linux/drivers/input/input.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * The input core
   4 *
   5 * Copyright (c) 1999-2002 Vojtech Pavlik
   6 */
   7
   8
   9#define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
  10
  11#include <linux/init.h>
  12#include <linux/types.h>
  13#include <linux/idr.h>
  14#include <linux/input/mt.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/random.h>
  18#include <linux/major.h>
  19#include <linux/proc_fs.h>
  20#include <linux/sched.h>
  21#include <linux/seq_file.h>
  22#include <linux/poll.h>
  23#include <linux/device.h>
  24#include <linux/mutex.h>
  25#include <linux/rcupdate.h>
  26#include "input-compat.h"
  27#include "input-poller.h"
  28
  29MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  30MODULE_DESCRIPTION("Input core");
  31MODULE_LICENSE("GPL");
  32
  33#define INPUT_MAX_CHAR_DEVICES          1024
  34#define INPUT_FIRST_DYNAMIC_DEV         256
  35static DEFINE_IDA(input_ida);
  36
  37static LIST_HEAD(input_dev_list);
  38static LIST_HEAD(input_handler_list);
  39
  40/*
  41 * input_mutex protects access to both input_dev_list and input_handler_list.
  42 * This also causes input_[un]register_device and input_[un]register_handler
  43 * be mutually exclusive which simplifies locking in drivers implementing
  44 * input handlers.
  45 */
  46static DEFINE_MUTEX(input_mutex);
  47
  48static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
  49
  50static inline int is_event_supported(unsigned int code,
  51                                     unsigned long *bm, unsigned int max)
  52{
  53        return code <= max && test_bit(code, bm);
  54}
  55
  56static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  57{
  58        if (fuzz) {
  59                if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  60                        return old_val;
  61
  62                if (value > old_val - fuzz && value < old_val + fuzz)
  63                        return (old_val * 3 + value) / 4;
  64
  65                if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  66                        return (old_val + value) / 2;
  67        }
  68
  69        return value;
  70}
  71
  72static void input_start_autorepeat(struct input_dev *dev, int code)
  73{
  74        if (test_bit(EV_REP, dev->evbit) &&
  75            dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  76            dev->timer.function) {
  77                dev->repeat_key = code;
  78                mod_timer(&dev->timer,
  79                          jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  80        }
  81}
  82
  83static void input_stop_autorepeat(struct input_dev *dev)
  84{
  85        del_timer(&dev->timer);
  86}
  87
  88/*
  89 * Pass event first through all filters and then, if event has not been
  90 * filtered out, through all open handles. This function is called with
  91 * dev->event_lock held and interrupts disabled.
  92 */
  93static unsigned int input_to_handler(struct input_handle *handle,
  94                        struct input_value *vals, unsigned int count)
  95{
  96        struct input_handler *handler = handle->handler;
  97        struct input_value *end = vals;
  98        struct input_value *v;
  99
 100        if (handler->filter) {
 101                for (v = vals; v != vals + count; v++) {
 102                        if (handler->filter(handle, v->type, v->code, v->value))
 103                                continue;
 104                        if (end != v)
 105                                *end = *v;
 106                        end++;
 107                }
 108                count = end - vals;
 109        }
 110
 111        if (!count)
 112                return 0;
 113
 114        if (handler->events)
 115                handler->events(handle, vals, count);
 116        else if (handler->event)
 117                for (v = vals; v != vals + count; v++)
 118                        handler->event(handle, v->type, v->code, v->value);
 119
 120        return count;
 121}
 122
 123/*
 124 * Pass values first through all filters and then, if event has not been
 125 * filtered out, through all open handles. This function is called with
 126 * dev->event_lock held and interrupts disabled.
 127 */
 128static void input_pass_values(struct input_dev *dev,
 129                              struct input_value *vals, unsigned int count)
 130{
 131        struct input_handle *handle;
 132        struct input_value *v;
 133
 134        if (!count)
 135                return;
 136
 137        rcu_read_lock();
 138
 139        handle = rcu_dereference(dev->grab);
 140        if (handle) {
 141                count = input_to_handler(handle, vals, count);
 142        } else {
 143                list_for_each_entry_rcu(handle, &dev->h_list, d_node)
 144                        if (handle->open) {
 145                                count = input_to_handler(handle, vals, count);
 146                                if (!count)
 147                                        break;
 148                        }
 149        }
 150
 151        rcu_read_unlock();
 152
 153        /* trigger auto repeat for key events */
 154        if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
 155                for (v = vals; v != vals + count; v++) {
 156                        if (v->type == EV_KEY && v->value != 2) {
 157                                if (v->value)
 158                                        input_start_autorepeat(dev, v->code);
 159                                else
 160                                        input_stop_autorepeat(dev);
 161                        }
 162                }
 163        }
 164}
 165
 166static void input_pass_event(struct input_dev *dev,
 167                             unsigned int type, unsigned int code, int value)
 168{
 169        struct input_value vals[] = { { type, code, value } };
 170
 171        input_pass_values(dev, vals, ARRAY_SIZE(vals));
 172}
 173
 174/*
 175 * Generate software autorepeat event. Note that we take
 176 * dev->event_lock here to avoid racing with input_event
 177 * which may cause keys get "stuck".
 178 */
 179static void input_repeat_key(struct timer_list *t)
 180{
 181        struct input_dev *dev = from_timer(dev, t, timer);
 182        unsigned long flags;
 183
 184        spin_lock_irqsave(&dev->event_lock, flags);
 185
 186        if (test_bit(dev->repeat_key, dev->key) &&
 187            is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
 188                struct input_value vals[] =  {
 189                        { EV_KEY, dev->repeat_key, 2 },
 190                        input_value_sync
 191                };
 192
 193                input_set_timestamp(dev, ktime_get());
 194                input_pass_values(dev, vals, ARRAY_SIZE(vals));
 195
 196                if (dev->rep[REP_PERIOD])
 197                        mod_timer(&dev->timer, jiffies +
 198                                        msecs_to_jiffies(dev->rep[REP_PERIOD]));
 199        }
 200
 201        spin_unlock_irqrestore(&dev->event_lock, flags);
 202}
 203
 204#define INPUT_IGNORE_EVENT      0
 205#define INPUT_PASS_TO_HANDLERS  1
 206#define INPUT_PASS_TO_DEVICE    2
 207#define INPUT_SLOT              4
 208#define INPUT_FLUSH             8
 209#define INPUT_PASS_TO_ALL       (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
 210
 211static int input_handle_abs_event(struct input_dev *dev,
 212                                  unsigned int code, int *pval)
 213{
 214        struct input_mt *mt = dev->mt;
 215        bool is_mt_event;
 216        int *pold;
 217
 218        if (code == ABS_MT_SLOT) {
 219                /*
 220                 * "Stage" the event; we'll flush it later, when we
 221                 * get actual touch data.
 222                 */
 223                if (mt && *pval >= 0 && *pval < mt->num_slots)
 224                        mt->slot = *pval;
 225
 226                return INPUT_IGNORE_EVENT;
 227        }
 228
 229        is_mt_event = input_is_mt_value(code);
 230
 231        if (!is_mt_event) {
 232                pold = &dev->absinfo[code].value;
 233        } else if (mt) {
 234                pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
 235        } else {
 236                /*
 237                 * Bypass filtering for multi-touch events when
 238                 * not employing slots.
 239                 */
 240                pold = NULL;
 241        }
 242
 243        if (pold) {
 244                *pval = input_defuzz_abs_event(*pval, *pold,
 245                                                dev->absinfo[code].fuzz);
 246                if (*pold == *pval)
 247                        return INPUT_IGNORE_EVENT;
 248
 249                *pold = *pval;
 250        }
 251
 252        /* Flush pending "slot" event */
 253        if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
 254                input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
 255                return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
 256        }
 257
 258        return INPUT_PASS_TO_HANDLERS;
 259}
 260
 261static int input_get_disposition(struct input_dev *dev,
 262                          unsigned int type, unsigned int code, int *pval)
 263{
 264        int disposition = INPUT_IGNORE_EVENT;
 265        int value = *pval;
 266
 267        switch (type) {
 268
 269        case EV_SYN:
 270                switch (code) {
 271                case SYN_CONFIG:
 272                        disposition = INPUT_PASS_TO_ALL;
 273                        break;
 274
 275                case SYN_REPORT:
 276                        disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
 277                        break;
 278                case SYN_MT_REPORT:
 279                        disposition = INPUT_PASS_TO_HANDLERS;
 280                        break;
 281                }
 282                break;
 283
 284        case EV_KEY:
 285                if (is_event_supported(code, dev->keybit, KEY_MAX)) {
 286
 287                        /* auto-repeat bypasses state updates */
 288                        if (value == 2) {
 289                                disposition = INPUT_PASS_TO_HANDLERS;
 290                                break;
 291                        }
 292
 293                        if (!!test_bit(code, dev->key) != !!value) {
 294
 295                                __change_bit(code, dev->key);
 296                                disposition = INPUT_PASS_TO_HANDLERS;
 297                        }
 298                }
 299                break;
 300
 301        case EV_SW:
 302                if (is_event_supported(code, dev->swbit, SW_MAX) &&
 303                    !!test_bit(code, dev->sw) != !!value) {
 304
 305                        __change_bit(code, dev->sw);
 306                        disposition = INPUT_PASS_TO_HANDLERS;
 307                }
 308                break;
 309
 310        case EV_ABS:
 311                if (is_event_supported(code, dev->absbit, ABS_MAX))
 312                        disposition = input_handle_abs_event(dev, code, &value);
 313
 314                break;
 315
 316        case EV_REL:
 317                if (is_event_supported(code, dev->relbit, REL_MAX) && value)
 318                        disposition = INPUT_PASS_TO_HANDLERS;
 319
 320                break;
 321
 322        case EV_MSC:
 323                if (is_event_supported(code, dev->mscbit, MSC_MAX))
 324                        disposition = INPUT_PASS_TO_ALL;
 325
 326                break;
 327
 328        case EV_LED:
 329                if (is_event_supported(code, dev->ledbit, LED_MAX) &&
 330                    !!test_bit(code, dev->led) != !!value) {
 331
 332                        __change_bit(code, dev->led);
 333                        disposition = INPUT_PASS_TO_ALL;
 334                }
 335                break;
 336
 337        case EV_SND:
 338                if (is_event_supported(code, dev->sndbit, SND_MAX)) {
 339
 340                        if (!!test_bit(code, dev->snd) != !!value)
 341                                __change_bit(code, dev->snd);
 342                        disposition = INPUT_PASS_TO_ALL;
 343                }
 344                break;
 345
 346        case EV_REP:
 347                if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
 348                        dev->rep[code] = value;
 349                        disposition = INPUT_PASS_TO_ALL;
 350                }
 351                break;
 352
 353        case EV_FF:
 354                if (value >= 0)
 355                        disposition = INPUT_PASS_TO_ALL;
 356                break;
 357
 358        case EV_PWR:
 359                disposition = INPUT_PASS_TO_ALL;
 360                break;
 361        }
 362
 363        *pval = value;
 364        return disposition;
 365}
 366
 367static void input_handle_event(struct input_dev *dev,
 368                               unsigned int type, unsigned int code, int value)
 369{
 370        int disposition;
 371
 372        /* filter-out events from inhibited devices */
 373        if (dev->inhibited)
 374                return;
 375
 376        disposition = input_get_disposition(dev, type, code, &value);
 377        if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
 378                add_input_randomness(type, code, value);
 379
 380        if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
 381                dev->event(dev, type, code, value);
 382
 383        if (!dev->vals)
 384                return;
 385
 386        if (disposition & INPUT_PASS_TO_HANDLERS) {
 387                struct input_value *v;
 388
 389                if (disposition & INPUT_SLOT) {
 390                        v = &dev->vals[dev->num_vals++];
 391                        v->type = EV_ABS;
 392                        v->code = ABS_MT_SLOT;
 393                        v->value = dev->mt->slot;
 394                }
 395
 396                v = &dev->vals[dev->num_vals++];
 397                v->type = type;
 398                v->code = code;
 399                v->value = value;
 400        }
 401
 402        if (disposition & INPUT_FLUSH) {
 403                if (dev->num_vals >= 2)
 404                        input_pass_values(dev, dev->vals, dev->num_vals);
 405                dev->num_vals = 0;
 406                /*
 407                 * Reset the timestamp on flush so we won't end up
 408                 * with a stale one. Note we only need to reset the
 409                 * monolithic one as we use its presence when deciding
 410                 * whether to generate a synthetic timestamp.
