linux/drivers/leds/trigger/ledtrig-activity.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Activity LED trigger
   4 *
   5 * Copyright (C) 2017 Willy Tarreau <w@1wt.eu>
   6 * Partially based on Atsushi Nemoto's ledtrig-heartbeat.c.
   7 */
   8
   9#include <linux/init.h>
  10#include <linux/kernel.h>
  11#include <linux/kernel_stat.h>
  12#include <linux/leds.h>
  13#include <linux/module.h>
  14#include <linux/panic_notifier.h>
  15#include <linux/reboot.h>
  16#include <linux/sched.h>
  17#include <linux/slab.h>
  18#include <linux/timer.h>
  19#include "../leds.h"
  20
  21static int panic_detected;
  22
  23struct activity_data {
  24        struct timer_list timer;
  25        struct led_classdev *led_cdev;
  26        u64 last_used;
  27        u64 last_boot;
  28        int time_left;
  29        int state;
  30        int invert;
  31};
  32
  33static void led_activity_function(struct timer_list *t)
  34{
  35        struct activity_data *activity_data = from_timer(activity_data, t,
  36                                                         timer);
  37        struct led_classdev *led_cdev = activity_data->led_cdev;
  38        unsigned int target;
  39        unsigned int usage;
  40        int delay;
  41        u64 curr_used;
  42        u64 curr_boot;
  43        s32 diff_used;
  44        s32 diff_boot;
  45        int cpus;
  46        int i;
  47
  48        if (test_and_clear_bit(LED_BLINK_BRIGHTNESS_CHANGE, &led_cdev->work_flags))
  49                led_cdev->blink_brightness = led_cdev->new_blink_brightness;
  50
  51        if (unlikely(panic_detected)) {
  52                /* full brightness in case of panic */
  53                led_set_brightness_nosleep(led_cdev, led_cdev->blink_brightness);
  54                return;
  55        }
  56
  57        cpus = 0;
  58        curr_used = 0;
  59
  60        for_each_possible_cpu(i) {
  61                struct kernel_cpustat kcpustat;
  62
  63                kcpustat_cpu_fetch(&kcpustat, i);
  64
  65                curr_used += kcpustat.cpustat[CPUTIME_USER]
  66                          +  kcpustat.cpustat[CPUTIME_NICE]
  67                          +  kcpustat.cpustat[CPUTIME_SYSTEM]
  68                          +  kcpustat.cpustat[CPUTIME_SOFTIRQ]
  69                          +  kcpustat.cpustat[CPUTIME_IRQ];
  70                cpus++;
  71        }
  72
  73        /* We come here every 100ms in the worst case, so that's 100M ns of
  74         * cumulated time. By dividing by 2^16, we get the time resolution
  75         * down to 16us, ensuring we won't overflow 32-bit computations below
  76         * even up to 3k CPUs, while keeping divides cheap on smaller systems.
  77         */
  78        curr_boot = ktime_get_boottime_ns() * cpus;
  79        diff_boot = (curr_boot - activity_data->last_boot) >> 16;
  80        diff_used = (curr_used - activity_data->last_used) >> 16;
  81        activity_data->last_boot = curr_boot;
  82        activity_data->last_used = curr_used;
  83
  84        if (diff_boot <= 0 || diff_used < 0)
  85                usage = 0;
  86        else if (diff_used >= diff_boot)
  87                usage = 100;
  88        else
  89                usage = 100 * diff_used / diff_boot;
  90
  91        /*
  92         * Now we know the total boot_time multiplied by the number of CPUs, and
  93         * the total idle+wait time for all CPUs. We'll compare how they evolved
  94         * since last call. The % of overall CPU usage is :
  95         *
  96         *      1 - delta_idle / delta_boot
  97         *
  98         * What we want is that when the CPU usage is zero, the LED must blink
  99         * slowly with very faint flashes that are detectable but not disturbing
 100         * (typically 10ms every second, or 10ms ON, 990ms OFF). Then we want
 101         * blinking frequency to increase up to the point where the load is
 102         * enough to saturate one core in multi-core systems or 50% in single
 103         * core systems. At this point it should reach 10 Hz with a 10/90 duty
 104         * cycle (10ms ON, 90ms OFF). After this point, the blinking frequency
 105         * remains stable (10 Hz) and only the duty cycle increases to report
 106         * the activity, up to the point where we have 90ms ON, 10ms OFF when
 107         * all cores are saturated. It's important that the LED never stays in
 108         * a steady state so that it's easy to distinguish an idle or saturated
 109         * machine from a hung one.
 110         *
 111         * This gives us :
 112         *   - a target CPU usage of min(50%, 100%/#CPU) for a 10% duty cycle
 113         *     (10ms ON, 90ms OFF)
 114         *   - below target :
 115         *      ON_ms  = 10
 116         *      OFF_ms = 90 + (1 - usage/target) * 900
 117         *   - above target :
 118         *      ON_ms  = 10 + (usage-target)/(100%-target) * 80
 119         *      OFF_ms = 90 - (usage-target)/(100%-target) * 80
 120         *
 121         * In order to keep a good responsiveness, we cap the sleep time to
 122         * 100 ms and keep track of the sleep time left. This allows us to
 123         * quickly change it if needed.
