linux/drivers/interconnect/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Interconnect framework core driver
   4 *
   5 * Copyright (c) 2017-2019, Linaro Ltd.
   6 * Author: Georgi Djakov <georgi.djakov@linaro.org>
   7 */
   8
   9#include <linux/debugfs.h>
  10#include <linux/device.h>
  11#include <linux/idr.h>
  12#include <linux/init.h>
  13#include <linux/interconnect.h>
  14#include <linux/interconnect-provider.h>
  15#include <linux/list.h>
  16#include <linux/module.h>
  17#include <linux/mutex.h>
  18#include <linux/slab.h>
  19#include <linux/of.h>
  20#include <linux/overflow.h>
  21
  22#include "internal.h"
  23
  24#define CREATE_TRACE_POINTS
  25#include "trace.h"
  26
  27static DEFINE_IDR(icc_idr);
  28static LIST_HEAD(icc_providers);
  29static int providers_count;
  30static bool synced_state;
  31static DEFINE_MUTEX(icc_lock);
  32static struct dentry *icc_debugfs_dir;
  33
  34static void icc_summary_show_one(struct seq_file *s, struct icc_node *n)
  35{
  36        if (!n)
  37                return;
  38
  39        seq_printf(s, "%-42s %12u %12u\n",
  40                   n->name, n->avg_bw, n->peak_bw);
  41}
  42
  43static int icc_summary_show(struct seq_file *s, void *data)
  44{
  45        struct icc_provider *provider;
  46
  47        seq_puts(s, " node                                  tag          avg         peak\n");
  48        seq_puts(s, "--------------------------------------------------------------------\n");
  49
  50        mutex_lock(&icc_lock);
  51
  52        list_for_each_entry(provider, &icc_providers, provider_list) {
  53                struct icc_node *n;
  54
  55                list_for_each_entry(n, &provider->nodes, node_list) {
  56                        struct icc_req *r;
  57
  58                        icc_summary_show_one(s, n);
  59                        hlist_for_each_entry(r, &n->req_list, req_node) {
  60                                u32 avg_bw = 0, peak_bw = 0;
  61
  62                                if (!r->dev)
  63                                        continue;
  64
  65                                if (r->enabled) {
  66                                        avg_bw = r->avg_bw;
  67                                        peak_bw = r->peak_bw;
  68                                }
  69
  70                                seq_printf(s, "  %-27s %12u %12u %12u\n",
  71                                           dev_name(r->dev), r->tag, avg_bw, peak_bw);
  72                        }
  73                }
  74        }
  75
  76        mutex_unlock(&icc_lock);
  77
  78        return 0;
  79}
  80DEFINE_SHOW_ATTRIBUTE(icc_summary);
  81
  82static void icc_graph_show_link(struct seq_file *s, int level,
  83                                struct icc_node *n, struct icc_node *m)
  84{
  85        seq_printf(s, "%s\"%d:%s\" -> \"%d:%s\"\n",
  86                   level == 2 ? "\t\t" : "\t",
  87                   n->id, n->name, m->id, m->name);
  88}
  89
  90static void icc_graph_show_node(struct seq_file *s, struct icc_node *n)
  91{
  92        seq_printf(s, "\t\t\"%d:%s\" [label=\"%d:%s",
  93                   n->id, n->name, n->id, n->name);
  94        seq_printf(s, "\n\t\t\t|avg_bw=%ukBps", n->avg_bw);
  95        seq_printf(s, "\n\t\t\t|peak_bw=%ukBps", n->peak_bw);
  96        seq_puts(s, "\"]\n");
  97}
  98
  99static int icc_graph_show(struct seq_file *s, void *data)
 100{
 101        struct icc_provider *provider;
 102        struct icc_node *n;
 103        int cluster_index = 0;
 104        int i;
 105
 106        seq_puts(s, "digraph {\n\trankdir = LR\n\tnode [shape = record]\n");
 107        mutex_lock(&icc_lock);
 108
 109        /* draw providers as cluster subgraphs */
 110        cluster_index = 0;
 111        list_for_each_entry(provider, &icc_providers, provider_list) {
 112                seq_printf(s, "\tsubgraph cluster_%d {\n", ++cluster_index);
 113                if (provider->dev)
 114                        seq_printf(s, "\t\tlabel = \"%s\"\n",
 115                                   dev_name(provider->dev));
 116
 117                /* draw nodes */
 118                list_for_each_entry(n, &provider->nodes, node_list)
 119                        icc_graph_show_node(s, n);
 120
 121                /* draw internal links */
 122                list_for_each_entry(n, &provider->nodes, node_list)
 123                        for (i = 0; i < n->num_links; ++i)
 124                                if (n->provider == n->links[i]->provider)
 125                                        icc_graph_show_link(s, 2, n,
