
1788        u16 hwhead, swhead;
1789        int idle_check_done = 0;
1790
1791        hwhead = sdma_gethead(sde);
1792
1793        /* The reason for some of the complexity of this code is that
1794         * not all descriptors have corresponding txps.  So, we have to
1795         * be able to skip over descs until we wander into the range of
1796         * the next txp on the list.
1797         */
1798
1799retry:
1800        txp = get_txhead(sde);
1801        swhead = sde->descq_head & sde->sdma_mask;
1802        trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1803        while (swhead != hwhead) {
1804                /* advance head, wrap if needed */
1805                swhead = ++sde->descq_head & sde->sdma_mask;
1806
1807                /* if now past this txp's descs, do the callback */
1808                if (txp && txp->next_descq_idx == swhead) {
1809                        /* remove from list */
1810                        sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1811                        complete_tx(sde, txp, SDMA_TXREQ_S_OK);
1812                        /* see if there is another txp */
1813                        txp = get_txhead(sde);
1814                }
1815                trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1816                progress++;
1817        }
1818
1819        /*
1820         * The SDMA idle interrupt is not guaranteed to be ordered with respect
1821         * to updates to the dma_head location in host memory. The head
1822         * value read might not be fully up to date. If there are pending
1823         * descriptors and the SDMA idle interrupt fired then read from the
1824         * CSR SDMA head instead to get the latest value from the hardware.
1825         * The hardware SDMA head should be read at most once in this invocation
1826         * of sdma_make_progress(..) which is ensured by idle_check_done flag
1827         */
1828        if ((status & sde->idle_mask) && !idle_check_done) {
1829                u16 swtail;
1830
1831                swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1832                if (swtail != hwhead) {
1833                        hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1834                        idle_check_done = 1;
1835                        goto retry;
1836                }
1837        }
1838
1839        sde->last_status = status;
1840        if (progress)
1841                sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1842}
1843
1844/*
1845 * sdma_engine_interrupt() - interrupt handler for engine
1846 * @sde: sdma engine
1847 * @status: sdma interrupt reason
1848 *
1849 * Status is a mask of the 3 possible interrupts for this engine.  It will
1850 * contain bits _only_ for this SDMA engine.  It will contain at least one
1851 * bit, it may contain more.
1852 */
1853void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1854{
1855        trace_hfi1_sdma_engine_interrupt(sde, status);
1856        write_seqlock(&sde->head_lock);
1857        sdma_set_desc_cnt(sde, sdma_desct_intr);
1858        if (status & sde->idle_mask)
1859                sde->idle_int_cnt++;
1860        else if (status & sde->progress_mask)
1861                sde->progress_int_cnt++;
1862        else if (status & sde->int_mask)
1863                sde->sdma_int_cnt++;
1864        sdma_make_progress(sde, status);
1865        write_sequnlock(&sde->head_lock);
1866}
1867
1868/**
1869 * sdma_engine_error() - error handler for engine
1870 * @sde: sdma engine
1871 * @status: sdma interrupt reason
1872 */
1873void sdma_engine_error(struct sdma_engine *sde, u64 status)
1874{
1875        unsigned long flags;
1876
1877#ifdef CONFIG_SDMA_VERBOSITY
1878        dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1879                   sde->this_idx,
1880                   (unsigned long long)status,
1881                   sdma_state_names[sde->state.current_state]);
1882#endif
1883        spin_lock_irqsave(&sde->tail_lock, flags);
1884        write_seqlock(&sde->head_lock);
1885        if (status & ALL_SDMA_ENG_HALT_ERRS)
1886                __sdma_process_event(sde, sdma_event_e60_hw_halted);
1887        if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1888                dd_dev_err(sde->dd,
1889                           "SDMA (%u) engine error: 0x%llx state %s\n",
1890                           sde->this_idx,
1891                           (unsigned long long)status,
1892                           sdma_state_names[sde->state.current_state]);
1893                dump_sdma_state(sde);
1894        }
1895        write_sequnlock(&sde->head_lock);
1896        spin_unlock_irqrestore(&sde->tail_lock, flags);
1897}
1898
1899static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1900{
1901        u64 set_senddmactrl = 0;
1902        u64 clr_senddmactrl = 0;
1903        unsigned long flags;
1904
1905#ifdef CONFIG_SDMA_VERBOSITY
1906        dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1907                   sde->this_idx,
1908                   (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1909                   (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1910                   (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1911                   (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1912#endif
1913
1914        if (op & SDMA_SENDCTRL_OP_ENABLE)
1915                set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1916        else
1917                clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1918
1919        if (op & SDMA_SENDCTRL_OP_INTENABLE)
1920                set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1921        else
1922                clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1923
1924        if (op & SDMA_SENDCTRL_OP_HALT)
1925                set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1926        else
1927                clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1928
1929        spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1930
1931        sde->p_senddmactrl |= set_senddmactrl;
1932        sde->p_senddmactrl &= ~clr_senddmactrl;
1933
1934        if (op & SDMA_SENDCTRL_OP_CLEANUP)
1935                write_sde_csr(sde, SD(CTRL),
1936                              sde->p_senddmactrl |
1937                              SD(CTRL_SDMA_CLEANUP_SMASK));
1938        else
1939                write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1940
1941        spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1942
1943#ifdef CONFIG_SDMA_VERBOSITY
1944        sdma_dumpstate(sde);
1945#endif
1946}
1947
1948static void sdma_setlengen(struct sdma_engine *sde)
1949{
1950#ifdef CONFIG_SDMA_VERBOSITY
1951        dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1952                   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1953#endif
1954
1955        /*
1956         * Set SendDmaLenGen and clear-then-set the MSB of the generation
1957         * count to enable generation checking and load the internal
1958         * generation counter.
1959         */
1960        write_sde_csr(sde, SD(LEN_GEN),
1961                      (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
1962        write_sde_csr(sde, SD(LEN_GEN),
1963                      ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
1964                      (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
1965}
1966
1967static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
1968{
1969        /* Commit writes to memory and advance the tail on the chip */
1970        smp_wmb(); /* see get_txhead() */
1971        writeq(tail, sde->tail_csr);
1972}
1973
1974/*
1975 * This is called when changing to state s10_hw_start_up_halt_wait as
1976 * a result of send buffer errors or send DMA descriptor errors.
