linux/drivers/md/bcache/alloc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Primary bucket allocation code
   4 *
   5 * Copyright 2012 Google, Inc.
   6 *
   7 * Allocation in bcache is done in terms of buckets:
   8 *
   9 * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
  10 * btree pointers - they must match for the pointer to be considered valid.
  11 *
  12 * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
  13 * bucket simply by incrementing its gen.
  14 *
  15 * The gens (along with the priorities; it's really the gens are important but
  16 * the code is named as if it's the priorities) are written in an arbitrary list
  17 * of buckets on disk, with a pointer to them in the journal header.
  18 *
  19 * When we invalidate a bucket, we have to write its new gen to disk and wait
  20 * for that write to complete before we use it - otherwise after a crash we
  21 * could have pointers that appeared to be good but pointed to data that had
  22 * been overwritten.
  23 *
  24 * Since the gens and priorities are all stored contiguously on disk, we can
  25 * batch this up: We fill up the free_inc list with freshly invalidated buckets,
  26 * call prio_write(), and when prio_write() finishes we pull buckets off the
  27 * free_inc list and optionally discard them.
  28 *
  29 * free_inc isn't the only freelist - if it was, we'd often to sleep while
  30 * priorities and gens were being written before we could allocate. c->free is a
  31 * smaller freelist, and buckets on that list are always ready to be used.
  32 *
  33 * If we've got discards enabled, that happens when a bucket moves from the
  34 * free_inc list to the free list.
  35 *
  36 * There is another freelist, because sometimes we have buckets that we know
  37 * have nothing pointing into them - these we can reuse without waiting for
  38 * priorities to be rewritten. These come from freed btree nodes and buckets
  39 * that garbage collection discovered no longer had valid keys pointing into
  40 * them (because they were overwritten). That's the unused list - buckets on the
  41 * unused list move to the free list, optionally being discarded in the process.
  42 *
  43 * It's also important to ensure that gens don't wrap around - with respect to
  44 * either the oldest gen in the btree or the gen on disk. This is quite
  45 * difficult to do in practice, but we explicitly guard against it anyways - if
  46 * a bucket is in danger of wrapping around we simply skip invalidating it that
  47 * time around, and we garbage collect or rewrite the priorities sooner than we
  48 * would have otherwise.
  49 *
  50 * bch_bucket_alloc() allocates a single bucket from a specific cache.
  51 *
  52 * bch_bucket_alloc_set() allocates one  bucket from different caches
  53 * out of a cache set.
  54 *
  55 * free_some_buckets() drives all the processes described above. It's called
  56 * from bch_bucket_alloc() and a few other places that need to make sure free
  57 * buckets are ready.
  58 *
  59 * invalidate_buckets_(lru|fifo)() find buckets that are available to be
  60 * invalidated, and then invalidate them and stick them on the free_inc list -
  61 * in either lru or fifo order.
  62 */
  63
  64#include "bcache.h"
  65#include "btree.h"
  66
  67#include <linux/blkdev.h>
  68#include <linux/kthread.h>
  69#include <linux/random.h>
  70#include <trace/events/bcache.h>
  71
  72#define MAX_OPEN_BUCKETS 128
  73
  74/* Bucket heap / gen */
  75
  76uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
  77{
  78        uint8_t ret = ++b->gen;
  79
  80        ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
  81        WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
  82
  83        return ret;
  84}
  85
  86void bch_rescale_priorities(struct cache_set *c, int sectors)
  87{
  88        struct cache *ca;
  89        struct bucket *b;
  90        unsigned long next = c->nbuckets * c->cache->sb.bucket_size / 1024;
  91        int r;
  92
  93        atomic_sub(sectors, &c->rescale);
  94
  95        do {
  96                r = atomic_read(&c->rescale);
  97
  98                if (r >= 0)
  99                        return;
 100        } while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
 101
 102        mutex_lock(&c->bucket_lock);
 103
 104        c->min_prio = USHRT_MAX;
 105
 106        ca = c->cache;
 107        for_each_bucket(b, ca)
 108                if (b->prio &&
 109                    b->prio != BTREE_PRIO &&
 110                    !atomic_read(&b->pin)) {
 111                        b->prio--;
 112                        c->min_prio = min(c->min_prio, b->prio);
 113                }
 114
 115        mutex_unlock(&c->bucket_lock);
 116}
 117
 118/*
 119 * Background allocation thread: scans for buckets to be invalidated,
 120 * invalidates them, rewrites prios/gens (marking them as invalidated on disk),
 121 * then optionally issues discard commands to the newly free buckets, then puts
 122 * them on the various freelists.
