linux/drivers/md/bcache/super.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * bcache setup/teardown code, and some metadata io - read a superblock and
   4 * figure out what to do with it.
   5 *
   6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
   7 * Copyright 2012 Google, Inc.
   8 */
   9
  10#include "bcache.h"
  11#include "btree.h"
  12#include "debug.h"
  13#include "extents.h"
  14#include "request.h"
  15#include "writeback.h"
  16#include "features.h"
  17
  18#include <linux/blkdev.h>
  19#include <linux/pagemap.h>
  20#include <linux/debugfs.h>
  21#include <linux/genhd.h>
  22#include <linux/idr.h>
  23#include <linux/kthread.h>
  24#include <linux/workqueue.h>
  25#include <linux/module.h>
  26#include <linux/random.h>
  27#include <linux/reboot.h>
  28#include <linux/sysfs.h>
  29
  30unsigned int bch_cutoff_writeback;
  31unsigned int bch_cutoff_writeback_sync;
  32
  33static const char bcache_magic[] = {
  34        0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
  35        0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
  36};
  37
  38static const char invalid_uuid[] = {
  39        0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
  40        0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
  41};
  42
  43static struct kobject *bcache_kobj;
  44struct mutex bch_register_lock;
  45bool bcache_is_reboot;
  46LIST_HEAD(bch_cache_sets);
  47static LIST_HEAD(uncached_devices);
  48
  49static int bcache_major;
  50static DEFINE_IDA(bcache_device_idx);
  51static wait_queue_head_t unregister_wait;
  52struct workqueue_struct *bcache_wq;
  53struct workqueue_struct *bch_flush_wq;
  54struct workqueue_struct *bch_journal_wq;
  55
  56
  57#define BTREE_MAX_PAGES         (256 * 1024 / PAGE_SIZE)
  58/* limitation of partitions number on single bcache device */
  59#define BCACHE_MINORS           128
  60/* limitation of bcache devices number on single system */
  61#define BCACHE_DEVICE_IDX_MAX   ((1U << MINORBITS)/BCACHE_MINORS)
  62
  63/* Superblock */
  64
  65static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s)
  66{
  67        unsigned int bucket_size = le16_to_cpu(s->bucket_size);
  68
  69        if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
  70                if (bch_has_feature_large_bucket(sb)) {
  71                        unsigned int max, order;
  72
  73                        max = sizeof(unsigned int) * BITS_PER_BYTE - 1;
  74                        order = le16_to_cpu(s->bucket_size);
  75                        /*
  76                         * bcache tool will make sure the overflow won't
  77                         * happen, an error message here is enough.
  78                         */
  79                        if (order > max)
  80                                pr_err("Bucket size (1 << %u) overflows\n",
  81                                        order);
  82                        bucket_size = 1 << order;
  83                } else if (bch_has_feature_obso_large_bucket(sb)) {
  84                        bucket_size +=
  85                                le16_to_cpu(s->obso_bucket_size_hi) << 16;
  86                }
  87        }
  88
  89        return bucket_size;
  90}
  91
  92static const char *read_super_common(struct cache_sb *sb,  struct block_device *bdev,
  93                                     struct cache_sb_disk *s)
  94{
  95        const char *err;
  96        unsigned int i;
  97
  98        sb->first_bucket= le16_to_cpu(s->first_bucket);
  99        sb->nbuckets    = le64_to_cpu(s->nbuckets);
 100        sb->bucket_size = get_bucket_size(sb, s);
 101
 102        sb->nr_in_set   = le16_to_cpu(s->nr_in_set);
 103        sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
 104
 105        err = "Too many journal buckets";
 106        if (sb->keys > SB_JOURNAL_BUCKETS)
 107                goto err;
 108
 109        err = "Too many buckets";
 110        if (sb->nbuckets > LONG_MAX)
 111                goto err;
 112
 113        err = "Not enough buckets";
 114        if (sb->nbuckets < 1 << 7)
 115                goto err;
 116
 117        err = "Bad block size (not power of 2)";
 118        if (!is_power_of_2(sb->block_size))
 119                goto err;
 120
 121        err = "Bad block size (larger than page size)";
 122        if (sb->block_size > PAGE_SECTORS)
 123                goto err;
 124
 125        err = "Bad bucket size (not power of 2)";
 126        if (!is_power_of_2(sb->bucket_size))
 127                goto err;
 128
 129        err = "Bad bucket size (smaller than page size)";
 130        if (sb->bucket_size < PAGE_SECTORS)
 131                goto err;
 132
 133        err = "Invalid superblock: device too small";
 134        if (get_capacity(bdev->bd_disk) <
 135            sb->bucket_size * sb->nbuckets)
 136                goto err;
 137
 138        err = "Bad UUID";
 139        if (bch_is_zero(sb->set_uuid, 16))
 140                goto err;
 141
 142        err = "Bad cache device number in set";
 143        if (!sb->nr_in_set ||
 144            sb->nr_in_set <= sb->nr_this_dev ||
 145            sb->nr_in_set > MAX_CACHES_PER_SET)
 146                goto err;
 147
 148        err = "Journal buckets not sequential";
 149        for (i = 0; i < sb->keys; i++)
 150                if (sb->d[i] != sb->first_bucket + i)
 151                        goto err;
 152
 153        err = "Too many journal buckets";
 154        if (sb->first_bucket + sb->keys > sb->nbuckets)
 155                goto err;
 156
 157        err = "Invalid superblock: first bucket comes before end of super";
 158        if (sb->first_bucket * sb->bucket_size < 16)
 159                goto err;
 160
 161        err = NULL;
 162err:
 163        return err;
 164}
 165
 166
 167static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
 168                              struct cache_sb_disk **res)
 169{
 170        const char *err;
 171        struct cache_sb_disk *s;
 172        struct page *page;
 173        unsigned int i;
 174
 175        page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
 176                                   SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
 177        if (IS_ERR(page))
 178                return "IO error";
 179        s = page_address(page) + offset_in_page(SB_OFFSET);
 180
 181        sb->offset              = le64_to_cpu(s->offset);
 182        sb->version             = le64_to_cpu(s->version);
 183
 184        memcpy(sb->magic,       s->magic, 16);
 185        memcpy(sb->uuid,        s->uuid, 16);
 186        memcpy(sb->set_uuid,    s->set_uuid, 16);
 187        memcpy(sb->label,       s->label, SB_LABEL_SIZE);
 188
 189        sb->flags               = le64_to_cpu(s->flags);
 190        sb->seq                 = le64_to_cpu(s->seq);
 191        sb->last_mount          = le32_to_cpu(s->last_mount);
 192        sb->keys                = le16_to_cpu(s->keys);
 193
 194        for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
 195                sb->d[i] = le64_to_cpu(s->d[i]);
 196
 197        pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
 198                 sb->version, sb->flags, sb->seq, sb->keys);
 199
 200        err = "Not a bcache superblock (bad offset)";
 201        if (sb->offset != SB_SECTOR)
 202                goto err;
 203
 204        err = "Not a bcache superblock (bad magic)";
 205        if (memcmp(sb->magic, bcache_magic, 16))
 206                goto err;
 207
 208        err = "Bad checksum";
 209        if (s->csum != csum_set(s))
 210                goto err;
 211
 212        err = "Bad UUID";
 213        if (bch_is_zero(sb->uuid, 16))
 214                goto err;
 215
 216        sb->block_size  = le16_to_cpu(s->block_size);
 217
 218        err = "Superblock block size smaller than device block size";
 219        if (sb->block_size << 9 < bdev_logical_block_size(bdev))
 220                goto err;
 221
 222        switch (sb->version) {
 223        case BCACHE_SB_VERSION_BDEV:
 224                sb->data_offset = BDEV_DATA_START_DEFAULT;
 225                break;
 226        case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
 227        case BCACHE_SB_VERSION_BDEV_WITH_FEATURES:
 228                sb->data_offset = le64_to_cpu(s->data_offset);
 229
 230                err = "Bad data offset";
 231                if (sb->data_offset < BDEV_DATA_START_DEFAULT)
 232                        goto err;
 233
 234                break;
 235        case BCACHE_SB_VERSION_CDEV:
 236        case BCACHE_SB_VERSION_CDEV_WITH_UUID:
 237                err = read_super_common(sb, bdev, s);
 238                if (err)
 239                        goto err;
 240                break;
 241        case BCACHE_SB_VERSION_CDEV_WITH_FEATURES:
 242                /*
 243                 * Feature bits are needed in read_super_common(),
 244                 * convert them firstly.