 411                 */
 412                dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
 413        } else if (dev->num_vals >= dev->max_vals - 2) {
 414                dev->vals[dev->num_vals++] = input_value_sync;
 415                input_pass_values(dev, dev->vals, dev->num_vals);
 416                dev->num_vals = 0;
 417        }
 418
 419}
 420
 421/**
 422 * input_event() - report new input event
 423 * @dev: device that generated the event
 424 * @type: type of the event
 425 * @code: event code
 426 * @value: value of the event
 427 *
 428 * This function should be used by drivers implementing various input
 429 * devices to report input events. See also input_inject_event().
 430 *
 431 * NOTE: input_event() may be safely used right after input device was
 432 * allocated with input_allocate_device(), even before it is registered
 433 * with input_register_device(), but the event will not reach any of the
 434 * input handlers. Such early invocation of input_event() may be used
 435 * to 'seed' initial state of a switch or initial position of absolute
 436 * axis, etc.
 437 */
 438void input_event(struct input_dev *dev,
 439                 unsigned int type, unsigned int code, int value)
 440{
 441        unsigned long flags;
 442
 443        if (is_event_supported(type, dev->evbit, EV_MAX)) {
 444
 445                spin_lock_irqsave(&dev->event_lock, flags);
 446                input_handle_event(dev, type, code, value);
 447                spin_unlock_irqrestore(&dev->event_lock, flags);
 448        }
 449}
 450EXPORT_SYMBOL(input_event);
 451
 452/**
 453 * input_inject_event() - send input event from input handler
 454 * @handle: input handle to send event through
 455 * @type: type of the event
 456 * @code: event code
 457 * @value: value of the event
 458 *
 459 * Similar to input_event() but will ignore event if device is
 460 * "grabbed" and handle injecting event is not the one that owns
 461 * the device.
 462 */
 463void input_inject_event(struct input_handle *handle,
 464                        unsigned int type, unsigned int code, int value)
 465{
 466        struct input_dev *dev = handle->dev;
 467        struct input_handle *grab;
 468        unsigned long flags;
 469
 470        if (is_event_supported(type, dev->evbit, EV_MAX)) {
 471                spin_lock_irqsave(&dev->event_lock, flags);
 472
 473                rcu_read_lock();
 474                grab = rcu_dereference(dev->grab);
 475                if (!grab || grab == handle)
 476                        input_handle_event(dev, type, code, value);
 477                rcu_read_unlock();
 478
 479                spin_unlock_irqrestore(&dev->event_lock, flags);
 480        }
 481}
 482EXPORT_SYMBOL(input_inject_event);
 483
 484/**
 485 * input_alloc_absinfo - allocates array of input_absinfo structs
 486 * @dev: the input device emitting absolute events
 487 *
 488 * If the absinfo struct the caller asked for is already allocated, this
 489 * functions will not do anything.
 490 */
 491void input_alloc_absinfo(struct input_dev *dev)
 492{
 493        if (dev->absinfo)
 494                return;
 495
 496        dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
 497        if (!dev->absinfo) {
 498                dev_err(dev->dev.parent ?: &dev->dev,
 499                        "%s: unable to allocate memory\n", __func__);
 500                /*
 501                 * We will handle this allocation failure in
 502                 * input_register_device() when we refuse to register input
 503                 * device with ABS bits but without absinfo.
 504                 */
 505        }
 506}
 507EXPORT_SYMBOL(input_alloc_absinfo);
 508
 509void input_set_abs_params(struct input_dev *dev, unsigned int axis,
 510                          int min, int max, int fuzz, int flat)
 511{
 512        struct input_absinfo *absinfo;
 513
 514        input_alloc_absinfo(dev);
 515        if (!dev->absinfo)
 516                return;
 517
 518        absinfo = &dev->absinfo[axis];
 519        absinfo->minimum = min;
 520        absinfo->maximum = max;
 521        absinfo->fuzz = fuzz;
 522        absinfo->flat = flat;
 523
 524        __set_bit(EV_ABS, dev->evbit);
 525        __set_bit(axis, dev->absbit);
 526}
 527EXPORT_SYMBOL(input_set_abs_params);
 528
 529
 530/**
 531 * input_grab_device - grabs device for exclusive use
 532 * @handle: input handle that wants to own the device
 533 *
 534 * When a device is grabbed by an input handle all events generated by
 535 * the device are delivered only to this handle. Also events injected
 536 * by other input handles are ignored while device is grabbed.
 537 */
 538int input_grab_device(struct input_handle *handle)
 539{
 540        struct input_dev *dev = handle->dev;
 541        int retval;
 542
 543        retval = mutex_lock_interruptible(&dev->mutex);
 544        if (retval)
 545                return retval;
 546
 547        if (dev->grab) {
 548                retval = -EBUSY;
 549                goto out;
 550        }
 551
 552        rcu_assign_pointer(dev->grab, handle);
 553
 554 out:
 555        mutex_unlock(&dev->mutex);
 556        return retval;
 557}
 558EXPORT_SYMBOL(input_grab_device);
 559
 560static void __input_release_device(struct input_handle *handle)
 561{
 562        struct input_dev *dev = handle->dev;
 563        struct input_handle *grabber;
 564
 565        grabber = rcu_dereference_protected(dev->grab,
 566                                            lockdep_is_held(&dev->mutex));
 567        if (grabber == handle) {
 568                rcu_assign_pointer(dev->grab, NULL);
 569                /* Make sure input_pass_event() notices that grab is gone */
 570                synchronize_rcu();
 571
 572                list_for_each_entry(handle, &dev->h_list, d_node)
 573                        if (handle->open && handle->handler->start)
 574                                handle->handler->start(handle);
 575        }
 576}
 577
 578/**
 579 * input_release_device - release previously grabbed device
 580 * @handle: input handle that owns the device
 581 *
 582 * Releases previously grabbed device so that other input handles can
 583 * start receiving input events. Upon release all handlers attached
 584 * to the device have their start() method called so they have a change
 585 * to synchronize device state with the rest of the system.
 586 */
 587void input_release_device(struct input_handle *handle)
 588{
 589        struct input_dev *dev = handle->dev;
 590
 591        mutex_lock(&dev->mutex);
 592        __input_release_device(handle);
 593        mutex_unlock(&dev->mutex);
 594}
 595EXPORT_SYMBOL(input_release_device);
 596
 597/**
 598 * input_open_device - open input device
 599 * @handle: handle through which device is being accessed
 600 *
 601 * This function should be called by input handlers when they
 602 * want to start receive events from given input device.
 603 */
 604int input_open_device(struct input_handle *handle)
 605{
 606        struct input_dev *dev = handle->dev;
 607        int retval;
 608
 609        retval = mutex_lock_interruptible(&dev->mutex);
 610        if (retval)
 611                return retval;
 612
 613        if (dev->going_away) {
 614                retval = -ENODEV;
 615                goto out;
 616        }
 617
 618        handle->open++;
 619
 620        if (dev->users++ || dev->inhibited) {
 621                /*
 622                 * Device is already opened and/or inhibited,
 623                 * so we can exit immediately and report success.
 624                 */
 625                goto out;
 626        }
 627
 628        if (dev->open) {
 629                retval = dev->open(dev);
 630                if (retval) {
 631                        dev->users--;
 632                        handle->open--;
 633                        /*
 634                         * Make sure we are not delivering any more events
 635                         * through this handle
 636                         */
 637                        synchronize_rcu();
 638                        goto out;
 639                }
 640        }
 641
 642        if (dev->poller)
 643                input_dev_poller_start(dev->poller);
 644
 645 out:
 646        mutex_unlock(&dev->mutex);
 647        return retval;
 648}
 649EXPORT_SYMBOL(input_open_device);
 650
 651int input_flush_device(struct input_handle *handle, struct file *file)
 652{
 653        struct input_dev *dev = handle->dev;
 654        int retval;
 655
 656        retval = mutex_lock_interruptible(&dev->mutex);
 657        if (retval)
 658                return retval;
 659
 660        if (dev->flush)
 661                retval = dev->flush(dev, file);
 662
 663        mutex_unlock(&dev->mutex);
 664        return retval;
 665}
 666EXPORT_SYMBOL(input_flush_device);
 667
 668/**
 669 * input_close_device - close input device
 670 * @handle: handle through which device is being accessed
 671 *
 672 * This function should be called by input handlers when they
 673 * want to stop receive events from given input device.