 123 */
 124
 125static inline bool can_inc_bucket_gen(struct bucket *b)
 126{
 127        return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX;
 128}
 129
 130bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b)
 131{
 132        BUG_ON(!ca->set->gc_mark_valid);
 133
 134        return (!GC_MARK(b) ||
 135                GC_MARK(b) == GC_MARK_RECLAIMABLE) &&
 136                !atomic_read(&b->pin) &&
 137                can_inc_bucket_gen(b);
 138}
 139
 140void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
 141{
 142        lockdep_assert_held(&ca->set->bucket_lock);
 143        BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE);
 144
 145        if (GC_SECTORS_USED(b))
 146                trace_bcache_invalidate(ca, b - ca->buckets);
 147
 148        bch_inc_gen(ca, b);
 149        b->prio = INITIAL_PRIO;
 150        atomic_inc(&b->pin);
 151}
 152
 153static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
 154{
 155        __bch_invalidate_one_bucket(ca, b);
 156
 157        fifo_push(&ca->free_inc, b - ca->buckets);
 158}
 159
 160/*
 161 * Determines what order we're going to reuse buckets, smallest bucket_prio()
 162 * first: we also take into account the number of sectors of live data in that
 163 * bucket, and in order for that multiply to make sense we have to scale bucket
 164 *
 165 * Thus, we scale the bucket priorities so that the bucket with the smallest
 166 * prio is worth 1/8th of what INITIAL_PRIO is worth.
 167 */
 168
 169#define bucket_prio(b)                                                  \
 170({                                                                      \
 171        unsigned int min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8; \
 172                                                                        \
 173        (b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b);  \
 174})
 175
 176#define bucket_max_cmp(l, r)    (bucket_prio(l) < bucket_prio(r))
 177#define bucket_min_cmp(l, r)    (bucket_prio(l) > bucket_prio(r))
 178
 179static void invalidate_buckets_lru(struct cache *ca)
 180{
 181        struct bucket *b;
 182        ssize_t i;
 183
 184        ca->heap.used = 0;
 185
 186        for_each_bucket(b, ca) {
 187                if (!bch_can_invalidate_bucket(ca, b))
 188                        continue;
 189
 190                if (!heap_full(&ca->heap))
 191                        heap_add(&ca->heap, b, bucket_max_cmp);
 192                else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
 193                        ca->heap.data[0] = b;
 194                        heap_sift(&ca->heap, 0, bucket_max_cmp);
 195                }
 196        }
 197
 198        for (i = ca->heap.used / 2 - 1; i >= 0; --i)
 199                heap_sift(&ca->heap, i, bucket_min_cmp);
 200
 201        while (!fifo_full(&ca->free_inc)) {
 202                if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
 203                        /*
 204                         * We don't want to be calling invalidate_buckets()
 205                         * multiple times when it can't do anything
 206                         */
 207                        ca->invalidate_needs_gc = 1;
 208                        wake_up_gc(ca->set);
 209                        return;
 210                }
 211
 212                bch_invalidate_one_bucket(ca, b);
 213        }
 214}
 215
 216static void invalidate_buckets_fifo(struct cache *ca)
 217{
 218        struct bucket *b;
 219        size_t checked = 0;
 220
 221        while (!fifo_full(&ca->free_inc)) {
 222                if (ca->fifo_last_bucket <  ca->sb.first_bucket ||
 223                    ca->fifo_last_bucket >= ca->sb.nbuckets)
 224                        ca->fifo_last_bucket = ca->sb.first_bucket;
 225
 226                b = ca->buckets + ca->fifo_last_bucket++;
 227
 228                if (bch_can_invalidate_bucket(ca, b))
 229                        bch_invalidate_one_bucket(ca, b);
 230
 231                if (++checked >= ca->sb.nbuckets) {
 232                        ca->invalidate_needs_gc = 1;
 233                        wake_up_gc(ca->set);
 234                        return;
 235                }
 236        }
 237}
 238
 239static void invalidate_buckets_random(struct cache *ca)
 240{
 241        struct bucket *b;
 242        size_t checked = 0;
 243
 244        while (!fifo_full(&ca->free_inc)) {
 245                size_t n;
 246
 247                get_random_bytes(&n, sizeof(n));
 248
 249                n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
 250                n += ca->sb.first_bucket;
 251
 252                b = ca->buckets + n;
 253
 254                if (bch_can_invalidate_bucket(ca, b))
 255                        bch_invalidate_one_bucket(ca, b);
 256
 257                if (++checked >= ca->sb.nbuckets / 2) {
 258                        ca->invalidate_needs_gc = 1;
 259                        wake_up_gc(ca->set);
