linux/drivers/iommu/ipmmu-vmsa.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * IOMMU API for Renesas VMSA-compatible IPMMU
   4 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
   5 *
   6 * Copyright (C) 2014-2020 Renesas Electronics Corporation
   7 */
   8
   9#include <linux/bitmap.h>
  10#include <linux/delay.h>
  11#include <linux/dma-mapping.h>
  12#include <linux/err.h>
  13#include <linux/export.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/io.h>
  17#include <linux/io-pgtable.h>
  18#include <linux/iommu.h>
  19#include <linux/of.h>
  20#include <linux/of_device.h>
  21#include <linux/of_platform.h>
  22#include <linux/platform_device.h>
  23#include <linux/sizes.h>
  24#include <linux/slab.h>
  25#include <linux/sys_soc.h>
  26
  27#if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
  28#include <asm/dma-iommu.h>
  29#else
  30#define arm_iommu_create_mapping(...)   NULL
  31#define arm_iommu_attach_device(...)    -ENODEV
  32#define arm_iommu_release_mapping(...)  do {} while (0)
  33#define arm_iommu_detach_device(...)    do {} while (0)
  34#endif
  35
  36#define IPMMU_CTX_MAX           8U
  37#define IPMMU_CTX_INVALID       -1
  38
  39#define IPMMU_UTLB_MAX          48U
  40
  41struct ipmmu_features {
  42        bool use_ns_alias_offset;
  43        bool has_cache_leaf_nodes;
  44        unsigned int number_of_contexts;
  45        unsigned int num_utlbs;
  46        bool setup_imbuscr;
  47        bool twobit_imttbcr_sl0;
  48        bool reserved_context;
  49        bool cache_snoop;
  50        unsigned int ctx_offset_base;
  51        unsigned int ctx_offset_stride;
  52        unsigned int utlb_offset_base;
  53};
  54
  55struct ipmmu_vmsa_device {
  56        struct device *dev;
  57        void __iomem *base;
  58        struct iommu_device iommu;
  59        struct ipmmu_vmsa_device *root;
  60        const struct ipmmu_features *features;
  61        unsigned int num_ctx;
  62        spinlock_t lock;                        /* Protects ctx and domains[] */
  63        DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
  64        struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
  65        s8 utlb_ctx[IPMMU_UTLB_MAX];
  66
  67        struct iommu_group *group;
  68        struct dma_iommu_mapping *mapping;
  69};
  70
  71struct ipmmu_vmsa_domain {
  72        struct ipmmu_vmsa_device *mmu;
  73        struct iommu_domain io_domain;
  74
  75        struct io_pgtable_cfg cfg;
  76        struct io_pgtable_ops *iop;
  77
  78        unsigned int context_id;
  79        struct mutex mutex;                     /* Protects mappings */
  80};
  81
  82static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
  83{
  84        return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
  85}
  86
  87static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
  88{
  89        return dev_iommu_priv_get(dev);
  90}
  91
  92#define TLB_LOOP_TIMEOUT                100     /* 100us */
  93
  94/* -----------------------------------------------------------------------------
  95 * Registers Definition
  96 */
  97
  98#define IM_NS_ALIAS_OFFSET              0x800
  99
 100/* MMU "context" registers */
 101#define IMCTR                           0x0000          /* R-Car Gen2/3 */
 102#define IMCTR_INTEN                     (1 << 2)        /* R-Car Gen2/3 */
 103#define IMCTR_FLUSH                     (1 << 1)        /* R-Car Gen2/3 */
 104#define IMCTR_MMUEN                     (1 << 0)        /* R-Car Gen2/3 */
 105
 106#define IMTTBCR                         0x0008          /* R-Car Gen2/3 */
 107#define IMTTBCR_EAE                     (1 << 31)       /* R-Car Gen2/3 */
 108#define IMTTBCR_SH0_INNER_SHAREABLE     (3 << 12)       /* R-Car Gen2 only */
 109#define IMTTBCR_ORGN0_WB_WA             (1 << 10)       /* R-Car Gen2 only */
 110#define IMTTBCR_IRGN0_WB_WA             (1 << 8)        /* R-Car Gen2 only */
 111#define IMTTBCR_SL0_TWOBIT_LVL_1        (2 << 6)        /* R-Car Gen3 only */
 112#define IMTTBCR_SL0_LVL_1               (1 << 4)        /* R-Car Gen2 only */
 113
 114#define IMBUSCR                         0x000c          /* R-Car Gen2 only */
 115#define IMBUSCR_DVM                     (1 << 2)        /* R-Car Gen2 only */
 116#define IMBUSCR_BUSSEL_MASK             (3 << 0)        /* R-Car Gen2 only */
 117
 118#define IMTTLBR0                        0x0010          /* R-Car Gen2/3 */
 119#define IMTTUBR0                        0x0014          /* R-Car Gen2/3 */
 120
 121#define IMSTR                           0x0020          /* R-Car Gen2/3 */
 122#define IMSTR_MHIT                      (1 << 4)        /* R-Car Gen2/3 */
 123#define IMSTR_ABORT                     (1 << 2)        /* R-Car Gen2/3 */
 124#define IMSTR_PF                        (1 << 1)        /* R-Car Gen2/3 */
 125#define IMSTR_TF                        (1 << 0)        /* R-Car Gen2/3 */
 126
 127#define IMMAIR0                         0x0028          /* R-Car Gen2/3 */
 128
 129#define IMELAR                          0x0030          /* R-Car Gen2/3, IMEAR on R-Car Gen2 */
 130#define IMEUAR                          0x0034          /* R-Car Gen3 only */
 131
 132/* uTLB registers */
 133#define IMUCTR(n)                       ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