 245                 */
 246                sb->feature_compat = le64_to_cpu(s->feature_compat);
 247                sb->feature_incompat = le64_to_cpu(s->feature_incompat);
 248                sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat);
 249
 250                /* Check incompatible features */
 251                err = "Unsupported compatible feature found";
 252                if (bch_has_unknown_compat_features(sb))
 253                        goto err;
 254
 255                err = "Unsupported read-only compatible feature found";
 256                if (bch_has_unknown_ro_compat_features(sb))
 257                        goto err;
 258
 259                err = "Unsupported incompatible feature found";
 260                if (bch_has_unknown_incompat_features(sb))
 261                        goto err;
 262
 263                err = read_super_common(sb, bdev, s);
 264                if (err)
 265                        goto err;
 266                break;
 267        default:
 268                err = "Unsupported superblock version";
 269                goto err;
 270        }
 271
 272        sb->last_mount = (u32)ktime_get_real_seconds();
 273        *res = s;
 274        return NULL;
 275err:
 276        put_page(page);
 277        return err;
 278}
 279
 280static void write_bdev_super_endio(struct bio *bio)
 281{
 282        struct cached_dev *dc = bio->bi_private;
 283
 284        if (bio->bi_status)
 285                bch_count_backing_io_errors(dc, bio);
 286
 287        closure_put(&dc->sb_write);
 288}
 289
 290static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
 291                struct bio *bio)
 292{
 293        unsigned int i;
 294
 295        bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
 296        bio->bi_iter.bi_sector  = SB_SECTOR;
 297        __bio_add_page(bio, virt_to_page(out), SB_SIZE,
 298                        offset_in_page(out));
 299
 300        out->offset             = cpu_to_le64(sb->offset);
 301
 302        memcpy(out->uuid,       sb->uuid, 16);
 303        memcpy(out->set_uuid,   sb->set_uuid, 16);
 304        memcpy(out->label,      sb->label, SB_LABEL_SIZE);
 305
 306        out->flags              = cpu_to_le64(sb->flags);
 307        out->seq                = cpu_to_le64(sb->seq);
 308
 309        out->last_mount         = cpu_to_le32(sb->last_mount);
 310        out->first_bucket       = cpu_to_le16(sb->first_bucket);
 311        out->keys               = cpu_to_le16(sb->keys);
 312
 313        for (i = 0; i < sb->keys; i++)
 314                out->d[i] = cpu_to_le64(sb->d[i]);
 315
 316        if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
 317                out->feature_compat    = cpu_to_le64(sb->feature_compat);
 318                out->feature_incompat  = cpu_to_le64(sb->feature_incompat);
 319                out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat);
 320        }
 321
 322        out->version            = cpu_to_le64(sb->version);
 323        out->csum = csum_set(out);
 324
 325        pr_debug("ver %llu, flags %llu, seq %llu\n",
 326                 sb->version, sb->flags, sb->seq);
 327
 328        submit_bio(bio);
 329}
 330
 331static void bch_write_bdev_super_unlock(struct closure *cl)
 332{
 333        struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
 334
 335        up(&dc->sb_write_mutex);
 336}
 337
 338void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
 339{
 340        struct closure *cl = &dc->sb_write;
 341        struct bio *bio = &dc->sb_bio;
 342
 343        down(&dc->sb_write_mutex);
 344        closure_init(cl, parent);
 345
 346        bio_init(bio, dc->sb_bv, 1);
 347        bio_set_dev(bio, dc->bdev);
 348        bio->bi_end_io  = write_bdev_super_endio;
 349        bio->bi_private = dc;
 350
 351        closure_get(cl);
 352        /* I/O request sent to backing device */
 353        __write_super(&dc->sb, dc->sb_disk, bio);
 354
 355        closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
 356}
 357
 358static void write_super_endio(struct bio *bio)
 359{
 360        struct cache *ca = bio->bi_private;
 361
 362        /* is_read = 0 */
 363        bch_count_io_errors(ca, bio->bi_status, 0,
 364                            "writing superblock");
 365        closure_put(&ca->set->sb_write);
 366}
 367
 368static void bcache_write_super_unlock(struct closure *cl)
 369{
 370        struct cache_set *c = container_of(cl, struct cache_set, sb_write);
 371
 372        up(&c->sb_write_mutex);
 373}
 374
 375void bcache_write_super(struct cache_set *c)
 376{
 377        struct closure *cl = &c->sb_write;
 378        struct cache *ca = c->cache;
 379        struct bio *bio = &ca->sb_bio;
 380        unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
 381
 382        down(&c->sb_write_mutex);
 383        closure_init(cl, &c->cl);
 384
 385        ca->sb.seq++;
 386
 387        if (ca->sb.version < version)
 388                ca->sb.version = version;
 389
 390        bio_init(bio, ca->sb_bv, 1);
 391        bio_set_dev(bio, ca->bdev);
 392        bio->bi_end_io  = write_super_endio;
 393        bio->bi_private = ca;
 394
 395        closure_get(cl);
 396        __write_super(&ca->sb, ca->sb_disk, bio);
 397
 398        closure_return_with_destructor(cl, bcache_write_super_unlock);
 399}
 400
 401/* UUID io */
 402
 403static void uuid_endio(struct bio *bio)
 404{
 405        struct closure *cl = bio->bi_private;
 406        struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
 407
 408        cache_set_err_on(bio->bi_status, c, "accessing uuids");
 409        bch_bbio_free(bio, c);
 410        closure_put(cl);
 411}
 412
 413static void uuid_io_unlock(struct closure *cl)
 414{
 415        struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
 416
 417        up(&c->uuid_write_mutex);
 418}
 419
 420static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
 421                    struct bkey *k, struct closure *parent)
 422{
 423        struct closure *cl = &c->uuid_write;
 424        struct uuid_entry *u;
 425        unsigned int i;
 426        char buf[80];
 427
 428        BUG_ON(!parent);
 429        down(&c->uuid_write_mutex);
 430        closure_init(cl, parent);
 431
 432        for (i = 0; i < KEY_PTRS(k); i++) {
 433                struct bio *bio = bch_bbio_alloc(c);
 434
 435                bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
 436                bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
 437
 438                bio->bi_end_io  = uuid_endio;
 439                bio->bi_private = cl;
 440                bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
 441                bch_bio_map(bio, c->uuids);
 442
 443                bch_submit_bbio(bio, c, k, i);
 444
 445                if (op != REQ_OP_WRITE)
 446                        break;
 447        }
 448
 449        bch_extent_to_text(buf, sizeof(buf), k);
 450        pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf);
 451
 452        for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
 453                if (!bch_is_zero(u->uuid, 16))
 454                        pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
 455                                 u - c->uuids, u->uuid, u->label,
 456                                 u->first_reg, u->last_reg, u->invalidated);
 457
 458        closure_return_with_destructor(cl, uuid_io_unlock);
 459}
 460
 461static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
 462{
 463        struct bkey *k = &j->uuid_bucket;
 464
 465        if (__bch_btree_ptr_invalid(c, k))
 466                return "bad uuid pointer";
 467
 468        bkey_copy(&c->uuid_bucket, k);
 469        uuid_io(c, REQ_OP_READ, 0, k, cl);
 470
 471        if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
 472                struct uuid_entry_v0    *u0 = (void *) c->uuids;
 473                struct uuid_entry       *u1 = (void *) c->uuids;
 474                int i;
 475
 476                closure_sync(cl);
 477
 478                /*
 479                 * Since the new uuid entry is bigger than the old, we have to
 480                 * convert starting at the highest memory address and work down
 481                 * in order to do it in place
 482                 */
 483
 484                for (i = c->nr_uuids - 1;
 485                     i >= 0;
 486                     --i) {
 487                        memcpy(u1[i].uuid,      u0[i].uuid, 16);
 488                        memcpy(u1[i].label,     u0[i].label, 32);
 489
 490                        u1[i].first_reg         = u0[i].first_reg;
 491                        u1[i].last_reg          = u0[i].last_reg;
 492                        u1[i].invalidated       = u0[i].invalidated;
 493
 494                        u1[i].flags     = 0;
 495                        u1[i].sectors   = 0;
 496                }
 497        }
 498
 499        return NULL;
 500}
 501
 502static int __uuid_write(struct cache_set *c)
 503{
 504        BKEY_PADDED(key) k;
 505        struct closure cl;
 506        struct cache *ca = c->cache;
 507        unsigned int size;
 508
 509        closure_init_stack(&cl);
 510        lockdep_assert_held(&bch_register_lock);
 511
 512        if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true))
 513                return 1;
 514
 515        size =  meta_bucket_pages(&ca->sb) * PAGE_SECTORS;
 516        SET_KEY_SIZE(&k.key, size);
 517        uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
 518        closure_sync(&cl);
 519
 520        /* Only one bucket used for uuid write */
 521        atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
 522
 523        bkey_copy(&c->uuid_bucket, &k.key);
 524        bkey_put(c, &k.key);
 525        return 0;
 526}
 527
 528int bch_uuid_write(struct cache_set *c)
 529{
 530        int ret = __uuid_write(c);
 531
 532        if (!ret)
 533                bch_journal_meta(c, NULL);
 534
 535        return ret;
 536}
 537
 538static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
 539{
 540        struct uuid_entry *u;
 541
 542        for (u = c->uuids;
 543             u < c->uuids + c->nr_uuids; u++)
 544                if (!memcmp(u->uuid, uuid, 16))
 545                        return u;
 546
 547        return NULL;
 548}
 549
 550static struct uuid_entry *uuid_find_empty(struct cache_set *c)
 551{
 552        static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
 553
 554        return uuid_find(c, zero_uuid);
 555}
 556
 557/*
 558 * Bucket priorities/gens:
 559 *
 560 * For each bucket, we store on disk its
 561 *   8 bit gen
 562 *  16 bit priority
 563 *
 564 * See alloc.c for an explanation of the gen. The priority is used to implement
 565 * lru (and in the future other) cache replacement policies; for most purposes
 566 * it's just an opaque integer.
 567 *
 568 * The gens and the priorities don't have a whole lot to do with each other, and
 569 * it's actually the gens that must be written out at specific times - it's no
 570 * big deal if the priorities don't get written, if we lose them we just reuse
 571 * buckets in suboptimal order.
 572 *
 573 * On disk they're stored in a packed array, and in as many buckets are required
 574 * to fit them all. The buckets we use to store them form a list; the journal
 575 * header points to the first bucket, the first bucket points to the second
 576 * bucket, et cetera.
 577 *
 578 * This code is used by the allocation code; periodically (whenever it runs out
 579 * of buckets to allocate from) the allocation code will invalidate some
 580 * buckets, but it can't use those buckets until their new gens are safely on
 581 * disk.
 582 */
 583
 584static void prio_endio(struct bio *bio)
 585{
 586        struct cache *ca = bio->bi_private;
 587
 588        cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
 589        bch_bbio_free(bio, ca->set);
 590        closure_put(&ca->prio);
 591}
 592
 593static void prio_io(struct cache *ca, uint64_t bucket, int op,
 594                    unsigned long op_flags)
 595{
 596        struct closure *cl = &ca->prio;
 597        struct bio *bio = bch_bbio_alloc(ca->set);
 598
 599        closure_init_stack(cl);
 600
 601        bio->bi_iter.bi_sector  = bucket * ca->sb.bucket_size;
 602        bio_set_dev(bio, ca->bdev);
 603        bio->bi_iter.bi_size    = meta_bucket_bytes(&ca->sb);
 604
 605        bio->bi_end_io  = prio_endio;
 606        bio->bi_private = ca;
 607        bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
 608        bch_bio_map(bio, ca->disk_buckets);
 609
 610        closure_bio_submit(ca->set, bio, &ca->prio);
 611        closure_sync(cl);
 612}
 613
 614int bch_prio_write(struct cache *ca, bool wait)
 615{
 616        int i;
 617        struct bucket *b;
 618        struct closure cl;
 619
 620        pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
 621                 fifo_used(&ca->free[RESERVE_PRIO]),
 622                 fifo_used(&ca->free[RESERVE_NONE]),
 623                 fifo_used(&ca->free_inc));
 624
 625        /*
 626         * Pre-check if there are enough free buckets. In the non-blocking
 627         * scenario it's better to fail early rather than starting to allocate
 628         * buckets and do a cleanup later in case of failure.