 260                        return;
 261                }
 262        }
 263}
 264
 265static void invalidate_buckets(struct cache *ca)
 266{
 267        BUG_ON(ca->invalidate_needs_gc);
 268
 269        switch (CACHE_REPLACEMENT(&ca->sb)) {
 270        case CACHE_REPLACEMENT_LRU:
 271                invalidate_buckets_lru(ca);
 272                break;
 273        case CACHE_REPLACEMENT_FIFO:
 274                invalidate_buckets_fifo(ca);
 275                break;
 276        case CACHE_REPLACEMENT_RANDOM:
 277                invalidate_buckets_random(ca);
 278                break;
 279        }
 280}
 281
 282#define allocator_wait(ca, cond)                                        \
 283do {                                                                    \
 284        while (1) {                                                     \
 285                set_current_state(TASK_INTERRUPTIBLE);                  \
 286                if (cond)                                               \
 287                        break;                                          \
 288                                                                        \
 289                mutex_unlock(&(ca)->set->bucket_lock);                  \
 290                if (kthread_should_stop() ||                            \
 291                    test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)) {  \
 292                        set_current_state(TASK_RUNNING);                \
 293                        goto out;                                       \
 294                }                                                       \
 295                                                                        \
 296                schedule();                                             \
 297                mutex_lock(&(ca)->set->bucket_lock);                    \
 298        }                                                               \
 299        __set_current_state(TASK_RUNNING);                              \
 300} while (0)
 301
 302static int bch_allocator_push(struct cache *ca, long bucket)
 303{
 304        unsigned int i;
 305
 306        /* Prios/gens are actually the most important reserve */
 307        if (fifo_push(&ca->free[RESERVE_PRIO], bucket))
 308                return true;
 309
 310        for (i = 0; i < RESERVE_NR; i++)
 311                if (fifo_push(&ca->free[i], bucket))
 312                        return true;
 313
 314        return false;
 315}
 316
 317static int bch_allocator_thread(void *arg)
 318{
 319        struct cache *ca = arg;
 320
 321        mutex_lock(&ca->set->bucket_lock);
 322
 323        while (1) {
 324                /*
 325                 * First, we pull buckets off of the unused and free_inc lists,
 326                 * possibly issue discards to them, then we add the bucket to
 327                 * the free list:
 328                 */
 329                while (1) {
 330                        long bucket;
 331
 332                        if (!fifo_pop(&ca->free_inc, bucket))
 333                                break;
 334
 335                        if (ca->discard) {
 336                                mutex_unlock(&ca->set->bucket_lock);
 337                                blkdev_issue_discard(ca->bdev,
 338                                        bucket_to_sector(ca->set, bucket),
 339                                        ca->sb.bucket_size, GFP_KERNEL, 0);
 340                                mutex_lock(&ca->set->bucket_lock);
 341                        }
 342
 343                        allocator_wait(ca, bch_allocator_push(ca, bucket));
 344                        wake_up(&ca->set->btree_cache_wait);
 345                        wake_up(&ca->set->bucket_wait);
 346                }
 347
 348                /*
 349                 * We've run out of free buckets, we need to find some buckets
 350                 * we can invalidate. First, invalidate them in memory and add
 351                 * them to the free_inc list:
 352                 */
 353
 354retry_invalidate:
 355                allocator_wait(ca, ca->set->gc_mark_valid &&
 356                               !ca->invalidate_needs_gc);
 357                invalidate_buckets(ca);
 358
 359                /*
 360                 * Now, we write their new gens to disk so we can start writing
 361                 * new stuff to them:
 362                 */
 363                allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
 364                if (CACHE_SYNC(&ca->sb)) {
 365                        /*
 366                         * This could deadlock if an allocation with a btree
 367                         * node locked ever blocked - having the btree node
 368                         * locked would block garbage collection, but here we're
 369                         * waiting on garbage collection before we invalidate
 370                         * and free anything.