1977 */
1978static void sdma_hw_start_up(struct sdma_engine *sde)
1979{
1980        u64 reg;
1981
1982#ifdef CONFIG_SDMA_VERBOSITY
1983        dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1984                   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1985#endif
1986
1987        sdma_setlengen(sde);
1988        sdma_update_tail(sde, 0); /* Set SendDmaTail */
1989        *sde->head_dma = 0;
1990
1991        reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
1992              SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
1993        write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
1994}
1995
1996/*
1997 * set_sdma_integrity
1998 *
1999 * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
2000 */
2001static void set_sdma_integrity(struct sdma_engine *sde)
2002{
2003        struct hfi1_devdata *dd = sde->dd;
2004
2005        write_sde_csr(sde, SD(CHECK_ENABLE),
2006                      hfi1_pkt_base_sdma_integrity(dd));
2007}
2008
2009static void init_sdma_regs(
2010        struct sdma_engine *sde,
2011        u32 credits,
2012        uint idle_cnt)
2013{
2014        u8 opval, opmask;
2015#ifdef CONFIG_SDMA_VERBOSITY
2016        struct hfi1_devdata *dd = sde->dd;
2017
2018        dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2019                   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2020#endif
2021
2022        write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
2023        sdma_setlengen(sde);
2024        sdma_update_tail(sde, 0); /* Set SendDmaTail */
2025        write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
2026        write_sde_csr(sde, SD(DESC_CNT), 0);
2027        write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
2028        write_sde_csr(sde, SD(MEMORY),
2029                      ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
2030                      ((u64)(credits * sde->this_idx) <<
2031                       SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
2032        write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
2033        set_sdma_integrity(sde);
2034        opmask = OPCODE_CHECK_MASK_DISABLED;
2035        opval = OPCODE_CHECK_VAL_DISABLED;
2036        write_sde_csr(sde, SD(CHECK_OPCODE),
2037                      (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
2038                      (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
2039}
2040
2041#ifdef CONFIG_SDMA_VERBOSITY
2042
2043#define sdma_dumpstate_helper0(reg) do { \
2044                csr = read_csr(sde->dd, reg); \
2045                dd_dev_err(sde->dd, "%36s     0x%016llx\n", #reg, csr); \
2046        } while (0)
2047
2048#define sdma_dumpstate_helper(reg) do { \
2049                csr = read_sde_csr(sde, reg); \
2050                dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2051                        #reg, sde->this_idx, csr); \
2052        } while (0)
2053
2054#define sdma_dumpstate_helper2(reg) do { \
2055                csr = read_csr(sde->dd, reg + (8 * i)); \
2056                dd_dev_err(sde->dd, "%33s_%02u     0x%016llx\n", \
2057                                #reg, i, csr); \
2058        } while (0)
2059
2060void sdma_dumpstate(struct sdma_engine *sde)
2061{
2062        u64 csr;
2063        unsigned i;
2064
2065        sdma_dumpstate_helper(SD(CTRL));
2066        sdma_dumpstate_helper(SD(STATUS));
2067        sdma_dumpstate_helper0(SD(ERR_STATUS));
2068        sdma_dumpstate_helper0(SD(ERR_MASK));
2069        sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
2070        sdma_dumpstate_helper(SD(ENG_ERR_MASK));
2071
2072        for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
2073                sdma_dumpstate_helper2(CCE_INT_STATUS);
2074                sdma_dumpstate_helper2(CCE_INT_MASK);
2075                sdma_dumpstate_helper2(CCE_INT_BLOCKED);
2076        }
2077
2078        sdma_dumpstate_helper(SD(TAIL));
2079        sdma_dumpstate_helper(SD(HEAD));
2080        sdma_dumpstate_helper(SD(PRIORITY_THLD));
2081        sdma_dumpstate_helper(SD(IDLE_CNT));
2082        sdma_dumpstate_helper(SD(RELOAD_CNT));
2083        sdma_dumpstate_helper(SD(DESC_CNT));
2084        sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
2085        sdma_dumpstate_helper(SD(MEMORY));
2086        sdma_dumpstate_helper0(SD(ENGINES));
2087        sdma_dumpstate_helper0(SD(MEM_SIZE));
2088        /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS);  */
2089        sdma_dumpstate_helper(SD(BASE_ADDR));
2090        sdma_dumpstate_helper(SD(LEN_GEN));
2091        sdma_dumpstate_helper(SD(HEAD_ADDR));
2092        sdma_dumpstate_helper(SD(CHECK_ENABLE));
2093        sdma_dumpstate_helper(SD(CHECK_VL));
2094        sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
2095        sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
2096        sdma_dumpstate_helper(SD(CHECK_SLID));
2097        sdma_dumpstate_helper(SD(CHECK_OPCODE));
2098}
2099#endif
2100
2101static void dump_sdma_state(struct sdma_engine *sde)
2102{
2103        struct hw_sdma_desc *descqp;
2104        u64 desc[2];
2105        u64 addr;
2106        u8 gen;
2107        u16 len;
2108        u16 head, tail, cnt;
2109
2110        head = sde->descq_head & sde->sdma_mask;
2111        tail = sde->descq_tail & sde->sdma_mask;
2112        cnt = sdma_descq_freecnt(sde);
2113
2114        dd_dev_err(sde->dd,
2115                   "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2116                   sde->this_idx, head, tail, cnt,
2117                   !list_empty(&sde->flushlist));
2118
2119        /* print info for each entry in the descriptor queue */
2120        while (head != tail) {
2121                char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2122
2123                descqp = &sde->descq[head];
2124                desc[0] = le64_to_cpu(descqp->qw[0]);
2125                desc[1] = le64_to_cpu(descqp->qw[1]);
2126                flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2127                flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2128                                'H' : '-';
2129                flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2130                flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2131                addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2132                        & SDMA_DESC0_PHY_ADDR_MASK;
2133                gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2134                        & SDMA_DESC1_GENERATION_MASK;
2135                len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2136                        & SDMA_DESC0_BYTE_COUNT_MASK;
2137                dd_dev_err(sde->dd,
2138                           "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2139                           head, flags, addr, gen, len);
2140                dd_dev_err(sde->dd,
2141                           "\tdesc0:0x%016llx desc1 0x%016llx\n",
2142                           desc[0], desc[1]);
2143                if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2144                        dd_dev_err(sde->dd,
2145                                   "\taidx: %u amode: %u alen: %u\n",
2146                                   (u8)((desc[1] &
2147                                         SDMA_DESC1_HEADER_INDEX_SMASK) >>
2148                                        SDMA_DESC1_HEADER_INDEX_SHIFT),
2149                                   (u8)((desc[1] &
2150                                         SDMA_DESC1_HEADER_MODE_SMASK) >>
2151                                        SDMA_DESC1_HEADER_MODE_SHIFT),
2152                                   (u8)((desc[1] &
2153                                         SDMA_DESC1_HEADER_DWS_SMASK) >>
2154                                        SDMA_DESC1_HEADER_DWS_SHIFT));
2155                head++;
2156                head &= sde->sdma_mask;
2157        }
2158}
2159
2160#define SDE_FMT \
2161        "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
2162/**
2163 * sdma_seqfile_dump_sde() - debugfs dump of sde
2164 * @s: seq file
2165 * @sde: send dma engine to dump
2166 *
2167 * This routine dumps the sde to the indicated seq file.