 629         */
 630        if (!wait) {
 631                size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
 632                               fifo_used(&ca->free[RESERVE_NONE]);
 633                if (prio_buckets(ca) > avail)
 634                        return -ENOMEM;
 635        }
 636
 637        closure_init_stack(&cl);
 638
 639        lockdep_assert_held(&ca->set->bucket_lock);
 640
 641        ca->disk_buckets->seq++;
 642
 643        atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
 644                        &ca->meta_sectors_written);
 645
 646        for (i = prio_buckets(ca) - 1; i >= 0; --i) {
 647                long bucket;
 648                struct prio_set *p = ca->disk_buckets;
 649                struct bucket_disk *d = p->data;
 650                struct bucket_disk *end = d + prios_per_bucket(ca);
 651
 652                for (b = ca->buckets + i * prios_per_bucket(ca);
 653                     b < ca->buckets + ca->sb.nbuckets && d < end;
 654                     b++, d++) {
 655                        d->prio = cpu_to_le16(b->prio);
 656                        d->gen = b->gen;
 657                }
 658
 659                p->next_bucket  = ca->prio_buckets[i + 1];
 660                p->magic        = pset_magic(&ca->sb);
 661                p->csum         = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8);
 662
 663                bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
 664                BUG_ON(bucket == -1);
 665
 666                mutex_unlock(&ca->set->bucket_lock);
 667                prio_io(ca, bucket, REQ_OP_WRITE, 0);
 668                mutex_lock(&ca->set->bucket_lock);
 669
 670                ca->prio_buckets[i] = bucket;
 671                atomic_dec_bug(&ca->buckets[bucket].pin);
 672        }
 673
 674        mutex_unlock(&ca->set->bucket_lock);
 675
 676        bch_journal_meta(ca->set, &cl);
 677        closure_sync(&cl);
 678
 679        mutex_lock(&ca->set->bucket_lock);
 680
 681        /*
 682         * Don't want the old priorities to get garbage collected until after we
 683         * finish writing the new ones, and they're journalled
 684         */
 685        for (i = 0; i < prio_buckets(ca); i++) {
 686                if (ca->prio_last_buckets[i])
 687                        __bch_bucket_free(ca,
 688                                &ca->buckets[ca->prio_last_buckets[i]]);
 689
 690                ca->prio_last_buckets[i] = ca->prio_buckets[i];
 691        }
 692        return 0;
 693}
 694
 695static int prio_read(struct cache *ca, uint64_t bucket)
 696{
 697        struct prio_set *p = ca->disk_buckets;
 698        struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
 699        struct bucket *b;
 700        unsigned int bucket_nr = 0;
 701        int ret = -EIO;
 702
 703        for (b = ca->buckets;
 704             b < ca->buckets + ca->sb.nbuckets;
 705             b++, d++) {
 706                if (d == end) {
 707                        ca->prio_buckets[bucket_nr] = bucket;
 708                        ca->prio_last_buckets[bucket_nr] = bucket;
 709                        bucket_nr++;
 710
 711                        prio_io(ca, bucket, REQ_OP_READ, 0);
 712
 713                        if (p->csum !=
 714                            bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) {
 715                                pr_warn("bad csum reading priorities\n");
 716                                goto out;
 717                        }
 718
 719                        if (p->magic != pset_magic(&ca->sb)) {
 720                                pr_warn("bad magic reading priorities\n");
 721                                goto out;
 722                        }
 723
 724                        bucket = p->next_bucket;
 725                        d = p->data;
 726                }
 727
 728                b->prio = le16_to_cpu(d->prio);
 729                b->gen = b->last_gc = d->gen;
 730        }
 731
 732        ret = 0;
 733out:
 734        return ret;
 735}
 736
 737/* Bcache device */
 738
 739static int open_dev(struct block_device *b, fmode_t mode)
 740{
 741        struct bcache_device *d = b->bd_disk->private_data;
 742
 743        if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
 744                return -ENXIO;
 745
 746        closure_get(&d->cl);
 747        return 0;
 748}
 749
 750static void release_dev(struct gendisk *b, fmode_t mode)
 751{
 752        struct bcache_device *d = b->private_data;
 753
 754        closure_put(&d->cl);
 755}
 756
 757static int ioctl_dev(struct block_device *b, fmode_t mode,
 758                     unsigned int cmd, unsigned long arg)
 759{
 760        struct bcache_device *d = b->bd_disk->private_data;
 761
 762        return d->ioctl(d, mode, cmd, arg);
 763}
 764
 765static const struct block_device_operations bcache_cached_ops = {
 766        .submit_bio     = cached_dev_submit_bio,
 767        .open           = open_dev,
 768        .release        = release_dev,
 769        .ioctl          = ioctl_dev,
 770        .owner          = THIS_MODULE,
 771};
 772
 773static const struct block_device_operations bcache_flash_ops = {
 774        .submit_bio     = flash_dev_submit_bio,
 775        .open           = open_dev,
 776        .release        = release_dev,
 777        .ioctl          = ioctl_dev,
 778        .owner          = THIS_MODULE,
 779};
 780
 781void bcache_device_stop(struct bcache_device *d)
 782{
 783        if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
 784                /*
 785                 * closure_fn set to
 786                 * - cached device: cached_dev_flush()
 787                 * - flash dev: flash_dev_flush()
 788                 */
 789                closure_queue(&d->cl);
 790}
 791
 792static void bcache_device_unlink(struct bcache_device *d)
 793{
 794        lockdep_assert_held(&bch_register_lock);
 795
 796        if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
 797                struct cache *ca = d->c->cache;
 798
 799                sysfs_remove_link(&d->c->kobj, d->name);
 800                sysfs_remove_link(&d->kobj, "cache");
 801
 802                bd_unlink_disk_holder(ca->bdev, d->disk);
 803        }
 804}
 805
 806static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
 807                               const char *name)
 808{
 809        struct cache *ca = c->cache;
 810        int ret;
 811
 812        bd_link_disk_holder(ca->bdev, d->disk);
 813
 814        snprintf(d->name, BCACHEDEVNAME_SIZE,
 815                 "%s%u", name, d->id);
 816
 817        ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
 818        if (ret < 0)
 819                pr_err("Couldn't create device -> cache set symlink\n");
 820
 821        ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
 822        if (ret < 0)
 823                pr_err("Couldn't create cache set -> device symlink\n");
 824
 825        clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
 826}
 827
 828static void bcache_device_detach(struct bcache_device *d)
 829{
 830        lockdep_assert_held(&bch_register_lock);
 831
 832        atomic_dec(&d->c->attached_dev_nr);
 833
 834        if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
 835                struct uuid_entry *u = d->c->uuids + d->id;
 836
 837                SET_UUID_FLASH_ONLY(u, 0);
 838                memcpy(u->uuid, invalid_uuid, 16);
 839                u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
 840                bch_uuid_write(d->c);
 841        }
 842
 843        bcache_device_unlink(d);
 844
 845        d->c->devices[d->id] = NULL;
 846        closure_put(&d->c->caching);
 847        d->c = NULL;
 848}
 849
 850static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
 851                                 unsigned int id)
 852{
 853        d->id = id;
 854        d->c = c;
 855        c->devices[id] = d;
 856
 857        if (id >= c->devices_max_used)
 858                c->devices_max_used = id + 1;
 859
 860        closure_get(&c->caching);
 861}
 862
 863static inline int first_minor_to_idx(int first_minor)
 864{
 865        return (first_minor/BCACHE_MINORS);
 866}
 867
 868static inline int idx_to_first_minor(int idx)
 869{
 870        return (idx * BCACHE_MINORS);
 871}
 872
 873static void bcache_device_free(struct bcache_device *d)
 874{
 875        struct gendisk *disk = d->disk;
 876
 877        lockdep_assert_held(&bch_register_lock);
 878
 879        if (disk)
 880                pr_info("%s stopped\n", disk->disk_name);
 881        else
 882                pr_err("bcache device (NULL gendisk) stopped\n");
 883
 884        if (d->c)
 885                bcache_device_detach(d);
 886
 887        if (disk) {
 888                blk_cleanup_disk(disk);
 889                ida_simple_remove(&bcache_device_idx,
 890                                  first_minor_to_idx(disk->first_minor));
 891        }
 892
 893        bioset_exit(&d->bio_split);
 894        kvfree(d->full_dirty_stripes);
 895        kvfree(d->stripe_sectors_dirty);
 896
 897        closure_debug_destroy(&d->cl);
 898}
 899
 900static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
 901                sector_t sectors, struct block_device *cached_bdev,
 902                const struct block_device_operations *ops)
 903{
 904        struct request_queue *q;
 905        const size_t max_stripes = min_t(size_t, INT_MAX,
 906                                         SIZE_MAX / sizeof(atomic_t));
 907        uint64_t n;
 908        int idx;
 909
 910        if (!d->stripe_size)
 911                d->stripe_size = 1 << 31;
 912
 913        n = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
 914        if (!n || n > max_stripes) {
 915                pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n",
 916                        n);
 917                return -ENOMEM;
 918        }
 919        d->nr_stripes = n;
 920
 921        n = d->nr_stripes * sizeof(atomic_t);
 922        d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
 923        if (!d->stripe_sectors_dirty)
 924                return -ENOMEM;
 925
 926        n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
 927        d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
 928        if (!d->full_dirty_stripes)
 929                goto out_free_stripe_sectors_dirty;
 930
 931        idx = ida_simple_get(&bcache_device_idx, 0,
 932                                BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
 933        if (idx < 0)
 934                goto out_free_full_dirty_stripes;
 935
 936        if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
 937                        BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
 938                goto out_ida_remove;
 939
 940        d->disk = blk_alloc_disk(NUMA_NO_NODE);
 941        if (!d->disk)
 942                goto out_bioset_exit;
 943
 944        set_capacity(d->disk, sectors);
 945        snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
 946
 947        d->disk->major          = bcache_major;
 948        d->disk->first_minor    = idx_to_first_minor(idx);
 949        d->disk->minors         = BCACHE_MINORS;
 950        d->disk->fops           = ops;
 951        d->disk->private_data   = d;
 952
 953        q = d->disk->queue;
 954        q->limits.max_hw_sectors        = UINT_MAX;
 955        q->limits.max_sectors           = UINT_MAX;
 956        q->limits.max_segment_size      = UINT_MAX;
 957        q->limits.max_segments          = BIO_MAX_VECS;
 958        blk_queue_max_discard_sectors(q, UINT_MAX);
 959        q->limits.discard_granularity   = 512;
 960        q->limits.io_min                = block_size;
 961        q->limits.logical_block_size    = block_size;
 962        q->limits.physical_block_size   = block_size;
 963
 964        if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) {
 965                /*
 966                 * This should only happen with BCACHE_SB_VERSION_BDEV.
 967                 * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
 968                 */
 969                pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
 970                        d->disk->disk_name, q->limits.logical_block_size,
 971                        PAGE_SIZE, bdev_logical_block_size(cached_bdev));
 972
 973                /* This also adjusts physical block size/min io size if needed */
 974                blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev));
 975        }
 976
 977        blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
 978        blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
 979        blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
 980
 981        blk_queue_write_cache(q, true, true);
 982
 983        return 0;
 984
 985out_bioset_exit:
 986        bioset_exit(&d->bio_split);
 987out_ida_remove:
 988        ida_simple_remove(&bcache_device_idx, idx);
 989out_free_full_dirty_stripes:
 990        kvfree(d->full_dirty_stripes);
 991out_free_stripe_sectors_dirty:
 992        kvfree(d->stripe_sectors_dirty);
 993        return -ENOMEM;
 994
 995}
 996
 997/* Cached device */
 998
 999static void calc_cached_dev_sectors(struct cache_set *c)
1000{
1001        uint64_t sectors = 0;
1002        struct cached_dev *dc;
1003
1004        list_for_each_entry(dc, &c->cached_devs, list)
1005                sectors += bdev_sectors(dc->bdev);
1006
1007        c->cached_dev_sectors = sectors;
1008}
1009
1010#define BACKING_DEV_OFFLINE_TIMEOUT 5
1011static int cached_dev_status_update(void *arg)
1012{
1013        struct cached_dev *dc = arg;
1014        struct request_queue *q;
1015
1016        /*
1017         * If this delayed worker is stopping outside, directly quit here.
1018         * dc->io_disable might be set via sysfs interface, so check it
1019         * here too.