 134#define IMUCTR0(n)                      (0x0300 + ((n) * 16))           /* R-Car Gen2/3 */
 135#define IMUCTR32(n)                     (0x0600 + (((n) - 32) * 16))    /* R-Car Gen3 only */
 136#define IMUCTR_TTSEL_MMU(n)             ((n) << 4)      /* R-Car Gen2/3 */
 137#define IMUCTR_FLUSH                    (1 << 1)        /* R-Car Gen2/3 */
 138#define IMUCTR_MMUEN                    (1 << 0)        /* R-Car Gen2/3 */
 139
 140#define IMUASID(n)                      ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
 141#define IMUASID0(n)                     (0x0308 + ((n) * 16))           /* R-Car Gen2/3 */
 142#define IMUASID32(n)                    (0x0608 + (((n) - 32) * 16))    /* R-Car Gen3 only */
 143
 144/* -----------------------------------------------------------------------------
 145 * Root device handling
 146 */
 147
 148static struct platform_driver ipmmu_driver;
 149
 150static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
 151{
 152        return mmu->root == mmu;
 153}
 154
 155static int __ipmmu_check_device(struct device *dev, void *data)
 156{
 157        struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
 158        struct ipmmu_vmsa_device **rootp = data;
 159
 160        if (ipmmu_is_root(mmu))
 161                *rootp = mmu;
 162
 163        return 0;
 164}
 165
 166static struct ipmmu_vmsa_device *ipmmu_find_root(void)
 167{
 168        struct ipmmu_vmsa_device *root = NULL;
 169
 170        return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
 171                                      __ipmmu_check_device) == 0 ? root : NULL;
 172}
 173
 174/* -----------------------------------------------------------------------------
 175 * Read/Write Access
 176 */
 177
 178static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
 179{
 180        return ioread32(mmu->base + offset);
 181}
 182
 183static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
 184                        u32 data)
 185{
 186        iowrite32(data, mmu->base + offset);
 187}
 188
 189static unsigned int ipmmu_ctx_reg(struct ipmmu_vmsa_device *mmu,
 190                                  unsigned int context_id, unsigned int reg)
 191{
 192        return mmu->features->ctx_offset_base +
 193               context_id * mmu->features->ctx_offset_stride + reg;
 194}
 195
 196static u32 ipmmu_ctx_read(struct ipmmu_vmsa_device *mmu,
 197                          unsigned int context_id, unsigned int reg)
 198{
 199        return ipmmu_read(mmu, ipmmu_ctx_reg(mmu, context_id, reg));
 200}
 201
 202static void ipmmu_ctx_write(struct ipmmu_vmsa_device *mmu,
 203                            unsigned int context_id, unsigned int reg, u32 data)
 204{
 205        ipmmu_write(mmu, ipmmu_ctx_reg(mmu, context_id, reg), data);
 206}
 207
 208static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
 209                               unsigned int reg)
 210{
 211        return ipmmu_ctx_read(domain->mmu->root, domain->context_id, reg);
 212}
 213
 214static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
 215                                 unsigned int reg, u32 data)
 216{
 217        ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
 218}
 219
 220static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
 221                                unsigned int reg, u32 data)
 222{
 223        if (domain->mmu != domain->mmu->root)
 224                ipmmu_ctx_write(domain->mmu, domain->context_id, reg, data);
 225
 226        ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
 227}
 228
 229static u32 ipmmu_utlb_reg(struct ipmmu_vmsa_device *mmu, unsigned int reg)
 230{
 231        return mmu->features->utlb_offset_base + reg;
 232}
 233
 234static void ipmmu_imuasid_write(struct ipmmu_vmsa_device *mmu,
 235                                unsigned int utlb, u32 data)
 236{
 237        ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUASID(utlb)), data);
 238}
 239
 240static void ipmmu_imuctr_write(struct ipmmu_vmsa_device *mmu,
 241                               unsigned int utlb, u32 data)
 242{
 243        ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUCTR(utlb)), data);
 244}
 245
 246/* -----------------------------------------------------------------------------
 247 * TLB and microTLB Management
 248 */
 249
 250/* Wait for any pending TLB invalidations to complete */
 251static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
 252{
 253        unsigned int count = 0;
 254
 255        while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
 256                cpu_relax();
 257                if (++count == TLB_LOOP_TIMEOUT) {
 258                        dev_err_ratelimited(domain->mmu->dev,
 259                        "TLB sync timed out -- MMU may be deadlocked\n");
 260                        return;
 261                }
 262                udelay(1);
 263        }
 264}
 265
 266static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
 267{
 268        u32 reg;
 269
 270        reg = ipmmu_ctx_read_root(domain, IMCTR);
 271        reg |= IMCTR_FLUSH;
 272        ipmmu_ctx_write_all(domain, IMCTR, reg);
 273
 274        ipmmu_tlb_sync(domain);
 275}
 276
 277/*
 278 * Enable MMU translation for the microTLB.