2168 */
2169void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
2170{
2171        u16 head, tail;
2172        struct hw_sdma_desc *descqp;
2173        u64 desc[2];
2174        u64 addr;
2175        u8 gen;
2176        u16 len;
2177
2178        head = sde->descq_head & sde->sdma_mask;
2179        tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
2180        seq_printf(s, SDE_FMT, sde->this_idx,
2181                   sde->cpu,
2182                   sdma_state_name(sde->state.current_state),
2183                   (unsigned long long)read_sde_csr(sde, SD(CTRL)),
2184                   (unsigned long long)read_sde_csr(sde, SD(STATUS)),
2185                   (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
2186                   (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
2187                   (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
2188                   (unsigned long long)le64_to_cpu(*sde->head_dma),
2189                   (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
2190                   (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
2191                   (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
2192                   (unsigned long long)sde->last_status,
2193                   (unsigned long long)sde->ahg_bits,
2194                   sde->tx_tail,
2195                   sde->tx_head,
2196                   sde->descq_tail,
2197                   sde->descq_head,
2198                   !list_empty(&sde->flushlist),
2199                   sde->descq_full_count,
2200                   (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
2201
2202        /* print info for each entry in the descriptor queue */
2203        while (head != tail) {
2204                char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2205
2206                descqp = &sde->descq[head];
2207                desc[0] = le64_to_cpu(descqp->qw[0]);
2208                desc[1] = le64_to_cpu(descqp->qw[1]);
2209                flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2210                flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2211                                'H' : '-';
2212                flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2213                flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2214                addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2215                        & SDMA_DESC0_PHY_ADDR_MASK;
2216                gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2217                        & SDMA_DESC1_GENERATION_MASK;
2218                len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2219                        & SDMA_DESC0_BYTE_COUNT_MASK;
2220                seq_printf(s,
2221                           "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2222                           head, flags, addr, gen, len);
2223                if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2224                        seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
2225                                   (u8)((desc[1] &
2226                                         SDMA_DESC1_HEADER_INDEX_SMASK) >>
2227                                        SDMA_DESC1_HEADER_INDEX_SHIFT),
2228                                   (u8)((desc[1] &
2229                                         SDMA_DESC1_HEADER_MODE_SMASK) >>
2230                                        SDMA_DESC1_HEADER_MODE_SHIFT));
2231                head = (head + 1) & sde->sdma_mask;
2232        }
2233}
2234
2235/*
2236 * add the generation number into
2237 * the qw1 and return
2238 */
2239static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
2240{
2241        u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
2242
2243        qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
2244        qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
2245                        << SDMA_DESC1_GENERATION_SHIFT;
2246        return qw1;
2247}
2248
2249/*
2250 * This routine submits the indicated tx
2251 *
2252 * Space has already been guaranteed and
2253 * tail side of ring is locked.
2254 *
2255 * The hardware tail update is done
2256 * in the caller and that is facilitated
2257 * by returning the new tail.
2258 *
2259 * There is special case logic for ahg
2260 * to not add the generation number for
2261 * up to 2 descriptors that follow the
2262 * first descriptor.
2263 *
2264 */
2265static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
2266{
2267        int i;
2268        u16 tail;
2269        struct sdma_desc *descp = tx->descp;
2270        u8 skip = 0, mode = ahg_mode(tx);
2271
2272        tail = sde->descq_tail & sde->sdma_mask;
2273        sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2274        sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
2275        trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
2276                                   tail, &sde->descq[tail]);
2277        tail = ++sde->descq_tail & sde->sdma_mask;
2278        descp++;
2279        if (mode > SDMA_AHG_APPLY_UPDATE1)
2280                skip = mode >> 1;
2281        for (i = 1; i < tx->num_desc; i++, descp++) {
2282                u64 qw1;
2283
2284                sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2285                if (skip) {
2286                        /* edits don't have generation */
2287                        qw1 = descp->qw[1];
2288                        skip--;
2289                } else {
2290                        /* replace generation with real one for non-edits */
2291                        qw1 = add_gen(sde, descp->qw[1]);
2292                }
2293                sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2294                trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2295                                           tail, &sde->descq[tail]);
2296                tail = ++sde->descq_tail & sde->sdma_mask;
2297        }
2298        tx->next_descq_idx = tail;
2299#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2300        tx->sn = sde->tail_sn++;
2301        trace_hfi1_sdma_in_sn(sde, tx->sn);
2302        WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2303#endif
2304        sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2305        sde->desc_avail -= tx->num_desc;
2306        return tail;
2307}
2308
2309/*
2310 * Check for progress
2311 */
2312static int sdma_check_progress(
2313        struct sdma_engine *sde,
2314        struct iowait_work *wait,
2315        struct sdma_txreq *tx,
2316        bool pkts_sent)
2317{
2318        int ret;
2319
2320        sde->desc_avail = sdma_descq_freecnt(sde);
2321        if (tx->num_desc <= sde->desc_avail)
2322                return -EAGAIN;
2323        /* pulse the head_lock */
2324        if (wait && iowait_ioww_to_iow(wait)->sleep) {
2325                unsigned seq;
2326
2327                seq = raw_seqcount_begin(
2328                        (const seqcount_t *)&sde->head_lock.seqcount);
2329                ret = wait->iow->sleep(sde, wait, tx, seq, pkts_sent);
2330                if (ret == -EAGAIN)
2331                        sde->desc_avail = sdma_descq_freecnt(sde);
2332        } else {
2333                ret = -EBUSY;
2334        }
2335        return ret;
2336}
2337
2338/**
2339 * sdma_send_txreq() - submit a tx req to ring
2340 * @sde: sdma engine to use
2341 * @wait: SE wait structure to use when full (may be NULL)
2342 * @tx: sdma_txreq to submit
2343 * @pkts_sent: has any packet been sent yet?
2344 *
2345 * The call submits the tx into the ring.  If a iowait structure is non-NULL
2346 * the packet will be queued to the list in wait.
2347 *
2348 * Return:
2349 * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2350 * ring (wait == NULL)
2351 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2352 */
2353int sdma_send_txreq(struct sdma_engine *sde,
2354                    struct iowait_work *wait,
2355                    struct sdma_txreq *tx,
2356                    bool pkts_sent)
2357{
2358        int ret = 0;
2359        u16 tail;
2360        unsigned long flags;
2361
2362        /* user should have supplied entire packet */
2363        if (unlikely(tx->tlen))
2364                return -EINVAL;
2365        tx->wait = iowait_ioww_to_iow(wait);
2366        spin_lock_irqsave(&sde->tail_lock, flags);
2367retry:
2368        if (unlikely(!__sdma_running(sde)))
2369                goto unlock_noconn;
2370        if (unlikely(tx->num_desc > sde->desc_avail))
2371                goto nodesc;
2372        tail = submit_tx(sde, tx);
2373        if (wait)
2374                iowait_sdma_inc(iowait_ioww_to_iow(wait));
2375        sdma_update_tail(sde, tail);
2376unlock:
2377        spin_unlock_irqrestore(&sde->tail_lock, flags);
2378        return ret;
2379unlock_noconn:
2380        if (wait)
2381                iowait_sdma_inc(iowait_ioww_to_iow(wait));
2382        tx->next_descq_idx = 0;
2383#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2384        tx->sn = sde->tail_sn++;
2385        trace_hfi1_sdma_in_sn(sde, tx->sn);
2386#endif
2387        spin_lock(&sde->flushlist_lock);
2388        list_add_tail(&tx->list, &sde->flushlist);
2389        spin_unlock(&sde->flushlist_lock);
2390        iowait_inc_wait_count(wait, tx->num_desc);
2391        queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
2392        ret = -ECOMM;
2393        goto unlock;
2394nodesc:
2395        ret = sdma_check_progress(sde, wait, tx, pkts_sent);
2396        if (ret == -EAGAIN) {
2397                ret = 0;
2398                goto retry;
2399        }
2400        sde->descq_full_count++;
2401        goto unlock;
2402}
2403
2404/**
2405 * sdma_send_txlist() - submit a list of tx req to ring
2406 * @sde: sdma engine to use
2407 * @wait: SE wait structure to use when full (may be NULL)
2408 * @tx_list: list of sdma_txreqs to submit
2409 * @count_out: pointer to a u16 which, after return will contain the total number of
2410 *             sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2411 *             whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2412 *             which are added to SDMA engine flush list if the SDMA engine state is
2413 *             not running.