1020         */
1021        while (!kthread_should_stop() && !dc->io_disable) {
1022                q = bdev_get_queue(dc->bdev);
1023                if (blk_queue_dying(q))
1024                        dc->offline_seconds++;
1025                else
1026                        dc->offline_seconds = 0;
1027
1028                if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
1029                        pr_err("%s: device offline for %d seconds\n",
1030                               dc->backing_dev_name,
1031                               BACKING_DEV_OFFLINE_TIMEOUT);
1032                        pr_err("%s: disable I/O request due to backing device offline\n",
1033                               dc->disk.name);
1034                        dc->io_disable = true;
1035                        /* let others know earlier that io_disable is true */
1036                        smp_mb();
1037                        bcache_device_stop(&dc->disk);
1038                        break;
1039                }
1040                schedule_timeout_interruptible(HZ);
1041        }
1042
1043        wait_for_kthread_stop();
1044        return 0;
1045}
1046
1047
1048int bch_cached_dev_run(struct cached_dev *dc)
1049{
1050        int ret = 0;
1051        struct bcache_device *d = &dc->disk;
1052        char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
1053        char *env[] = {
1054                "DRIVER=bcache",
1055                kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
1056                kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
1057                NULL,
1058        };
1059
1060        if (dc->io_disable) {
1061                pr_err("I/O disabled on cached dev %s\n",
1062                       dc->backing_dev_name);
1063                ret = -EIO;
1064                goto out;
1065        }
1066
1067        if (atomic_xchg(&dc->running, 1)) {
1068                pr_info("cached dev %s is running already\n",
1069                       dc->backing_dev_name);
1070                ret = -EBUSY;
1071                goto out;
1072        }
1073
1074        if (!d->c &&
1075            BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
1076                struct closure cl;
1077
1078                closure_init_stack(&cl);
1079
1080                SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
1081                bch_write_bdev_super(dc, &cl);
1082                closure_sync(&cl);
1083        }
1084
1085        add_disk(d->disk);
1086        bd_link_disk_holder(dc->bdev, dc->disk.disk);
1087        /*
1088         * won't show up in the uevent file, use udevadm monitor -e instead
1089         * only class / kset properties are persistent
1090         */
1091        kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
1092
1093        if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
1094            sysfs_create_link(&disk_to_dev(d->disk)->kobj,
1095                              &d->kobj, "bcache")) {
1096                pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1097                ret = -ENOMEM;
1098                goto out;
1099        }
1100
1101        dc->status_update_thread = kthread_run(cached_dev_status_update,
1102                                               dc, "bcache_status_update");
1103        if (IS_ERR(dc->status_update_thread)) {
1104                pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1105        }
1106
1107out:
1108        kfree(env[1]);
1109        kfree(env[2]);
1110        kfree(buf);
1111        return ret;
1112}
1113
1114/*
1115 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1116 * work dc->writeback_rate_update is running. Wait until the routine
1117 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1118 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1119 * seconds, give up waiting here and continue to cancel it too.
1120 */
1121static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1122{
1123        int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1124
1125        do {
1126                if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1127                              &dc->disk.flags))
1128                        break;
1129                time_out--;
1130                schedule_timeout_interruptible(1);
1131        } while (time_out > 0);
1132
1133        if (time_out == 0)
1134                pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1135
1136        cancel_delayed_work_sync(&dc->writeback_rate_update);
1137}
1138
1139static void cached_dev_detach_finish(struct work_struct *w)
1140{
1141        struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1142
1143        BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1144        BUG_ON(refcount_read(&dc->count));
1145
1146
1147        if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1148                cancel_writeback_rate_update_dwork(dc);
1149
1150        if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1151                kthread_stop(dc->writeback_thread);
1152                dc->writeback_thread = NULL;
1153        }
1154
1155        mutex_lock(&bch_register_lock);
1156
1157        calc_cached_dev_sectors(dc->disk.c);
1158        bcache_device_detach(&dc->disk);
1159        list_move(&dc->list, &uncached_devices);
1160
1161        clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1162        clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1163
1164        mutex_unlock(&bch_register_lock);
1165
1166        pr_info("Caching disabled for %s\n", dc->backing_dev_name);
1167
1168        /* Drop ref we took in cached_dev_detach() */
1169        closure_put(&dc->disk.cl);
1170}
1171
1172void bch_cached_dev_detach(struct cached_dev *dc)
1173{
1174        lockdep_assert_held(&bch_register_lock);
1175
1176        if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1177                return;
1178
1179        if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1180                return;
1181
1182        /*
1183         * Block the device from being closed and freed until we're finished
1184         * detaching
1185         */
1186        closure_get(&dc->disk.cl);
1187
1188        bch_writeback_queue(dc);
1189
1190        cached_dev_put(dc);
1191}
1192
1193int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1194                          uint8_t *set_uuid)
1195{
1196        uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1197        struct uuid_entry *u;
1198        struct cached_dev *exist_dc, *t;
1199        int ret = 0;
1200
1201        if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) ||
1202            (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16)))
1203                return -ENOENT;
1204
1205        if (dc->disk.c) {
1206                pr_err("Can't attach %s: already attached\n",
1207                       dc->backing_dev_name);
1208                return -EINVAL;
1209        }
1210
1211        if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1212                pr_err("Can't attach %s: shutting down\n",
1213                       dc->backing_dev_name);
1214                return -EINVAL;
1215        }
1216
1217        if (dc->sb.block_size < c->cache->sb.block_size) {
1218                /* Will die */
1219                pr_err("Couldn't attach %s: block size less than set's block size\n",
1220                       dc->backing_dev_name);
1221                return -EINVAL;
1222        }
1223
1224        /* Check whether already attached */
1225        list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1226                if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1227                        pr_err("Tried to attach %s but duplicate UUID already attached\n",
1228                                dc->backing_dev_name);
1229
1230                        return -EINVAL;
1231                }
1232        }
1233
1234        u = uuid_find(c, dc->sb.uuid);
1235
1236        if (u &&
1237            (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1238             BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1239                memcpy(u->uuid, invalid_uuid, 16);
1240                u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1241                u = NULL;
1242        }
1243
1244        if (!u) {
1245                if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1246                        pr_err("Couldn't find uuid for %s in set\n",
1247                               dc->backing_dev_name);
1248                        return -ENOENT;
1249                }
1250
1251                u = uuid_find_empty(c);
1252                if (!u) {
1253                        pr_err("Not caching %s, no room for UUID\n",
1254                               dc->backing_dev_name);
1255                        return -EINVAL;
1256                }
1257        }
1258
1259        /*
1260         * Deadlocks since we're called via sysfs...
1261         * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1262         */
1263
1264        if (bch_is_zero(u->uuid, 16)) {
1265                struct closure cl;
1266
1267                closure_init_stack(&cl);
1268
1269                memcpy(u->uuid, dc->sb.uuid, 16);
1270                memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1271                u->first_reg = u->last_reg = rtime;
1272                bch_uuid_write(c);
1273
1274                memcpy(dc->sb.set_uuid, c->set_uuid, 16);
1275                SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1276
1277                bch_write_bdev_super(dc, &cl);
1278                closure_sync(&cl);
1279        } else {
1280                u->last_reg = rtime;
1281                bch_uuid_write(c);
1282        }
1283
1284        bcache_device_attach(&dc->disk, c, u - c->uuids);
1285        list_move(&dc->list, &c->cached_devs);
1286        calc_cached_dev_sectors(c);
1287
1288        /*
1289         * dc->c must be set before dc->count != 0 - paired with the mb in
1290         * cached_dev_get()
1291         */
1292        smp_wmb();
1293        refcount_set(&dc->count, 1);
1294
1295        /* Block writeback thread, but spawn it */
1296        down_write(&dc->writeback_lock);
1297        if (bch_cached_dev_writeback_start(dc)) {
1298                up_write(&dc->writeback_lock);
1299                pr_err("Couldn't start writeback facilities for %s\n",
1300                       dc->disk.disk->disk_name);
1301                return -ENOMEM;
1302        }
1303
1304        if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1305                atomic_set(&dc->has_dirty, 1);
1306                bch_writeback_queue(dc);
1307        }
1308
1309        bch_sectors_dirty_init(&dc->disk);
1310
1311        ret = bch_cached_dev_run(dc);
1312        if (ret && (ret != -EBUSY)) {
1313                up_write(&dc->writeback_lock);
1314                /*
1315                 * bch_register_lock is held, bcache_device_stop() is not
1316                 * able to be directly called. The kthread and kworker
1317                 * created previously in bch_cached_dev_writeback_start()
1318                 * have to be stopped manually here.
1319                 */
1320                kthread_stop(dc->writeback_thread);
1321                cancel_writeback_rate_update_dwork(dc);
1322                pr_err("Couldn't run cached device %s\n",
1323                       dc->backing_dev_name);
1324                return ret;
1325        }
1326
1327        bcache_device_link(&dc->disk, c, "bdev");
1328        atomic_inc(&c->attached_dev_nr);
1329
1330        if (bch_has_feature_obso_large_bucket(&(c->cache->sb))) {
1331                pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1332                pr_err("Please update to the latest bcache-tools to create the cache device\n");
1333                set_disk_ro(dc->disk.disk, 1);
1334        }
1335
1336        /* Allow the writeback thread to proceed */
1337        up_write(&dc->writeback_lock);
1338
1339        pr_info("Caching %s as %s on set %pU\n",
1340                dc->backing_dev_name,
1341                dc->disk.disk->disk_name,
1342                dc->disk.c->set_uuid);
1343        return 0;
1344}
1345
1346/* when dc->disk.kobj released */
1347void bch_cached_dev_release(struct kobject *kobj)
1348{
1349        struct cached_dev *dc = container_of(kobj, struct cached_dev,
1350                                             disk.kobj);
1351        kfree(dc);
1352        module_put(THIS_MODULE);
1353}
1354
1355static void cached_dev_free(struct closure *cl)
1356{
1357        struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1358
1359        if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1360                cancel_writeback_rate_update_dwork(dc);
1361
1362        if (!IS_ERR_OR_NULL(dc->writeback_thread))
1363                kthread_stop(dc->writeback_thread);
1364        if (!IS_ERR_OR_NULL(dc->status_update_thread))
1365                kthread_stop(dc->status_update_thread);
1366
1367        mutex_lock(&bch_register_lock);
1368
1369        if (atomic_read(&dc->running)) {
1370                bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1371                del_gendisk(dc->disk.disk);
1372        }
1373        bcache_device_free(&dc->disk);
1374        list_del(&dc->list);
1375
1376        mutex_unlock(&bch_register_lock);
1377
1378        if (dc->sb_disk)
1379                put_page(virt_to_page(dc->sb_disk));
1380
1381        if (!IS_ERR_OR_NULL(dc->bdev))
1382                blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1383
1384        wake_up(&unregister_wait);
1385
1386        kobject_put(&dc->disk.kobj);
1387}
1388
1389static void cached_dev_flush(struct closure *cl)
1390{
1391        struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1392        struct bcache_device *d = &dc->disk;
1393
1394        mutex_lock(&bch_register_lock);
1395        bcache_device_unlink(d);
1396        mutex_unlock(&bch_register_lock);
1397
1398        bch_cache_accounting_destroy(&dc->accounting);
1399        kobject_del(&d->kobj);
1400