 674 */
 675void input_close_device(struct input_handle *handle)
 676{
 677        struct input_dev *dev = handle->dev;
 678
 679        mutex_lock(&dev->mutex);
 680
 681        __input_release_device(handle);
 682
 683        if (!dev->inhibited && !--dev->users) {
 684                if (dev->poller)
 685                        input_dev_poller_stop(dev->poller);
 686                if (dev->close)
 687                        dev->close(dev);
 688        }
 689
 690        if (!--handle->open) {
 691                /*
 692                 * synchronize_rcu() makes sure that input_pass_event()
 693                 * completed and that no more input events are delivered
 694                 * through this handle
 695                 */
 696                synchronize_rcu();
 697        }
 698
 699        mutex_unlock(&dev->mutex);
 700}
 701EXPORT_SYMBOL(input_close_device);
 702
 703/*
 704 * Simulate keyup events for all keys that are marked as pressed.
 705 * The function must be called with dev->event_lock held.
 706 */
 707static void input_dev_release_keys(struct input_dev *dev)
 708{
 709        bool need_sync = false;
 710        int code;
 711
 712        if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
 713                for_each_set_bit(code, dev->key, KEY_CNT) {
 714                        input_pass_event(dev, EV_KEY, code, 0);
 715                        need_sync = true;
 716                }
 717
 718                if (need_sync)
 719                        input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
 720
 721                memset(dev->key, 0, sizeof(dev->key));
 722        }
 723}
 724
 725/*
 726 * Prepare device for unregistering
 727 */
 728static void input_disconnect_device(struct input_dev *dev)
 729{
 730        struct input_handle *handle;
 731
 732        /*
 733         * Mark device as going away. Note that we take dev->mutex here
 734         * not to protect access to dev->going_away but rather to ensure
 735         * that there are no threads in the middle of input_open_device()
 736         */
 737        mutex_lock(&dev->mutex);
 738        dev->going_away = true;
 739        mutex_unlock(&dev->mutex);
 740
 741        spin_lock_irq(&dev->event_lock);
 742
 743        /*
 744         * Simulate keyup events for all pressed keys so that handlers
 745         * are not left with "stuck" keys. The driver may continue
 746         * generate events even after we done here but they will not
 747         * reach any handlers.
 748         */
 749        input_dev_release_keys(dev);
 750
 751        list_for_each_entry(handle, &dev->h_list, d_node)
 752                handle->open = 0;
 753
 754        spin_unlock_irq(&dev->event_lock);
 755}
 756
 757/**
 758 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
 759 * @ke: keymap entry containing scancode to be converted.
 760 * @scancode: pointer to the location where converted scancode should
 761 *      be stored.
 762 *
 763 * This function is used to convert scancode stored in &struct keymap_entry
 764 * into scalar form understood by legacy keymap handling methods. These
 765 * methods expect scancodes to be represented as 'unsigned int'.
 766 */
 767int input_scancode_to_scalar(const struct input_keymap_entry *ke,
 768                             unsigned int *scancode)
 769{
 770        switch (ke->len) {
 771        case 1:
 772                *scancode = *((u8 *)ke->scancode);
 773                break;
 774
 775        case 2:
 776                *scancode = *((u16 *)ke->scancode);
 777                break;
 778
 779        case 4:
 780                *scancode = *((u32 *)ke->scancode);
 781                break;
 782
 783        default:
 784                return -EINVAL;
 785        }
 786
 787        return 0;
 788}
 789EXPORT_SYMBOL(input_scancode_to_scalar);
 790
 791/*
 792 * Those routines handle the default case where no [gs]etkeycode() is
 793 * defined. In this case, an array indexed by the scancode is used.
 794 */
 795
 796static unsigned int input_fetch_keycode(struct input_dev *dev,
 797                                        unsigned int index)
 798{
 799        switch (dev->keycodesize) {
 800        case 1:
 801                return ((u8 *)dev->keycode)[index];
 802
 803        case 2:
 804                return ((u16 *)dev->keycode)[index];
 805
 806        default:
 807                return ((u32 *)dev->keycode)[index];
 808        }
 809}
 810
 811static int input_default_getkeycode(struct input_dev *dev,
 812                                    struct input_keymap_entry *ke)
 813{
 814        unsigned int index;
 815        int error;
 816
 817        if (!dev->keycodesize)
 818                return -EINVAL;
 819
 820        if (ke->flags & INPUT_KEYMAP_BY_INDEX)
 821                index = ke->index;
 822        else {
 823                error = input_scancode_to_scalar(ke, &index);
 824                if (error)
 825                        return error;
 826        }
 827
 828        if (index >= dev->keycodemax)
 829                return -EINVAL;
 830
 831        ke->keycode = input_fetch_keycode(dev, index);
 832        ke->index = index;
 833        ke->len = sizeof(index);
 834        memcpy(ke->scancode, &index, sizeof(index));
 835
 836        return 0;
 837}
 838
 839static int input_default_setkeycode(struct input_dev *dev,
 840                                    const struct input_keymap_entry *ke,
 841                                    unsigned int *old_keycode)
 842{
 843        unsigned int index;
 844        int error;
 845        int i;
 846
 847        if (!dev->keycodesize)
 848                return -EINVAL;
 849
 850        if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
 851                index = ke->index;
 852        } else {
 853                error = input_scancode_to_scalar(ke, &index);
 854                if (error)
 855                        return error;
 856        }
 857
 858        if (index >= dev->keycodemax)
 859                return -EINVAL;
 860
 861        if (dev->keycodesize < sizeof(ke->keycode) &&
 862                        (ke->keycode >> (dev->keycodesize * 8)))
 863                return -EINVAL;
 864
 865        switch (dev->keycodesize) {
 866                case 1: {
 867                        u8 *k = (u8 *)dev->keycode;
 868                        *old_keycode = k[index];
 869                        k[index] = ke->keycode;
 870                        break;
 871                }
 872                case 2: {
 873                        u16 *k = (u16 *)dev->keycode;
 874                        *old_keycode = k[index];
 875                        k[index] = ke->keycode;
 876                        break;
 877                }
 878                default: {
 879                        u32 *k = (u32 *)dev->keycode;
 880                        *old_keycode = k[index];
 881                        k[index] = ke->keycode;
 882                        break;
 883                }
 884        }
 885
 886        if (*old_keycode <= KEY_MAX) {
 887                __clear_bit(*old_keycode, dev->keybit);
 888                for (i = 0; i < dev->keycodemax; i++) {
 889                        if (input_fetch_keycode(dev, i) == *old_keycode) {
 890                                __set_bit(*old_keycode, dev->keybit);
 891                                /* Setting the bit twice is useless, so break */
 892                                break;
 893                        }
 894                }
 895        }
 896
 897        __set_bit(ke->keycode, dev->keybit);
 898        return 0;
 899}
 900
 901/**
 902 * input_get_keycode - retrieve keycode currently mapped to a given scancode
 903 * @dev: input device which keymap is being queried
 904 * @ke: keymap entry
 905 *
 906 * This function should be called by anyone interested in retrieving current
 907 * keymap. Presently evdev handlers use it.
 908 */
 909int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
 910{
 911        unsigned long flags;
 912        int retval;
 913
 914        spin_lock_irqsave(&dev->event_lock, flags);
 915        retval = dev->getkeycode(dev, ke);
 916        spin_unlock_irqrestore(&dev->event_lock, flags);
 917
 918        return retval;
 919}
 920EXPORT_SYMBOL(input_get_keycode);
 921
 922/**
 923 * input_set_keycode - attribute a keycode to a given scancode
 924 * @dev: input device which keymap is being updated
 925 * @ke: new keymap entry
 926 *
 927 * This function should be called by anyone needing to update current
 928 * keymap. Presently keyboard and evdev handlers use it.
 929 */
 930int input_set_keycode(struct input_dev *dev,
 931                      const struct input_keymap_entry *ke)
 932{
 933        unsigned long flags;
 934        unsigned int old_keycode;
 935        int retval;
 936
 937        if (ke->keycode > KEY_MAX)
 938                return -EINVAL;
 939
 940        spin_lock_irqsave(&dev->event_lock, flags);
 941
 942        retval = dev->setkeycode(dev, ke, &old_keycode);
 943        if (retval)
 944                goto out;
 945
 946        /* Make sure KEY_RESERVED did not get enabled. */
 947        __clear_bit(KEY_RESERVED, dev->keybit);
 948
 949        /*
 950         * Simulate keyup event if keycode is not present
 951         * in the keymap anymore
 952         */
 953        if (old_keycode > KEY_MAX) {
 954                dev_warn(dev->dev.parent ?: &dev->dev,
 955                         "%s: got too big old keycode %#x\n",
 956                         __func__, old_keycode);
 957        } else if (test_bit(EV_KEY, dev->evbit) &&
 958                   !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
 959                   __test_and_clear_bit(old_keycode, dev->key)) {
 960                struct input_value vals[] =  {
 961                        { EV_KEY, old_keycode, 0 },
 962                        input_value_sync
 963                };
 964
 965                input_pass_values(dev, vals, ARRAY_SIZE(vals));
 966        }
 967
 968 out:
 969        spin_unlock_irqrestore(&dev->event_lock, flags);
 970
 971        return retval;
 972}
 973EXPORT_SYMBOL(input_set_keycode);
 974
 975bool input_match_device_id(const struct input_dev *dev,
 976                           const struct input_device_id *id)
 977{
 978        if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
 979                if (id->bustype != dev->id.bustype)
 980                        return false;
 981
 982        if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
 983                if (id->vendor != dev->id.vendor)
 984                        return false;
 985
 986        if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
 987                if (id->product != dev->id.product)
 988                        return false;
 989
 990        if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
 991                if (id->version != dev->id.version)
 992                        return false;
 993
 994        if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
 995            !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
 996            !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
 997            !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
 998            !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
 999            !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
1000            !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
1001            !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
1002            !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
1003            !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1004                return false;
1005        }
1006
1007        return true;
1008}
1009EXPORT_SYMBOL(input_match_device_id);
1010
1011static const struct input_device_id *input_match_device(struct input_handler *handler,
1012                                                        struct input_dev *dev)
1013{
1014        const struct input_device_id *id;
1015
1016        for (id = handler->id_table; id->flags || id->driver_info; id++) {
1017                if (input_match_device_id(dev, id) &&
1018                    (!handler->match || handler->match(handler, dev))) {
1019                        return id;
1020                }
1021        }
1022
1023        return NULL;
1024}
1025
1026static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1027{
1028        const struct input_device_id *id;
1029        int error;
1030
1031        id = input_match_device(handler, dev);
1032        if (!id)
1033                return -ENODEV;
1034
1035        error = handler->connect(handler, dev, id);
1036        if (error && error != -ENODEV)
1037                pr_err("failed to attach handler %s to device %s, error: %d\n",
1038                       handler->name, kobject_name(&dev->dev.kobj), error);
1039
1040        return error;
1041}
1042
1043#ifdef CONFIG_COMPAT
1044
1045static int input_bits_to_string(char *buf, int buf_size,
1046                                unsigned long bits, bool skip_empty)
1047{
1048        int len = 0;
1049
1050        if (in_compat_syscall()) {
1051                u32 dword = bits >> 32;
1052                if (dword || !skip_empty)
1053                        len += snprintf(buf, buf_size, "%x ", dword);
1054
1055                dword = bits & 0xffffffffUL;
1056                if (dword || !skip_empty || len)
1057                        len += snprintf(buf + len, max(buf_size - len, 0),
1058                                        "%x", dword);
1059        } else {
1060                if (bits || !skip_empty)
1061                        len += snprintf(buf, buf_size, "%lx", bits);
1062        }
1063
1064        return len;
1065}
1066
1067#else /* !CONFIG_COMPAT */
1068
1069static int input_bits_to_string(char *buf, int buf_size,
1070                                unsigned long bits, bool skip_empty)
1071{
1072        return bits || !skip_empty ?
