linux/drivers/md/dm-table.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9
  10#include <linux/module.h>
  11#include <linux/vmalloc.h>
  12#include <linux/blkdev.h>
  13#include <linux/namei.h>
  14#include <linux/ctype.h>
  15#include <linux/string.h>
  16#include <linux/slab.h>
  17#include <linux/interrupt.h>
  18#include <linux/mutex.h>
  19#include <linux/delay.h>
  20#include <linux/atomic.h>
  21#include <linux/blk-mq.h>
  22#include <linux/mount.h>
  23#include <linux/dax.h>
  24
  25#define DM_MSG_PREFIX "table"
  26
  27#define NODE_SIZE L1_CACHE_BYTES
  28#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
  29#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
  30
  31/*
  32 * Similar to ceiling(log_size(n))
  33 */
  34static unsigned int int_log(unsigned int n, unsigned int base)
  35{
  36        int result = 0;
  37
  38        while (n > 1) {
  39                n = dm_div_up(n, base);
  40                result++;
  41        }
  42
  43        return result;
  44}
  45
  46/*
  47 * Calculate the index of the child node of the n'th node k'th key.
  48 */
  49static inline unsigned int get_child(unsigned int n, unsigned int k)
  50{
  51        return (n * CHILDREN_PER_NODE) + k;
  52}
  53
  54/*
  55 * Return the n'th node of level l from table t.
  56 */
  57static inline sector_t *get_node(struct dm_table *t,
  58                                 unsigned int l, unsigned int n)
  59{
  60        return t->index[l] + (n * KEYS_PER_NODE);
  61}
  62
  63/*
  64 * Return the highest key that you could lookup from the n'th
  65 * node on level l of the btree.
  66 */
  67static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
  68{
  69        for (; l < t->depth - 1; l++)
  70                n = get_child(n, CHILDREN_PER_NODE - 1);
  71
  72        if (n >= t->counts[l])
  73                return (sector_t) - 1;
  74
  75        return get_node(t, l, n)[KEYS_PER_NODE - 1];
  76}
  77
  78/*
  79 * Fills in a level of the btree based on the highs of the level
  80 * below it.
  81 */
  82static int setup_btree_index(unsigned int l, struct dm_table *t)
  83{
  84        unsigned int n, k;
  85        sector_t *node;
  86
  87        for (n = 0U; n < t->counts[l]; n++) {
  88                node = get_node(t, l, n);
  89
  90                for (k = 0U; k < KEYS_PER_NODE; k++)
  91                        node[k] = high(t, l + 1, get_child(n, k));
  92        }
  93
  94        return 0;
  95}
  96
  97/*
  98 * highs, and targets are managed as dynamic arrays during a
  99 * table load.
 100 */
 101static int alloc_targets(struct dm_table *t, unsigned int num)
 102{
 103        sector_t *n_highs;
 104        struct dm_target *n_targets;
 105
 106        /*
 107         * Allocate both the target array and offset array at once.
 108         */
 109        n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
 110                           GFP_KERNEL);
 111        if (!n_highs)
 112                return -ENOMEM;
 113
 114        n_targets = (struct dm_target *) (n_highs + num);
 115
 116        memset(n_highs, -1, sizeof(*n_highs) * num);
 117        kvfree(t->highs);
 118
 119        t->num_allocated = num;
 120        t->highs = n_highs;
 121        t->targets = n_targets;
 122
 123        return 0;
 124}
 125
 126int dm_table_create(struct dm_table **result, fmode_t mode,
 127                    unsigned num_targets, struct mapped_device *md)
 128{
 129        struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
 130
 131        if (!t)
 132                return -ENOMEM;
 133
 134        INIT_LIST_HEAD(&t->devices);
 135
 136        if (!num_targets)
 137                num_targets = KEYS_PER_NODE;
 138
 139        num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
 140
 141        if (!num_targets) {
 142                kfree(t);
 143                return -ENOMEM;
 144        }
 145
 146        if (alloc_targets(t, num_targets)) {
 147                kfree(t);
 148                return -ENOMEM;
 149        }
 150
 151        t->type = DM_TYPE_NONE;
 152        t->mode = mode;
 153        t->md = md;
 154        *result = t;
 155        return 0;
 156}
 157
 158static void free_devices(struct list_head *devices, struct mapped_device *md)
 159{
 160        struct list_head *tmp, *next;
 161
 162        list_for_each_safe(tmp, next, devices) {
 163                struct dm_dev_internal *dd =
 164                    list_entry(tmp, struct dm_dev_internal, list);
 165                DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
 166                       dm_device_name(md), dd->dm_dev->name);
 167                dm_put_table_device(md, dd->dm_dev);
 168                kfree(dd);
 169        }
 170}
 171
 172static void dm_table_destroy_keyslot_manager(struct dm_table *t);
 173
 174void dm_table_destroy(struct dm_table *t)
 175{
 176        unsigned int i;
 177
 178        if (!t)
 179                return;
 180
 181        /* free the indexes */
 182        if (t->depth >= 2)
 183                kvfree(t->index[t->depth - 2]);
 184
 185        /* free the targets */
 186        for (i = 0; i < t->num_targets; i++) {
 187                struct dm_target *tgt = t->targets + i;
 188
 189                if (tgt->type->dtr)
 190                        tgt->type->dtr(tgt);
 191
 192                dm_put_target_type(tgt->type);
 193        }
 194
 195        kvfree(t->highs);
 196
 197        /* free the device list */
 198        free_devices(&t->devices, t->md);
 199
 200        dm_free_md_mempools(t->mempools);
 201
 202        dm_table_destroy_keyslot_manager(t);
 203
 204        kfree(t);
 205}
 206
 207/*
 208 * See if we've already got a device in the list.