 124         */
 125
 126        activity_data->time_left -= 100;
 127        if (activity_data->time_left <= 0) {
 128                activity_data->time_left = 0;
 129                activity_data->state = !activity_data->state;
 130                led_set_brightness_nosleep(led_cdev,
 131                        (activity_data->state ^ activity_data->invert) ?
 132                        led_cdev->blink_brightness : LED_OFF);
 133        }
 134
 135        target = (cpus > 1) ? (100 / cpus) : 50;
 136
 137        if (usage < target)
 138                delay = activity_data->state ?
 139                        10 :                        /* ON  */
 140                        990 - 900 * usage / target; /* OFF */
 141        else
 142                delay = activity_data->state ?
 143                        10 + 80 * (usage - target) / (100 - target) : /* ON  */
 144                        90 - 80 * (usage - target) / (100 - target);  /* OFF */
 145
 146
 147        if (!activity_data->time_left || delay <= activity_data->time_left)
 148                activity_data->time_left = delay;
 149
 150        delay = min_t(int, activity_data->time_left, 100);
 151        mod_timer(&activity_data->timer, jiffies + msecs_to_jiffies(delay));
 152}
 153
 154static ssize_t led_invert_show(struct device *dev,
 155                               struct device_attribute *attr, char *buf)
 156{
 157        struct activity_data *activity_data = led_trigger_get_drvdata(dev);
 158
 159        return sprintf(buf, "%u\n", activity_data->invert);
 160}
 161
 162static ssize_t led_invert_store(struct device *dev,
 163                                struct device_attribute *attr,
 164                                const char *buf, size_t size)
 165{
 166        struct activity_data *activity_data = led_trigger_get_drvdata(dev);
 167        unsigned long state;
 168        int ret;
 169
 170        ret = kstrtoul(buf, 0, &state);
 171        if (ret)
 172                return ret;
 173
 174        activity_data->invert = !!state;
 175
 176        return size;
 177}
 178
 179static DEVICE_ATTR(invert, 0644, led_invert_show, led_invert_store);
 180
 181static struct attribute *activity_led_attrs[] = {
 182        &dev_attr_invert.attr,
 183        NULL
 184};
 185ATTRIBUTE_GROUPS(activity_led);
 186
 187static int activity_activate(struct led_classdev *led_cdev)
 188{
 189        struct activity_data *activity_data;
 190
 191        activity_data = kzalloc(sizeof(*activity_data), GFP_KERNEL);
 192        if (!activity_data)
 193                return -ENOMEM;
 194
 195        led_set_trigger_data(led_cdev, activity_data);
 196
 197        activity_data->led_cdev = led_cdev;
 198        timer_setup(&activity_data->timer, led_activity_function, 0);
 199        if (!led_cdev->blink_brightness)
 200                led_cdev->blink_brightness = led_cdev->max_brightness;
 201        led_activity_function(&activity_data->timer);
 202        set_bit(LED_BLINK_SW, &led_cdev->work_flags);
 203
 204        return 0;
 205}
 206
 207static void activity_deactivate(struct led_classdev *led_cdev)
 208{
 209        struct activity_data *activity_data = led_get_trigger_data(led_cdev);
 210
 211        del_timer_sync(&activity_data->timer);
 212        kfree(activity_data);
 213        clear_bit(LED_BLINK_SW, &led_cdev->work_flags);
 214}
 215
 216static struct led_trigger activity_led_trigger = {
 217        .name       = "activity",
 218        .activate   = activity_activate,
 219        .deactivate = activity_deactivate,
 220        .groups     = activity_led_groups,
 221};
 222
 223static int activity_reboot_notifier(struct notifier_block *nb,
 224                                    unsigned long code, void *unused)
 225{
 226        led_trigger_unregister(&activity_led_trigger);
 227        return NOTIFY_DONE;
 228}
 229
 230static int activity_panic_notifier(struct notifier_block *nb,
 231                                   unsigned long code, void *unused)
 232{
 233        panic_detected = 1;
 234        return NOTIFY_DONE;
 235}
 236
 237static struct notifier_block activity_reboot_nb = {
 238        .notifier_call = activity_reboot_notifier,
 239};
 240
 241static struct notifier_block activity_panic_nb = {
 242        .notifier_call = activity_panic_notifier,
 243};
 244
 245static int __init activity_init(void)
 246{
 247        int rc = led_trigger_register(&activity_led_trigger);
 248
 249        if (!rc) {
 250                atomic_notifier_chain_register(&panic_notifier_list,
 251                                               &activity_panic_nb);
 252                register_reboot_notifier(&activity_reboot_nb);
 253        }
 254        return rc;
 255}
 256
 257static void __exit activity_exit(void)
 258{
 259        unregister_reboot_notifier(&activity_reboot_nb);
 260        atomic_notifier_chain_unregister(&panic_notifier_list,
 261                                         &activity_panic_nb);
 262        led_trigger_unregister(&activity_led_trigger);
 263}
 264
 265module_init(activity_init);
 266module_exit(activity_exit);
 267
 268MODULE_AUTHOR("Willy Tarreau <w@1wt.eu>");
 269MODULE_DESCRIPTION("Activity LED trigger");
 270MODULE_LICENSE("GPL v2");
 271