2414 *
2415 * The call submits the list into the ring.
2416 *
2417 * If the iowait structure is non-NULL and not equal to the iowait list
2418 * the unprocessed part of the list  will be appended to the list in wait.
2419 *
2420 * In all cases, the tx_list will be updated so the head of the tx_list is
2421 * the list of descriptors that have yet to be transmitted.
2422 *
2423 * The intent of this call is to provide a more efficient
2424 * way of submitting multiple packets to SDMA while holding the tail
2425 * side locking.
2426 *
2427 * Return:
2428 * 0 - Success,
2429 * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2430 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2431 */
2432int sdma_send_txlist(struct sdma_engine *sde, struct iowait_work *wait,
2433                     struct list_head *tx_list, u16 *count_out)
2434{
2435        struct sdma_txreq *tx, *tx_next;
2436        int ret = 0;
2437        unsigned long flags;
2438        u16 tail = INVALID_TAIL;
2439        u32 submit_count = 0, flush_count = 0, total_count;
2440
2441        spin_lock_irqsave(&sde->tail_lock, flags);
2442retry:
2443        list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2444                tx->wait = iowait_ioww_to_iow(wait);
2445                if (unlikely(!__sdma_running(sde)))
2446                        goto unlock_noconn;
2447                if (unlikely(tx->num_desc > sde->desc_avail))
2448                        goto nodesc;
2449                if (unlikely(tx->tlen)) {
2450                        ret = -EINVAL;
2451                        goto update_tail;
2452                }
2453                list_del_init(&tx->list);
2454                tail = submit_tx(sde, tx);
2455                submit_count++;
2456                if (tail != INVALID_TAIL &&
2457                    (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2458                        sdma_update_tail(sde, tail);
2459                        tail = INVALID_TAIL;
2460                }
2461        }
2462update_tail:
2463        total_count = submit_count + flush_count;
2464        if (wait) {
2465                iowait_sdma_add(iowait_ioww_to_iow(wait), total_count);
2466                iowait_starve_clear(submit_count > 0,
2467                                    iowait_ioww_to_iow(wait));
2468        }
2469        if (tail != INVALID_TAIL)
2470                sdma_update_tail(sde, tail);
2471        spin_unlock_irqrestore(&sde->tail_lock, flags);
2472        *count_out = total_count;
2473        return ret;
2474unlock_noconn:
2475        spin_lock(&sde->flushlist_lock);
2476        list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2477                tx->wait = iowait_ioww_to_iow(wait);
2478                list_del_init(&tx->list);
2479                tx->next_descq_idx = 0;
2480#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2481                tx->sn = sde->tail_sn++;
2482                trace_hfi1_sdma_in_sn(sde, tx->sn);
2483#endif
2484                list_add_tail(&tx->list, &sde->flushlist);
2485                flush_count++;
2486                iowait_inc_wait_count(wait, tx->num_desc);
2487        }
2488        spin_unlock(&sde->flushlist_lock);
2489        queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
2490        ret = -ECOMM;
2491        goto update_tail;
2492nodesc:
2493        ret = sdma_check_progress(sde, wait, tx, submit_count > 0);
2494        if (ret == -EAGAIN) {
2495                ret = 0;
2496                goto retry;
2497        }
2498        sde->descq_full_count++;
2499        goto update_tail;
2500}
2501
2502static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
2503{
2504        unsigned long flags;
2505
2506        spin_lock_irqsave(&sde->tail_lock, flags);
2507        write_seqlock(&sde->head_lock);
2508
2509        __sdma_process_event(sde, event);
2510
2511        if (sde->state.current_state == sdma_state_s99_running)
2512                sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2513
2514        write_sequnlock(&sde->head_lock);
2515        spin_unlock_irqrestore(&sde->tail_lock, flags);
2516}
2517
2518static void __sdma_process_event(struct sdma_engine *sde,
2519                                 enum sdma_events event)
2520{
2521        struct sdma_state *ss = &sde->state;
2522        int need_progress = 0;
2523
2524        /* CONFIG SDMA temporary */
2525#ifdef CONFIG_SDMA_VERBOSITY
2526        dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2527                   sdma_state_names[ss->current_state],
2528                   sdma_event_names[event]);
2529#endif
2530
2531        switch (ss->current_state) {
2532        case sdma_state_s00_hw_down:
2533                switch (event) {
2534                case sdma_event_e00_go_hw_down:
2535                        break;
2536                case sdma_event_e30_go_running:
2537                        /*
2538                         * If down, but running requested (usually result
2539                         * of link up, then we need to start up.
2540                         * This can happen when hw down is requested while
2541                         * bringing the link up with traffic active on
2542                         * 7220, e.g.