1401        continue_at(cl, cached_dev_free, system_wq);
1402}
1403
1404static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1405{
1406        int ret;
1407        struct io *io;
1408        struct request_queue *q = bdev_get_queue(dc->bdev);
1409
1410        __module_get(THIS_MODULE);
1411        INIT_LIST_HEAD(&dc->list);
1412        closure_init(&dc->disk.cl, NULL);
1413        set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1414        kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1415        INIT_WORK(&dc->detach, cached_dev_detach_finish);
1416        sema_init(&dc->sb_write_mutex, 1);
1417        INIT_LIST_HEAD(&dc->io_lru);
1418        spin_lock_init(&dc->io_lock);
1419        bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1420
1421        dc->sequential_cutoff           = 4 << 20;
1422
1423        for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1424                list_add(&io->lru, &dc->io_lru);
1425                hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1426        }
1427
1428        dc->disk.stripe_size = q->limits.io_opt >> 9;
1429
1430        if (dc->disk.stripe_size)
1431                dc->partial_stripes_expensive =
1432                        q->limits.raid_partial_stripes_expensive;
1433
1434        ret = bcache_device_init(&dc->disk, block_size,
1435                         bdev_nr_sectors(dc->bdev) - dc->sb.data_offset,
1436                         dc->bdev, &bcache_cached_ops);
1437        if (ret)
1438                return ret;
1439
1440        blk_queue_io_opt(dc->disk.disk->queue,
1441                max(queue_io_opt(dc->disk.disk->queue), queue_io_opt(q)));
1442
1443        atomic_set(&dc->io_errors, 0);
1444        dc->io_disable = false;
1445        dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1446        /* default to auto */
1447        dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1448
1449        bch_cached_dev_request_init(dc);
1450        bch_cached_dev_writeback_init(dc);
1451        return 0;
1452}
1453
1454/* Cached device - bcache superblock */
1455
1456static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
1457                                 struct block_device *bdev,
1458                                 struct cached_dev *dc)
1459{
1460        const char *err = "cannot allocate memory";
1461        struct cache_set *c;
1462        int ret = -ENOMEM;
1463
1464        bdevname(bdev, dc->backing_dev_name);
1465        memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1466        dc->bdev = bdev;
1467        dc->bdev->bd_holder = dc;
1468        dc->sb_disk = sb_disk;
1469
1470        if (cached_dev_init(dc, sb->block_size << 9))
1471                goto err;
1472
1473        err = "error creating kobject";
1474        if (kobject_add(&dc->disk.kobj, bdev_kobj(bdev), "bcache"))
1475                goto err;
1476        if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1477                goto err;
1478
1479        pr_info("registered backing device %s\n", dc->backing_dev_name);
1480
1481        list_add(&dc->list, &uncached_devices);
1482        /* attach to a matched cache set if it exists */
1483        list_for_each_entry(c, &bch_cache_sets, list)
1484                bch_cached_dev_attach(dc, c, NULL);
1485
1486        if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1487            BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1488                err = "failed to run cached device";
1489                ret = bch_cached_dev_run(dc);
1490                if (ret)
1491                        goto err;
1492        }
1493
1494        return 0;
1495err:
1496        pr_notice("error %s: %s\n", dc->backing_dev_name, err);
1497        bcache_device_stop(&dc->disk);
1498        return ret;
1499}
1500
1501/* Flash only volumes */
1502
1503/* When d->kobj released */
1504void bch_flash_dev_release(struct kobject *kobj)
1505{
1506        struct bcache_device *d = container_of(kobj, struct bcache_device,
1507                                               kobj);
1508        kfree(d);
1509}
1510
1511static void flash_dev_free(struct closure *cl)
1512{
1513        struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1514
1515        mutex_lock(&bch_register_lock);
1516        atomic_long_sub(bcache_dev_sectors_dirty(d),
1517                        &d->c->flash_dev_dirty_sectors);
1518        del_gendisk(d->disk);
1519        bcache_device_free(d);
1520        mutex_unlock(&bch_register_lock);
1521        kobject_put(&d->kobj);
1522}
1523
1524static void flash_dev_flush(struct closure *cl)
1525{
1526        struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1527
1528        mutex_lock(&bch_register_lock);
1529        bcache_device_unlink(d);
1530        mutex_unlock(&bch_register_lock);
1531        kobject_del(&d->kobj);
1532        continue_at(cl, flash_dev_free, system_wq);
1533}
1534
1535static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1536{
1537        struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1538                                          GFP_KERNEL);
1539        if (!d)
1540                return -ENOMEM;
1541
1542        closure_init(&d->cl, NULL);
1543        set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1544
1545        kobject_init(&d->kobj, &bch_flash_dev_ktype);
1546
1547        if (bcache_device_init(d, block_bytes(c->cache), u->sectors,
1548                        NULL, &bcache_flash_ops))
1549                goto err;
1550
1551        bcache_device_attach(d, c, u - c->uuids);
1552        bch_sectors_dirty_init(d);
1553        bch_flash_dev_request_init(d);
1554        add_disk(d->disk);
1555
1556        if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1557                goto err;
1558
1559        bcache_device_link(d, c, "volume");
1560
1561        if (bch_has_feature_obso_large_bucket(&c->cache->sb)) {
1562                pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1563                pr_err("Please update to the latest bcache-tools to create the cache device\n");
1564                set_disk_ro(d->disk, 1);
1565        }
1566
1567        return 0;
1568err:
1569        kobject_put(&d->kobj);
1570        return -ENOMEM;
1571}
1572
1573static int flash_devs_run(struct cache_set *c)
1574{
1575        int ret = 0;
1576        struct uuid_entry *u;
1577
1578        for (u = c->uuids;
1579             u < c->uuids + c->nr_uuids && !ret;
1580             u++)
1581                if (UUID_FLASH_ONLY(u))
1582                        ret = flash_dev_run(c, u);
1583
1584        return ret;
1585}
1586
1587int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1588{
1589        struct uuid_entry *u;
1590
1591        if (test_bit(CACHE_SET_STOPPING, &c->flags))
1592                return -EINTR;
1593
1594        if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1595                return -EPERM;
1596
1597        u = uuid_find_empty(c);
1598        if (!u) {
1599                pr_err("Can't create volume, no room for UUID\n");
1600                return -EINVAL;
1601        }
1602
1603        get_random_bytes(u->uuid, 16);
1604        memset(u->label, 0, 32);
1605        u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1606
1607        SET_UUID_FLASH_ONLY(u, 1);
1608        u->sectors = size >> 9;
1609
1610        bch_uuid_write(c);
1611
1612        return flash_dev_run(c, u);
1613}
1614
1615bool bch_cached_dev_error(struct cached_dev *dc)
1616{
1617        if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1618                return false;
1619
1620        dc->io_disable = true;
1621        /* make others know io_disable is true earlier */
1622        smp_mb();
1623
1624        pr_err("stop %s: too many IO errors on backing device %s\n",
1625               dc->disk.disk->disk_name, dc->backing_dev_name);
1626
1627        bcache_device_stop(&dc->disk);
1628        return true;
1629}
1630
1631/* Cache set */
1632
1633__printf(2, 3)
1634bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1635{
1636        struct va_format vaf;
1637        va_list args;
1638
1639        if (c->on_error != ON_ERROR_PANIC &&
1640            test_bit(CACHE_SET_STOPPING, &c->flags))
1641                return false;
1642
1643        if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1644                pr_info("CACHE_SET_IO_DISABLE already set\n");
1645
1646        /*
1647         * XXX: we can be called from atomic context
1648         * acquire_console_sem();
1649         */
1650
1651        va_start(args, fmt);
1652
1653        vaf.fmt = fmt;
1654        vaf.va = &args;
1655
1656        pr_err("error on %pU: %pV, disabling caching\n",
1657               c->set_uuid, &vaf);
1658
1659        va_end(args);
1660
1661        if (c->on_error == ON_ERROR_PANIC)
1662                panic("panic forced after error\n");
1663
1664        bch_cache_set_unregister(c);
1665        return true;
1666}
1667
1668/* When c->kobj released */
1669void bch_cache_set_release(struct kobject *kobj)
1670{
1671        struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1672
1673        kfree(c);
1674        module_put(THIS_MODULE);
1675}
1676
1677static void cache_set_free(struct closure *cl)
1678{
1679        struct cache_set *c = container_of(cl, struct cache_set, cl);
1680        struct cache *ca;
1681
1682        debugfs_remove(c->debug);
1683
1684        bch_open_buckets_free(c);
1685        bch_btree_cache_free(c);
1686        bch_journal_free(c);
1687
1688        mutex_lock(&bch_register_lock);
1689        bch_bset_sort_state_free(&c->sort);
1690        free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb)));
1691
1692        ca = c->cache;
1693        if (ca) {
1694                ca->set = NULL;
1695                c->cache = NULL;
1696                kobject_put(&ca->kobj);
1697        }
1698
1699
1700        if (c->moving_gc_wq)
1701                destroy_workqueue(c->moving_gc_wq);
1702        bioset_exit(&c->bio_split);
1703        mempool_exit(&c->fill_iter);
1704        mempool_exit(&c->bio_meta);
1705        mempool_exit(&c->search);
1706        kfree(c->devices);
1707
1708        list_del(&c->list);
1709        mutex_unlock(&bch_register_lock);
1710
1711        pr_info("Cache set %pU unregistered\n", c->set_uuid);
1712        wake_up(&unregister_wait);
1713
1714        closure_debug_destroy(&c->cl);
1715        kobject_put(&c->kobj);
1716}
1717
1718static void cache_set_flush(struct closure *cl)
1719{
1720        struct cache_set *c = container_of(cl, struct cache_set, caching);
1721        struct cache *ca = c->cache;
1722        struct btree *b;
1723
1724        bch_cache_accounting_destroy(&c->accounting);
1725
1726        kobject_put(&c->internal);
1727        kobject_del(&c->kobj);
1728
1729        if (!IS_ERR_OR_NULL(c->gc_thread))
1730                kthread_stop(c->gc_thread);
1731
1732        if (!IS_ERR_OR_NULL(c->root))
1733                list_add(&c->root->list, &c->btree_cache);
1734
1735        /*
1736         * Avoid flushing cached nodes if cache set is retiring
1737         * due to too many I/O errors detected.
1738         */
1739        if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1740                list_for_each_entry(b, &c->btree_cache, list) {
1741                        mutex_lock(&b->write_lock);
1742                        if (btree_node_dirty(b))
1743                                __bch_btree_node_write(b, NULL);
1744                        mutex_unlock(&b->write_lock);
1745                }
1746
1747        if (ca->alloc_thread)
1748                kthread_stop(ca->alloc_thread);
1749
1750        if (c->journal.cur) {
1751                cancel_delayed_work_sync(&c->journal.work);
1752                /* flush last journal entry if needed */
1753                c->journal.work.work.func(&c->journal.work.work);
1754        }
1755
1756        closure_return(cl);
1757}
1758
1759/*
1760 * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1761 * cache set is unregistering due to too many I/O errors. In this condition,
1762 * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1763 * value and whether the broken cache has dirty data:
1764 *
1765 * dc->stop_when_cache_set_failed    dc->has_dirty   stop bcache device
1766 *  BCH_CACHED_STOP_AUTO               0               NO
1767 *  BCH_CACHED_STOP_AUTO               1               YES
1768 *  BCH_CACHED_DEV_STOP_ALWAYS         0               YES
1769 *  BCH_CACHED_DEV_STOP_ALWAYS         1               YES
1770 *
1771 * The expected behavior is, if stop_when_cache_set_failed is configured to
1772 * "auto" via sysfs interface, the bcache device will not be stopped if the
1773 * backing device is clean on the broken cache device.
1774 */
1775static void conditional_stop_bcache_device(struct cache_set *c,
1776                                           struct bcache_device *d,
1777                                           struct cached_dev *dc)
1778{
1779        if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1780                pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1781                        d->disk->disk_name, c->set_uuid);
1782                bcache_device_stop(d);
1783        } else if (atomic_read(&dc->has_dirty)) {
1784                /*
1785                 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1786                 * and dc->has_dirty == 1
1787                 */
1788                pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1789                        d->disk->disk_name);
1790                /*
1791                 * There might be a small time gap that cache set is
1792                 * released but bcache device is not. Inside this time
1793                 * gap, regular I/O requests will directly go into
1794                 * backing device as no cache set attached to. This
1795                 * behavior may also introduce potential inconsistence
1796                 * data in writeback mode while cache is dirty.
1797                 * Therefore before calling bcache_device_stop() due
1798                 * to a broken cache device, dc->io_disable should be
1799                 * explicitly set to true.