 279 */
 280static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
 281                              unsigned int utlb)
 282{
 283        struct ipmmu_vmsa_device *mmu = domain->mmu;
 284
 285        /*
 286         * TODO: Reference-count the microTLB as several bus masters can be
 287         * connected to the same microTLB.
 288         */
 289
 290        /* TODO: What should we set the ASID to ? */
 291        ipmmu_imuasid_write(mmu, utlb, 0);
 292        /* TODO: Do we need to flush the microTLB ? */
 293        ipmmu_imuctr_write(mmu, utlb, IMUCTR_TTSEL_MMU(domain->context_id) |
 294                                      IMUCTR_FLUSH | IMUCTR_MMUEN);
 295        mmu->utlb_ctx[utlb] = domain->context_id;
 296}
 297
 298/*
 299 * Disable MMU translation for the microTLB.
 300 */
 301static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
 302                               unsigned int utlb)
 303{
 304        struct ipmmu_vmsa_device *mmu = domain->mmu;
 305
 306        ipmmu_imuctr_write(mmu, utlb, 0);
 307        mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID;
 308}
 309
 310static void ipmmu_tlb_flush_all(void *cookie)
 311{
 312        struct ipmmu_vmsa_domain *domain = cookie;
 313
 314        ipmmu_tlb_invalidate(domain);
 315}
 316
 317static void ipmmu_tlb_flush(unsigned long iova, size_t size,
 318                                size_t granule, void *cookie)
 319{
 320        ipmmu_tlb_flush_all(cookie);
 321}
 322
 323static const struct iommu_flush_ops ipmmu_flush_ops = {
 324        .tlb_flush_all = ipmmu_tlb_flush_all,
 325        .tlb_flush_walk = ipmmu_tlb_flush,
 326};
 327
 328/* -----------------------------------------------------------------------------
 329 * Domain/Context Management
 330 */
 331
 332static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
 333                                         struct ipmmu_vmsa_domain *domain)
 334{
 335        unsigned long flags;
 336        int ret;
 337
 338        spin_lock_irqsave(&mmu->lock, flags);
 339
 340        ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
 341        if (ret != mmu->num_ctx) {
 342                mmu->domains[ret] = domain;
 343                set_bit(ret, mmu->ctx);
 344        } else
 345                ret = -EBUSY;
 346
 347        spin_unlock_irqrestore(&mmu->lock, flags);
 348
 349        return ret;
 350}
 351
 352static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
 353                                      unsigned int context_id)
 354{
 355        unsigned long flags;
 356
 357        spin_lock_irqsave(&mmu->lock, flags);
 358
 359        clear_bit(context_id, mmu->ctx);
 360        mmu->domains[context_id] = NULL;
 361
 362        spin_unlock_irqrestore(&mmu->lock, flags);
 363}
 364
 365static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain)
 366{
 367        u64 ttbr;
 368        u32 tmp;
 369
 370        /* TTBR0 */
 371        ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr;
 372        ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
 373        ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
 374
 375        /*
 376         * TTBCR
 377         * We use long descriptors and allocate the whole 32-bit VA space to
 378         * TTBR0.
 379         */
 380        if (domain->mmu->features->twobit_imttbcr_sl0)
 381                tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
 382        else
 383                tmp = IMTTBCR_SL0_LVL_1;
 384
 385        if (domain->mmu->features->cache_snoop)
 386                tmp |= IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
 387                       IMTTBCR_IRGN0_WB_WA;
 388
 389        ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE | tmp);
 390
 391        /* MAIR0 */
 392        ipmmu_ctx_write_root(domain, IMMAIR0,
 393                             domain->cfg.arm_lpae_s1_cfg.mair);
 394
 395        /* IMBUSCR */
 396        if (domain->mmu->features->setup_imbuscr)
 397                ipmmu_ctx_write_root(domain, IMBUSCR,
 398                                     ipmmu_ctx_read_root(domain, IMBUSCR) &
 399                                     ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
 400
 401        /*
 402         * IMSTR
 403         * Clear all interrupt flags.