2543                         */
2544                        ss->go_s99_running = 1;
2545                        fallthrough;    /* and start dma engine */
2546                case sdma_event_e10_go_hw_start:
2547                        /* This reference means the state machine is started */
2548                        sdma_get(&sde->state);
2549                        sdma_set_state(sde,
2550                                       sdma_state_s10_hw_start_up_halt_wait);
2551                        break;
2552                case sdma_event_e15_hw_halt_done:
2553                        break;
2554                case sdma_event_e25_hw_clean_up_done:
2555                        break;
2556                case sdma_event_e40_sw_cleaned:
2557                        sdma_sw_tear_down(sde);
2558                        break;
2559                case sdma_event_e50_hw_cleaned:
2560                        break;
2561                case sdma_event_e60_hw_halted:
2562                        break;
2563                case sdma_event_e70_go_idle:
2564                        break;
2565                case sdma_event_e80_hw_freeze:
2566                        break;
2567                case sdma_event_e81_hw_frozen:
2568                        break;
2569                case sdma_event_e82_hw_unfreeze:
2570                        break;
2571                case sdma_event_e85_link_down:
2572                        break;
2573                case sdma_event_e90_sw_halted:
2574                        break;
2575                }
2576                break;
2577
2578        case sdma_state_s10_hw_start_up_halt_wait:
2579                switch (event) {
2580                case sdma_event_e00_go_hw_down:
2581                        sdma_set_state(sde, sdma_state_s00_hw_down);
2582                        sdma_sw_tear_down(sde);
2583                        break;
2584                case sdma_event_e10_go_hw_start:
2585                        break;
2586                case sdma_event_e15_hw_halt_done:
2587                        sdma_set_state(sde,
2588                                       sdma_state_s15_hw_start_up_clean_wait);
2589                        sdma_start_hw_clean_up(sde);
2590                        break;
2591                case sdma_event_e25_hw_clean_up_done:
2592                        break;
2593                case sdma_event_e30_go_running:
2594                        ss->go_s99_running = 1;
2595                        break;
2596                case sdma_event_e40_sw_cleaned:
2597                        break;
2598                case sdma_event_e50_hw_cleaned:
2599                        break;
2600                case sdma_event_e60_hw_halted:
2601                        schedule_work(&sde->err_halt_worker);
2602                        break;
2603                case sdma_event_e70_go_idle:
2604                        ss->go_s99_running = 0;
2605                        break;
2606                case sdma_event_e80_hw_freeze:
2607                        break;
2608                case sdma_event_e81_hw_frozen:
2609                        break;
2610                case sdma_event_e82_hw_unfreeze:
2611                        break;
2612                case sdma_event_e85_link_down:
2613                        break;
2614                case sdma_event_e90_sw_halted:
2615                        break;
2616                }
2617                break;
2618
2619        case sdma_state_s15_hw_start_up_clean_wait:
2620                switch (event) {
2621                case sdma_event_e00_go_hw_down:
2622                        sdma_set_state(sde, sdma_state_s00_hw_down);
2623                        sdma_sw_tear_down(sde);
2624                        break;
2625                case sdma_event_e10_go_hw_start:
2626                        break;
2627                case sdma_event_e15_hw_halt_done:
2628                        break;
2629                case sdma_event_e25_hw_clean_up_done:
2630                        sdma_hw_start_up(sde);
2631                        sdma_set_state(sde, ss->go_s99_running ?
2632                                       sdma_state_s99_running :
2633                                       sdma_state_s20_idle);
2634                        break;
2635                case sdma_event_e30_go_running:
2636                        ss->go_s99_running = 1;
2637                        break;
2638                case sdma_event_e40_sw_cleaned:
2639                        break;
2640                case sdma_event_e50_hw_cleaned:
2641                        break;
2642                case sdma_event_e60_hw_halted:
2643                        break;
2644                case sdma_event_e70_go_idle:
2645                        ss->go_s99_running = 0;
2646                        break;
2647                case sdma_event_e80_hw_freeze:
2648                        break;
2649                case sdma_event_e81_hw_frozen:
2650                        break;
2651                case sdma_event_e82_hw_unfreeze:
2652                        break;
2653                case sdma_event_e85_link_down:
2654                        break;
2655                case sdma_event_e90_sw_halted:
2656                        break;
2657                }
2658                break;
2659
2660        case sdma_state_s20_idle:
2661                switch (event) {
2662                case sdma_event_e00_go_hw_down:
2663                        sdma_set_state(sde, sdma_state_s00_hw_down);
2664                        sdma_sw_tear_down(sde);
2665                        break;
2666                case sdma_event_e10_go_hw_start:
2667                        break;
2668                case sdma_event_e15_hw_halt_done:
2669                        break;
2670                case sdma_event_e25_hw_clean_up_done:
2671                        break;
2672                case sdma_event_e30_go_running:
2673                        sdma_set_state(sde, sdma_state_s99_running);
2674                        ss->go_s99_running = 1;
2675                        break;
2676                case sdma_event_e40_sw_cleaned:
2677                        break;
2678                case sdma_event_e50_hw_cleaned:
2679                        break;
2680                case sdma_event_e60_hw_halted:
2681                        sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2682                        schedule_work(&sde->err_halt_worker);
2683                        break;
2684                case sdma_event_e70_go_idle:
2685                        break;
2686                case sdma_event_e85_link_down:
2687                case sdma_event_e80_hw_freeze:
2688                        sdma_set_state(sde, sdma_state_s80_hw_freeze);
2689                        atomic_dec(&sde->dd->sdma_unfreeze_count);
2690                        wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2691                        break;
2692                case sdma_event_e81_hw_frozen:
2693                        break;
2694                case sdma_event_e82_hw_unfreeze:
2695                        break;
2696                case sdma_event_e90_sw_halted:
2697                        break;
2698                }
2699                break;
2700
2701        case sdma_state_s30_sw_clean_up_wait:
2702                switch (event) {
2703                case sdma_event_e00_go_hw_down:
2704                        sdma_set_state(sde, sdma_state_s00_hw_down);
2705                        break;
2706                case sdma_event_e10_go_hw_start:
2707                        break;
2708                case sdma_event_e15_hw_halt_done:
2709                        break;
2710                case sdma_event_e25_hw_clean_up_done:
2711                        break;
2712                case sdma_event_e30_go_running:
2713                        ss->go_s99_running = 1;
2714                        break;
2715                case sdma_event_e40_sw_cleaned:
2716                        sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2717                        sdma_start_hw_clean_up(sde);
2718                        break;
2719                case sdma_event_e50_hw_cleaned:
2720                        break;
2721                case sdma_event_e60_hw_halted:
2722                        break;
2723                case sdma_event_e70_go_idle:
2724                        ss->go_s99_running = 0;
2725                        break;
2726                case sdma_event_e80_hw_freeze:
2727                        break;
2728                case sdma_event_e81_hw_frozen:
2729                        break;
2730                case sdma_event_e82_hw_unfreeze:
2731                        break;
2732                case sdma_event_e85_link_down:
2733                        ss->go_s99_running = 0;
2734                        break;
2735                case sdma_event_e90_sw_halted:
2736                        break;
2737                }
2738                break;
2739
2740        case sdma_state_s40_hw_clean_up_wait:
2741                switch (event) {
2742                case sdma_event_e00_go_hw_down:
2743                        sdma_set_state(sde, sdma_state_s00_hw_down);
2744                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2745                        break;
2746                case sdma_event_e10_go_hw_start:
2747                        break;
2748                case sdma_event_e15_hw_halt_done:
2749                        break;
2750                case sdma_event_e25_hw_clean_up_done:
2751                        sdma_hw_start_up(sde);
2752                        sdma_set_state(sde, ss->go_s99_running ?