1800                 */
1801                dc->io_disable = true;
1802                /* make others know io_disable is true earlier */
1803                smp_mb();
1804                bcache_device_stop(d);
1805        } else {
1806                /*
1807                 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1808                 * and dc->has_dirty == 0
1809                 */
1810                pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1811                        d->disk->disk_name);
1812        }
1813}
1814
1815static void __cache_set_unregister(struct closure *cl)
1816{
1817        struct cache_set *c = container_of(cl, struct cache_set, caching);
1818        struct cached_dev *dc;
1819        struct bcache_device *d;
1820        size_t i;
1821
1822        mutex_lock(&bch_register_lock);
1823
1824        for (i = 0; i < c->devices_max_used; i++) {
1825                d = c->devices[i];
1826                if (!d)
1827                        continue;
1828
1829                if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1830                    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1831                        dc = container_of(d, struct cached_dev, disk);
1832                        bch_cached_dev_detach(dc);
1833                        if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1834                                conditional_stop_bcache_device(c, d, dc);
1835                } else {
1836                        bcache_device_stop(d);
1837                }
1838        }
1839
1840        mutex_unlock(&bch_register_lock);
1841
1842        continue_at(cl, cache_set_flush, system_wq);
1843}
1844
1845void bch_cache_set_stop(struct cache_set *c)
1846{
1847        if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1848                /* closure_fn set to __cache_set_unregister() */
1849                closure_queue(&c->caching);
1850}
1851
1852void bch_cache_set_unregister(struct cache_set *c)
1853{
1854        set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1855        bch_cache_set_stop(c);
1856}
1857
1858#define alloc_meta_bucket_pages(gfp, sb)                \
1859        ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb))))
1860
1861struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1862{
1863        int iter_size;
1864        struct cache *ca = container_of(sb, struct cache, sb);
1865        struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1866
1867        if (!c)
1868                return NULL;
1869
1870        __module_get(THIS_MODULE);
1871        closure_init(&c->cl, NULL);
1872        set_closure_fn(&c->cl, cache_set_free, system_wq);
1873
1874        closure_init(&c->caching, &c->cl);
1875        set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1876
1877        /* Maybe create continue_at_noreturn() and use it here? */
1878        closure_set_stopped(&c->cl);
1879        closure_put(&c->cl);
1880
1881        kobject_init(&c->kobj, &bch_cache_set_ktype);
1882        kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1883
1884        bch_cache_accounting_init(&c->accounting, &c->cl);
1885
1886        memcpy(c->set_uuid, sb->set_uuid, 16);
1887
1888        c->cache                = ca;
1889        c->cache->set           = c;
1890        c->bucket_bits          = ilog2(sb->bucket_size);
1891        c->block_bits           = ilog2(sb->block_size);
1892        c->nr_uuids             = meta_bucket_bytes(sb) / sizeof(struct uuid_entry);
1893        c->devices_max_used     = 0;
1894        atomic_set(&c->attached_dev_nr, 0);
1895        c->btree_pages          = meta_bucket_pages(sb);
1896        if (c->btree_pages > BTREE_MAX_PAGES)
1897                c->btree_pages = max_t(int, c->btree_pages / 4,
1898                                       BTREE_MAX_PAGES);
1899
1900        sema_init(&c->sb_write_mutex, 1);
1901        mutex_init(&c->bucket_lock);
1902        init_waitqueue_head(&c->btree_cache_wait);
1903        spin_lock_init(&c->btree_cannibalize_lock);
1904        init_waitqueue_head(&c->bucket_wait);
1905        init_waitqueue_head(&c->gc_wait);
1906        sema_init(&c->uuid_write_mutex, 1);
1907
1908        spin_lock_init(&c->btree_gc_time.lock);
1909        spin_lock_init(&c->btree_split_time.lock);
1910        spin_lock_init(&c->btree_read_time.lock);
1911
1912        bch_moving_init_cache_set(c);
1913
1914        INIT_LIST_HEAD(&c->list);
1915        INIT_LIST_HEAD(&c->cached_devs);
1916        INIT_LIST_HEAD(&c->btree_cache);
1917        INIT_LIST_HEAD(&c->btree_cache_freeable);
1918        INIT_LIST_HEAD(&c->btree_cache_freed);
1919        INIT_LIST_HEAD(&c->data_buckets);
1920
1921        iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) *
1922                sizeof(struct btree_iter_set);
1923
1924        c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL);
1925        if (!c->devices)
1926                goto err;
1927
1928        if (mempool_init_slab_pool(&c->search, 32, bch_search_cache))
1929                goto err;
1930
1931        if (mempool_init_kmalloc_pool(&c->bio_meta, 2,
1932                        sizeof(struct bbio) +
1933                        sizeof(struct bio_vec) * meta_bucket_pages(sb)))
1934                goto err;
1935
1936        if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size))
1937                goto err;
1938
1939        if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1940                        BIOSET_NEED_RESCUER))
1941                goto err;
1942
1943        c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb);
1944        if (!c->uuids)
1945                goto err;
1946
1947        c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0);
1948        if (!c->moving_gc_wq)
1949                goto err;
1950
1951        if (bch_journal_alloc(c))
1952                goto err;
1953
1954        if (bch_btree_cache_alloc(c))
1955                goto err;
1956
1957        if (bch_open_buckets_alloc(c))
1958                goto err;
1959
1960        if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1961                goto err;
1962
1963        c->congested_read_threshold_us  = 2000;
1964        c->congested_write_threshold_us = 20000;
1965        c->error_limit  = DEFAULT_IO_ERROR_LIMIT;
1966        c->idle_max_writeback_rate_enabled = 1;
1967        WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1968
1969        return c;
1970err:
1971        bch_cache_set_unregister(c);
1972        return NULL;
1973}
1974
1975static int run_cache_set(struct cache_set *c)
1976{
1977        const char *err = "cannot allocate memory";
1978        struct cached_dev *dc, *t;
1979        struct cache *ca = c->cache;
1980        struct closure cl;
1981        LIST_HEAD(journal);
1982        struct journal_replay *l;
1983
1984        closure_init_stack(&cl);
1985
1986        c->nbuckets = ca->sb.nbuckets;
1987        set_gc_sectors(c);
1988
1989        if (CACHE_SYNC(&c->cache->sb)) {
1990                struct bkey *k;
1991                struct jset *j;
1992
1993                err = "cannot allocate memory for journal";
1994                if (bch_journal_read(c, &journal))
1995                        goto err;
1996
1997                pr_debug("btree_journal_read() done\n");
1998
1999                err = "no journal entries found";
2000                if (list_empty(&journal))
2001                        goto err;
2002
2003                j = &list_entry(journal.prev, struct journal_replay, list)->j;
2004
2005                err = "IO error reading priorities";
2006                if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
2007                        goto err;
2008
2009                /*
2010                 * If prio_read() fails it'll call cache_set_error and we'll
2011                 * tear everything down right away, but if we perhaps checked
2012                 * sooner we could avoid journal replay.
2013                 */
2014
2015                k = &j->btree_root;
2016
2017                err = "bad btree root";
2018                if (__bch_btree_ptr_invalid(c, k))
2019                        goto err;
2020
2021                err = "error reading btree root";
2022                c->root = bch_btree_node_get(c, NULL, k,
2023                                             j->btree_level,
2024                                             true, NULL);
2025                if (IS_ERR_OR_NULL(c->root))
2026                        goto err;
2027
2028                list_del_init(&c->root->list);
2029                rw_unlock(true, c->root);
2030
2031                err = uuid_read(c, j, &cl);
2032                if (err)
2033                        goto err;
2034
2035                err = "error in recovery";
2036                if (bch_btree_check(c))
2037                        goto err;
2038
2039                bch_journal_mark(c, &journal);
2040                bch_initial_gc_finish(c);
2041                pr_debug("btree_check() done\n");
2042
2043                /*
2044                 * bcache_journal_next() can't happen sooner, or
2045                 * btree_gc_finish() will give spurious errors about last_gc >
2046                 * gc_gen - this is a hack but oh well.
2047                 */
2048                bch_journal_next(&c->journal);
2049
2050                err = "error starting allocator thread";
2051                if (bch_cache_allocator_start(ca))
2052                        goto err;
2053
2054                /*
2055                 * First place it's safe to allocate: btree_check() and
2056                 * btree_gc_finish() have to run before we have buckets to
2057                 * allocate, and bch_bucket_alloc_set() might cause a journal
2058                 * entry to be written so bcache_journal_next() has to be called
2059                 * first.