 404         */
 405        ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
 406
 407        /*
 408         * IMCTR
 409         * Enable the MMU and interrupt generation. The long-descriptor
 410         * translation table format doesn't use TEX remapping. Don't enable AF
 411         * software management as we have no use for it. Flush the TLB as
 412         * required when modifying the context registers.
 413         */
 414        ipmmu_ctx_write_all(domain, IMCTR,
 415                            IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
 416}
 417
 418static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
 419{
 420        int ret;
 421
 422        /*
 423         * Allocate the page table operations.
 424         *
 425         * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
 426         * access, Long-descriptor format" that the NStable bit being set in a
 427         * table descriptor will result in the NStable and NS bits of all child
 428         * entries being ignored and considered as being set. The IPMMU seems
 429         * not to comply with this, as it generates a secure access page fault
 430         * if any of the NStable and NS bits isn't set when running in
 431         * non-secure mode.
 432         */
 433        domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
 434        domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
 435        domain->cfg.ias = 32;
 436        domain->cfg.oas = 40;
 437        domain->cfg.tlb = &ipmmu_flush_ops;
 438        domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
 439        domain->io_domain.geometry.force_aperture = true;
 440        /*
 441         * TODO: Add support for coherent walk through CCI with DVM and remove
 442         * cache handling. For now, delegate it to the io-pgtable code.
 443         */
 444        domain->cfg.coherent_walk = false;
 445        domain->cfg.iommu_dev = domain->mmu->root->dev;
 446
 447        /*
 448         * Find an unused context.
 449         */
 450        ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
 451        if (ret < 0)
 452                return ret;
 453
 454        domain->context_id = ret;
 455
 456        domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
 457                                           domain);
 458        if (!domain->iop) {
 459                ipmmu_domain_free_context(domain->mmu->root,
 460                                          domain->context_id);
 461                return -EINVAL;
 462        }
 463
 464        ipmmu_domain_setup_context(domain);
 465        return 0;
 466}
 467
 468static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
 469{
 470        if (!domain->mmu)
 471                return;
 472
 473        /*
 474         * Disable the context. Flush the TLB as required when modifying the
 475         * context registers.
 476         *
 477         * TODO: Is TLB flush really needed ?
 478         */
 479        ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
 480        ipmmu_tlb_sync(domain);
 481        ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
 482}
 483
 484/* -----------------------------------------------------------------------------
 485 * Fault Handling
 486 */
 487
 488static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
 489{
 490        const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
 491        struct ipmmu_vmsa_device *mmu = domain->mmu;
 492        unsigned long iova;
 493        u32 status;
 494
 495        status = ipmmu_ctx_read_root(domain, IMSTR);
 496        if (!(status & err_mask))
 497                return IRQ_NONE;
 498
 499        iova = ipmmu_ctx_read_root(domain, IMELAR);
 500        if (IS_ENABLED(CONFIG_64BIT))
 501                iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32;
 502
 503        /*
 504         * Clear the error status flags. Unlike traditional interrupt flag
 505         * registers that must be cleared by writing 1, this status register
 506         * seems to require 0. The error address register must be read before,
 507         * otherwise its value will be 0.
 508         */
 509        ipmmu_ctx_write_root(domain, IMSTR, 0);
 510
 511        /* Log fatal errors. */
 512        if (status & IMSTR_MHIT)
 513                dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n",
 514                                    iova);
 515        if (status & IMSTR_ABORT)
 516                dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n",
 517                                    iova);
 518
 519        if (!(status & (IMSTR_PF | IMSTR_TF)))
 520                return IRQ_NONE;
 521
 522        /*
 523         * Try to handle page faults and translation faults.
 524         *
 525         * TODO: We need to look up the faulty device based on the I/O VA. Use
 526         * the IOMMU device for now.
 527         */
 528        if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
 529                return IRQ_HANDLED;
 530
 531        dev_err_ratelimited(mmu->dev,
 532                            "Unhandled fault: status 0x%08x iova 0x%lx\n",
 533                            status, iova);
 534
 535        return IRQ_HANDLED;
 536}
 537
 538static irqreturn_t ipmmu_irq(int irq, void *dev)
 539{
 540        struct ipmmu_vmsa_device *mmu = dev;
 541        irqreturn_t status = IRQ_NONE;
 542        unsigned int i;
 543        unsigned long flags;
 544
 545        spin_lock_irqsave(&mmu->lock, flags);
 546
 547        /*
 548         * Check interrupts for all active contexts.