 126                                                            n->links[i]);
 127
 128                seq_puts(s, "\t}\n");
 129        }
 130
 131        /* draw external links */
 132        list_for_each_entry(provider, &icc_providers, provider_list)
 133                list_for_each_entry(n, &provider->nodes, node_list)
 134                        for (i = 0; i < n->num_links; ++i)
 135                                if (n->provider != n->links[i]->provider)
 136                                        icc_graph_show_link(s, 1, n,
 137                                                            n->links[i]);
 138
 139        mutex_unlock(&icc_lock);
 140        seq_puts(s, "}");
 141
 142        return 0;
 143}
 144DEFINE_SHOW_ATTRIBUTE(icc_graph);
 145
 146static struct icc_node *node_find(const int id)
 147{
 148        return idr_find(&icc_idr, id);
 149}
 150
 151static struct icc_path *path_init(struct device *dev, struct icc_node *dst,
 152                                  ssize_t num_nodes)
 153{
 154        struct icc_node *node = dst;
 155        struct icc_path *path;
 156        int i;
 157
 158        path = kzalloc(struct_size(path, reqs, num_nodes), GFP_KERNEL);
 159        if (!path)
 160                return ERR_PTR(-ENOMEM);
 161
 162        path->num_nodes = num_nodes;
 163
 164        for (i = num_nodes - 1; i >= 0; i--) {
 165                node->provider->users++;
 166                hlist_add_head(&path->reqs[i].req_node, &node->req_list);
 167                path->reqs[i].node = node;
 168                path->reqs[i].dev = dev;
 169                path->reqs[i].enabled = true;
 170                /* reference to previous node was saved during path traversal */
 171                node = node->reverse;
 172        }
 173
 174        return path;
 175}
 176
 177static struct icc_path *path_find(struct device *dev, struct icc_node *src,
 178                                  struct icc_node *dst)
 179{
 180        struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
 181        struct icc_node *n, *node = NULL;
 182        struct list_head traverse_list;
 183        struct list_head edge_list;
 184        struct list_head visited_list;
 185        size_t i, depth = 1;
 186        bool found = false;
 187
 188        INIT_LIST_HEAD(&traverse_list);
 189        INIT_LIST_HEAD(&edge_list);
 190        INIT_LIST_HEAD(&visited_list);
 191
 192        list_add(&src->search_list, &traverse_list);
 193        src->reverse = NULL;
 194
 195        do {
 196                list_for_each_entry_safe(node, n, &traverse_list, search_list) {
 197                        if (node == dst) {
 198                                found = true;
 199                                list_splice_init(&edge_list, &visited_list);
 200                                list_splice_init(&traverse_list, &visited_list);
 201                                break;
 202                        }
 203                        for (i = 0; i < node->num_links; i++) {
 204                                struct icc_node *tmp = node->links[i];
 205
 206                                if (!tmp) {
 207                                        path = ERR_PTR(-ENOENT);
 208                                        goto out;
 209                                }
 210
 211                                if (tmp->is_traversed)
 212                                        continue;
 213
 214                                tmp->is_traversed = true;
 215                                tmp->reverse = node;
 216                                list_add_tail(&tmp->search_list, &edge_list);
 217                        }
 218                }
 219
 220                if (found)
 221                        break;
 222
 223                list_splice_init(&traverse_list, &visited_list);
 224                list_splice_init(&edge_list, &traverse_list);
 225
 226                /* count the hops including the source */
 227                depth++;
 228
 229        } while (!list_empty(&traverse_list));
 230
 231out:
 232
 233        /* reset the traversed state */
 234        list_for_each_entry_reverse(n, &visited_list, search_list)
 235                n->is_traversed = false;
 236
 237        if (found)
 238                path = path_init(dev, dst, depth);
 239
 240        return path;
 241}
 242
 243/*
 244 * We want the path to honor all bandwidth requests, so the average and peak
 245 * bandwidth requirements from each consumer are aggregated at each node.
 246 * The aggregation is platform specific, so each platform can customize it by
 247 * implementing its own aggregate() function.