2753                                       sdma_state_s99_running :
2754                                       sdma_state_s20_idle);
2755                        break;
2756                case sdma_event_e30_go_running:
2757                        ss->go_s99_running = 1;
2758                        break;
2759                case sdma_event_e40_sw_cleaned:
2760                        break;
2761                case sdma_event_e50_hw_cleaned:
2762                        break;
2763                case sdma_event_e60_hw_halted:
2764                        break;
2765                case sdma_event_e70_go_idle:
2766                        ss->go_s99_running = 0;
2767                        break;
2768                case sdma_event_e80_hw_freeze:
2769                        break;
2770                case sdma_event_e81_hw_frozen:
2771                        break;
2772                case sdma_event_e82_hw_unfreeze:
2773                        break;
2774                case sdma_event_e85_link_down:
2775                        ss->go_s99_running = 0;
2776                        break;
2777                case sdma_event_e90_sw_halted:
2778                        break;
2779                }
2780                break;
2781
2782        case sdma_state_s50_hw_halt_wait:
2783                switch (event) {
2784                case sdma_event_e00_go_hw_down:
2785                        sdma_set_state(sde, sdma_state_s00_hw_down);
2786                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2787                        break;
2788                case sdma_event_e10_go_hw_start:
2789                        break;
2790                case sdma_event_e15_hw_halt_done:
2791                        sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2792                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2793                        break;
2794                case sdma_event_e25_hw_clean_up_done:
2795                        break;
2796                case sdma_event_e30_go_running:
2797                        ss->go_s99_running = 1;
2798                        break;
2799                case sdma_event_e40_sw_cleaned:
2800                        break;
2801                case sdma_event_e50_hw_cleaned:
2802                        break;
2803                case sdma_event_e60_hw_halted:
2804                        schedule_work(&sde->err_halt_worker);
2805                        break;
2806                case sdma_event_e70_go_idle:
2807                        ss->go_s99_running = 0;
2808                        break;
2809                case sdma_event_e80_hw_freeze:
2810                        break;
2811                case sdma_event_e81_hw_frozen:
2812                        break;
2813                case sdma_event_e82_hw_unfreeze:
2814                        break;
2815                case sdma_event_e85_link_down:
2816                        ss->go_s99_running = 0;
2817                        break;
2818                case sdma_event_e90_sw_halted:
2819                        break;
2820                }
2821                break;
2822
2823        case sdma_state_s60_idle_halt_wait:
2824                switch (event) {
2825                case sdma_event_e00_go_hw_down:
2826                        sdma_set_state(sde, sdma_state_s00_hw_down);
2827                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2828                        break;
2829                case sdma_event_e10_go_hw_start:
2830                        break;
2831                case sdma_event_e15_hw_halt_done:
2832                        sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2833                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2834                        break;
2835                case sdma_event_e25_hw_clean_up_done:
2836                        break;
2837                case sdma_event_e30_go_running:
2838                        ss->go_s99_running = 1;
2839                        break;
2840                case sdma_event_e40_sw_cleaned:
2841                        break;
2842                case sdma_event_e50_hw_cleaned:
2843                        break;
2844                case sdma_event_e60_hw_halted:
2845                        schedule_work(&sde->err_halt_worker);
2846                        break;
2847                case sdma_event_e70_go_idle:
2848                        ss->go_s99_running = 0;
2849                        break;
2850                case sdma_event_e80_hw_freeze:
2851                        break;
2852                case sdma_event_e81_hw_frozen:
2853                        break;
2854                case sdma_event_e82_hw_unfreeze:
2855                        break;
2856                case sdma_event_e85_link_down:
2857                        break;
2858                case sdma_event_e90_sw_halted:
2859                        break;
2860                }
2861                break;
2862
2863        case sdma_state_s80_hw_freeze:
2864                switch (event) {
2865                case sdma_event_e00_go_hw_down:
2866                        sdma_set_state(sde, sdma_state_s00_hw_down);
2867                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2868                        break;
2869                case sdma_event_e10_go_hw_start:
2870                        break;
2871                case sdma_event_e15_hw_halt_done:
2872                        break;
2873                case sdma_event_e25_hw_clean_up_done:
2874                        break;
2875                case sdma_event_e30_go_running:
2876                        ss->go_s99_running = 1;
2877                        break;
2878                case sdma_event_e40_sw_cleaned:
2879                        break;
2880                case sdma_event_e50_hw_cleaned:
2881                        break;
2882                case sdma_event_e60_hw_halted:
2883                        break;
2884                case sdma_event_e70_go_idle:
2885                        ss->go_s99_running = 0;
2886                        break;
2887                case sdma_event_e80_hw_freeze:
2888                        break;
2889                case sdma_event_e81_hw_frozen:
2890                        sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2891                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2892                        break;
2893                case sdma_event_e82_hw_unfreeze:
2894                        break;
2895                case sdma_event_e85_link_down:
2896                        break;
2897                case sdma_event_e90_sw_halted:
2898                        break;
2899                }
2900                break;
2901
2902        case sdma_state_s82_freeze_sw_clean:
2903                switch (event) {
2904                case sdma_event_e00_go_hw_down:
2905                        sdma_set_state(sde, sdma_state_s00_hw_down);
2906                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2907                        break;
2908                case sdma_event_e10_go_hw_start:
2909                        break;
2910                case sdma_event_e15_hw_halt_done:
2911                        break;
2912                case sdma_event_e25_hw_clean_up_done:
2913                        break;
2914                case sdma_event_e30_go_running:
2915                        ss->go_s99_running = 1;
2916                        break;
2917                case sdma_event_e40_sw_cleaned:
2918                        /* notify caller this engine is done cleaning */
2919                        atomic_dec(&sde->dd->sdma_unfreeze_count);
2920                        wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2921                        break;
2922                case sdma_event_e50_hw_cleaned:
2923                        break;
2924                case sdma_event_e60_hw_halted:
2925                        break;
2926                case sdma_event_e70_go_idle:
2927                        ss->go_s99_running = 0;
2928                        break;
2929                case sdma_event_e80_hw_freeze:
2930                        break;
2931                case sdma_event_e81_hw_frozen:
2932                        break;
2933                case sdma_event_e82_hw_unfreeze:
2934                        sdma_hw_start_up(sde);
2935                        sdma_set_state(sde, ss->go_s99_running ?