 549         */
 550        for (i = 0; i < mmu->num_ctx; i++) {
 551                if (!mmu->domains[i])
 552                        continue;
 553                if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
 554                        status = IRQ_HANDLED;
 555        }
 556
 557        spin_unlock_irqrestore(&mmu->lock, flags);
 558
 559        return status;
 560}
 561
 562/* -----------------------------------------------------------------------------
 563 * IOMMU Operations
 564 */
 565
 566static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
 567{
 568        struct ipmmu_vmsa_domain *domain;
 569
 570        if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
 571                return NULL;
 572
 573        domain = kzalloc(sizeof(*domain), GFP_KERNEL);
 574        if (!domain)
 575                return NULL;
 576
 577        mutex_init(&domain->mutex);
 578
 579        return &domain->io_domain;
 580}
 581
 582static void ipmmu_domain_free(struct iommu_domain *io_domain)
 583{
 584        struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
 585
 586        /*
 587         * Free the domain resources. We assume that all devices have already
 588         * been detached.
 589         */
 590        ipmmu_domain_destroy_context(domain);
 591        free_io_pgtable_ops(domain->iop);
 592        kfree(domain);
 593}
 594
 595static int ipmmu_attach_device(struct iommu_domain *io_domain,
 596                               struct device *dev)
 597{
 598        struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
 599        struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
 600        struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
 601        unsigned int i;
 602        int ret = 0;
 603
 604        if (!mmu) {
 605                dev_err(dev, "Cannot attach to IPMMU\n");
 606                return -ENXIO;
 607        }
 608
 609        mutex_lock(&domain->mutex);
 610
 611        if (!domain->mmu) {
 612                /* The domain hasn't been used yet, initialize it. */
 613                domain->mmu = mmu;
 614                ret = ipmmu_domain_init_context(domain);
 615                if (ret < 0) {
 616                        dev_err(dev, "Unable to initialize IPMMU context\n");
 617                        domain->mmu = NULL;
 618                } else {
 619                        dev_info(dev, "Using IPMMU context %u\n",
 620                                 domain->context_id);
 621                }
 622        } else if (domain->mmu != mmu) {
 623                /*
 624                 * Something is wrong, we can't attach two devices using
 625                 * different IOMMUs to the same domain.
 626                 */
 627                dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
 628                        dev_name(mmu->dev), dev_name(domain->mmu->dev));
 629                ret = -EINVAL;
 630        } else
 631                dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
 632
 633        mutex_unlock(&domain->mutex);
 634
 635        if (ret < 0)
 636                return ret;
 637
 638        for (i = 0; i < fwspec->num_ids; ++i)
 639                ipmmu_utlb_enable(domain, fwspec->ids[i]);
 640
 641        return 0;
 642}
 643
 644static void ipmmu_detach_device(struct iommu_domain *io_domain,
 645                                struct device *dev)
 646{
 647        struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
 648        struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
 649        unsigned int i;
 650
 651        for (i = 0; i < fwspec->num_ids; ++i)
 652                ipmmu_utlb_disable(domain, fwspec->ids[i]);
 653
 654        /*
 655         * TODO: Optimize by disabling the context when no device is attached.
 656         */
 657}
 658
 659static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
 660                     phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
 661{
 662        struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
 663
 664        if (!domain)
 665                return -ENODEV;
 666
 667        return domain->iop->map(domain->iop, iova, paddr, size, prot, gfp);
 668}
 669
 670static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
 671                          size_t size, struct iommu_iotlb_gather *gather)
 672{
 673        struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
 674
 675        return domain->iop->unmap(domain->iop, iova, size, gather);
 676}
 677
 678static void ipmmu_flush_iotlb_all(struct iommu_domain *io_domain)
 679{
 680        struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
 681
 682        if (domain->mmu)
 683                ipmmu_tlb_flush_all(domain);
 684}
 685
 686static void ipmmu_iotlb_sync(struct iommu_domain *io_domain,
 687                             struct iommu_iotlb_gather *gather)
 688{
 689        ipmmu_flush_iotlb_all(io_domain);
 690}
 691
 692static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
 693                                      dma_addr_t iova)
 694{
 695        struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
 696
 697        /* TODO: Is locking needed ? */
 698
 699        return domain->iop->iova_to_phys(domain->iop, iova);
 700}
 701
 702static int ipmmu_init_platform_device(struct device *dev,
 703                                      struct of_phandle_args *args)
 704{
 705        struct platform_device *ipmmu_pdev;
 706
 707        ipmmu_pdev = of_find_device_by_node(args->np);
 708        if (!ipmmu_pdev)
 709                return -ENODEV;
 710
 711        dev_iommu_priv_set(dev, platform_get_drvdata(ipmmu_pdev));
 712
 713        return 0;
 714}
 715
 716static const struct soc_device_attribute soc_needs_opt_in[] = {
 717        { .family = "R-Car Gen3", },
 718        { .family = "RZ/G2", },
 719        { /* sentinel */ }
 720};
 721
 722static const struct soc_device_attribute soc_denylist[] = {
 723        { .soc_id = "r8a774a1", },
 724        { .soc_id = "r8a7795", .revision = "ES1.*" },
 725        { .soc_id = "r8a7795", .revision = "ES2.*" },
 726        { .soc_id = "r8a7796", },
 727        { /* sentinel */ }
 728};
 729
 730static const char * const devices_allowlist[] = {
 731        "ee100000.mmc",
 732        "ee120000.mmc",
 733        "ee140000.mmc",
 734        "ee160000.mmc"
 735};
 736
 737static bool ipmmu_device_is_allowed(struct device *dev)
 738{
 739        unsigned int i;
 740
 741        /*
 742         * R-Car Gen3 and RZ/G2 use the allow list to opt-in devices.