 209 */
 210static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
 211{
 212        struct dm_dev_internal *dd;
 213
 214        list_for_each_entry (dd, l, list)
 215                if (dd->dm_dev->bdev->bd_dev == dev)
 216                        return dd;
 217
 218        return NULL;
 219}
 220
 221/*
 222 * If possible, this checks an area of a destination device is invalid.
 223 */
 224static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
 225                                  sector_t start, sector_t len, void *data)
 226{
 227        struct queue_limits *limits = data;
 228        struct block_device *bdev = dev->bdev;
 229        sector_t dev_size =
 230                i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
 231        unsigned short logical_block_size_sectors =
 232                limits->logical_block_size >> SECTOR_SHIFT;
 233        char b[BDEVNAME_SIZE];
 234
 235        if (!dev_size)
 236                return 0;
 237
 238        if ((start >= dev_size) || (start + len > dev_size)) {
 239                DMWARN("%s: %s too small for target: "
 240                       "start=%llu, len=%llu, dev_size=%llu",
 241                       dm_device_name(ti->table->md), bdevname(bdev, b),
 242                       (unsigned long long)start,
 243                       (unsigned long long)len,
 244                       (unsigned long long)dev_size);
 245                return 1;
 246        }
 247
 248        /*
 249         * If the target is mapped to zoned block device(s), check
 250         * that the zones are not partially mapped.
 251         */
 252        if (bdev_is_zoned(bdev)) {
 253                unsigned int zone_sectors = bdev_zone_sectors(bdev);
 254
 255                if (start & (zone_sectors - 1)) {
 256                        DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
 257                               dm_device_name(ti->table->md),
 258                               (unsigned long long)start,
 259                               zone_sectors, bdevname(bdev, b));
 260                        return 1;
 261                }
 262
 263                /*
 264                 * Note: The last zone of a zoned block device may be smaller
 265                 * than other zones. So for a target mapping the end of a
 266                 * zoned block device with such a zone, len would not be zone
 267                 * aligned. We do not allow such last smaller zone to be part
 268                 * of the mapping here to ensure that mappings with multiple
 269                 * devices do not end up with a smaller zone in the middle of
 270                 * the sector range.
 271                 */
 272                if (len & (zone_sectors - 1)) {
 273                        DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
 274                               dm_device_name(ti->table->md),
 275                               (unsigned long long)len,
 276                               zone_sectors, bdevname(bdev, b));
 277                        return 1;
 278                }
 279        }
 280
 281        if (logical_block_size_sectors <= 1)
 282                return 0;
 283
 284        if (start & (logical_block_size_sectors - 1)) {
 285                DMWARN("%s: start=%llu not aligned to h/w "
 286                       "logical block size %u of %s",
 287                       dm_device_name(ti->table->md),
 288                       (unsigned long long)start,
 289                       limits->logical_block_size, bdevname(bdev, b));
 290                return 1;
 291        }
 292
 293        if (len & (logical_block_size_sectors - 1)) {
 294                DMWARN("%s: len=%llu not aligned to h/w "
 295                       "logical block size %u of %s",
 296                       dm_device_name(ti->table->md),
 297                       (unsigned long long)len,
 298                       limits->logical_block_size, bdevname(bdev, b));
 299                return 1;
 300        }
 301
 302        return 0;
 303}
 304
 305/*
 306 * This upgrades the mode on an already open dm_dev, being
 307 * careful to leave things as they were if we fail to reopen the
 308 * device and not to touch the existing bdev field in case
 309 * it is accessed concurrently.