1073                snprintf(buf, buf_size, "%lx", bits) : 0;
1074}
1075
1076#endif
1077
1078#ifdef CONFIG_PROC_FS
1079
1080static struct proc_dir_entry *proc_bus_input_dir;
1081static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1082static int input_devices_state;
1083
1084static inline void input_wakeup_procfs_readers(void)
1085{
1086        input_devices_state++;
1087        wake_up(&input_devices_poll_wait);
1088}
1089
1090static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1091{
1092        poll_wait(file, &input_devices_poll_wait, wait);
1093        if (file->f_version != input_devices_state) {
1094                file->f_version = input_devices_state;
1095                return EPOLLIN | EPOLLRDNORM;
1096        }
1097
1098        return 0;
1099}
1100
1101union input_seq_state {
1102        struct {
1103                unsigned short pos;
1104                bool mutex_acquired;
1105        };
1106        void *p;
1107};
1108
1109static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1110{
1111        union input_seq_state *state = (union input_seq_state *)&seq->private;
1112        int error;
1113
1114        /* We need to fit into seq->private pointer */
1115        BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1116
1117        error = mutex_lock_interruptible(&input_mutex);
1118        if (error) {
1119                state->mutex_acquired = false;
1120                return ERR_PTR(error);
1121        }
1122
1123        state->mutex_acquired = true;
1124
1125        return seq_list_start(&input_dev_list, *pos);
1126}
1127
1128static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1129{
1130        return seq_list_next(v, &input_dev_list, pos);
1131}
1132
1133static void input_seq_stop(struct seq_file *seq, void *v)
1134{
1135        union input_seq_state *state = (union input_seq_state *)&seq->private;
1136
1137        if (state->mutex_acquired)
1138                mutex_unlock(&input_mutex);
1139}
1140
1141static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1142                                   unsigned long *bitmap, int max)
1143{
1144        int i;
1145        bool skip_empty = true;
1146        char buf[18];
1147
1148        seq_printf(seq, "B: %s=", name);
1149
1150        for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1151                if (input_bits_to_string(buf, sizeof(buf),
1152                                         bitmap[i], skip_empty)) {
1153                        skip_empty = false;
1154                        seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1155                }
1156        }
1157
1158        /*
1159         * If no output was produced print a single 0.
1160         */
1161        if (skip_empty)
1162                seq_putc(seq, '0');
1163
1164        seq_putc(seq, '\n');
1165}
1166
1167static int input_devices_seq_show(struct seq_file *seq, void *v)
1168{
1169        struct input_dev *dev = container_of(v, struct input_dev, node);
1170        const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1171        struct input_handle *handle;
1172
1173        seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1174                   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1175
1176        seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1177        seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1178        seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1179        seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1180        seq_puts(seq, "H: Handlers=");
1181
1182        list_for_each_entry(handle, &dev->h_list, d_node)
1183                seq_printf(seq, "%s ", handle->name);
1184        seq_putc(seq, '\n');
1185
1186        input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1187
1188        input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1189        if (test_bit(EV_KEY, dev->evbit))
1190                input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1191        if (test_bit(EV_REL, dev->evbit))
1192                input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1193        if (test_bit(EV_ABS, dev->evbit))
1194                input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1195        if (test_bit(EV_MSC, dev->evbit))
1196                input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1197        if (test_bit(EV_LED, dev->evbit))
1198                input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1199        if (test_bit(EV_SND, dev->evbit))
1200                input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1201        if (test_bit(EV_FF, dev->evbit))
1202                input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1203        if (test_bit(EV_SW, dev->evbit))
1204                input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1205
1206        seq_putc(seq, '\n');
1207
1208        kfree(path);
1209        return 0;
1210}
1211
1212static const struct seq_operations input_devices_seq_ops = {
1213        .start  = input_devices_seq_start,
1214        .next   = input_devices_seq_next,
1215        .stop   = input_seq_stop,
1216        .show   = input_devices_seq_show,
1217};
1218
1219static int input_proc_devices_open(struct inode *inode, struct file *file)
1220{
1221        return seq_open(file, &input_devices_seq_ops);
1222}
1223
1224static const struct proc_ops input_devices_proc_ops = {
1225        .proc_open      = input_proc_devices_open,
1226        .proc_poll      = input_proc_devices_poll,
1227        .proc_read      = seq_read,
1228        .proc_lseek     = seq_lseek,
1229        .proc_release   = seq_release,
1230};
1231
1232static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1233{
1234        union input_seq_state *state = (union input_seq_state *)&seq->private;
1235        int error;
1236
1237        /* We need to fit into seq->private pointer */
1238        BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1239
1240        error = mutex_lock_interruptible(&input_mutex);
1241        if (error) {
1242                state->mutex_acquired = false;
1243                return ERR_PTR(error);
1244        }
1245
1246        state->mutex_acquired = true;
1247        state->pos = *pos;
1248
1249        return seq_list_start(&input_handler_list, *pos);
1250}
1251
1252static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1253{
1254        union input_seq_state *state = (union input_seq_state *)&seq->private;
1255
1256        state->pos = *pos + 1;
1257        return seq_list_next(v, &input_handler_list, pos);
1258}
1259
1260static int input_handlers_seq_show(struct seq_file *seq, void *v)
1261{
1262        struct input_handler *handler = container_of(v, struct input_handler, node);
1263        union input_seq_state *state = (union input_seq_state *)&seq->private;
1264
1265        seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1266        if (handler->filter)
1267                seq_puts(seq, " (filter)");
1268        if (handler->legacy_minors)
1269                seq_printf(seq, " Minor=%d", handler->minor);
1270        seq_putc(seq, '\n');
1271
1272        return 0;
1273}
1274
1275static const struct seq_operations input_handlers_seq_ops = {
1276        .start  = input_handlers_seq_start,
1277        .next   = input_handlers_seq_next,
1278        .stop   = input_seq_stop,
1279        .show   = input_handlers_seq_show,
1280};
1281
1282static int input_proc_handlers_open(struct inode *inode, struct file *file)
1283{
1284        return seq_open(file, &input_handlers_seq_ops);
1285}
1286
1287static const struct proc_ops input_handlers_proc_ops = {
1288        .proc_open      = input_proc_handlers_open,
1289        .proc_read      = seq_read,
1290        .proc_lseek     = seq_lseek,
1291        .proc_release   = seq_release,
1292};
1293
1294static int __init input_proc_init(void)
1295{
1296        struct proc_dir_entry *entry;
1297
1298        proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1299        if (!proc_bus_input_dir)
1300                return -ENOMEM;
1301
1302        entry = proc_create("devices", 0, proc_bus_input_dir,
1303                            &input_devices_proc_ops);
1304        if (!entry)
1305                goto fail1;
1306
1307        entry = proc_create("handlers", 0, proc_bus_input_dir,
1308                            &input_handlers_proc_ops);
1309        if (!entry)
1310                goto fail2;
1311
1312        return 0;
1313
1314 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1315 fail1: remove_proc_entry("bus/input", NULL);
1316        return -ENOMEM;
1317}
1318
1319static void input_proc_exit(void)
1320{
1321        remove_proc_entry("devices", proc_bus_input_dir);
1322        remove_proc_entry("handlers", proc_bus_input_dir);
1323        remove_proc_entry("bus/input", NULL);
1324}
1325
1326#else /* !CONFIG_PROC_FS */
1327static inline void input_wakeup_procfs_readers(void) { }
1328static inline int input_proc_init(void) { return 0; }
1329static inline void input_proc_exit(void) { }
1330#endif
1331
1332#define INPUT_DEV_STRING_ATTR_SHOW(name)                                \
1333static ssize_t input_dev_show_##name(struct device *dev,                \
1334                                     struct device_attribute *attr,     \
1335                                     char *buf)                         \
1336{                                                                       \
1337        struct input_dev *input_dev = to_input_dev(dev);                \
1338                                                                        \
1339        return scnprintf(buf, PAGE_SIZE, "%s\n",                        \
1340                         input_dev->name ? input_dev->name : "");       \
1341}                                                                       \