 743         * For Other SoCs, this returns true anyway.
 744         */
 745        if (!soc_device_match(soc_needs_opt_in))
 746                return true;
 747
 748        /* Check whether this SoC can use the IPMMU correctly or not */
 749        if (soc_device_match(soc_denylist))
 750                return false;
 751
 752        /* Check whether this device can work with the IPMMU */
 753        for (i = 0; i < ARRAY_SIZE(devices_allowlist); i++) {
 754                if (!strcmp(dev_name(dev), devices_allowlist[i]))
 755                        return true;
 756        }
 757
 758        /* Otherwise, do not allow use of IPMMU */
 759        return false;
 760}
 761
 762static int ipmmu_of_xlate(struct device *dev,
 763                          struct of_phandle_args *spec)
 764{
 765        if (!ipmmu_device_is_allowed(dev))
 766                return -ENODEV;
 767
 768        iommu_fwspec_add_ids(dev, spec->args, 1);
 769
 770        /* Initialize once - xlate() will call multiple times */
 771        if (to_ipmmu(dev))
 772                return 0;
 773
 774        return ipmmu_init_platform_device(dev, spec);
 775}
 776
 777static int ipmmu_init_arm_mapping(struct device *dev)
 778{
 779        struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
 780        int ret;
 781
 782        /*
 783         * Create the ARM mapping, used by the ARM DMA mapping core to allocate
 784         * VAs. This will allocate a corresponding IOMMU domain.
 785         *
 786         * TODO:
 787         * - Create one mapping per context (TLB).
 788         * - Make the mapping size configurable ? We currently use a 2GB mapping
 789         *   at a 1GB offset to ensure that NULL VAs will fault.
 790         */
 791        if (!mmu->mapping) {
 792                struct dma_iommu_mapping *mapping;
 793
 794                mapping = arm_iommu_create_mapping(&platform_bus_type,
 795                                                   SZ_1G, SZ_2G);
 796                if (IS_ERR(mapping)) {
 797                        dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
 798                        ret = PTR_ERR(mapping);
 799                        goto error;
 800                }
 801
 802                mmu->mapping = mapping;
 803        }
 804
 805        /* Attach the ARM VA mapping to the device. */
 806        ret = arm_iommu_attach_device(dev, mmu->mapping);
 807        if (ret < 0) {
 808                dev_err(dev, "Failed to attach device to VA mapping\n");
 809                goto error;
 810        }
 811
 812        return 0;
 813
 814error:
 815        if (mmu->mapping)
 816                arm_iommu_release_mapping(mmu->mapping);
 817
 818        return ret;
 819}
 820
 821static struct iommu_device *ipmmu_probe_device(struct device *dev)
 822{
 823        struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
 824
 825        /*
 826         * Only let through devices that have been verified in xlate()
 827         */
 828        if (!mmu)
 829                return ERR_PTR(-ENODEV);
 830
 831        return &mmu->iommu;
 832}
 833
 834static void ipmmu_probe_finalize(struct device *dev)
 835{
 836        int ret = 0;
 837
 838        if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA))
 839                ret = ipmmu_init_arm_mapping(dev);
 840
 841        if (ret)
 842                dev_err(dev, "Can't create IOMMU mapping - DMA-OPS will not work\n");
 843}
 844
 845static void ipmmu_release_device(struct device *dev)
 846{
 847        arm_iommu_detach_device(dev);
 848}
 849
 850static struct iommu_group *ipmmu_find_group(struct device *dev)
 851{
 852        struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
 853        struct iommu_group *group;
 854
 855        if (mmu->group)
 856                return iommu_group_ref_get(mmu->group);
 857
 858        group = iommu_group_alloc();
 859        if (!IS_ERR(group))
 860                mmu->group = group;
 861
 862        return group;
 863}
 864
 865static const struct iommu_ops ipmmu_ops = {
 866        .domain_alloc = ipmmu_domain_alloc,
 867        .domain_free = ipmmu_domain_free,
 868        .attach_dev = ipmmu_attach_device,
 869        .detach_dev = ipmmu_detach_device,
 870        .map = ipmmu_map,
 871        .unmap = ipmmu_unmap,
 872        .flush_iotlb_all = ipmmu_flush_iotlb_all,
 873        .iotlb_sync = ipmmu_iotlb_sync,
 874        .iova_to_phys = ipmmu_iova_to_phys,
 875        .probe_device = ipmmu_probe_device,
 876        .release_device = ipmmu_release_device,
 877        .probe_finalize = ipmmu_probe_finalize,
 878        .device_group = IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA)
 879                        ? generic_device_group : ipmmu_find_group,
 880        .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