2060                 *
2061                 * If the uuids were in the old format we have to rewrite them
2062                 * before the next journal entry is written:
2063                 */
2064                if (j->version < BCACHE_JSET_VERSION_UUID)
2065                        __uuid_write(c);
2066
2067                err = "bcache: replay journal failed";
2068                if (bch_journal_replay(c, &journal))
2069                        goto err;
2070        } else {
2071                unsigned int j;
2072
2073                pr_notice("invalidating existing data\n");
2074                ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
2075                                        2, SB_JOURNAL_BUCKETS);
2076
2077                for (j = 0; j < ca->sb.keys; j++)
2078                        ca->sb.d[j] = ca->sb.first_bucket + j;
2079
2080                bch_initial_gc_finish(c);
2081
2082                err = "error starting allocator thread";
2083                if (bch_cache_allocator_start(ca))
2084                        goto err;
2085
2086                mutex_lock(&c->bucket_lock);
2087                bch_prio_write(ca, true);
2088                mutex_unlock(&c->bucket_lock);
2089
2090                err = "cannot allocate new UUID bucket";
2091                if (__uuid_write(c))
2092                        goto err;
2093
2094                err = "cannot allocate new btree root";
2095                c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
2096                if (IS_ERR_OR_NULL(c->root))
2097                        goto err;
2098
2099                mutex_lock(&c->root->write_lock);
2100                bkey_copy_key(&c->root->key, &MAX_KEY);
2101                bch_btree_node_write(c->root, &cl);
2102                mutex_unlock(&c->root->write_lock);
2103
2104                bch_btree_set_root(c->root);
2105                rw_unlock(true, c->root);
2106
2107                /*
2108                 * We don't want to write the first journal entry until
2109                 * everything is set up - fortunately journal entries won't be
2110                 * written until the SET_CACHE_SYNC() here:
2111                 */
2112                SET_CACHE_SYNC(&c->cache->sb, true);
2113
2114                bch_journal_next(&c->journal);
2115                bch_journal_meta(c, &cl);
2116        }
2117
2118        err = "error starting gc thread";
2119        if (bch_gc_thread_start(c))
2120                goto err;
2121
2122        closure_sync(&cl);
2123        c->cache->sb.last_mount = (u32)ktime_get_real_seconds();
2124        bcache_write_super(c);
2125
2126        if (bch_has_feature_obso_large_bucket(&c->cache->sb))
2127                pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n");
2128
2129        list_for_each_entry_safe(dc, t, &uncached_devices, list)
2130                bch_cached_dev_attach(dc, c, NULL);
2131
2132        flash_devs_run(c);
2133
2134        set_bit(CACHE_SET_RUNNING, &c->flags);
2135        return 0;
2136err:
2137        while (!list_empty(&journal)) {
2138                l = list_first_entry(&journal, struct journal_replay, list);
2139                list_del(&l->list);
2140                kfree(l);
2141        }
2142
2143        closure_sync(&cl);
2144
2145        bch_cache_set_error(c, "%s", err);
2146
2147        return -EIO;
2148}
2149
2150static const char *register_cache_set(struct cache *ca)
2151{
2152        char buf[12];
2153        const char *err = "cannot allocate memory";
2154        struct cache_set *c;
2155
2156        list_for_each_entry(c, &bch_cache_sets, list)
2157                if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) {
2158                        if (c->cache)
2159                                return "duplicate cache set member";
2160
2161                        goto found;
2162                }
2163
2164        c = bch_cache_set_alloc(&ca->sb);
2165        if (!c)
2166                return err;
2167
2168        err = "error creating kobject";
2169        if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) ||
2170            kobject_add(&c->internal, &c->kobj, "internal"))
2171                goto err;
2172
2173        if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2174                goto err;
2175
2176        bch_debug_init_cache_set(c);
2177
2178        list_add(&c->list, &bch_cache_sets);
2179found:
2180        sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2181        if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2182            sysfs_create_link(&c->kobj, &ca->kobj, buf))
2183                goto err;
2184
2185        kobject_get(&ca->kobj);
2186        ca->set = c;
2187        ca->set->cache = ca;
2188
2189        err = "failed to run cache set";
2190        if (run_cache_set(c) < 0)
2191                goto err;
2192
2193        return NULL;
2194err:
2195        bch_cache_set_unregister(c);
2196        return err;
2197}
2198
2199/* Cache device */
2200
2201/* When ca->kobj released */
2202void bch_cache_release(struct kobject *kobj)
2203{
2204        struct cache *ca = container_of(kobj, struct cache, kobj);
2205        unsigned int i;
2206
2207        if (ca->set) {
2208                BUG_ON(ca->set->cache != ca);
2209                ca->set->cache = NULL;
2210        }
2211
2212        free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb)));
2213        kfree(ca->prio_buckets);
2214        vfree(ca->buckets);
2215
2216        free_heap(&ca->heap);
2217        free_fifo(&ca->free_inc);
2218
2219        for (i = 0; i < RESERVE_NR; i++)
2220                free_fifo(&ca->free[i]);
2221
2222        if (ca->sb_disk)
2223                put_page(virt_to_page(ca->sb_disk));
2224
2225        if (!IS_ERR_OR_NULL(ca->bdev))
2226                blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2227
2228        kfree(ca);
2229        module_put(THIS_MODULE);
2230}
2231
2232static int cache_alloc(struct cache *ca)
2233{
2234        size_t free;
2235        size_t btree_buckets;
2236        struct bucket *b;
2237        int ret = -ENOMEM;
2238        const char *err = NULL;
2239
2240        __module_get(THIS_MODULE);
2241        kobject_init(&ca->kobj, &bch_cache_ktype);
2242
2243        bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2244
2245        /*
2246         * when ca->sb.njournal_buckets is not zero, journal exists,
2247         * and in bch_journal_replay(), tree node may split,
2248         * so bucket of RESERVE_BTREE type is needed,
2249         * the worst situation is all journal buckets are valid journal,
2250         * and all the keys need to replay,
2251         * so the number of  RESERVE_BTREE type buckets should be as much
2252         * as journal buckets
2253         */
2254        btree_buckets = ca->sb.njournal_buckets ?: 8;
2255        free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2256        if (!free) {
2257                ret = -EPERM;
2258                err = "ca->sb.nbuckets is too small";
2259                goto err_free;
2260        }
2261
2262        if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2263                                                GFP_KERNEL)) {
2264                err = "ca->free[RESERVE_BTREE] alloc failed";
2265                goto err_btree_alloc;
2266        }
2267
2268        if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2269                                                        GFP_KERNEL)) {
2270                err = "ca->free[RESERVE_PRIO] alloc failed";
2271                goto err_prio_alloc;
2272        }
2273
2274        if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2275                err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2276                goto err_movinggc_alloc;
2277        }
2278
2279        if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2280                err = "ca->free[RESERVE_NONE] alloc failed";
2281                goto err_none_alloc;
2282        }
2283
2284        if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2285                err = "ca->free_inc alloc failed";
2286                goto err_free_inc_alloc;
2287        }
2288
2289        if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2290                err = "ca->heap alloc failed";
2291                goto err_heap_alloc;
2292        }
2293
2294        ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2295                              ca->sb.nbuckets));
2296        if (!ca->buckets) {
2297                err = "ca->buckets alloc failed";
2298                goto err_buckets_alloc;
2299        }
2300
2301        ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2302                                   prio_buckets(ca), 2),
2303                                   GFP_KERNEL);
2304        if (!ca->prio_buckets) {
2305                err = "ca->prio_buckets alloc failed";
2306                goto err_prio_buckets_alloc;
2307        }
2308
2309        ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb);
2310        if (!ca->disk_buckets) {
2311                err = "ca->disk_buckets alloc failed";
2312                goto err_disk_buckets_alloc;
2313        }
2314
2315        ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2316
2317        for_each_bucket(b, ca)
2318                atomic_set(&b->pin, 0);
2319        return 0;
2320
2321err_disk_buckets_alloc:
2322        kfree(ca->prio_buckets);
2323err_prio_buckets_alloc:
2324        vfree(ca->buckets);
2325err_buckets_alloc:
2326        free_heap(&ca->heap);
2327err_heap_alloc:
2328        free_fifo(&ca->free_inc);
2329err_free_inc_alloc:
2330        free_fifo(&ca->free[RESERVE_NONE]);
2331err_none_alloc:
2332        free_fifo(&ca->free[RESERVE_MOVINGGC]);
2333err_movinggc_alloc:
2334        free_fifo(&ca->free[RESERVE_PRIO]);
2335err_prio_alloc:
2336        free_fifo(&ca->free[RESERVE_BTREE]);
2337err_btree_alloc:
2338err_free:
2339        module_put(THIS_MODULE);
2340        if (err)
2341                pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2342        return ret;
2343}
2344
2345static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
2346                                struct block_device *bdev, struct cache *ca)
2347{
2348        const char *err = NULL; /* must be set for any error case */
2349        int ret = 0;
2350
2351        bdevname(bdev, ca->cache_dev_name);
2352        memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2353        ca->bdev = bdev;
2354        ca->bdev->bd_holder = ca;
2355        ca->sb_disk = sb_disk;
2356
2357        if (blk_queue_discard(bdev_get_queue(bdev)))
2358                ca->discard = CACHE_DISCARD(&ca->sb);
2359
2360        ret = cache_alloc(ca);
2361        if (ret != 0) {
2362                /*
2363                 * If we failed here, it means ca->kobj is not initialized yet,
2364                 * kobject_put() won't be called and there is no chance to
2365                 * call blkdev_put() to bdev in bch_cache_release(). So we
2366                 * explicitly call blkdev_put() here.
2367                 */
2368                blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2369                if (ret == -ENOMEM)
2370                        err = "cache_alloc(): -ENOMEM";
2371                else if (ret == -EPERM)
2372                        err = "cache_alloc(): cache device is too small";
2373                else
2374                        err = "cache_alloc(): unknown error";
2375                goto err;
2376        }
2377
2378        if (kobject_add(&ca->kobj, bdev_kobj(bdev), "bcache")) {
2379                err = "error calling kobject_add";
2380                ret = -ENOMEM;
2381                goto out;
2382        }
2383
2384        mutex_lock(&bch_register_lock);
2385        err = register_cache_set(ca);
2386        mutex_unlock(&bch_register_lock);
2387
2388        if (err) {
2389                ret = -ENODEV;
2390                goto out;
2391        }
2392
2393        pr_info("registered cache device %s\n", ca->cache_dev_name);
2394
2395out:
2396        kobject_put(&ca->kobj);
2397
2398err:
2399        if (err)
2400                pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2401
2402        return ret;
2403}
2404
2405/* Global interfaces/init */
2406
2407static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2408                               const char *buffer, size_t size);
2409static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2410                                         struct kobj_attribute *attr,
2411                                         const char *buffer, size_t size);
2412
2413kobj_attribute_write(register,          register_bcache);
2414kobj_attribute_write(register_quiet,    register_bcache);
2415kobj_attribute_write(pendings_cleanup,  bch_pending_bdevs_cleanup);
2416
2417static bool bch_is_open_backing(dev_t dev)
2418{
2419        struct cache_set *c, *tc;
2420        struct cached_dev *dc, *t;
2421
2422        list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2423                list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2424                        if (dc->bdev->bd_dev == dev)
2425                                return true;
2426        list_for_each_entry_safe(dc, t, &uncached_devices, list)
2427                if (dc->bdev->bd_dev == dev)
2428                        return true;
2429        return false;
2430}
2431
2432static bool bch_is_open_cache(dev_t dev)
2433{
2434        struct cache_set *c, *tc;
2435
2436        list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2437                struct cache *ca = c->cache;
2438
2439                if (ca->bdev->bd_dev == dev)
2440                        return true;
2441        }
2442
2443        return false;
2444}
2445
2446static bool bch_is_open(dev_t dev)
2447{
2448        return bch_is_open_cache(dev) || bch_is_open_backing(dev);
2449}
2450
2451struct async_reg_args {
2452        struct delayed_work reg_work;
2453        char *path;
2454        struct cache_sb *sb;
2455        struct cache_sb_disk *sb_disk;
2456        struct block_device *bdev;
2457};
2458
2459static void register_bdev_worker(struct work_struct *work)
2460{
2461        int fail = false;
2462        struct async_reg_args *args =
2463                container_of(work, struct async_reg_args, reg_work.work);
2464        struct cached_dev *dc;
2465
2466        dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2467        if (!dc) {
2468                fail = true;
2469                put_page(virt_to_page(args->sb_disk));
2470                blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2471                goto out;
2472        }
2473
2474        mutex_lock(&bch_register_lock);
2475        if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0)
2476                fail = true;
2477        mutex_unlock(&bch_register_lock);
2478
2479out:
2480        if (fail)
2481                pr_info("error %s: fail to register backing device\n",
2482                        args->path);
2483        kfree(args->sb);
2484        kfree(args->path);
2485        kfree(args);
2486        module_put(THIS_MODULE);
2487}
2488
2489static void register_cache_worker(struct work_struct *work)
2490{
2491        int fail = false;
2492        struct async_reg_args *args =
2493                container_of(work, struct async_reg_args, reg_work.work);
2494        struct cache *ca;
2495
2496        ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2497        if (!ca) {
2498                fail = true;
2499                put_page(virt_to_page(args->sb_disk));
2500                blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2501                goto out;
2502        }
2503
2504        /* blkdev_put() will be called in bch_cache_release() */
