linux/drivers/md/bcache/util.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2
   3#ifndef _BCACHE_UTIL_H
   4#define _BCACHE_UTIL_H
   5
   6#include <linux/blkdev.h>
   7#include <linux/errno.h>
   8#include <linux/kernel.h>
   9#include <linux/sched/clock.h>
  10#include <linux/llist.h>
  11#include <linux/ratelimit.h>
  12#include <linux/vmalloc.h>
  13#include <linux/workqueue.h>
  14#include <linux/crc64.h>
  15
  16#include "closure.h"
  17
  18struct closure;
  19
  20#ifdef CONFIG_BCACHE_DEBUG
  21
  22#define EBUG_ON(cond)                   BUG_ON(cond)
  23#define atomic_dec_bug(v)       BUG_ON(atomic_dec_return(v) < 0)
  24#define atomic_inc_bug(v, i)    BUG_ON(atomic_inc_return(v) <= i)
  25
  26#else /* DEBUG */
  27
  28#define EBUG_ON(cond)           do { if (cond) do {} while (0); } while (0)
  29#define atomic_dec_bug(v)       atomic_dec(v)
  30#define atomic_inc_bug(v, i)    atomic_inc(v)
  31
  32#endif
  33
  34#define DECLARE_HEAP(type, name)                                        \
  35        struct {                                                        \
  36                size_t size, used;                                      \
  37                type *data;                                             \
  38        } name
  39
  40#define init_heap(heap, _size, gfp)                                     \
  41({                                                                      \
  42        size_t _bytes;                                                  \
  43        (heap)->used = 0;                                               \
  44        (heap)->size = (_size);                                         \
  45        _bytes = (heap)->size * sizeof(*(heap)->data);                  \
  46        (heap)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL);            \
  47        (heap)->data;                                                   \
  48})
  49
  50#define free_heap(heap)                                                 \
  51do {                                                                    \
  52        kvfree((heap)->data);                                           \
  53        (heap)->data = NULL;                                            \
  54} while (0)
  55
  56#define heap_swap(h, i, j)      swap((h)->data[i], (h)->data[j])
  57
  58#define heap_sift(h, i, cmp)                                            \
  59do {                                                                    \
  60        size_t _r, _j = i;                                              \
  61                                                                        \
  62        for (; _j * 2 + 1 < (h)->used; _j = _r) {                       \
  63                _r = _j * 2 + 1;                                        \
  64                if (_r + 1 < (h)->used &&                               \
  65                    cmp((h)->data[_r], (h)->data[_r + 1]))              \
  66                        _r++;                                           \
  67                                                                        \
  68                if (cmp((h)->data[_r], (h)->data[_j]))                  \
  69                        break;                                          \
  70                heap_swap(h, _r, _j);                                   \
  71        }                                                               \
  72} while (0)
  73
  74#define heap_sift_down(h, i, cmp)                                       \
  75do {                                                                    \
  76        while (i) {                                                     \
  77                size_t p = (i - 1) / 2;                                 \
  78                if (cmp((h)->data[i], (h)->data[p]))                    \
  79                        break;                                          \
  80                heap_swap(h, i, p);                                     \
  81                i = p;                                                  \
  82        }                                                               \
  83} while (0)
  84
  85#define heap_add(h, d, cmp)                                             \
  86({                                                                      \
  87        bool _r = !heap_full(h);                                        \
  88        if (_r) {                                                       \
  89                size_t _i = (h)->used++;                                \
  90                (h)->data[_i] = d;                                      \
  91                                                                        \
  92                heap_sift_down(h, _i, cmp);                             \
  93                heap_sift(h, _i, cmp);                                  \
  94        }                                                               \
  95        _r;                                                             \
  96})
  97
  98#define heap_pop(h, d, cmp)                                             \
  99({                                                                      \
 100        bool _r = (h)->used;                                            \
 101        if (_r) {                                                       \
 102                (d) = (h)->data[0];                                     \