 248 */
 249
 250static int aggregate_requests(struct icc_node *node)
 251{
 252        struct icc_provider *p = node->provider;
 253        struct icc_req *r;
 254        u32 avg_bw, peak_bw;
 255
 256        node->avg_bw = 0;
 257        node->peak_bw = 0;
 258
 259        if (p->pre_aggregate)
 260                p->pre_aggregate(node);
 261
 262        hlist_for_each_entry(r, &node->req_list, req_node) {
 263                if (r->enabled) {
 264                        avg_bw = r->avg_bw;
 265                        peak_bw = r->peak_bw;
 266                } else {
 267                        avg_bw = 0;
 268                        peak_bw = 0;
 269                }
 270                p->aggregate(node, r->tag, avg_bw, peak_bw,
 271                             &node->avg_bw, &node->peak_bw);
 272
 273                /* during boot use the initial bandwidth as a floor value */
 274                if (!synced_state) {
 275                        node->avg_bw = max(node->avg_bw, node->init_avg);
 276                        node->peak_bw = max(node->peak_bw, node->init_peak);
 277                }
 278        }
 279
 280        return 0;
 281}
 282
 283static int apply_constraints(struct icc_path *path)
 284{
 285        struct icc_node *next, *prev = NULL;
 286        struct icc_provider *p;
 287        int ret = -EINVAL;
 288        int i;
 289
 290        for (i = 0; i < path->num_nodes; i++) {
 291                next = path->reqs[i].node;
 292                p = next->provider;
 293
 294                /* both endpoints should be valid master-slave pairs */
 295                if (!prev || (p != prev->provider && !p->inter_set)) {
 296                        prev = next;
 297                        continue;
 298                }
 299
 300                /* set the constraints */
 301                ret = p->set(prev, next);
 302                if (ret)
 303                        goto out;
 304
 305                prev = next;
 306        }
 307out:
 308        return ret;
 309}
 310
 311int icc_std_aggregate(struct icc_node *node, u32 tag, u32 avg_bw,
 312                      u32 peak_bw, u32 *agg_avg, u32 *agg_peak)
 313{
 314        *agg_avg += avg_bw;
 315        *agg_peak = max(*agg_peak, peak_bw);
 316
 317        return 0;
 318}
 319EXPORT_SYMBOL_GPL(icc_std_aggregate);
 320
 321/* of_icc_xlate_onecell() - Translate function using a single index.
 322 * @spec: OF phandle args to map into an interconnect node.
 323 * @data: private data (pointer to struct icc_onecell_data)
 324 *
 325 * This is a generic translate function that can be used to model simple
 326 * interconnect providers that have one device tree node and provide
 327 * multiple interconnect nodes. A single cell is used as an index into
 328 * an array of icc nodes specified in the icc_onecell_data struct when
 329 * registering the provider.
 330 */
 331struct icc_node *of_icc_xlate_onecell(struct of_phandle_args *spec,
 332                                      void *data)
 333{
 334        struct icc_onecell_data *icc_data = data;
 335        unsigned int idx = spec->args[0];
 336
 337        if (idx >= icc_data->num_nodes) {
 338                pr_err("%s: invalid index %u\n", __func__, idx);
 339                return ERR_PTR(-EINVAL);
 340        }
 341
 342        return icc_data->nodes[idx];
 343}
 344EXPORT_SYMBOL_GPL(of_icc_xlate_onecell);
 345
 346/**
 347 * of_icc_get_from_provider() - Look-up interconnect node
 348 * @spec: OF phandle args to use for look-up
 349 *
 350 * Looks for interconnect provider under the node specified by @spec and if
 351 * found, uses xlate function of the provider to map phandle args to node.
 352 *
 353 * Returns a valid pointer to struct icc_node_data on success or ERR_PTR()
 354 * on failure.
 355 */
 356struct icc_node_data *of_icc_get_from_provider(struct of_phandle_args *spec)
 357{
 358        struct icc_node *node = ERR_PTR(-EPROBE_DEFER);
 359        struct icc_node_data *data = NULL;
 360        struct icc_provider *provider;
 361
 362        if (!spec)
 363                return ERR_PTR(-EINVAL);
 364
 365        mutex_lock(&icc_lock);
 366        list_for_each_entry(provider, &icc_providers, provider_list) {
 367                if (provider->dev->of_node == spec->np) {
 368                        if (provider->xlate_extended) {
 369                                data = provider->xlate_extended(spec, provider->data);
 370                                if (!IS_ERR(data)) {
 371                                        node = data->node;
 372                                        break;
 373                                }
 374                        } else {
 375                                node = provider->xlate(spec, provider->data);
 376                                if (!IS_ERR(node))
 377                                        break;
 378                        }
 379                }
 380        }
 381        mutex_unlock(&icc_lock);
 382
 383        if (IS_ERR(node))
 384                return ERR_CAST(node);
 385
 386        if (!data) {
 387                data = kzalloc(sizeof(*data), GFP_KERNEL);
 388                if (!data)
 389                        return ERR_PTR(-ENOMEM);
 390                data->node = node;
 391        }
 392
 393        return data;
 394}
 395EXPORT_SYMBOL_GPL(of_icc_get_from_provider);
 396
 397static void devm_icc_release(struct device *dev, void *res)
 398{
 399        icc_put(*(struct icc_path **)res);
 400}
 401
 402struct icc_path *devm_of_icc_get(struct device *dev, const char *name)
 403{
 404        struct icc_path **ptr, *path;
 405
 406        ptr = devres_alloc(devm_icc_release, sizeof(*ptr), GFP_KERNEL);
 407        if (!ptr)
 408                return ERR_PTR(-ENOMEM);
 409
 410        path = of_icc_get(dev, name);
 411        if (!IS_ERR(path)) {
 412                *ptr = path;
 413                devres_add(dev, ptr);
 414        } else {
 415                devres_free(ptr);
 416        }
 417
 418        return path;
 419}
 420EXPORT_SYMBOL_GPL(devm_of_icc_get);
 421
 422/**
 423 * of_icc_get_by_index() - get a path handle from a DT node based on index
 424 * @dev: device pointer for the consumer device
 425 * @idx: interconnect path index
 426 *
 427 * This function will search for a path between two endpoints and return an
 428 * icc_path handle on success. Use icc_put() to release constraints when they
 429 * are not needed anymore.