2936                                       sdma_state_s99_running :
2937                                       sdma_state_s20_idle);
2938                        break;
2939                case sdma_event_e85_link_down:
2940                        break;
2941                case sdma_event_e90_sw_halted:
2942                        break;
2943                }
2944                break;
2945
2946        case sdma_state_s99_running:
2947                switch (event) {
2948                case sdma_event_e00_go_hw_down:
2949                        sdma_set_state(sde, sdma_state_s00_hw_down);
2950                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2951                        break;
2952                case sdma_event_e10_go_hw_start:
2953                        break;
2954                case sdma_event_e15_hw_halt_done:
2955                        break;
2956                case sdma_event_e25_hw_clean_up_done:
2957                        break;
2958                case sdma_event_e30_go_running:
2959                        break;
2960                case sdma_event_e40_sw_cleaned:
2961                        break;
2962                case sdma_event_e50_hw_cleaned:
2963                        break;
2964                case sdma_event_e60_hw_halted:
2965                        need_progress = 1;
2966                        sdma_err_progress_check_schedule(sde);
2967                        fallthrough;
2968                case sdma_event_e90_sw_halted:
2969                        /*
2970                        * SW initiated halt does not perform engines
2971                        * progress check
2972                        */
2973                        sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2974                        schedule_work(&sde->err_halt_worker);
2975                        break;
2976                case sdma_event_e70_go_idle:
2977                        sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
2978                        break;
2979                case sdma_event_e85_link_down:
2980                        ss->go_s99_running = 0;
2981                        fallthrough;
2982                case sdma_event_e80_hw_freeze:
2983                        sdma_set_state(sde, sdma_state_s80_hw_freeze);
2984                        atomic_dec(&sde->dd->sdma_unfreeze_count);
2985                        wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2986                        break;
2987                case sdma_event_e81_hw_frozen:
2988                        break;
2989                case sdma_event_e82_hw_unfreeze:
2990                        break;
2991                }
2992                break;
2993        }
2994
2995        ss->last_event = event;
2996        if (need_progress)
2997                sdma_make_progress(sde, 0);
2998}
2999
3000/*
3001 * _extend_sdma_tx_descs() - helper to extend txreq
3002 *
3003 * This is called once the initial nominal allocation
3004 * of descriptors in the sdma_txreq is exhausted.
3005 *
3006 * The code will bump the allocation up to the max
3007 * of MAX_DESC (64) descriptors. There doesn't seem
3008 * much point in an interim step. The last descriptor
3009 * is reserved for coalesce buffer in order to support
3010 * cases where input packet has >MAX_DESC iovecs.
3011 *
3012 */
3013static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3014{
3015        int i;
3016        struct sdma_desc *descp;
3017
3018        /* Handle last descriptor */
3019        if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
3020                /* if tlen is 0, it is for padding, release last descriptor */
3021                if (!tx->tlen) {
3022                        tx->desc_limit = MAX_DESC;
3023                } else if (!tx->coalesce_buf) {
3024                        /* allocate coalesce buffer with space for padding */
3025                        tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
3026                                                   GFP_ATOMIC);
3027                        if (!tx->coalesce_buf)
3028                                goto enomem;
3029                        tx->coalesce_idx = 0;
3030                }
3031                return 0;
3032        }
3033
3034        if (unlikely(tx->num_desc == MAX_DESC))
3035                goto enomem;
3036
3037        descp = kmalloc_array(MAX_DESC, sizeof(struct sdma_desc), GFP_ATOMIC);
3038        if (!descp)
3039                goto enomem;
3040        tx->descp = descp;
3041
3042        /* reserve last descriptor for coalescing */
3043        tx->desc_limit = MAX_DESC - 1;
3044        /* copy ones already built */
3045        for (i = 0; i < tx->num_desc; i++)
3046                tx->descp[i] = tx->descs[i];
3047        return 0;
3048enomem:
3049        __sdma_txclean(dd, tx);
3050        return -ENOMEM;
3051}
3052
3053/*
3054 * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3055 *
3056 * This is called once the initial nominal allocation of descriptors
3057 * in the sdma_txreq is exhausted.
3058 *
3059 * This function calls _extend_sdma_tx_descs to extend or allocate
3060 * coalesce buffer. If there is a allocated coalesce buffer, it will
3061 * copy the input packet data into the coalesce buffer. It also adds
3062 * coalesce buffer descriptor once when whole packet is received.
3063 *
3064 * Return:
3065 * <0 - error
3066 * 0 - coalescing, don't populate descriptor
3067 * 1 - continue with populating descriptor
3068 */
3069int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
3070                           int type, void *kvaddr, struct page *page,
3071                           unsigned long offset, u16 len)
3072{
3073        int pad_len, rval;
3074        dma_addr_t addr;
3075
3076        rval = _extend_sdma_tx_descs(dd, tx);
3077        if (rval) {
3078                __sdma_txclean(dd, tx);
3079                return rval;
3080        }
3081
3082        /* If coalesce buffer is allocated, copy data into it */
3083        if (tx->coalesce_buf) {
3084                if (type == SDMA_MAP_NONE) {
3085                        __sdma_txclean(dd, tx);
3086                        return -EINVAL;
3087                }
3088
3089                if (type == SDMA_MAP_PAGE) {
3090                        kvaddr = kmap_local_page(page);
3091                        kvaddr += offset;
3092                } else if (WARN_ON(!kvaddr)) {
3093                        __sdma_txclean(dd, tx);
3094                        return -EINVAL;
3095                }
3096
3097                memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
3098                tx->coalesce_idx += len;
3099                if (type == SDMA_MAP_PAGE)
3100                        kunmap_local(kvaddr);
3101
3102                /* If there is more data, return */
3103                if (tx->tlen - tx->coalesce_idx)
3104                        return 0;
3105
3106                /* Whole packet is received; add any padding */
3107                pad_len = tx->packet_len & (sizeof(u32) - 1);
3108                if (pad_len) {
3109                        pad_len = sizeof(u32) - pad_len;
3110                        memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
3111                        /* padding is taken care of for coalescing case */
3112                        tx->packet_len += pad_len;
3113                        tx->tlen += pad_len;
3114                }
3115
3116                /* dma map the coalesce buffer */
3117                addr = dma_map_single(&dd->pcidev->dev,
3118                                      tx->coalesce_buf,
3119                                      tx->tlen,
3120                                      DMA_TO_DEVICE);
3121
3122                if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
3123                        __sdma_txclean(dd, tx);
3124                        return -ENOSPC;
3125                }
3126
3127                /* Add descriptor for coalesce buffer */
3128                tx->desc_limit = MAX_DESC;
3129                return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
3130                                         addr, tx->tlen);
3131        }
3132
3133        return 1;
3134}
3135
3136/* Update sdes when the lmc changes */
3137void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
3138{
3139        struct sdma_engine *sde;
3140        int i;
3141        u64 sreg;
3142
3143        sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
3144                SD(CHECK_SLID_MASK_SHIFT)) |
3145                (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
3146                SD(CHECK_SLID_VALUE_SHIFT));
3147
3148        for (i = 0; i < dd->num_sdma; i++) {
3149                hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3150                          i, (u32)sreg);
3151                sde = &dd->per_sdma[i];
3152                write_sde_csr(sde, SD(CHECK_SLID), sreg);
3153        }
3154}
3155
3156/* tx not dword sized - pad */
3157int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3158{
3159        int rval = 0;
3160
3161        tx->num_desc++;
3162        if ((unlikely(tx->num_desc == tx->desc_limit))) {
3163                rval = _extend_sdma_tx_descs(dd, tx);
3164                if (rval) {
3165                        __sdma_txclean(dd, tx);
3166                        return rval;
3167                }
3168        }
3169        /* finish the one just added */
3170        make_tx_sdma_desc(
3171                tx,
3172                SDMA_MAP_NONE,
3173                dd->sdma_pad_phys,
3174                sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
3175        _sdma_close_tx(dd, tx);
3176        return rval;
3177}
3178
3179/*
3180 * Add ahg to the sdma_txreq
3181 *
3182 * The logic will consume up to 3
3183 * descriptors at the beginning of
3184 * sdma_txreq.