 103                (h)->used--;                                            \
 104                heap_swap(h, 0, (h)->used);                             \
 105                heap_sift(h, 0, cmp);                                   \
 106        }                                                               \
 107        _r;                                                             \
 108})
 109
 110#define heap_peek(h)    ((h)->used ? (h)->data[0] : NULL)
 111
 112#define heap_full(h)    ((h)->used == (h)->size)
 113
 114#define DECLARE_FIFO(type, name)                                        \
 115        struct {                                                        \
 116                size_t front, back, size, mask;                         \
 117                type *data;                                             \
 118        } name
 119
 120#define fifo_for_each(c, fifo, iter)                                    \
 121        for (iter = (fifo)->front;                                      \
 122             c = (fifo)->data[iter], iter != (fifo)->back;              \
 123             iter = (iter + 1) & (fifo)->mask)
 124
 125#define __init_fifo(fifo, gfp)                                          \
 126({                                                                      \
 127        size_t _allocated_size, _bytes;                                 \
 128        BUG_ON(!(fifo)->size);                                          \
 129                                                                        \
 130        _allocated_size = roundup_pow_of_two((fifo)->size + 1);         \
 131        _bytes = _allocated_size * sizeof(*(fifo)->data);               \
 132                                                                        \
 133        (fifo)->mask = _allocated_size - 1;                             \
 134        (fifo)->front = (fifo)->back = 0;                               \
 135                                                                        \
 136        (fifo)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL);            \
 137        (fifo)->data;                                                   \
 138})
 139
 140#define init_fifo_exact(fifo, _size, gfp)                               \
 141({                                                                      \
 142        (fifo)->size = (_size);                                         \
 143        __init_fifo(fifo, gfp);                                         \
 144})
 145
 146#define init_fifo(fifo, _size, gfp)                                     \
 147({                                                                      \
 148        (fifo)->size = (_size);                                         \
 149        if ((fifo)->size > 4)                                           \
 150                (fifo)->size = roundup_pow_of_two((fifo)->size) - 1;    \
 151        __init_fifo(fifo, gfp);                                         \
 152})
 153
 154#define free_fifo(fifo)                                                 \
 155do {                                                                    \
 156        kvfree((fifo)->data);                                           \
 157        (fifo)->data = NULL;                                            \
 158} while (0)
 159
 160#define fifo_used(fifo)         (((fifo)->back - (fifo)->front) & (fifo)->mask)
 161#define fifo_free(fifo)         ((fifo)->size - fifo_used(fifo))
 162
 163#define fifo_empty(fifo)        (!fifo_used(fifo))
 164#define fifo_full(fifo)         (!fifo_free(fifo))
 165
 166#define fifo_front(fifo)        ((fifo)->data[(fifo)->front])
 167#define fifo_back(fifo)                                                 \
 168        ((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
 169
 170#define fifo_idx(fifo, p)       (((p) - &fifo_front(fifo)) & (fifo)->mask)
 171
 172#define fifo_push_back(fifo, i)                                         \
 173({                                                                      \
 174        bool _r = !fifo_full((fifo));                                   \
 175        if (_r) {                                                       \
 176                (fifo)->data[(fifo)->back++] = (i);                     \
 177                (fifo)->back &= (fifo)->mask;                           \
 178        }                                                               \
 179        _r;                                                             \
 180})
 181
 182#define fifo_pop_front(fifo, i)                                         \
 183({                                                                      \
 184        bool _r = !fifo_empty((fifo));                                  \
 185        if (_r) {                                                       \
 186                (i) = (fifo)->data[(fifo)->front++];                    \
 187                (fifo)->front &= (fifo)->mask;                          \
 188        }                                                               \
 189        _r;                                                             \
 190})
 191
 192#define fifo_push_front(fifo, i)                                        \
 193({                                                                      \
 194        bool _r = !fifo_full((fifo));                                   \