1342static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1343
1344INPUT_DEV_STRING_ATTR_SHOW(name);
1345INPUT_DEV_STRING_ATTR_SHOW(phys);
1346INPUT_DEV_STRING_ATTR_SHOW(uniq);
1347
1348static int input_print_modalias_bits(char *buf, int size,
1349                                     char name, unsigned long *bm,
1350                                     unsigned int min_bit, unsigned int max_bit)
1351{
1352        int len = 0, i;
1353
1354        len += snprintf(buf, max(size, 0), "%c", name);
1355        for (i = min_bit; i < max_bit; i++)
1356                if (bm[BIT_WORD(i)] & BIT_MASK(i))
1357                        len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1358        return len;
1359}
1360
1361static int input_print_modalias(char *buf, int size, struct input_dev *id,
1362                                int add_cr)
1363{
1364        int len;
1365
1366        len = snprintf(buf, max(size, 0),
1367                       "input:b%04Xv%04Xp%04Xe%04X-",
1368                       id->id.bustype, id->id.vendor,
1369                       id->id.product, id->id.version);
1370
1371        len += input_print_modalias_bits(buf + len, size - len,
1372                                'e', id->evbit, 0, EV_MAX);
1373        len += input_print_modalias_bits(buf + len, size - len,
1374                                'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1375        len += input_print_modalias_bits(buf + len, size - len,
1376                                'r', id->relbit, 0, REL_MAX);
1377        len += input_print_modalias_bits(buf + len, size - len,
1378                                'a', id->absbit, 0, ABS_MAX);
1379        len += input_print_modalias_bits(buf + len, size - len,
1380                                'm', id->mscbit, 0, MSC_MAX);
1381        len += input_print_modalias_bits(buf + len, size - len,
1382                                'l', id->ledbit, 0, LED_MAX);
1383        len += input_print_modalias_bits(buf + len, size - len,
1384                                's', id->sndbit, 0, SND_MAX);
1385        len += input_print_modalias_bits(buf + len, size - len,
1386                                'f', id->ffbit, 0, FF_MAX);
1387        len += input_print_modalias_bits(buf + len, size - len,
1388                                'w', id->swbit, 0, SW_MAX);
1389
1390        if (add_cr)
1391                len += snprintf(buf + len, max(size - len, 0), "\n");
1392
1393        return len;
1394}
1395
1396static ssize_t input_dev_show_modalias(struct device *dev,
1397                                       struct device_attribute *attr,
1398                                       char *buf)
1399{
1400        struct input_dev *id = to_input_dev(dev);
1401        ssize_t len;
1402
1403        len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1404
1405        return min_t(int, len, PAGE_SIZE);
1406}
1407static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1408
1409static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1410                              int max, int add_cr);
1411
1412static ssize_t input_dev_show_properties(struct device *dev,
1413                                         struct device_attribute *attr,
1414                                         char *buf)
1415{
1416        struct input_dev *input_dev = to_input_dev(dev);
1417        int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1418                                     INPUT_PROP_MAX, true);
1419        return min_t(int, len, PAGE_SIZE);
1420}
1421static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1422
1423static int input_inhibit_device(struct input_dev *dev);
1424static int input_uninhibit_device(struct input_dev *dev);
1425
1426static ssize_t inhibited_show(struct device *dev,
1427                              struct device_attribute *attr,
1428                              char *buf)
1429{
1430        struct input_dev *input_dev = to_input_dev(dev);
1431
1432        return scnprintf(buf, PAGE_SIZE, "%d\n", input_dev->inhibited);
1433}
1434
1435static ssize_t inhibited_store(struct device *dev,
1436                               struct device_attribute *attr, const char *buf,
1437                               size_t len)
1438{
1439        struct input_dev *input_dev = to_input_dev(dev);
1440        ssize_t rv;
1441        bool inhibited;
1442
1443        if (strtobool(buf, &inhibited))
1444                return -EINVAL;
1445
1446        if (inhibited)
1447                rv = input_inhibit_device(input_dev);
1448        else
1449                rv = input_uninhibit_device(input_dev);
1450
1451        if (rv != 0)
1452                return rv;
1453
1454        return len;
1455}
1456
1457static DEVICE_ATTR_RW(inhibited);
1458
1459static struct attribute *input_dev_attrs[] = {
1460        &dev_attr_name.attr,
1461        &dev_attr_phys.attr,
1462        &dev_attr_uniq.attr,
1463        &dev_attr_modalias.attr,
1464        &dev_attr_properties.attr,
1465        &dev_attr_inhibited.attr,
1466        NULL
1467};
1468
1469static const struct attribute_group input_dev_attr_group = {
1470        .attrs  = input_dev_attrs,
1471};
1472
1473#define INPUT_DEV_ID_ATTR(name)                                         \
1474static ssize_t input_dev_show_id_##name(struct device *dev,             \
1475                                        struct device_attribute *attr,  \
1476                                        char *buf)                      \
1477{                                                                       \
1478        struct input_dev *input_dev = to_input_dev(dev);                \
1479        return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1480}                                                                       \
1481static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1482
1483INPUT_DEV_ID_ATTR(bustype);
1484INPUT_DEV_ID_ATTR(vendor);
1485INPUT_DEV_ID_ATTR(product);
1486INPUT_DEV_ID_ATTR(version);
1487
1488static struct attribute *input_dev_id_attrs[] = {
1489        &dev_attr_bustype.attr,
1490        &dev_attr_vendor.attr,
1491        &dev_attr_product.attr,
1492        &dev_attr_version.attr,
1493        NULL
1494};
1495
1496static const struct attribute_group input_dev_id_attr_group = {
1497        .name   = "id",
1498        .attrs  = input_dev_id_attrs,
1499};
1500
1501static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1502                              int max, int add_cr)
1503{
1504        int i;
1505        int len = 0;
1506        bool skip_empty = true;
1507
1508        for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1509                len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1510                                            bitmap[i], skip_empty);
1511                if (len) {
1512                        skip_empty = false;
1513                        if (i > 0)
1514                                len += snprintf(buf + len, max(buf_size - len, 0), " ");
1515                }
1516        }
1517
1518        /*
1519         * If no output was produced print a single 0.
1520         */
1521        if (len == 0)
1522                len = snprintf(buf, buf_size, "%d", 0);
1523
1524        if (add_cr)
1525                len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1526
1527        return len;
1528}
1529
1530#define INPUT_DEV_CAP_ATTR(ev, bm)                                      \
1531static ssize_t input_dev_show_cap_##bm(struct device *dev,              \
1532                                       struct device_attribute *attr,   \
1533                                       char *buf)                       \
1534{                                                                       \
1535        struct input_dev *input_dev = to_input_dev(dev);                \
1536        int len = input_print_bitmap(buf, PAGE_SIZE,                    \
1537                                     input_dev->bm##bit, ev##_MAX,      \
1538                                     true);                             \
1539        return min_t(int, len, PAGE_SIZE);                              \
1540}                                                                       \
1541static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1542
1543INPUT_DEV_CAP_ATTR(EV, ev);
1544INPUT_DEV_CAP_ATTR(KEY, key);
1545INPUT_DEV_CAP_ATTR(REL, rel);
1546INPUT_DEV_CAP_ATTR(ABS, abs);
1547INPUT_DEV_CAP_ATTR(MSC, msc);
1548INPUT_DEV_CAP_ATTR(LED, led);
1549INPUT_DEV_CAP_ATTR(SND, snd);
1550INPUT_DEV_CAP_ATTR(FF, ff);
1551INPUT_DEV_CAP_ATTR(SW, sw);
1552
1553static struct attribute *input_dev_caps_attrs[] = {
1554        &dev_attr_ev.attr,
1555        &dev_attr_key.attr,
1556        &dev_attr_rel.attr,
1557        &dev_attr_abs.attr,
1558        &dev_attr_msc.attr,
1559        &dev_attr_led.attr,
1560        &dev_attr_snd.attr,
1561        &dev_attr_ff.attr,
1562        &dev_attr_sw.attr,
1563        NULL
1564};
1565
1566static const struct attribute_group input_dev_caps_attr_group = {
1567        .name   = "capabilities",
1568        .attrs  = input_dev_caps_attrs,
1569};
1570
1571static const struct attribute_group *input_dev_attr_groups[] = {
1572        &input_dev_attr_group,
1573        &input_dev_id_attr_group,
1574        &input_dev_caps_attr_group,
1575        &input_poller_attribute_group,
1576        NULL
1577};
1578
1579static void input_dev_release(struct device *device)
1580{
1581        struct input_dev *dev = to_input_dev(device);
1582
1583        input_ff_destroy(dev);
1584        input_mt_destroy_slots(dev);
1585        kfree(dev->poller);
1586        kfree(dev->absinfo);
1587        kfree(dev->vals);
1588        kfree(dev);
1589
1590        module_put(THIS_MODULE);
1591}
1592
1593/*
1594 * Input uevent interface - loading event handlers based on
1595 * device bitfields.