 430 * If the interconnect API is disabled, NULL is returned and the consumer
 431 * drivers will still build. Drivers are free to handle this specifically,
 432 * but they don't have to.
 433 *
 434 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
 435 * when the API is disabled or the "interconnects" DT property is missing.
 436 */
 437struct icc_path *of_icc_get_by_index(struct device *dev, int idx)
 438{
 439        struct icc_path *path;
 440        struct icc_node_data *src_data, *dst_data;
 441        struct device_node *np;
 442        struct of_phandle_args src_args, dst_args;
 443        int ret;
 444
 445        if (!dev || !dev->of_node)
 446                return ERR_PTR(-ENODEV);
 447
 448        np = dev->of_node;
 449
 450        /*
 451         * When the consumer DT node do not have "interconnects" property
 452         * return a NULL path to skip setting constraints.
 453         */
 454        if (!of_find_property(np, "interconnects", NULL))
 455                return NULL;
 456
 457        /*
 458         * We use a combination of phandle and specifier for endpoint. For now
 459         * lets support only global ids and extend this in the future if needed
 460         * without breaking DT compatibility.
 461         */
 462        ret = of_parse_phandle_with_args(np, "interconnects",
 463                                         "#interconnect-cells", idx * 2,
 464                                         &src_args);
 465        if (ret)
 466                return ERR_PTR(ret);
 467
 468        of_node_put(src_args.np);
 469
 470        ret = of_parse_phandle_with_args(np, "interconnects",
 471                                         "#interconnect-cells", idx * 2 + 1,
 472                                         &dst_args);
 473        if (ret)
 474                return ERR_PTR(ret);
 475
 476        of_node_put(dst_args.np);
 477
 478        src_data = of_icc_get_from_provider(&src_args);
 479
 480        if (IS_ERR(src_data)) {
 481                dev_err_probe(dev, PTR_ERR(src_data), "error finding src node\n");
 482                return ERR_CAST(src_data);
 483        }
 484
 485        dst_data = of_icc_get_from_provider(&dst_args);
 486
 487        if (IS_ERR(dst_data)) {
 488                dev_err_probe(dev, PTR_ERR(dst_data), "error finding dst node\n");
 489                kfree(src_data);
 490                return ERR_CAST(dst_data);
 491        }
 492
 493        mutex_lock(&icc_lock);
 494        path = path_find(dev, src_data->node, dst_data->node);
 495        mutex_unlock(&icc_lock);
 496        if (IS_ERR(path)) {
 497                dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
 498                goto free_icc_data;
 499        }
 500
 501        if (src_data->tag && src_data->tag == dst_data->tag)
 502                icc_set_tag(path, src_data->tag);
 503
 504        path->name = kasprintf(GFP_KERNEL, "%s-%s",
 505                               src_data->node->name, dst_data->node->name);
 506        if (!path->name) {
 507                kfree(path);
 508                path = ERR_PTR(-ENOMEM);
 509        }
 510
 511free_icc_data:
 512        kfree(src_data);
 513        kfree(dst_data);
 514        return path;
 515}
 516EXPORT_SYMBOL_GPL(of_icc_get_by_index);
 517
 518/**
 519 * of_icc_get() - get a path handle from a DT node based on name
 520 * @dev: device pointer for the consumer device
 521 * @name: interconnect path name
 522 *
 523 * This function will search for a path between two endpoints and return an
 524 * icc_path handle on success. Use icc_put() to release constraints when they
 525 * are not needed anymore.
 526 * If the interconnect API is disabled, NULL is returned and the consumer
 527 * drivers will still build. Drivers are free to handle this specifically,
 528 * but they don't have to.
 529 *
 530 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
 531 * when the API is disabled or the "interconnects" DT property is missing.
 532 */
 533struct icc_path *of_icc_get(struct device *dev, const char *name)
 534{
 535        struct device_node *np;
 536        int idx = 0;
 537
 538        if (!dev || !dev->of_node)
 539                return ERR_PTR(-ENODEV);
 540
 541        np = dev->of_node;
 542
 543        /*
 544         * When the consumer DT node do not have "interconnects" property
 545         * return a NULL path to skip setting constraints.