 195        if (_r) {                                                       \
 196                --(fifo)->front;                                        \
 197                (fifo)->front &= (fifo)->mask;                          \
 198                (fifo)->data[(fifo)->front] = (i);                      \
 199        }                                                               \
 200        _r;                                                             \
 201})
 202
 203#define fifo_pop_back(fifo, i)                                          \
 204({                                                                      \
 205        bool _r = !fifo_empty((fifo));                                  \
 206        if (_r) {                                                       \
 207                --(fifo)->back;                                         \
 208                (fifo)->back &= (fifo)->mask;                           \
 209                (i) = (fifo)->data[(fifo)->back]                        \
 210        }                                                               \
 211        _r;                                                             \
 212})
 213
 214#define fifo_push(fifo, i)      fifo_push_back(fifo, (i))
 215#define fifo_pop(fifo, i)       fifo_pop_front(fifo, (i))
 216
 217#define fifo_swap(l, r)                                                 \
 218do {                                                                    \
 219        swap((l)->front, (r)->front);                                   \
 220        swap((l)->back, (r)->back);                                     \
 221        swap((l)->size, (r)->size);                                     \
 222        swap((l)->mask, (r)->mask);                                     \
 223        swap((l)->data, (r)->data);                                     \
 224} while (0)
 225
 226#define fifo_move(dest, src)                                            \
 227do {                                                                    \
 228        typeof(*((dest)->data)) _t;                                     \
 229        while (!fifo_full(dest) &&                                      \
 230               fifo_pop(src, _t))                                       \
 231                fifo_push(dest, _t);                                    \
 232} while (0)
 233
 234/*
 235 * Simple array based allocator - preallocates a number of elements and you can
 236 * never allocate more than that, also has no locking.
 237 *
 238 * Handy because if you know you only need a fixed number of elements you don't
 239 * have to worry about memory allocation failure, and sometimes a mempool isn't
 240 * what you want.
 241 *
 242 * We treat the free elements as entries in a singly linked list, and the
 243 * freelist as a stack - allocating and freeing push and pop off the freelist.
 244 */
 245
 246#define DECLARE_ARRAY_ALLOCATOR(type, name, size)                       \
 247        struct {                                                        \
 248                type    *freelist;                                      \
 249                type    data[size];                                     \
 250        } name
 251
 252#define array_alloc(array)                                              \
 253({                                                                      \
 254        typeof((array)->freelist) _ret = (array)->freelist;             \
 255                                                                        \
 256        if (_ret)                                                       \
 257                (array)->freelist = *((typeof((array)->freelist) *) _ret);\
 258                                                                        \
 259        _ret;                                                           \
 260})
 261
 262#define array_free(array, ptr)                                          \
 263do {                                                                    \
 264        typeof((array)->freelist) _ptr = ptr;                           \
 265                                                                        \
 266        *((typeof((array)->freelist) *) _ptr) = (array)->freelist;      \
 267        (array)->freelist = _ptr;                                       \
 268} while (0)
 269
 270#define array_allocator_init(array)                                     \
 271do {                                                                    \
 272        typeof((array)->freelist) _i;                                   \
 273                                                                        \
 274        BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *));        \
 275        (array)->freelist = NULL;                                       \
 276                                                                        \
 277        for (_i = (array)->data;                                        \
 278             _i < (array)->data + ARRAY_SIZE((array)->data);            \
 279             _i++)                                                      \
 280                array_free(array, _i);                                  \
 281} while (0)
 282
 283#define array_freelist_empty(array)     ((array)->freelist == NULL)
 284
 285#define ANYSINT_MAX(t)                                                  \
 286        ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
 287