1596 */
1597static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1598                                   const char *name, unsigned long *bitmap, int max)
1599{
1600        int len;
1601
1602        if (add_uevent_var(env, "%s", name))
1603                return -ENOMEM;
1604
1605        len = input_print_bitmap(&env->buf[env->buflen - 1],
1606                                 sizeof(env->buf) - env->buflen,
1607                                 bitmap, max, false);
1608        if (len >= (sizeof(env->buf) - env->buflen))
1609                return -ENOMEM;
1610
1611        env->buflen += len;
1612        return 0;
1613}
1614
1615static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1616                                         struct input_dev *dev)
1617{
1618        int len;
1619
1620        if (add_uevent_var(env, "MODALIAS="))
1621                return -ENOMEM;
1622
1623        len = input_print_modalias(&env->buf[env->buflen - 1],
1624                                   sizeof(env->buf) - env->buflen,
1625                                   dev, 0);
1626        if (len >= (sizeof(env->buf) - env->buflen))
1627                return -ENOMEM;
1628
1629        env->buflen += len;
1630        return 0;
1631}
1632
1633#define INPUT_ADD_HOTPLUG_VAR(fmt, val...)                              \
1634        do {                                                            \
1635                int err = add_uevent_var(env, fmt, val);                \
1636                if (err)                                                \
1637                        return err;                                     \
1638        } while (0)
1639
1640#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)                         \
1641        do {                                                            \
1642                int err = input_add_uevent_bm_var(env, name, bm, max);  \
1643                if (err)                                                \
1644                        return err;                                     \
1645        } while (0)
1646
1647#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)                             \
1648        do {                                                            \
1649                int err = input_add_uevent_modalias_var(env, dev);      \
1650                if (err)                                                \
1651                        return err;                                     \
1652        } while (0)
1653
1654static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1655{
1656        struct input_dev *dev = to_input_dev(device);
1657
1658        INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1659                                dev->id.bustype, dev->id.vendor,
1660                                dev->id.product, dev->id.version);
1661        if (dev->name)
1662                INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1663        if (dev->phys)
1664                INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1665        if (dev->uniq)
1666                INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1667
1668        INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1669
1670        INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1671        if (test_bit(EV_KEY, dev->evbit))
1672                INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1673        if (test_bit(EV_REL, dev->evbit))
1674                INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1675        if (test_bit(EV_ABS, dev->evbit))
1676                INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1677        if (test_bit(EV_MSC, dev->evbit))
1678                INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1679        if (test_bit(EV_LED, dev->evbit))
1680                INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1681        if (test_bit(EV_SND, dev->evbit))
1682                INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1683        if (test_bit(EV_FF, dev->evbit))
1684                INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1685        if (test_bit(EV_SW, dev->evbit))
1686                INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1687
1688        INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1689
1690        return 0;
1691}
1692
1693#define INPUT_DO_TOGGLE(dev, type, bits, on)                            \
1694        do {                                                            \
1695                int i;                                                  \
1696                bool active;                                            \
1697                                                                        \
1698                if (!test_bit(EV_##type, dev->evbit))                   \
1699                        break;                                          \
1700                                                                        \
1701                for_each_set_bit(i, dev->bits##bit, type##_CNT) {       \
1702                        active = test_bit(i, dev->bits);                \
1703                        if (!active && !on)                             \
1704                                continue;                               \
1705                                                                        \
1706                        dev->event(dev, EV_##type, i, on ? active : 0); \
1707                }                                                       \
1708        } while (0)
1709
1710static void input_dev_toggle(struct input_dev *dev, bool activate)
1711{
1712        if (!dev->event)
1713                return;
1714
1715        INPUT_DO_TOGGLE(dev, LED, led, activate);
1716        INPUT_DO_TOGGLE(dev, SND, snd, activate);
1717
1718        if (activate && test_bit(EV_REP, dev->evbit)) {
1719                dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1720                dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1721        }
1722}
1723
1724/**
1725 * input_reset_device() - reset/restore the state of input device
1726 * @dev: input device whose state needs to be reset
1727 *
1728 * This function tries to reset the state of an opened input device and
1729 * bring internal state and state if the hardware in sync with each other.
1730 * We mark all keys as released, restore LED state, repeat rate, etc.
1731 */
1732void input_reset_device(struct input_dev *dev)
1733{
1734        unsigned long flags;
1735
1736        mutex_lock(&dev->mutex);
1737        spin_lock_irqsave(&dev->event_lock, flags);
1738
1739        input_dev_toggle(dev, true);
1740        input_dev_release_keys(dev);
1741
1742        spin_unlock_irqrestore(&dev->event_lock, flags);
1743        mutex_unlock(&dev->mutex);
1744}
1745EXPORT_SYMBOL(input_reset_device);
1746
1747static int input_inhibit_device(struct input_dev *dev)
1748{
1749        int ret = 0;
1750
1751        mutex_lock(&dev->mutex);
1752
1753        if (dev->inhibited)
1754                goto out;
1755
1756        if (dev->users) {
1757                if (dev->close)
1758                        dev->close(dev);
1759                if (dev->poller)
1760                        input_dev_poller_stop(dev->poller);
1761        }
1762
1763        spin_lock_irq(&dev->event_lock);
1764        input_dev_release_keys(dev);
1765        input_dev_toggle(dev, false);
1766        spin_unlock_irq(&dev->event_lock);
1767
1768        dev->inhibited = true;
1769
1770out:
1771        mutex_unlock(&dev->mutex);
1772        return ret;
1773}
1774
1775static int input_uninhibit_device(struct input_dev *dev)
1776{
1777        int ret = 0;
1778
1779        mutex_lock(&dev->mutex);
1780
1781        if (!dev->inhibited)
1782                goto out;
1783
1784        if (dev->users) {
1785                if (dev->open) {
1786                        ret = dev->open(dev);
1787                        if (ret)
1788                                goto out;
1789                }
1790                if (dev->poller)
1791                        input_dev_poller_start(dev->poller);
1792        }
1793
1794        dev->inhibited = false;
1795        spin_lock_irq(&dev->event_lock);
1796        input_dev_toggle(dev, true);
1797        spin_unlock_irq(&dev->event_lock);
1798
1799out:
1800        mutex_unlock(&dev->mutex);
1801        return ret;
1802}
1803
1804#ifdef CONFIG_PM_SLEEP
1805static int input_dev_suspend(struct device *dev)
1806{
1807        struct input_dev *input_dev = to_input_dev(dev);
1808
1809        spin_lock_irq(&input_dev->event_lock);
1810
1811        /*
1812         * Keys that are pressed now are unlikely to be
1813         * still pressed when we resume.
1814         */
1815        input_dev_release_keys(input_dev);
1816
1817        /* Turn off LEDs and sounds, if any are active. */
1818        input_dev_toggle(input_dev, false);
1819
1820        spin_unlock_irq(&input_dev->event_lock);
1821
1822        return 0;
1823}
1824
1825static int input_dev_resume(struct device *dev)
1826{
1827        struct input_dev *input_dev = to_input_dev(dev);
1828
1829        spin_lock_irq(&input_dev->event_lock);
1830
1831        /* Restore state of LEDs and sounds, if any were active. */
1832        input_dev_toggle(input_dev, true);
1833
1834        spin_unlock_irq(&input_dev->event_lock);
1835
1836        return 0;
1837}
1838
1839static int input_dev_freeze(struct device *dev)
1840{
1841        struct input_dev *input_dev = to_input_dev(dev);
1842
1843        spin_lock_irq(&input_dev->event_lock);
1844
1845        /*
1846         * Keys that are pressed now are unlikely to be
1847         * still pressed when we resume.
1848         */
1849        input_dev_release_keys(input_dev);
1850
1851        spin_unlock_irq(&input_dev->event_lock);
1852
1853        return 0;
1854}
1855
1856static int input_dev_poweroff(struct device *dev)
1857{
1858        struct input_dev *input_dev = to_input_dev(dev);
1859
1860        spin_lock_irq(&input_dev->event_lock);
1861
1862        /* Turn off LEDs and sounds, if any are active. */
1863        input_dev_toggle(input_dev, false);
1864
1865        spin_unlock_irq(&input_dev->event_lock);
1866
1867        return 0;
1868}
1869
1870static const struct dev_pm_ops input_dev_pm_ops = {
1871        .suspend        = input_dev_suspend,
1872        .resume         = input_dev_resume,
1873        .freeze         = input_dev_freeze,
1874        .poweroff       = input_dev_poweroff,
1875        .restore        = input_dev_resume,
1876};
1877#endif /* CONFIG_PM */
1878
1879static const struct device_type input_dev_type = {
1880        .groups         = input_dev_attr_groups,
1881        .release        = input_dev_release,
1882        .uevent         = input_dev_uevent,
1883#ifdef CONFIG_PM_SLEEP
1884        .pm             = &input_dev_pm_ops,
1885#endif
1886};
1887
1888static char *input_devnode(struct device *dev, umode_t *mode)
1889{
1890        return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1891}
1892
1893struct class input_class = {
1894        .name           = "input",
1895        .devnode        = input_devnode,
1896};
1897EXPORT_SYMBOL_GPL(input_class);
1898
1899/**
1900 * input_allocate_device - allocate memory for new input device
1901 *
1902 * Returns prepared struct input_dev or %NULL.
1903 *
1904 * NOTE: Use input_free_device() to free devices that have not been
1905 * registered; input_unregister_device() should be used for already
1906 * registered devices.
1907 */
1908struct input_dev *input_allocate_device(void)
1909{
1910        static atomic_t input_no = ATOMIC_INIT(-1);
1911        struct input_dev *dev;
1912
1913        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1914        if (dev) {
1915                dev->dev.type = &input_dev_type;
1916                dev->dev.class = &input_class;
1917                device_initialize(&dev->dev);
1918                mutex_init(&dev->mutex);
1919                spin_lock_init(&dev->event_lock);
1920                timer_setup(&dev->timer, NULL, 0);
1921                INIT_LIST_HEAD(&dev->h_list);
1922                INIT_LIST_HEAD(&dev->node);
1923
1924                dev_set_name(&dev->dev, "input%lu",
1925                             (unsigned long)atomic_inc_return(&input_no));
1926
1927                __module_get(THIS_MODULE);
1928        }
1929
1930        return dev;
1931}
1932EXPORT_SYMBOL(input_allocate_device);
1933
1934struct input_devres {
1935        struct input_dev *input;
1936};
1937
1938static int devm_input_device_match(struct device *dev, void *res, void *data)
1939{
1940        struct input_devres *devres = res;
1941
1942        return devres->input == data;
1943}
1944
1945static void devm_input_device_release(struct device *dev, void *res)
1946{
1947        struct input_devres *devres = res;
1948        struct input_dev *input = devres->input;
1949
1950        dev_dbg(dev, "%s: dropping reference to %s\n",
1951                __func__, dev_name(&input->dev));
1952        input_put_device(input);
1953}
1954
1955/**
1956 * devm_input_allocate_device - allocate managed input device
1957 * @dev: device owning the input device being created
1958 *
1959 * Returns prepared struct input_dev or %NULL.
1960 *
1961 * Managed input devices do not need to be explicitly unregistered or
1962 * freed as it will be done automatically when owner device unbinds from
1963 * its driver (or binding fails). Once managed input device is allocated,
1964 * it is ready to be set up and registered in the same fashion as regular
1965 * input device. There are no special devm_input_device_[un]register()
1966 * variants, regular ones work with both managed and unmanaged devices,
1967 * should you need them. In most cases however, managed input device need
1968 * not be explicitly unregistered or freed.
1969 *
1970 * NOTE: the owner device is set up as parent of input device and users
1971 * should not override it.