 371                         *
 372                         * But this should be safe since the btree code always
 373                         * uses btree_check_reserve() before allocating now, and
 374                         * if it fails it blocks without btree nodes locked.
 375                         */
 376                        if (!fifo_full(&ca->free_inc))
 377                                goto retry_invalidate;
 378
 379                        if (bch_prio_write(ca, false) < 0) {
 380                                ca->invalidate_needs_gc = 1;
 381                                wake_up_gc(ca->set);
 382                        }
 383                }
 384        }
 385out:
 386        wait_for_kthread_stop();
 387        return 0;
 388}
 389
 390/* Allocation */
 391
 392long bch_bucket_alloc(struct cache *ca, unsigned int reserve, bool wait)
 393{
 394        DEFINE_WAIT(w);
 395        struct bucket *b;
 396        long r;
 397
 398
 399        /* No allocation if CACHE_SET_IO_DISABLE bit is set */
 400        if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)))
 401                return -1;
 402
 403        /* fastpath */
 404        if (fifo_pop(&ca->free[RESERVE_NONE], r) ||
 405            fifo_pop(&ca->free[reserve], r))
 406                goto out;
 407
 408        if (!wait) {
 409                trace_bcache_alloc_fail(ca, reserve);
 410                return -1;
 411        }
 412
 413        do {
 414                prepare_to_wait(&ca->set->bucket_wait, &w,
 415                                TASK_UNINTERRUPTIBLE);
 416
 417                mutex_unlock(&ca->set->bucket_lock);
 418                schedule();
 419                mutex_lock(&ca->set->bucket_lock);
 420        } while (!fifo_pop(&ca->free[RESERVE_NONE], r) &&
 421                 !fifo_pop(&ca->free[reserve], r));
 422
 423        finish_wait(&ca->set->bucket_wait, &w);
 424out:
 425        if (ca->alloc_thread)
 426                wake_up_process(ca->alloc_thread);
 427
 428        trace_bcache_alloc(ca, reserve);
 429
 430        if (expensive_debug_checks(ca->set)) {
 431                size_t iter;
 432                long i;
 433                unsigned int j;
 434
 435                for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
 436                        BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
 437
 438                for (j = 0; j < RESERVE_NR; j++)
 439                        fifo_for_each(i, &ca->free[j], iter)
 440                                BUG_ON(i == r);
 441                fifo_for_each(i, &ca->free_inc, iter)
 442                        BUG_ON(i == r);
 443        }
 444
 445        b = ca->buckets + r;
 446
 447        BUG_ON(atomic_read(&b->pin) != 1);
 448
 449        SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
 450
 451        if (reserve <= RESERVE_PRIO) {
 452                SET_GC_MARK(b, GC_MARK_METADATA);
 453                SET_GC_MOVE(b, 0);
 454                b->prio = BTREE_PRIO;
 455        } else {
 456                SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
 457                SET_GC_MOVE(b, 0);
 458                b->prio = INITIAL_PRIO;
 459        }
 460
 461        if (ca->set->avail_nbuckets > 0) {
 462                ca->set->avail_nbuckets--;
 463                bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
 464        }
 465
 466        return r;
 467}
 468
 469void __bch_bucket_free(struct cache *ca, struct bucket *b)
 470{
 471        SET_GC_MARK(b, 0);
 472        SET_GC_SECTORS_USED(b, 0);
 473
 474        if (ca->set->avail_nbuckets < ca->set->nbuckets) {
 475                ca->set->avail_nbuckets++;
 476                bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
 477        }
 478}
 479
 480void bch_bucket_free(struct cache_set *c, struct bkey *k)
 481{
 482        unsigned int i;
 483
 484        for (i = 0; i < KEY_PTRS(k); i++)
 485                __bch_bucket_free(c->cache, PTR_BUCKET(c, k, i));
 486}
 487
 488int __bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
 489                           struct bkey *k, bool wait)
 490{
 491        struct cache *ca;
 492        long b;
 493
 494        /* No allocation if CACHE_SET_IO_DISABLE bit is set */
 495        if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags)))