 546         */
 547        if (!of_find_property(np, "interconnects", NULL))
 548                return NULL;
 549
 550        /*
 551         * We use a combination of phandle and specifier for endpoint. For now
 552         * lets support only global ids and extend this in the future if needed
 553         * without breaking DT compatibility.
 554         */
 555        if (name) {
 556                idx = of_property_match_string(np, "interconnect-names", name);
 557                if (idx < 0)
 558                        return ERR_PTR(idx);
 559        }
 560
 561        return of_icc_get_by_index(dev, idx);
 562}
 563EXPORT_SYMBOL_GPL(of_icc_get);
 564
 565/**
 566 * icc_set_tag() - set an optional tag on a path
 567 * @path: the path we want to tag
 568 * @tag: the tag value
 569 *
 570 * This function allows consumers to append a tag to the requests associated
 571 * with a path, so that a different aggregation could be done based on this tag.
 572 */
 573void icc_set_tag(struct icc_path *path, u32 tag)
 574{
 575        int i;
 576
 577        if (!path)
 578                return;
 579
 580        mutex_lock(&icc_lock);
 581
 582        for (i = 0; i < path->num_nodes; i++)
 583                path->reqs[i].tag = tag;
 584
 585        mutex_unlock(&icc_lock);
 586}
 587EXPORT_SYMBOL_GPL(icc_set_tag);
 588
 589/**
 590 * icc_get_name() - Get name of the icc path
 591 * @path: reference to the path returned by icc_get()
 592 *
 593 * This function is used by an interconnect consumer to get the name of the icc
 594 * path.
 595 *
 596 * Returns a valid pointer on success, or NULL otherwise.
 597 */
 598const char *icc_get_name(struct icc_path *path)
 599{
 600        if (!path)
 601                return NULL;
 602
 603        return path->name;
 604}
 605EXPORT_SYMBOL_GPL(icc_get_name);
 606
 607/**
 608 * icc_set_bw() - set bandwidth constraints on an interconnect path
 609 * @path: reference to the path returned by icc_get()
 610 * @avg_bw: average bandwidth in kilobytes per second
 611 * @peak_bw: peak bandwidth in kilobytes per second
 612 *
 613 * This function is used by an interconnect consumer to express its own needs
 614 * in terms of bandwidth for a previously requested path between two endpoints.
 615 * The requests are aggregated and each node is updated accordingly. The entire
 616 * path is locked by a mutex to ensure that the set() is completed.
 617 * The @path can be NULL when the "interconnects" DT properties is missing,
 618 * which will mean that no constraints will be set.
 619 *
 620 * Returns 0 on success, or an appropriate error code otherwise.
 621 */
 622int icc_set_bw(struct icc_path *path, u32 avg_bw, u32 peak_bw)
 623{
 624        struct icc_node *node;
 625        u32 old_avg, old_peak;
 626        size_t i;
 627        int ret;
 628
 629        if (!path)
 630                return 0;
 631
 632        if (WARN_ON(IS_ERR(path) || !path->num_nodes))
 633                return -EINVAL;
 634
 635        mutex_lock(&icc_lock);
 636
 637        old_avg = path->reqs[0].avg_bw;
 638        old_peak = path->reqs[0].peak_bw;
 639
 640        for (i = 0; i < path->num_nodes; i++) {
 641                node = path->reqs[i].node;
 642
 643                /* update the consumer request for this path */
 644                path->reqs[i].avg_bw = avg_bw;
 645                path->reqs[i].peak_bw = peak_bw;
 646
 647                /* aggregate requests for this node */
 648                aggregate_requests(node);
 649
 650                trace_icc_set_bw(path, node, i, avg_bw, peak_bw);
 651        }
 652
 653        ret = apply_constraints(path);
 654        if (ret) {
 655                pr_debug("interconnect: error applying constraints (%d)\n",
 656                         ret);
 657
 658                for (i = 0; i < path->num_nodes; i++) {
 659                        node = path->reqs[i].node;
 660                        path->reqs[i].avg_bw = old_avg;
 661                        path->reqs[i].peak_bw = old_peak;
 662                        aggregate_requests(node);
 663                }
 664                apply_constraints(path);
 665        }
 666
 667        mutex_unlock(&icc_lock);
 668
 669        trace_icc_set_bw_end(path, ret);
 670
 671        return ret;
 672}
 673EXPORT_SYMBOL_GPL(icc_set_bw);
 674
 675static int __icc_enable(struct icc_path *path, bool enable)
 676{
 677        int i;
 678
 679        if (!path)
 680                return 0;
 681
 682        if (WARN_ON(IS_ERR(path) || !path->num_nodes))
 683                return -EINVAL;
 684
 685        mutex_lock(&icc_lock);
 686
 687        for (i = 0; i < path->num_nodes; i++)
 688                path->reqs[i].enabled = enable;
 689
 690        mutex_unlock(&icc_lock);
 691
 692        return icc_set_bw(path, path->reqs[0].avg_bw,
 693                          path->reqs[0].peak_bw);
 694}
 695
 696int icc_enable(struct icc_path *path)
 697{
 698        return __icc_enable(path, true);
 699}
 700EXPORT_SYMBOL_GPL(icc_enable);
 701
 702int icc_disable(struct icc_path *path)
 703{
 704        return __icc_enable(path, false);
 705}
 706EXPORT_SYMBOL_GPL(icc_disable);
 707
 708/**
 709 * icc_get() - return a handle for path between two endpoints
 710 * @dev: the device requesting the path
 711 * @src_id: source device port id
 712 * @dst_id: destination device port id
 713 *
 714 * This function will search for a path between two endpoints and return an
 715 * icc_path handle on success. Use icc_put() to release
 716 * constraints when they are not needed anymore.