1972 */
1973struct input_dev *devm_input_allocate_device(struct device *dev)
1974{
1975        struct input_dev *input;
1976        struct input_devres *devres;
1977
1978        devres = devres_alloc(devm_input_device_release,
1979                              sizeof(*devres), GFP_KERNEL);
1980        if (!devres)
1981                return NULL;
1982
1983        input = input_allocate_device();
1984        if (!input) {
1985                devres_free(devres);
1986                return NULL;
1987        }
1988
1989        input->dev.parent = dev;
1990        input->devres_managed = true;
1991
1992        devres->input = input;
1993        devres_add(dev, devres);
1994
1995        return input;
1996}
1997EXPORT_SYMBOL(devm_input_allocate_device);
1998
1999/**
2000 * input_free_device - free memory occupied by input_dev structure
2001 * @dev: input device to free
2002 *
2003 * This function should only be used if input_register_device()
2004 * was not called yet or if it failed. Once device was registered
2005 * use input_unregister_device() and memory will be freed once last
2006 * reference to the device is dropped.
2007 *
2008 * Device should be allocated by input_allocate_device().
2009 *
2010 * NOTE: If there are references to the input device then memory
2011 * will not be freed until last reference is dropped.
2012 */
2013void input_free_device(struct input_dev *dev)
2014{
2015        if (dev) {
2016                if (dev->devres_managed)
2017                        WARN_ON(devres_destroy(dev->dev.parent,
2018                                                devm_input_device_release,
2019                                                devm_input_device_match,
2020                                                dev));
2021                input_put_device(dev);
2022        }
2023}
2024EXPORT_SYMBOL(input_free_device);
2025
2026/**
2027 * input_set_timestamp - set timestamp for input events
2028 * @dev: input device to set timestamp for
2029 * @timestamp: the time at which the event has occurred
2030 *   in CLOCK_MONOTONIC
2031 *
2032 * This function is intended to provide to the input system a more
2033 * accurate time of when an event actually occurred. The driver should
2034 * call this function as soon as a timestamp is acquired ensuring
2035 * clock conversions in input_set_timestamp are done correctly.
2036 *
2037 * The system entering suspend state between timestamp acquisition and
2038 * calling input_set_timestamp can result in inaccurate conversions.
2039 */
2040void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2041{
2042        dev->timestamp[INPUT_CLK_MONO] = timestamp;
2043        dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2044        dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2045                                                           TK_OFFS_BOOT);
2046}
2047EXPORT_SYMBOL(input_set_timestamp);
2048
2049/**
2050 * input_get_timestamp - get timestamp for input events
2051 * @dev: input device to get timestamp from
2052 *
2053 * A valid timestamp is a timestamp of non-zero value.
2054 */
2055ktime_t *input_get_timestamp(struct input_dev *dev)
2056{
2057        const ktime_t invalid_timestamp = ktime_set(0, 0);
2058
2059        if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2060                input_set_timestamp(dev, ktime_get());
2061
2062        return dev->timestamp;
2063}
2064EXPORT_SYMBOL(input_get_timestamp);
2065
2066/**
2067 * input_set_capability - mark device as capable of a certain event
2068 * @dev: device that is capable of emitting or accepting event
2069 * @type: type of the event (EV_KEY, EV_REL, etc...)
2070 * @code: event code
2071 *
2072 * In addition to setting up corresponding bit in appropriate capability
2073 * bitmap the function also adjusts dev->evbit.
2074 */
2075void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2076{
2077        switch (type) {
2078        case EV_KEY:
2079                __set_bit(code, dev->keybit);
2080                break;
2081
2082        case EV_REL:
2083                __set_bit(code, dev->relbit);
2084                break;
2085
2086        case EV_ABS:
2087                input_alloc_absinfo(dev);
2088                if (!dev->absinfo)
2089                        return;
2090
2091                __set_bit(code, dev->absbit);
2092                break;
2093
2094        case EV_MSC:
2095                __set_bit(code, dev->mscbit);
2096                break;
2097
2098        case EV_SW:
2099                __set_bit(code, dev->swbit);
2100                break;
2101
2102        case EV_LED:
2103                __set_bit(code, dev->ledbit);
2104                break;
2105
2106        case EV_SND:
2107                __set_bit(code, dev->sndbit);
2108                break;
2109
2110        case EV_FF:
2111                __set_bit(code, dev->ffbit);
2112                break;
2113
2114        case EV_PWR:
2115                /* do nothing */
2116                break;
2117
2118        default:
2119                pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2120                dump_stack();
2121                return;
2122        }
2123
2124        __set_bit(type, dev->evbit);
2125}
2126EXPORT_SYMBOL(input_set_capability);
2127
2128static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2129{
2130        int mt_slots;
2131        int i;
2132        unsigned int events;
2133
2134        if (dev->mt) {
2135                mt_slots = dev->mt->num_slots;
2136        } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2137                mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2138                           dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2139                mt_slots = clamp(mt_slots, 2, 32);
2140        } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2141                mt_slots = 2;
2142        } else {
2143                mt_slots = 0;
2144        }
2145
2146        events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2147
2148        if (test_bit(EV_ABS, dev->evbit))
2149                for_each_set_bit(i, dev->absbit, ABS_CNT)
2150                        events += input_is_mt_axis(i) ? mt_slots : 1;
2151
2152        if (test_bit(EV_REL, dev->evbit))
2153                events += bitmap_weight(dev->relbit, REL_CNT);
2154
2155        /* Make room for KEY and MSC events */
2156        events += 7;
2157
2158        return events;
2159}
2160
2161#define INPUT_CLEANSE_BITMASK(dev, type, bits)                          \
2162        do {                                                            \
2163                if (!test_bit(EV_##type, dev->evbit))                   \
2164                        memset(dev->bits##bit, 0,                       \
2165                                sizeof(dev->bits##bit));                \
2166        } while (0)
2167
2168static void input_cleanse_bitmasks(struct input_dev *dev)
2169{
2170        INPUT_CLEANSE_BITMASK(dev, KEY, key);
2171        INPUT_CLEANSE_BITMASK(dev, REL, rel);
2172        INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2173        INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2174        INPUT_CLEANSE_BITMASK(dev, LED, led);
2175        INPUT_CLEANSE_BITMASK(dev, SND, snd);
2176        INPUT_CLEANSE_BITMASK(dev, FF, ff);
2177        INPUT_CLEANSE_BITMASK(dev, SW, sw);
2178}
2179
2180static void __input_unregister_device(struct input_dev *dev)
2181{
2182        struct input_handle *handle, *next;
2183
2184        input_disconnect_device(dev);
2185
2186        mutex_lock(&input_mutex);
2187
2188        list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2189                handle->handler->disconnect(handle);
2190        WARN_ON(!list_empty(&dev->h_list));
2191
2192        del_timer_sync(&dev->timer);
2193        list_del_init(&dev->node);
2194
2195        input_wakeup_procfs_readers();
2196
2197        mutex_unlock(&input_mutex);
2198
2199        device_del(&dev->dev);
2200}
2201
2202static void devm_input_device_unregister(struct device *dev, void *res)
2203{
2204        struct input_devres *devres = res;
2205        struct input_dev *input = devres->input;
2206
2207        dev_dbg(dev, "%s: unregistering device %s\n",
2208                __func__, dev_name(&input->dev));
2209        __input_unregister_device(input);
2210}
2211
2212/**
2213 * input_enable_softrepeat - enable software autorepeat
2214 * @dev: input device
2215 * @delay: repeat delay
2216 * @period: repeat period
2217 *
2218 * Enable software autorepeat on the input device.
2219 */
2220void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2221{
2222        dev->timer.function = input_repeat_key;
2223        dev->rep[REP_DELAY] = delay;
2224        dev->rep[REP_PERIOD] = period;
2225}
2226EXPORT_SYMBOL(input_enable_softrepeat);
2227
2228bool input_device_enabled(struct input_dev *dev)
2229{
2230        lockdep_assert_held(&dev->mutex);
2231
2232        return !dev->inhibited && dev->users > 0;
2233}
2234EXPORT_SYMBOL_GPL(input_device_enabled);
2235
2236/**
2237 * input_register_device - register device with input core
2238 * @dev: device to be registered
2239 *
2240 * This function registers device with input core. The device must be
2241 * allocated with input_allocate_device() and all it's capabilities
2242 * set up before registering.
2243 * If function fails the device must be freed with input_free_device().
2244 * Once device has been successfully registered it can be unregistered
2245 * with input_unregister_device(); input_free_device() should not be
2246 * called in this case.
2247 *
2248 * Note that this function is also used to register managed input devices
2249 * (ones allocated with devm_input_allocate_device()). Such managed input
2250 * devices need not be explicitly unregistered or freed, their tear down
2251 * is controlled by the devres infrastructure. It is also worth noting
2252 * that tear down of managed input devices is internally a 2-step process:
2253 * registered managed input device is first unregistered, but stays in
2254 * memory and can still handle input_event() calls (although events will
2255 * not be delivered anywhere). The freeing of managed input device will
2256 * happen later, when devres stack is unwound to the point where device
2257 * allocation was made.
2258 */
2259int input_register_device(struct input_dev *dev)
2260{
2261        struct input_devres *devres = NULL;
2262        struct input_handler *handler;
2263        unsigned int packet_size;
2264        const char *path;
2265        int error;
2266
2267        if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2268                dev_err(&dev->dev,
2269                        "Absolute device without dev->absinfo, refusing to register\n");
2270                return -EINVAL;
2271        }
2272
2273        if (dev->devres_managed) {
2274                devres = devres_alloc(devm_input_device_unregister,
2275                                      sizeof(*devres), GFP_KERNEL);
2276                if (!devres)
2277                        return -ENOMEM;
2278
2279                devres->input = dev;
2280        }
2281
2282        /* Every input device generates EV_SYN/SYN_REPORT events. */
2283        __set_bit(EV_SYN, dev->evbit);
2284
2285        /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2286        __clear_bit(KEY_RESERVED, dev->keybit);
2287
2288        /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2289        input_cleanse_bitmasks(dev);
2290
2291        packet_size = input_estimate_events_per_packet(dev);
2292        if (dev->hint_events_per_packet < packet_size)
2293                dev->hint_events_per_packet = packet_size;
2294
2295        dev->max_vals = dev->hint_events_per_packet + 2;
2296        dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2297        if (!dev->vals) {
2298                error = -ENOMEM;
2299                goto err_devres_free;
2300        }
2301
2302        /*
2303         * If delay and period are pre-set by the driver, then autorepeating
2304         * is handled by the driver itself and we don't do it in input.c.