 288int bch_strtoint_h(const char *cp, int *res);
 289int bch_strtouint_h(const char *cp, unsigned int *res);
 290int bch_strtoll_h(const char *cp, long long *res);
 291int bch_strtoull_h(const char *cp, unsigned long long *res);
 292
 293static inline int bch_strtol_h(const char *cp, long *res)
 294{
 295#if BITS_PER_LONG == 32
 296        return bch_strtoint_h(cp, (int *) res);
 297#else
 298        return bch_strtoll_h(cp, (long long *) res);
 299#endif
 300}
 301
 302static inline int bch_strtoul_h(const char *cp, long *res)
 303{
 304#if BITS_PER_LONG == 32
 305        return bch_strtouint_h(cp, (unsigned int *) res);
 306#else
 307        return bch_strtoull_h(cp, (unsigned long long *) res);
 308#endif
 309}
 310
 311#define strtoi_h(cp, res)                                               \
 312        (__builtin_types_compatible_p(typeof(*res), int)                \
 313        ? bch_strtoint_h(cp, (void *) res)                              \
 314        : __builtin_types_compatible_p(typeof(*res), long)              \
 315        ? bch_strtol_h(cp, (void *) res)                                \
 316        : __builtin_types_compatible_p(typeof(*res), long long)         \
 317        ? bch_strtoll_h(cp, (void *) res)                               \
 318        : __builtin_types_compatible_p(typeof(*res), unsigned int)      \
 319        ? bch_strtouint_h(cp, (void *) res)                             \
 320        : __builtin_types_compatible_p(typeof(*res), unsigned long)     \
 321        ? bch_strtoul_h(cp, (void *) res)                               \
 322        : __builtin_types_compatible_p(typeof(*res), unsigned long long)\
 323        ? bch_strtoull_h(cp, (void *) res) : -EINVAL)
 324
 325#define strtoul_safe(cp, var)                                           \
 326({                                                                      \
 327        unsigned long _v;                                               \
 328        int _r = kstrtoul(cp, 10, &_v);                                 \
 329        if (!_r)                                                        \
 330                var = _v;                                               \
 331        _r;                                                             \
 332})
 333
 334#define strtoul_safe_clamp(cp, var, min, max)                           \
 335({                                                                      \
 336        unsigned long _v;                                               \
 337        int _r = kstrtoul(cp, 10, &_v);                                 \
 338        if (!_r)                                                        \
 339                var = clamp_t(typeof(var), _v, min, max);               \
 340        _r;                                                             \
 341})
 342
 343#define snprint(buf, size, var)                                         \
 344        snprintf(buf, size,                                             \
 345                __builtin_types_compatible_p(typeof(var), int)          \
 346                     ? "%i\n" :                                         \
 347                __builtin_types_compatible_p(typeof(var), unsigned int) \
 348                     ? "%u\n" :                                         \
 349                __builtin_types_compatible_p(typeof(var), long)         \
 350                     ? "%li\n" :                                        \
 351                __builtin_types_compatible_p(typeof(var), unsigned long)\
 352                     ? "%lu\n" :                                        \
 353                __builtin_types_compatible_p(typeof(var), int64_t)      \
 354                     ? "%lli\n" :                                       \
 355                __builtin_types_compatible_p(typeof(var), uint64_t)     \
 356                     ? "%llu\n" :                                       \
 357                __builtin_types_compatible_p(typeof(var), const char *) \
 358                     ? "%s\n" : "%i\n", var)
 359
 360ssize_t bch_hprint(char *buf, int64_t v);
 361
 362bool bch_is_zero(const char *p, size_t n);
 363int bch_parse_uuid(const char *s, char *uuid);
 364
 365struct time_stats {
 366        spinlock_t      lock;
 367        /*
 368         * all fields are in nanoseconds, averages are ewmas stored left shifted
 369         * by 8
 370         */
 371        uint64_t        max_duration;
 372        uint64_t        average_duration;
 373        uint64_t        average_frequency;
 374        uint64_t        last;
 375};
 376
 377void bch_time_stats_update(struct time_stats *stats, uint64_t time);
 378
 379static inline unsigned int local_clock_us(void)
 380{
 381        return local_clock() >> 10;
 382}
 383
 384#define NSEC_PER_ns                     1L
 385#define NSEC_PER_us                     NSEC_PER_USEC
 386#define NSEC_PER_ms                     NSEC_PER_MSEC
 387#define NSEC_PER_sec                    NSEC_PER_SEC
 388
 389#define __print_time_stat(stats, name, stat, units)                     \
 390        sysfs_print(name ## _ ## stat ## _ ## units,                    \
 391                    div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
 392
 393#define sysfs_print_time_stats(stats, name,                             \
 394                               frequency_units,                         \