 717 * If the interconnect API is disabled, NULL is returned and the consumer
 718 * drivers will still build. Drivers are free to handle this specifically,
 719 * but they don't have to.
 720 *
 721 * Return: icc_path pointer on success, ERR_PTR() on error or NULL if the
 722 * interconnect API is disabled.
 723 */
 724struct icc_path *icc_get(struct device *dev, const int src_id, const int dst_id)
 725{
 726        struct icc_node *src, *dst;
 727        struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
 728
 729        mutex_lock(&icc_lock);
 730
 731        src = node_find(src_id);
 732        if (!src)
 733                goto out;
 734
 735        dst = node_find(dst_id);
 736        if (!dst)
 737                goto out;
 738
 739        path = path_find(dev, src, dst);
 740        if (IS_ERR(path)) {
 741                dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
 742                goto out;
 743        }
 744
 745        path->name = kasprintf(GFP_KERNEL, "%s-%s", src->name, dst->name);
 746        if (!path->name) {
 747                kfree(path);
 748                path = ERR_PTR(-ENOMEM);
 749        }
 750out:
 751        mutex_unlock(&icc_lock);
 752        return path;
 753}
 754EXPORT_SYMBOL_GPL(icc_get);
 755
 756/**
 757 * icc_put() - release the reference to the icc_path
 758 * @path: interconnect path
 759 *
 760 * Use this function to release the constraints on a path when the path is
 761 * no longer needed. The constraints will be re-aggregated.
 762 */
 763void icc_put(struct icc_path *path)
 764{
 765        struct icc_node *node;
 766        size_t i;
 767        int ret;
 768
 769        if (!path || WARN_ON(IS_ERR(path)))
 770                return;
 771
 772        ret = icc_set_bw(path, 0, 0);
 773        if (ret)
 774                pr_err("%s: error (%d)\n", __func__, ret);
 775
 776        mutex_lock(&icc_lock);
 777        for (i = 0; i < path->num_nodes; i++) {
 778                node = path->reqs[i].node;
 779                hlist_del(&path->reqs[i].req_node);
 780                if (!WARN_ON(!node->provider->users))
 781                        node->provider->users--;
 782        }
 783        mutex_unlock(&icc_lock);
 784
 785        kfree_const(path->name);
 786        kfree(path);
 787}
 788EXPORT_SYMBOL_GPL(icc_put);
 789
 790static struct icc_node *icc_node_create_nolock(int id)
 791{
 792        struct icc_node *node;
 793
 794        /* check if node already exists */
 795        node = node_find(id);
 796        if (node)
 797                return node;
 798
 799        node = kzalloc(sizeof(*node), GFP_KERNEL);
 800        if (!node)
 801                return ERR_PTR(-ENOMEM);
 802
 803        id = idr_alloc(&icc_idr, node, id, id + 1, GFP_KERNEL);
 804        if (id < 0) {
 805                WARN(1, "%s: couldn't get idr\n", __func__);
 806                kfree(node);
 807                return ERR_PTR(id);
 808        }
 809
 810        node->id = id;
 811
 812        return node;
 813}
 814
 815/**
 816 * icc_node_create() - create a node
 817 * @id: node id
 818 *
 819 * Return: icc_node pointer on success, or ERR_PTR() on error
 820 */
 821struct icc_node *icc_node_create(int id)
 822{
 823        struct icc_node *node;
 824
 825        mutex_lock(&icc_lock);
 826
 827        node = icc_node_create_nolock(id);
 828
 829        mutex_unlock(&icc_lock);
 830
 831        return node;
 832}
 833EXPORT_SYMBOL_GPL(icc_node_create);
 834
 835/**
 836 * icc_node_destroy() - destroy a node
 837 * @id: node id
 838 */
 839void icc_node_destroy(int id)
 840{
 841        struct icc_node *node;
 842
 843        mutex_lock(&icc_lock);
 844
 845        node = node_find(id);
 846        if (node) {
 847                idr_remove(&icc_idr, node->id);
 848                WARN_ON(!hlist_empty(&node->req_list));
 849        }
 850
 851        mutex_unlock(&icc_lock);
 852
 853        kfree(node);
 854}
 855EXPORT_SYMBOL_GPL(icc_node_destroy);
 856
 857/**
 858 * icc_link_create() - create a link between two nodes
 859 * @node: source node id
 860 * @dst_id: destination node id
 861 *
 862 * Create a link between two nodes. The nodes might belong to different
 863 * interconnect providers and the @dst_id node might not exist (if the
 864 * provider driver has not probed yet). So just create the @dst_id node
 865 * and when the actual provider driver is probed, the rest of the node
 866 * data is filled.