 881        .of_xlate = ipmmu_of_xlate,
 882};
 883
 884/* -----------------------------------------------------------------------------
 885 * Probe/remove and init
 886 */
 887
 888static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
 889{
 890        unsigned int i;
 891
 892        /* Disable all contexts. */
 893        for (i = 0; i < mmu->num_ctx; ++i)
 894                ipmmu_ctx_write(mmu, i, IMCTR, 0);
 895}
 896
 897static const struct ipmmu_features ipmmu_features_default = {
 898        .use_ns_alias_offset = true,
 899        .has_cache_leaf_nodes = false,
 900        .number_of_contexts = 1, /* software only tested with one context */
 901        .num_utlbs = 32,
 902        .setup_imbuscr = true,
 903        .twobit_imttbcr_sl0 = false,
 904        .reserved_context = false,
 905        .cache_snoop = true,
 906        .ctx_offset_base = 0,
 907        .ctx_offset_stride = 0x40,
 908        .utlb_offset_base = 0,
 909};
 910
 911static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
 912        .use_ns_alias_offset = false,
 913        .has_cache_leaf_nodes = true,
 914        .number_of_contexts = 8,
 915        .num_utlbs = 48,
 916        .setup_imbuscr = false,
 917        .twobit_imttbcr_sl0 = true,
 918        .reserved_context = true,
 919        .cache_snoop = false,
 920        .ctx_offset_base = 0,
 921        .ctx_offset_stride = 0x40,
 922        .utlb_offset_base = 0,
 923};
 924
 925static const struct of_device_id ipmmu_of_ids[] = {
 926        {
 927                .compatible = "renesas,ipmmu-vmsa",
 928                .data = &ipmmu_features_default,
 929        }, {
 930                .compatible = "renesas,ipmmu-r8a774a1",
 931                .data = &ipmmu_features_rcar_gen3,
 932        }, {
 933                .compatible = "renesas,ipmmu-r8a774b1",
 934                .data = &ipmmu_features_rcar_gen3,
 935        }, {
 936                .compatible = "renesas,ipmmu-r8a774c0",
 937                .data = &ipmmu_features_rcar_gen3,
 938        }, {
 939                .compatible = "renesas,ipmmu-r8a774e1",
 940                .data = &ipmmu_features_rcar_gen3,
 941        }, {
 942                .compatible = "renesas,ipmmu-r8a7795",
 943                .data = &ipmmu_features_rcar_gen3,
 944        }, {
 945                .compatible = "renesas,ipmmu-r8a7796",
 946                .data = &ipmmu_features_rcar_gen3,
 947        }, {
 948                .compatible = "renesas,ipmmu-r8a77961",
 949                .data = &ipmmu_features_rcar_gen3,
 950        }, {
 951                .compatible = "renesas,ipmmu-r8a77965",
 952                .data = &ipmmu_features_rcar_gen3,
 953        }, {
 954                .compatible = "renesas,ipmmu-r8a77970",
 955                .data = &ipmmu_features_rcar_gen3,
 956        }, {
 957                .compatible = "renesas,ipmmu-r8a77990",
 958                .data = &ipmmu_features_rcar_gen3,
 959        }, {
 960                .compatible = "renesas,ipmmu-r8a77995",
 961                .data = &ipmmu_features_rcar_gen3,
 962        }, {
 963                /* Terminator */
 964        },
 965};
 966
 967static int ipmmu_probe(struct platform_device *pdev)
 968{
 969        struct ipmmu_vmsa_device *mmu;
 970        struct resource *res;
 971        int irq;
 972        int ret;
 973
 974        mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
 975        if (!mmu) {
 976                dev_err(&pdev->dev, "cannot allocate device data\n");
 977                return -ENOMEM;
 978        }
 979
 980        mmu->dev = &pdev->dev;
 981        spin_lock_init(&mmu->lock);
 982        bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
 983        mmu->features = of_device_get_match_data(&pdev->dev);
 984        memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs);
 985        dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
 986
 987        /* Map I/O memory and request IRQ. */
 988        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 989        mmu->base = devm_ioremap_resource(&pdev->dev, res);
 990        if (IS_ERR(mmu->base))
 991                return PTR_ERR(mmu->base);
 992
 993        /*
 994         * The IPMMU has two register banks, for secure and non-secure modes.
 995         * The bank mapped at the beginning of the IPMMU address space
 996         * corresponds to the running mode of the CPU. When running in secure
 997         * mode the non-secure register bank is also available at an offset.
 998         *
 999         * Secure mode operation isn't clearly documented and is thus currently
1000         * not implemented in the driver. Furthermore, preliminary tests of
1001         * non-secure operation with the main register bank were not successful.