 395                               duration_units)                          \
 396do {                                                                    \
 397        __print_time_stat(stats, name,                                  \
 398                          average_frequency,    frequency_units);       \
 399        __print_time_stat(stats, name,                                  \
 400                          average_duration,     duration_units);        \
 401        sysfs_print(name ## _ ##max_duration ## _ ## duration_units,    \
 402                        div_u64((stats)->max_duration,                  \
 403                                NSEC_PER_ ## duration_units));          \
 404                                                                        \
 405        sysfs_print(name ## _last_ ## frequency_units, (stats)->last    \
 406                    ? div_s64(local_clock() - (stats)->last,            \
 407                              NSEC_PER_ ## frequency_units)             \
 408                    : -1LL);                                            \
 409} while (0)
 410
 411#define sysfs_time_stats_attribute(name,                                \
 412                                   frequency_units,                     \
 413                                   duration_units)                      \
 414read_attribute(name ## _average_frequency_ ## frequency_units);         \
 415read_attribute(name ## _average_duration_ ## duration_units);           \
 416read_attribute(name ## _max_duration_ ## duration_units);               \
 417read_attribute(name ## _last_ ## frequency_units)
 418
 419#define sysfs_time_stats_attribute_list(name,                           \
 420                                        frequency_units,                \
 421                                        duration_units)                 \
 422&sysfs_ ## name ## _average_frequency_ ## frequency_units,              \
 423&sysfs_ ## name ## _average_duration_ ## duration_units,                \
 424&sysfs_ ## name ## _max_duration_ ## duration_units,                    \
 425&sysfs_ ## name ## _last_ ## frequency_units,
 426
 427#define ewma_add(ewma, val, weight, factor)                             \
 428({                                                                      \
 429        (ewma) *= (weight) - 1;                                         \
 430        (ewma) += (val) << factor;                                      \
 431        (ewma) /= (weight);                                             \
 432        (ewma) >> factor;                                               \
 433})
 434
 435struct bch_ratelimit {
 436        /* Next time we want to do some work, in nanoseconds */
 437        uint64_t                next;
 438
 439        /*
 440         * Rate at which we want to do work, in units per second
 441         * The units here correspond to the units passed to bch_next_delay()
 442         */
 443        atomic_long_t           rate;
 444};
 445
 446static inline void bch_ratelimit_reset(struct bch_ratelimit *d)
 447{
 448        d->next = local_clock();
 449}
 450
 451uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done);
 452
 453#define __DIV_SAFE(n, d, zero)                                          \
 454({                                                                      \
 455        typeof(n) _n = (n);                                             \
 456        typeof(d) _d = (d);                                             \
 457        _d ? _n / _d : zero;                                            \
 458})
 459
 460#define DIV_SAFE(n, d)  __DIV_SAFE(n, d, 0)
 461
 462#define container_of_or_null(ptr, type, member)                         \
 463({                                                                      \
 464        typeof(ptr) _ptr = ptr;                                         \
 465        _ptr ? container_of(_ptr, type, member) : NULL;                 \
 466})
 467
 468#define RB_INSERT(root, new, member, cmp)                               \
 469({                                                                      \
 470        __label__ dup;                                                  \
 471        struct rb_node **n = &(root)->rb_node, *parent = NULL;          \
 472        typeof(new) this;                                               \
 473        int res, ret = -1;                                              \
 474                                                                        \
 475        while (*n) {                                                    \
 476                parent = *n;                                            \
 477                this = container_of(*n, typeof(*(new)), member);        \
 478                res = cmp(new, this);                                   \
 479                if (!res)                                               \
 480                        goto dup;                                       \
 481                n = res < 0                                             \
 482                        ? &(*n)->rb_left                                \
 483                        : &(*n)->rb_right;                              \
 484        }                                                               \
 485                                                                        \
 486        rb_link_node(&(new)->member, parent, n);                        \