2305         */
2306        if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2307                input_enable_softrepeat(dev, 250, 33);
2308
2309        if (!dev->getkeycode)
2310                dev->getkeycode = input_default_getkeycode;
2311
2312        if (!dev->setkeycode)
2313                dev->setkeycode = input_default_setkeycode;
2314
2315        if (dev->poller)
2316                input_dev_poller_finalize(dev->poller);
2317
2318        error = device_add(&dev->dev);
2319        if (error)
2320                goto err_free_vals;
2321
2322        path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2323        pr_info("%s as %s\n",
2324                dev->name ? dev->name : "Unspecified device",
2325                path ? path : "N/A");
2326        kfree(path);
2327
2328        error = mutex_lock_interruptible(&input_mutex);
2329        if (error)
2330                goto err_device_del;
2331
2332        list_add_tail(&dev->node, &input_dev_list);
2333
2334        list_for_each_entry(handler, &input_handler_list, node)
2335                input_attach_handler(dev, handler);
2336
2337        input_wakeup_procfs_readers();
2338
2339        mutex_unlock(&input_mutex);
2340
2341        if (dev->devres_managed) {
2342                dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2343                        __func__, dev_name(&dev->dev));
2344                devres_add(dev->dev.parent, devres);
2345        }
2346        return 0;
2347
2348err_device_del:
2349        device_del(&dev->dev);
2350err_free_vals:
2351        kfree(dev->vals);
2352        dev->vals = NULL;
2353err_devres_free:
2354        devres_free(devres);
2355        return error;
2356}
2357EXPORT_SYMBOL(input_register_device);
2358
2359/**
2360 * input_unregister_device - unregister previously registered device
2361 * @dev: device to be unregistered
2362 *
2363 * This function unregisters an input device. Once device is unregistered
2364 * the caller should not try to access it as it may get freed at any moment.
2365 */
2366void input_unregister_device(struct input_dev *dev)
2367{
2368        if (dev->devres_managed) {
2369                WARN_ON(devres_destroy(dev->dev.parent,
2370                                        devm_input_device_unregister,
2371                                        devm_input_device_match,
2372                                        dev));
2373                __input_unregister_device(dev);
2374                /*
2375                 * We do not do input_put_device() here because it will be done
2376                 * when 2nd devres fires up.
2377                 */
2378        } else {
2379                __input_unregister_device(dev);
2380                input_put_device(dev);
2381        }
2382}
2383EXPORT_SYMBOL(input_unregister_device);
2384
2385/**
2386 * input_register_handler - register a new input handler
2387 * @handler: handler to be registered
2388 *
2389 * This function registers a new input handler (interface) for input
2390 * devices in the system and attaches it to all input devices that
2391 * are compatible with the handler.
2392 */
2393int input_register_handler(struct input_handler *handler)
2394{
2395        struct input_dev *dev;
2396        int error;
2397
2398        error = mutex_lock_interruptible(&input_mutex);
2399        if (error)
2400                return error;
2401
2402        INIT_LIST_HEAD(&handler->h_list);
2403
2404        list_add_tail(&handler->node, &input_handler_list);
2405
2406        list_for_each_entry(dev, &input_dev_list, node)
2407                input_attach_handler(dev, handler);
2408
2409        input_wakeup_procfs_readers();
2410
2411        mutex_unlock(&input_mutex);
2412        return 0;
2413}
2414EXPORT_SYMBOL(input_register_handler);
2415
2416/**
2417 * input_unregister_handler - unregisters an input handler
2418 * @handler: handler to be unregistered
2419 *
2420 * This function disconnects a handler from its input devices and
2421 * removes it from lists of known handlers.
2422 */
2423void input_unregister_handler(struct input_handler *handler)
2424{
2425        struct input_handle *handle, *next;
2426
2427        mutex_lock(&input_mutex);
2428
2429        list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2430                handler->disconnect(handle);
2431        WARN_ON(!list_empty(&handler->h_list));
2432
2433        list_del_init(&handler->node);
2434
2435        input_wakeup_procfs_readers();
2436
2437        mutex_unlock(&input_mutex);
2438}
2439EXPORT_SYMBOL(input_unregister_handler);
2440
2441/**
2442 * input_handler_for_each_handle - handle iterator
2443 * @handler: input handler to iterate
2444 * @data: data for the callback
2445 * @fn: function to be called for each handle
2446 *
2447 * Iterate over @bus's list of devices, and call @fn for each, passing
2448 * it @data and stop when @fn returns a non-zero value. The function is
2449 * using RCU to traverse the list and therefore may be using in atomic
2450 * contexts. The @fn callback is invoked from RCU critical section and
2451 * thus must not sleep.
2452 */
2453int input_handler_for_each_handle(struct input_handler *handler, void *data,
2454                                  int (*fn)(struct input_handle *, void *))
2455{
2456        struct input_handle *handle;
2457        int retval = 0;
2458
2459        rcu_read_lock();
2460
2461        list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2462                retval = fn(handle, data);
2463                if (retval)
2464                        break;
2465        }
2466
2467        rcu_read_unlock();
2468
2469        return retval;
2470}
2471EXPORT_SYMBOL(input_handler_for_each_handle);
2472
2473/**
2474 * input_register_handle - register a new input handle
2475 * @handle: handle to register
2476 *
2477 * This function puts a new input handle onto device's
2478 * and handler's lists so that events can flow through
2479 * it once it is opened using input_open_device().
2480 *
2481 * This function is supposed to be called from handler's
2482 * connect() method.
2483 */
2484int input_register_handle(struct input_handle *handle)
2485{
2486        struct input_handler *handler = handle->handler;
2487        struct input_dev *dev = handle->dev;
2488        int error;
2489
2490        /*
2491         * We take dev->mutex here to prevent race with
2492         * input_release_device().
2493         */
2494        error = mutex_lock_interruptible(&dev->mutex);
2495        if (error)
2496                return error;
2497
2498        /*
2499         * Filters go to the head of the list, normal handlers
2500         * to the tail.
2501         */
2502        if (handler->filter)
2503                list_add_rcu(&handle->d_node, &dev->h_list);
2504        else
2505                list_add_tail_rcu(&handle->d_node, &dev->h_list);
2506
2507        mutex_unlock(&dev->mutex);
2508
2509        /*
2510         * Since we are supposed to be called from ->connect()
2511         * which is mutually exclusive with ->disconnect()
2512         * we can't be racing with input_unregister_handle()
2513         * and so separate lock is not needed here.
2514         */
2515        list_add_tail_rcu(&handle->h_node, &handler->h_list);
2516
2517        if (handler->start)
2518                handler->start(handle);
2519
2520        return 0;
2521}
2522EXPORT_SYMBOL(input_register_handle);
2523
2524/**
2525 * input_unregister_handle - unregister an input handle
2526 * @handle: handle to unregister
2527 *
2528 * This function removes input handle from device's
2529 * and handler's lists.
2530 *
2531 * This function is supposed to be called from handler's
2532 * disconnect() method.
2533 */
2534void input_unregister_handle(struct input_handle *handle)
2535{
2536        struct input_dev *dev = handle->dev;
2537
2538        list_del_rcu(&handle->h_node);
2539
2540        /*
2541         * Take dev->mutex to prevent race with input_release_device().
2542         */
2543        mutex_lock(&dev->mutex);
2544        list_del_rcu(&handle->d_node);
2545        mutex_unlock(&dev->mutex);
2546
2547        synchronize_rcu();
2548}
2549EXPORT_SYMBOL(input_unregister_handle);
2550
2551/**
2552 * input_get_new_minor - allocates a new input minor number
2553 * @legacy_base: beginning or the legacy range to be searched
2554 * @legacy_num: size of legacy range
2555 * @allow_dynamic: whether we can also take ID from the dynamic range
2556 *
2557 * This function allocates a new device minor for from input major namespace.
2558 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2559 * parameters and whether ID can be allocated from dynamic range if there are
2560 * no free IDs in legacy range.
2561 */
2562int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2563                        bool allow_dynamic)
2564{
2565        /*
2566         * This function should be called from input handler's ->connect()
2567         * methods, which are serialized with input_mutex, so no additional
2568         * locking is needed here.
2569         */
2570        if (legacy_base >= 0) {
2571                int minor = ida_simple_get(&input_ida,
2572                                           legacy_base,
2573                                           legacy_base + legacy_num,
2574                                           GFP_KERNEL);
2575                if (minor >= 0 || !allow_dynamic)
2576                        return minor;
2577        }
2578
2579        return ida_simple_get(&input_ida,
2580                              INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2581                              GFP_KERNEL);
2582}
2583EXPORT_SYMBOL(input_get_new_minor);
2584
2585/**
2586 * input_free_minor - release previously allocated minor
2587 * @minor: minor to be released
2588 *
2589 * This function releases previously allocated input minor so that it can be
2590 * reused later.
2591 */
2592void input_free_minor(unsigned int minor)
2593{
2594        ida_simple_remove(&input_ida, minor);
2595}
2596EXPORT_SYMBOL(input_free_minor);
2597
2598static int __init input_init(void)
2599{
2600        int err;
2601
2602        err = class_register(&input_class);
2603        if (err) {
2604                pr_err("unable to register input_dev class\n");
2605                return err;
2606        }
2607
2608        err = input_proc_init();
2609        if (err)
2610                goto fail1;
2611
2612        err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2613                                     INPUT_MAX_CHAR_DEVICES, "input");
2614        if (err) {
2615                pr_err("unable to register char major %d", INPUT_MAJOR);
2616                goto fail2;
2617        }
2618
2619        return 0;
2620
2621 fail2: input_proc_exit();
2622 fail1: class_unregister(&input_class);
2623        return err;
2624}
2625
2626static void __exit input_exit(void)
2627{
2628        input_proc_exit();
2629        unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2630                                 INPUT_MAX_CHAR_DEVICES);
2631        class_unregister(&input_class);
2632}
2633
2634subsys_initcall(input_init);
2635module_exit(input_exit);
2636