1002         * Offset the registers base unconditionally to point to the non-secure
1003         * alias space for now.
1004         */
1005        if (mmu->features->use_ns_alias_offset)
1006                mmu->base += IM_NS_ALIAS_OFFSET;
1007
1008        mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts);
1009
1010        /*
1011         * Determine if this IPMMU instance is a root device by checking for
1012         * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1013         */
1014        if (!mmu->features->has_cache_leaf_nodes ||
1015            !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL))
1016                mmu->root = mmu;
1017        else
1018                mmu->root = ipmmu_find_root();
1019
1020        /*
1021         * Wait until the root device has been registered for sure.
1022         */
1023        if (!mmu->root)
1024                return -EPROBE_DEFER;
1025
1026        /* Root devices have mandatory IRQs */
1027        if (ipmmu_is_root(mmu)) {
1028                irq = platform_get_irq(pdev, 0);
1029                if (irq < 0)
1030                        return irq;
1031
1032                ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1033                                       dev_name(&pdev->dev), mmu);
1034                if (ret < 0) {
1035                        dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1036                        return ret;
1037                }
1038
1039                ipmmu_device_reset(mmu);
1040
1041                if (mmu->features->reserved_context) {
1042                        dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1043                        set_bit(0, mmu->ctx);
1044                }
1045        }
1046
1047        /*
1048         * Register the IPMMU to the IOMMU subsystem in the following cases:
1049         * - R-Car Gen2 IPMMU (all devices registered)
1050         * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1051         */
1052        if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1053                ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1054                                             dev_name(&pdev->dev));
1055                if (ret)
1056                        return ret;
1057
1058                ret = iommu_device_register(&mmu->iommu, &ipmmu_ops, &pdev->dev);
1059                if (ret)
1060                        return ret;
1061
1062#if defined(CONFIG_IOMMU_DMA)
1063                if (!iommu_present(&platform_bus_type))
1064                        bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1065#endif
1066        }
1067
1068        /*
1069         * We can't create the ARM mapping here as it requires the bus to have
1070         * an IOMMU, which only happens when bus_set_iommu() is called in
1071         * ipmmu_init() after the probe function returns.
1072         */
1073
1074        platform_set_drvdata(pdev, mmu);
1075
1076        return 0;
1077}
1078
1079static int ipmmu_remove(struct platform_device *pdev)
1080{
1081        struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1082
1083        iommu_device_sysfs_remove(&mmu->iommu);
1084        iommu_device_unregister(&mmu->iommu);
1085
1086        arm_iommu_release_mapping(mmu->mapping);
1087
1088        ipmmu_device_reset(mmu);
1089
1090        return 0;
1091}
1092
1093#ifdef CONFIG_PM_SLEEP
1094static int ipmmu_resume_noirq(struct device *dev)
1095{
1096        struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
1097        unsigned int i;
1098
1099        /* Reset root MMU and restore contexts */
1100        if (ipmmu_is_root(mmu)) {
1101                ipmmu_device_reset(mmu);
1102
1103                for (i = 0; i < mmu->num_ctx; i++) {
1104                        if (!mmu->domains[i])
1105                                continue;
1106
1107                        ipmmu_domain_setup_context(mmu->domains[i]);
1108                }
1109        }
1110
1111        /* Re-enable active micro-TLBs */
1112        for (i = 0; i < mmu->features->num_utlbs; i++) {
1113                if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID)
1114                        continue;
1115
1116                ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i);
1117        }
1118
1119        return 0;
1120}
1121
1122static const struct dev_pm_ops ipmmu_pm  = {
1123        SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq)
1124};
1125#define DEV_PM_OPS      &ipmmu_pm
1126#else
1127#define DEV_PM_OPS      NULL
1128#endif /* CONFIG_PM_SLEEP */
1129
1130static struct platform_driver ipmmu_driver = {
1131        .driver = {
1132                .name = "ipmmu-vmsa",
1133                .of_match_table = of_match_ptr(ipmmu_of_ids),
1134                .pm = DEV_PM_OPS,
1135        },
1136        .probe = ipmmu_probe,
1137        .remove = ipmmu_remove,
1138};
1139
1140static int __init ipmmu_init(void)
1141{
1142        struct device_node *np;
1143        static bool setup_done;
1144        int ret;
1145
1146        if (setup_done)
1147                return 0;
1148
1149        np = of_find_matching_node(NULL, ipmmu_of_ids);
1150        if (!np)
1151                return 0;
1152
1153        of_node_put(np);
1154
1155        ret = platform_driver_register(&ipmmu_driver);
1156        if (ret < 0)
1157                return ret;
1158
1159#if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1160        if (!iommu_present(&platform_bus_type))
1161                bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1162#endif
1163
1164        setup_done = true;
1165        return 0;
1166}
1167subsys_initcall(ipmmu_init);
1168