 487        rb_insert_color(&(new)->member, root);                          \
 488        ret = 0;                                                        \
 489dup:                                                                    \
 490        ret;                                                            \
 491})
 492
 493#define RB_SEARCH(root, search, member, cmp)                            \
 494({                                                                      \
 495        struct rb_node *n = (root)->rb_node;                            \
 496        typeof(&(search)) this, ret = NULL;                             \
 497        int res;                                                        \
 498                                                                        \
 499        while (n) {                                                     \
 500                this = container_of(n, typeof(search), member);         \
 501                res = cmp(&(search), this);                             \
 502                if (!res) {                                             \
 503                        ret = this;                                     \
 504                        break;                                          \
 505                }                                                       \
 506                n = res < 0                                             \
 507                        ? n->rb_left                                    \
 508                        : n->rb_right;                                  \
 509        }                                                               \
 510        ret;                                                            \
 511})
 512
 513#define RB_GREATER(root, search, member, cmp)                           \
 514({                                                                      \
 515        struct rb_node *n = (root)->rb_node;                            \
 516        typeof(&(search)) this, ret = NULL;                             \
 517        int res;                                                        \
 518                                                                        \
 519        while (n) {                                                     \
 520                this = container_of(n, typeof(search), member);         \
 521                res = cmp(&(search), this);                             \
 522                if (res < 0) {                                          \
 523                        ret = this;                                     \
 524                        n = n->rb_left;                                 \
 525                } else                                                  \
 526                        n = n->rb_right;                                \
 527        }                                                               \
 528        ret;                                                            \
 529})
 530
 531#define RB_FIRST(root, type, member)                                    \
 532        container_of_or_null(rb_first(root), type, member)
 533
 534#define RB_LAST(root, type, member)                                     \
 535        container_of_or_null(rb_last(root), type, member)
 536
 537#define RB_NEXT(ptr, member)                                            \
 538        container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
 539
 540#define RB_PREV(ptr, member)                                            \
 541        container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
 542
 543static inline uint64_t bch_crc64(const void *p, size_t len)
 544{
 545        uint64_t crc = 0xffffffffffffffffULL;
 546
 547        crc = crc64_be(crc, p, len);
 548        return crc ^ 0xffffffffffffffffULL;
 549}
 550
 551static inline uint64_t bch_crc64_update(uint64_t crc,
 552                                        const void *p,
 553                                        size_t len)
 554{
 555        crc = crc64_be(crc, p, len);
 556        return crc;
 557}
 558
 559/*
 560 * A stepwise-linear pseudo-exponential.  This returns 1 << (x >>
 561 * frac_bits), with the less-significant bits filled in by linear
 562 * interpolation.
 563 *
 564 * This can also be interpreted as a floating-point number format,
 565 * where the low frac_bits are the mantissa (with implicit leading
 566 * 1 bit), and the more significant bits are the exponent.
 567 * The return value is 1.mantissa * 2^exponent.
 568 *
 569 * The way this is used, fract_bits is 6 and the largest possible
 570 * input is CONGESTED_MAX-1 = 1023 (exponent 16, mantissa 0x1.fc),
 571 * so the maximum output is 0x1fc00.
 572 */
 573static inline unsigned int fract_exp_two(unsigned int x,
 574                                         unsigned int fract_bits)
 575{
 576        unsigned int mantissa = 1 << fract_bits;        /* Implicit bit */
 577
 578        mantissa += x & (mantissa - 1);
 579        x >>= fract_bits;       /* The exponent */
 580        /* Largest intermediate value 0x7f0000 */
 581        return mantissa << x >> fract_bits;
 582}
 583
 584void bch_bio_map(struct bio *bio, void *base);
 585int bch_bio_alloc_pages(struct bio *bio, gfp_t gfp_mask);
 586
 587static inline sector_t bdev_sectors(struct block_device *bdev)
 588{
 589        return bdev->bd_inode->i_size >> 9;
 590}
 591#endif /* _BCACHE_UTIL_H */
 592