 867 *
 868 * Return: 0 on success, or an error code otherwise
 869 */
 870int icc_link_create(struct icc_node *node, const int dst_id)
 871{
 872        struct icc_node *dst;
 873        struct icc_node **new;
 874        int ret = 0;
 875
 876        if (!node->provider)
 877                return -EINVAL;
 878
 879        mutex_lock(&icc_lock);
 880
 881        dst = node_find(dst_id);
 882        if (!dst) {
 883                dst = icc_node_create_nolock(dst_id);
 884
 885                if (IS_ERR(dst)) {
 886                        ret = PTR_ERR(dst);
 887                        goto out;
 888                }
 889        }
 890
 891        new = krealloc(node->links,
 892                       (node->num_links + 1) * sizeof(*node->links),
 893                       GFP_KERNEL);
 894        if (!new) {
 895                ret = -ENOMEM;
 896                goto out;
 897        }
 898
 899        node->links = new;
 900        node->links[node->num_links++] = dst;
 901
 902out:
 903        mutex_unlock(&icc_lock);
 904
 905        return ret;
 906}
 907EXPORT_SYMBOL_GPL(icc_link_create);
 908
 909/**
 910 * icc_link_destroy() - destroy a link between two nodes
 911 * @src: pointer to source node
 912 * @dst: pointer to destination node
 913 *
 914 * Return: 0 on success, or an error code otherwise
 915 */
 916int icc_link_destroy(struct icc_node *src, struct icc_node *dst)
 917{
 918        struct icc_node **new;
 919        size_t slot;
 920        int ret = 0;
 921
 922        if (IS_ERR_OR_NULL(src))
 923                return -EINVAL;
 924
 925        if (IS_ERR_OR_NULL(dst))
 926                return -EINVAL;
 927
 928        mutex_lock(&icc_lock);
 929
 930        for (slot = 0; slot < src->num_links; slot++)
 931                if (src->links[slot] == dst)
 932                        break;
 933
 934        if (WARN_ON(slot == src->num_links)) {
 935                ret = -ENXIO;
 936                goto out;
 937        }
 938
 939        src->links[slot] = src->links[--src->num_links];
 940
 941        new = krealloc(src->links, src->num_links * sizeof(*src->links),
 942                       GFP_KERNEL);
 943        if (new)
 944                src->links = new;
 945        else
 946                ret = -ENOMEM;
 947
 948out:
 949        mutex_unlock(&icc_lock);
 950
 951        return ret;
 952}
 953EXPORT_SYMBOL_GPL(icc_link_destroy);
 954
 955/**
 956 * icc_node_add() - add interconnect node to interconnect provider
 957 * @node: pointer to the interconnect node
 958 * @provider: pointer to the interconnect provider
 959 */
 960void icc_node_add(struct icc_node *node, struct icc_provider *provider)
 961{
 962        if (WARN_ON(node->provider))
 963                return;
 964
 965        mutex_lock(&icc_lock);
 966
 967        node->provider = provider;
 968        list_add_tail(&node->node_list, &provider->nodes);
 969
 970        /* get the initial bandwidth values and sync them with hardware */
 971        if (provider->get_bw) {
 972                provider->get_bw(node, &node->init_avg, &node->init_peak);
 973        } else {
 974                node->init_avg = INT_MAX;
 975                node->init_peak = INT_MAX;
 976        }
 977        node->avg_bw = node->init_avg;
 978        node->peak_bw = node->init_peak;
 979
 980        if (provider->pre_aggregate)
 981                provider->pre_aggregate(node);
 982
 983        if (provider->aggregate)
 984                provider->aggregate(node, 0, node->init_avg, node->init_peak,
 985                                    &node->avg_bw, &node->peak_bw);
 986
 987        provider->set(node, node);
 988        node->avg_bw = 0;
 989        node->peak_bw = 0;
 990
 991        mutex_unlock(&icc_lock);
 992}
 993EXPORT_SYMBOL_GPL(icc_node_add);
 994
 995/**
 996 * icc_node_del() - delete interconnect node from interconnect provider
 997 * @node: pointer to the interconnect node
 998 */
 999void icc_node_del(struct icc_node *node)
1000{
1001        mutex_lock(&icc_lock);
1002
1003        list_del(&node->node_list);
1004
1005        mutex_unlock(&icc_lock);
1006}
1007EXPORT_SYMBOL_GPL(icc_node_del);
1008
1009/**
1010 * icc_nodes_remove() - remove all previously added nodes from provider
1011 * @provider: the interconnect provider we are removing nodes from
1012 *
1013 * Return: 0 on success, or an error code otherwise
1014 */