 496                return -1;
 497
 498        lockdep_assert_held(&c->bucket_lock);
 499
 500        bkey_init(k);
 501
 502        ca = c->cache;
 503        b = bch_bucket_alloc(ca, reserve, wait);
 504        if (b == -1)
 505                goto err;
 506
 507        k->ptr[0] = MAKE_PTR(ca->buckets[b].gen,
 508                             bucket_to_sector(c, b),
 509                             ca->sb.nr_this_dev);
 510
 511        SET_KEY_PTRS(k, 1);
 512
 513        return 0;
 514err:
 515        bch_bucket_free(c, k);
 516        bkey_put(c, k);
 517        return -1;
 518}
 519
 520int bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
 521                         struct bkey *k, bool wait)
 522{
 523        int ret;
 524
 525        mutex_lock(&c->bucket_lock);
 526        ret = __bch_bucket_alloc_set(c, reserve, k, wait);
 527        mutex_unlock(&c->bucket_lock);
 528        return ret;
 529}
 530
 531/* Sector allocator */
 532
 533struct open_bucket {
 534        struct list_head        list;
 535        unsigned int            last_write_point;
 536        unsigned int            sectors_free;
 537        BKEY_PADDED(key);
 538};
 539
 540/*
 541 * We keep multiple buckets open for writes, and try to segregate different
 542 * write streams for better cache utilization: first we try to segregate flash
 543 * only volume write streams from cached devices, secondly we look for a bucket
 544 * where the last write to it was sequential with the current write, and
 545 * failing that we look for a bucket that was last used by the same task.
 546 *
 547 * The ideas is if you've got multiple tasks pulling data into the cache at the
 548 * same time, you'll get better cache utilization if you try to segregate their
 549 * data and preserve locality.
 550 *
 551 * For example, dirty sectors of flash only volume is not reclaimable, if their
 552 * dirty sectors mixed with dirty sectors of cached device, such buckets will
 553 * be marked as dirty and won't be reclaimed, though the dirty data of cached
 554 * device have been written back to backend device.
 555 *
 556 * And say you've starting Firefox at the same time you're copying a
 557 * bunch of files. Firefox will likely end up being fairly hot and stay in the
 558 * cache awhile, but the data you copied might not be; if you wrote all that
 559 * data to the same buckets it'd get invalidated at the same time.
 560 *
 561 * Both of those tasks will be doing fairly random IO so we can't rely on
 562 * detecting sequential IO to segregate their data, but going off of the task
 563 * should be a sane heuristic.
 564 */
 565static struct open_bucket *pick_data_bucket(struct cache_set *c,
 566                                            const struct bkey *search,
 567                                            unsigned int write_point,
 568                                            struct bkey *alloc)
 569{
 570        struct open_bucket *ret, *ret_task = NULL;
 571
 572        list_for_each_entry_reverse(ret, &c->data_buckets, list)
 573                if (UUID_FLASH_ONLY(&c->uuids[KEY_INODE(&ret->key)]) !=
 574                    UUID_FLASH_ONLY(&c->uuids[KEY_INODE(search)]))
 575                        continue;
 576                else if (!bkey_cmp(&ret->key, search))
 577                        goto found;
 578                else if (ret->last_write_point == write_point)
 579                        ret_task = ret;
 580
 581        ret = ret_task ?: list_first_entry(&c->data_buckets,
 582                                           struct open_bucket, list);
 583found:
 584        if (!ret->sectors_free && KEY_PTRS(alloc)) {
 585                ret->sectors_free = c->cache->sb.bucket_size;
 586                bkey_copy(&ret->key, alloc);
 587                bkey_init(alloc);
 588        }
 589
 590        if (!ret->sectors_free)
 591                ret = NULL;
 592
 593        return ret;
 594}
 595
 596/*
 597 * Allocates some space in the cache to write to, and k to point to the newly
 598 * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
 599 * end of the newly allocated space).
 600 *
 601 * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
 602 * sectors were actually allocated.
 603 *
 604 * If s->writeback is true, will not fail.