3185 */
3186void _sdma_txreq_ahgadd(
3187        struct sdma_txreq *tx,
3188        u8 num_ahg,
3189        u8 ahg_entry,
3190        u32 *ahg,
3191        u8 ahg_hlen)
3192{
3193        u32 i, shift = 0, desc = 0;
3194        u8 mode;
3195
3196        WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
3197        /* compute mode */
3198        if (num_ahg == 1)
3199                mode = SDMA_AHG_APPLY_UPDATE1;
3200        else if (num_ahg <= 5)
3201                mode = SDMA_AHG_APPLY_UPDATE2;
3202        else
3203                mode = SDMA_AHG_APPLY_UPDATE3;
3204        tx->num_desc++;
3205        /* initialize to consumed descriptors to zero */
3206        switch (mode) {
3207        case SDMA_AHG_APPLY_UPDATE3:
3208                tx->num_desc++;
3209                tx->descs[2].qw[0] = 0;
3210                tx->descs[2].qw[1] = 0;
3211                fallthrough;
3212        case SDMA_AHG_APPLY_UPDATE2:
3213                tx->num_desc++;
3214                tx->descs[1].qw[0] = 0;
3215                tx->descs[1].qw[1] = 0;
3216                break;
3217        }
3218        ahg_hlen >>= 2;
3219        tx->descs[0].qw[1] |=
3220                (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
3221                        << SDMA_DESC1_HEADER_INDEX_SHIFT) |
3222                (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
3223                        << SDMA_DESC1_HEADER_DWS_SHIFT) |
3224                (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
3225                        << SDMA_DESC1_HEADER_MODE_SHIFT) |
3226                (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
3227                        << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
3228        for (i = 0; i < (num_ahg - 1); i++) {
3229                if (!shift && !(i & 2))
3230                        desc++;
3231                tx->descs[desc].qw[!!(i & 2)] |=
3232                        (((u64)ahg[i + 1])
3233                                << shift);
3234                shift = (shift + 32) & 63;
3235        }
3236}
3237
3238/**
3239 * sdma_ahg_alloc - allocate an AHG entry
3240 * @sde: engine to allocate from
3241 *
3242 * Return:
3243 * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3244 * -ENOSPC if an entry is not available
3245 */
3246int sdma_ahg_alloc(struct sdma_engine *sde)
3247{
3248        int nr;
3249        int oldbit;
3250
3251        if (!sde) {
3252                trace_hfi1_ahg_allocate(sde, -EINVAL);
3253                return -EINVAL;
3254        }
3255        while (1) {
3256                nr = ffz(READ_ONCE(sde->ahg_bits));
3257                if (nr > 31) {
3258                        trace_hfi1_ahg_allocate(sde, -ENOSPC);
3259                        return -ENOSPC;
3260                }
3261                oldbit = test_and_set_bit(nr, &sde->ahg_bits);
3262                if (!oldbit)
3263                        break;
3264                cpu_relax();
3265        }
3266        trace_hfi1_ahg_allocate(sde, nr);
3267        return nr;
3268}
3269
3270/**
3271 * sdma_ahg_free - free an AHG entry
3272 * @sde: engine to return AHG entry
3273 * @ahg_index: index to free
3274 *
3275 * This routine frees the indicate AHG entry.
3276 */
3277void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
3278{
3279        if (!sde)
3280                return;
3281        trace_hfi1_ahg_deallocate(sde, ahg_index);
3282        if (ahg_index < 0 || ahg_index > 31)
3283                return;
3284        clear_bit(ahg_index, &sde->ahg_bits);
3285}
3286
3287/*
3288 * SPC freeze handling for SDMA engines.  Called when the driver knows
3289 * the SPC is going into a freeze but before the freeze is fully
3290 * settled.  Generally an error interrupt.
3291 *
3292 * This event will pull the engine out of running so no more entries can be
3293 * added to the engine's queue.
3294 */
3295void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3296{
3297        int i;
3298        enum sdma_events event = link_down ? sdma_event_e85_link_down :
3299                                             sdma_event_e80_hw_freeze;
3300
3301        /* set up the wait but do not wait here */
3302        atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3303
3304        /* tell all engines to stop running and wait */
3305        for (i = 0; i < dd->num_sdma; i++)
3306                sdma_process_event(&dd->per_sdma[i], event);
3307
3308        /* sdma_freeze() will wait for all engines to have stopped */
3309}
3310
3311/*
3312 * SPC freeze handling for SDMA engines.  Called when the driver knows
3313 * the SPC is fully frozen.
3314 */
3315void sdma_freeze(struct hfi1_devdata *dd)
3316{
3317        int i;
3318        int ret;
3319
3320        /*
3321         * Make sure all engines have moved out of the running state before
3322         * continuing.
3323         */
3324        ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3325                                       atomic_read(&dd->sdma_unfreeze_count) <=
3326                                       0);
3327        /* interrupted or count is negative, then unloading - just exit */
3328        if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3329                return;
3330
3331        /* set up the count for the next wait */
3332        atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3333
3334        /* tell all engines that the SPC is frozen, they can start cleaning */
3335        for (i = 0; i < dd->num_sdma; i++)
3336                sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3337
3338        /*
3339         * Wait for everyone to finish software clean before exiting.  The
3340         * software clean will read engine CSRs, so must be completed before
3341         * the next step, which will clear the engine CSRs.
3342         */
3343        (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
3344                                atomic_read(&dd->sdma_unfreeze_count) <= 0);
3345        /* no need to check results - done no matter what */
3346}
3347
3348/*
3349 * SPC freeze handling for the SDMA engines.  Called after the SPC is unfrozen.
3350 *
3351 * The SPC freeze acts like a SDMA halt and a hardware clean combined.  All
3352 * that is left is a software clean.  We could do it after the SPC is fully
3353 * frozen, but then we'd have to add another state to wait for the unfreeze.
3354 * Instead, just defer the software clean until the unfreeze step.
3355 */
3356void sdma_unfreeze(struct hfi1_devdata *dd)
3357{
3358        int i;
3359
3360        /* tell all engines start freeze clean up */
3361        for (i = 0; i < dd->num_sdma; i++)
3362                sdma_process_event(&dd->per_sdma[i],
3363                                   sdma_event_e82_hw_unfreeze);
3364}
3365
3366/**
3367 * _sdma_engine_progress_schedule() - schedule progress on engine
3368 * @sde: sdma_engine to schedule progress
3369 *
3370 */
3371void _sdma_engine_progress_schedule(
3372        struct sdma_engine *sde)
3373{
3374        trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3375        /* assume we have selected a good cpu */
3376        write_csr(sde->dd,
3377                  CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3378                  sde->progress_mask);
3379}
3380