1015int icc_nodes_remove(struct icc_provider *provider)
1016{
1017        struct icc_node *n, *tmp;
1018
1019        if (WARN_ON(IS_ERR_OR_NULL(provider)))
1020                return -EINVAL;
1021
1022        list_for_each_entry_safe_reverse(n, tmp, &provider->nodes, node_list) {
1023                icc_node_del(n);
1024                icc_node_destroy(n->id);
1025        }
1026
1027        return 0;
1028}
1029EXPORT_SYMBOL_GPL(icc_nodes_remove);
1030
1031/**
1032 * icc_provider_add() - add a new interconnect provider
1033 * @provider: the interconnect provider that will be added into topology
1034 *
1035 * Return: 0 on success, or an error code otherwise
1036 */
1037int icc_provider_add(struct icc_provider *provider)
1038{
1039        if (WARN_ON(!provider->set))
1040                return -EINVAL;
1041        if (WARN_ON(!provider->xlate && !provider->xlate_extended))
1042                return -EINVAL;
1043
1044        mutex_lock(&icc_lock);
1045
1046        INIT_LIST_HEAD(&provider->nodes);
1047        list_add_tail(&provider->provider_list, &icc_providers);
1048
1049        mutex_unlock(&icc_lock);
1050
1051        dev_dbg(provider->dev, "interconnect provider added to topology\n");
1052
1053        return 0;
1054}
1055EXPORT_SYMBOL_GPL(icc_provider_add);
1056
1057/**
1058 * icc_provider_del() - delete previously added interconnect provider
1059 * @provider: the interconnect provider that will be removed from topology
1060 *
1061 * Return: 0 on success, or an error code otherwise
1062 */
1063int icc_provider_del(struct icc_provider *provider)
1064{
1065        mutex_lock(&icc_lock);
1066        if (provider->users) {
1067                pr_warn("interconnect provider still has %d users\n",
1068                        provider->users);
1069                mutex_unlock(&icc_lock);
1070                return -EBUSY;
1071        }
1072
1073        if (!list_empty(&provider->nodes)) {
1074                pr_warn("interconnect provider still has nodes\n");
1075                mutex_unlock(&icc_lock);
1076                return -EBUSY;
1077        }
1078
1079        list_del(&provider->provider_list);
1080        mutex_unlock(&icc_lock);
1081
1082        return 0;
1083}
1084EXPORT_SYMBOL_GPL(icc_provider_del);
1085
1086static int of_count_icc_providers(struct device_node *np)
1087{
1088        struct device_node *child;
1089        int count = 0;
1090
1091        for_each_available_child_of_node(np, child) {
1092                if (of_property_read_bool(child, "#interconnect-cells"))
1093                        count++;
1094                count += of_count_icc_providers(child);
1095        }
1096
1097        return count;
1098}
1099
1100void icc_sync_state(struct device *dev)
1101{
1102        struct icc_provider *p;
1103        struct icc_node *n;
1104        static int count;
1105
1106        count++;
1107
1108        if (count < providers_count)
1109                return;
1110
1111        mutex_lock(&icc_lock);
1112        synced_state = true;
1113        list_for_each_entry(p, &icc_providers, provider_list) {
1114                dev_dbg(p->dev, "interconnect provider is in synced state\n");
1115                list_for_each_entry(n, &p->nodes, node_list) {
1116                        if (n->init_avg || n->init_peak) {
1117                                n->init_avg = 0;
1118                                n->init_peak = 0;
1119                                aggregate_requests(n);
1120                                p->set(n, n);
1121                        }
1122                }
1123        }
1124        mutex_unlock(&icc_lock);
1125}
1126EXPORT_SYMBOL_GPL(icc_sync_state);
1127
1128static int __init icc_init(void)
1129{
1130        struct device_node *root = of_find_node_by_path("/");
1131
1132        providers_count = of_count_icc_providers(root);
1133        of_node_put(root);
1134
1135        icc_debugfs_dir = debugfs_create_dir("interconnect", NULL);
1136        debugfs_create_file("interconnect_summary", 0444,
1137                            icc_debugfs_dir, NULL, &icc_summary_fops);
1138        debugfs_create_file("interconnect_graph", 0444,
1139                            icc_debugfs_dir, NULL, &icc_graph_fops);
1140        return 0;
1141}
1142
1143device_initcall(icc_init);
1144
1145MODULE_AUTHOR("Georgi Djakov <georgi.djakov@linaro.org>");
1146MODULE_DESCRIPTION("Interconnect Driver Core");
1147MODULE_LICENSE("GPL v2");
1148