 605 */
 606bool bch_alloc_sectors(struct cache_set *c,
 607                       struct bkey *k,
 608                       unsigned int sectors,
 609                       unsigned int write_point,
 610                       unsigned int write_prio,
 611                       bool wait)
 612{
 613        struct open_bucket *b;
 614        BKEY_PADDED(key) alloc;
 615        unsigned int i;
 616
 617        /*
 618         * We might have to allocate a new bucket, which we can't do with a
 619         * spinlock held. So if we have to allocate, we drop the lock, allocate
 620         * and then retry. KEY_PTRS() indicates whether alloc points to
 621         * allocated bucket(s).
 622         */
 623
 624        bkey_init(&alloc.key);
 625        spin_lock(&c->data_bucket_lock);
 626
 627        while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) {
 628                unsigned int watermark = write_prio
 629                        ? RESERVE_MOVINGGC
 630                        : RESERVE_NONE;
 631
 632                spin_unlock(&c->data_bucket_lock);
 633
 634                if (bch_bucket_alloc_set(c, watermark, &alloc.key, wait))
 635                        return false;
 636
 637                spin_lock(&c->data_bucket_lock);
 638        }
 639
 640        /*
 641         * If we had to allocate, we might race and not need to allocate the
 642         * second time we call pick_data_bucket(). If we allocated a bucket but
 643         * didn't use it, drop the refcount bch_bucket_alloc_set() took:
 644         */
 645        if (KEY_PTRS(&alloc.key))
 646                bkey_put(c, &alloc.key);
 647
 648        for (i = 0; i < KEY_PTRS(&b->key); i++)
 649                EBUG_ON(ptr_stale(c, &b->key, i));
 650
 651        /* Set up the pointer to the space we're allocating: */
 652
 653        for (i = 0; i < KEY_PTRS(&b->key); i++)
 654                k->ptr[i] = b->key.ptr[i];
 655
 656        sectors = min(sectors, b->sectors_free);
 657
 658        SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
 659        SET_KEY_SIZE(k, sectors);
 660        SET_KEY_PTRS(k, KEY_PTRS(&b->key));
 661
 662        /*
 663         * Move b to the end of the lru, and keep track of what this bucket was
 664         * last used for:
 665         */
 666        list_move_tail(&b->list, &c->data_buckets);
 667        bkey_copy_key(&b->key, k);
 668        b->last_write_point = write_point;
 669
 670        b->sectors_free -= sectors;
 671
 672        for (i = 0; i < KEY_PTRS(&b->key); i++) {
 673                SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
 674
 675                atomic_long_add(sectors,
 676                                &c->cache->sectors_written);
 677        }
 678
 679        if (b->sectors_free < c->cache->sb.block_size)
 680                b->sectors_free = 0;
 681
 682        /*
 683         * k takes refcounts on the buckets it points to until it's inserted
 684         * into the btree, but if we're done with this bucket we just transfer
 685         * get_data_bucket()'s refcount.
 686         */
 687        if (b->sectors_free)
 688                for (i = 0; i < KEY_PTRS(&b->key); i++)
 689                        atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
 690
 691        spin_unlock(&c->data_bucket_lock);
 692        return true;
 693}
 694
 695/* Init */
 696
 697void bch_open_buckets_free(struct cache_set *c)
 698{
 699        struct open_bucket *b;
 700
 701        while (!list_empty(&c->data_buckets)) {
 702                b = list_first_entry(&c->data_buckets,
 703                                     struct open_bucket, list);
 704                list_del(&b->list);
 705                kfree(b);
 706        }
 707}
 708
 709int bch_open_buckets_alloc(struct cache_set *c)
 710{
 711        int i;
 712
 713        spin_lock_init(&c->data_bucket_lock);
 714
 715        for (i = 0; i < MAX_OPEN_BUCKETS; i++) {
 716                struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
 717
 718                if (!b)
 719                        return -ENOMEM;
 720
 721                list_add(&b->list, &c->data_buckets);
 722        }
 723
 724        return 0;
 725}
 726
 727int bch_cache_allocator_start(struct cache *ca)
 728{
 729        struct task_struct *k = kthread_run(bch_allocator_thread,
 730                                            ca, "bcache_allocator");
 731        if (IS_ERR(k))
 732                return PTR_ERR(k);
 733
 734        ca->alloc_thread = k;
 735        return 0;
 736}
 737