2505        if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0)
2506                fail = true;
2507
2508out:
2509        if (fail)
2510                pr_info("error %s: fail to register cache device\n",
2511                        args->path);
2512        kfree(args->sb);
2513        kfree(args->path);
2514        kfree(args);
2515        module_put(THIS_MODULE);
2516}
2517
2518static void register_device_async(struct async_reg_args *args)
2519{
2520        if (SB_IS_BDEV(args->sb))
2521                INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker);
2522        else
2523                INIT_DELAYED_WORK(&args->reg_work, register_cache_worker);
2524
2525        /* 10 jiffies is enough for a delay */
2526        queue_delayed_work(system_wq, &args->reg_work, 10);
2527}
2528
2529static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2530                               const char *buffer, size_t size)
2531{
2532        const char *err;
2533        char *path = NULL;
2534        struct cache_sb *sb;
2535        struct cache_sb_disk *sb_disk;
2536        struct block_device *bdev;
2537        ssize_t ret;
2538        bool async_registration = false;
2539
2540#ifdef CONFIG_BCACHE_ASYNC_REGISTRATION
2541        async_registration = true;
2542#endif
2543
2544        ret = -EBUSY;
2545        err = "failed to reference bcache module";
2546        if (!try_module_get(THIS_MODULE))
2547                goto out;
2548
2549        /* For latest state of bcache_is_reboot */
2550        smp_mb();
2551        err = "bcache is in reboot";
2552        if (bcache_is_reboot)
2553                goto out_module_put;
2554
2555        ret = -ENOMEM;
2556        err = "cannot allocate memory";
2557        path = kstrndup(buffer, size, GFP_KERNEL);
2558        if (!path)
2559                goto out_module_put;
2560
2561        sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2562        if (!sb)
2563                goto out_free_path;
2564
2565        ret = -EINVAL;
2566        err = "failed to open device";
2567        bdev = blkdev_get_by_path(strim(path),
2568                                  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2569                                  sb);
2570        if (IS_ERR(bdev)) {
2571                if (bdev == ERR_PTR(-EBUSY)) {
2572                        dev_t dev;
2573
2574                        mutex_lock(&bch_register_lock);
2575                        if (lookup_bdev(strim(path), &dev) == 0 &&
2576                            bch_is_open(dev))
2577                                err = "device already registered";
2578                        else
2579                                err = "device busy";
2580                        mutex_unlock(&bch_register_lock);
2581                        if (attr == &ksysfs_register_quiet)
2582                                goto done;
2583                }
2584                goto out_free_sb;
2585        }
2586
2587        err = "failed to set blocksize";
2588        if (set_blocksize(bdev, 4096))
2589                goto out_blkdev_put;
2590
2591        err = read_super(sb, bdev, &sb_disk);
2592        if (err)
2593                goto out_blkdev_put;
2594
2595        err = "failed to register device";
2596
2597        if (async_registration) {
2598                /* register in asynchronous way */
2599                struct async_reg_args *args =
2600                        kzalloc(sizeof(struct async_reg_args), GFP_KERNEL);
2601
2602                if (!args) {
2603                        ret = -ENOMEM;
2604                        err = "cannot allocate memory";
2605                        goto out_put_sb_page;
2606                }
2607
2608                args->path      = path;
2609                args->sb        = sb;
2610                args->sb_disk   = sb_disk;
2611                args->bdev      = bdev;
2612                register_device_async(args);
2613                /* No wait and returns to user space */
2614                goto async_done;
2615        }
2616
2617        if (SB_IS_BDEV(sb)) {
2618                struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2619
2620                if (!dc)
2621                        goto out_put_sb_page;
2622
2623                mutex_lock(&bch_register_lock);
2624                ret = register_bdev(sb, sb_disk, bdev, dc);
2625                mutex_unlock(&bch_register_lock);
2626                /* blkdev_put() will be called in cached_dev_free() */
2627                if (ret < 0)
2628                        goto out_free_sb;
2629        } else {
2630                struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2631
2632                if (!ca)
2633                        goto out_put_sb_page;
2634
2635                /* blkdev_put() will be called in bch_cache_release() */
2636                if (register_cache(sb, sb_disk, bdev, ca) != 0)
2637                        goto out_free_sb;
2638        }
2639
2640done:
2641        kfree(sb);
2642        kfree(path);
2643        module_put(THIS_MODULE);
2644async_done:
2645        return size;
2646
2647out_put_sb_page:
2648        put_page(virt_to_page(sb_disk));
2649out_blkdev_put:
2650        blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2651out_free_sb:
2652        kfree(sb);
2653out_free_path:
2654        kfree(path);
2655        path = NULL;
2656out_module_put:
2657        module_put(THIS_MODULE);
2658out:
2659        pr_info("error %s: %s\n", path?path:"", err);
2660        return ret;
2661}
2662
2663
2664struct pdev {
2665        struct list_head list;
2666        struct cached_dev *dc;
2667};
2668
2669static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2670                                         struct kobj_attribute *attr,
2671                                         const char *buffer,
2672                                         size_t size)
2673{
2674        LIST_HEAD(pending_devs);
2675        ssize_t ret = size;
2676        struct cached_dev *dc, *tdc;
2677        struct pdev *pdev, *tpdev;
2678        struct cache_set *c, *tc;
2679
2680        mutex_lock(&bch_register_lock);
2681        list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2682                pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2683                if (!pdev)
2684                        break;
2685                pdev->dc = dc;
2686                list_add(&pdev->list, &pending_devs);
2687        }
2688
2689        list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2690                char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2691                list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2692                        char *set_uuid = c->set_uuid;
2693
2694                        if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2695                                list_del(&pdev->list);
2696                                kfree(pdev);
2697                                break;
2698                        }
2699                }
2700        }
2701        mutex_unlock(&bch_register_lock);
2702
2703        list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2704                pr_info("delete pdev %p\n", pdev);
2705                list_del(&pdev->list);
2706                bcache_device_stop(&pdev->dc->disk);
2707                kfree(pdev);
2708        }
2709
2710        return ret;
2711}
2712
2713static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2714{
2715        if (bcache_is_reboot)
2716                return NOTIFY_DONE;
2717
2718        if (code == SYS_DOWN ||
2719            code == SYS_HALT ||
2720            code == SYS_POWER_OFF) {
2721                DEFINE_WAIT(wait);
2722                unsigned long start = jiffies;
2723                bool stopped = false;
2724
2725                struct cache_set *c, *tc;
2726                struct cached_dev *dc, *tdc;
2727
2728                mutex_lock(&bch_register_lock);
2729
2730                if (bcache_is_reboot)
2731                        goto out;
2732
2733                /* New registration is rejected since now */
2734                bcache_is_reboot = true;
2735                /*
2736                 * Make registering caller (if there is) on other CPU
2737                 * core know bcache_is_reboot set to true earlier
2738                 */
2739                smp_mb();
2740
2741                if (list_empty(&bch_cache_sets) &&
2742                    list_empty(&uncached_devices))
2743                        goto out;
2744
2745                mutex_unlock(&bch_register_lock);
2746
2747                pr_info("Stopping all devices:\n");
2748
2749                /*
2750                 * The reason bch_register_lock is not held to call
2751                 * bch_cache_set_stop() and bcache_device_stop() is to
2752                 * avoid potential deadlock during reboot, because cache
2753                 * set or bcache device stopping process will acqurie
2754                 * bch_register_lock too.
2755                 *
2756                 * We are safe here because bcache_is_reboot sets to
2757                 * true already, register_bcache() will reject new
2758                 * registration now. bcache_is_reboot also makes sure
2759                 * bcache_reboot() won't be re-entered on by other thread,
2760                 * so there is no race in following list iteration by
2761                 * list_for_each_entry_safe().
2762                 */
2763                list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2764                        bch_cache_set_stop(c);
2765
2766                list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2767                        bcache_device_stop(&dc->disk);
2768
2769
2770                /*
2771                 * Give an early chance for other kthreads and
2772                 * kworkers to stop themselves
2773                 */
2774                schedule();
2775
2776                /* What's a condition variable? */
2777                while (1) {
2778                        long timeout = start + 10 * HZ - jiffies;
2779
2780                        mutex_lock(&bch_register_lock);
2781                        stopped = list_empty(&bch_cache_sets) &&
2782                                list_empty(&uncached_devices);
2783
2784                        if (timeout < 0 || stopped)
2785                                break;
2786
2787                        prepare_to_wait(&unregister_wait, &wait,
2788                                        TASK_UNINTERRUPTIBLE);
2789
2790                        mutex_unlock(&bch_register_lock);
2791                        schedule_timeout(timeout);
2792                }
2793
2794                finish_wait(&unregister_wait, &wait);
2795
2796                if (stopped)
2797                        pr_info("All devices stopped\n");
2798                else
2799                        pr_notice("Timeout waiting for devices to be closed\n");
2800out:
2801                mutex_unlock(&bch_register_lock);
2802        }
2803
2804        return NOTIFY_DONE;
2805}
2806
2807static struct notifier_block reboot = {
2808        .notifier_call  = bcache_reboot,
2809        .priority       = INT_MAX, /* before any real devices */
2810};
2811
2812static void bcache_exit(void)
2813{
2814        bch_debug_exit();
2815        bch_request_exit();
2816        if (bcache_kobj)
2817                kobject_put(bcache_kobj);
2818        if (bcache_wq)
2819                destroy_workqueue(bcache_wq);
2820        if (bch_journal_wq)
2821                destroy_workqueue(bch_journal_wq);
2822        if (bch_flush_wq)
2823                destroy_workqueue(bch_flush_wq);
2824        bch_btree_exit();
2825
2826        if (bcache_major)
2827                unregister_blkdev(bcache_major, "bcache");
2828        unregister_reboot_notifier(&reboot);
2829        mutex_destroy(&bch_register_lock);
2830}
2831
2832/* Check and fixup module parameters */
2833static void check_module_parameters(void)
2834{
2835        if (bch_cutoff_writeback_sync == 0)
2836                bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2837        else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2838                pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2839                        bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2840                bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2841        }
2842
2843        if (bch_cutoff_writeback == 0)
2844                bch_cutoff_writeback = CUTOFF_WRITEBACK;
2845        else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2846                pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2847                        bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2848                bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2849        }
2850
2851        if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2852                pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2853                        bch_cutoff_writeback, bch_cutoff_writeback_sync);
2854                bch_cutoff_writeback = bch_cutoff_writeback_sync;
2855        }
2856}
2857
2858static int __init bcache_init(void)
2859{
2860        static const struct attribute *files[] = {
2861                &ksysfs_register.attr,
2862                &ksysfs_register_quiet.attr,
2863                &ksysfs_pendings_cleanup.attr,
2864                NULL
2865        };
2866
2867        check_module_parameters();
2868
2869        mutex_init(&bch_register_lock);
2870        init_waitqueue_head(&unregister_wait);
2871        register_reboot_notifier(&reboot);
2872
2873        bcache_major = register_blkdev(0, "bcache");
2874        if (bcache_major < 0) {
2875                unregister_reboot_notifier(&reboot);
2876                mutex_destroy(&bch_register_lock);
2877                return bcache_major;
2878        }
2879
2880        if (bch_btree_init())
2881                goto err;
2882
2883        bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2884        if (!bcache_wq)
2885                goto err;
2886
2887        /*
2888         * Let's not make this `WQ_MEM_RECLAIM` for the following reasons:
2889         *
2890         * 1. It used `system_wq` before which also does no memory reclaim.
2891         * 2. With `WQ_MEM_RECLAIM` desktop stalls, increased boot times, and
2892         *    reduced throughput can be observed.
2893         *
2894         * We still want to user our own queue to not congest the `system_wq`.
2895         */
2896        bch_flush_wq = alloc_workqueue("bch_flush", 0, 0);
2897        if (!bch_flush_wq)
2898                goto err;
2899
2900        bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2901        if (!bch_journal_wq)
2902                goto err;
2903
2904        bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2905        if (!bcache_kobj)
2906                goto err;
2907
2908        if (bch_request_init() ||
2909            sysfs_create_files(bcache_kobj, files))
2910                goto err;
2911
2912        bch_debug_init();
2913        closure_debug_init();
2914
2915        bcache_is_reboot = false;
2916
2917        return 0;
2918err:
2919        bcache_exit();
2920        return -ENOMEM;
2921}
2922
2923/*
2924 * Module hooks
2925 */
2926module_exit(bcache_exit);
2927module_init(bcache_init);
2928
2929module_param(bch_cutoff_writeback, uint, 0);
2930MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2931
2932module_param(bch_cutoff_writeback_sync, uint, 0);
2933MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2934
2935MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2936MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2937MODULE_LICENSE("GPL");
2938