 310 */
 311static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
 312                        struct mapped_device *md)
 313{
 314        int r;
 315        struct dm_dev *old_dev, *new_dev;
 316
 317        old_dev = dd->dm_dev;
 318
 319        r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
 320                                dd->dm_dev->mode | new_mode, &new_dev);
 321        if (r)
 322                return r;
 323
 324        dd->dm_dev = new_dev;
 325        dm_put_table_device(md, old_dev);
 326
 327        return 0;
 328}
 329
 330/*
 331 * Convert the path to a device
 332 */
 333dev_t dm_get_dev_t(const char *path)
 334{
 335        dev_t dev;
 336
 337        if (lookup_bdev(path, &dev))
 338                dev = name_to_dev_t(path);
 339        return dev;
 340}
 341EXPORT_SYMBOL_GPL(dm_get_dev_t);
 342
 343/*
 344 * Add a device to the list, or just increment the usage count if
 345 * it's already present.
 346 */
 347int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
 348                  struct dm_dev **result)
 349{
 350        int r;
 351        dev_t dev;
 352        unsigned int major, minor;
 353        char dummy;
 354        struct dm_dev_internal *dd;
 355        struct dm_table *t = ti->table;
 356
 357        BUG_ON(!t);
 358
 359        if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
 360                /* Extract the major/minor numbers */
 361                dev = MKDEV(major, minor);
 362                if (MAJOR(dev) != major || MINOR(dev) != minor)
 363                        return -EOVERFLOW;
 364        } else {
 365                dev = dm_get_dev_t(path);
 366                if (!dev)
 367                        return -ENODEV;
 368        }
 369
 370        dd = find_device(&t->devices, dev);
 371        if (!dd) {
 372                dd = kmalloc(sizeof(*dd), GFP_KERNEL);
 373                if (!dd)
 374                        return -ENOMEM;
 375
 376                if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
 377                        kfree(dd);
 378                        return r;
 379                }
 380
 381                refcount_set(&dd->count, 1);
 382                list_add(&dd->list, &t->devices);
 383                goto out;
 384
 385        } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
 386                r = upgrade_mode(dd, mode, t->md);
 387                if (r)
 388                        return r;
 389        }
 390        refcount_inc(&dd->count);
 391out:
 392        *result = dd->dm_dev;
 393        return 0;
 394}
 395EXPORT_SYMBOL(dm_get_device);
 396
 397static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
 398                                sector_t start, sector_t len, void *data)
 399{
 400        struct queue_limits *limits = data;
 401        struct block_device *bdev = dev->bdev;
 402        struct request_queue *q = bdev_get_queue(bdev);
 403        char b[BDEVNAME_SIZE];
 404
 405        if (unlikely(!q)) {
 406                DMWARN("%s: Cannot set limits for nonexistent device %s",
 407                       dm_device_name(ti->table->md), bdevname(bdev, b));
 408                return 0;
 409        }
 410
 411        if (blk_stack_limits(limits, &q->limits,
 412                        get_start_sect(bdev) + start) < 0)
 413                DMWARN("%s: adding target device %s caused an alignment inconsistency: "
 414                       "physical_block_size=%u, logical_block_size=%u, "
 415                       "alignment_offset=%u, start=%llu",
 416                       dm_device_name(ti->table->md), bdevname(bdev, b),
 417                       q->limits.physical_block_size,
 418                       q->limits.logical_block_size,
 419                       q->limits.alignment_offset,
 420                       (unsigned long long) start << SECTOR_SHIFT);
 421        return 0;
 422}
 423
 424/*
 425 * Decrement a device's use count and remove it if necessary.
 426 */
 427void dm_put_device(struct dm_target *ti, struct dm_dev *d)
 428{
 429        int found = 0;
 430        struct list_head *devices = &ti->table->devices;
 431        struct dm_dev_internal *dd;
 432
 433        list_for_each_entry(dd, devices, list) {
 434                if (dd->dm_dev == d) {
 435                        found = 1;
 436                        break;
 437                }
 438        }
 439        if (!found) {
 440                DMWARN("%s: device %s not in table devices list",
 441                       dm_device_name(ti->table->md), d->name);
 442                return;
 443        }
 444        if (refcount_dec_and_test(&dd->count)) {
 445                dm_put_table_device(ti->table->md, d);
 446                list_del(&dd->list);
 447                kfree(dd);
 448        }
 449}
 450EXPORT_SYMBOL(dm_put_device);
 451
 452/*
 453 * Checks to see if the target joins onto the end of the table.
 454 */
 455static int adjoin(struct dm_table *table, struct dm_target *ti)
 456{
 457        struct dm_target *prev;
 458
 459        if (!table->num_targets)
 460                return !ti->begin;
 461
 462        prev = &table->targets[table->num_targets - 1];
 463        return (ti->begin == (prev->begin + prev->len));
 464}
 465
 466/*
 467 * Used to dynamically allocate the arg array.
 468 *
 469 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
 470 * process messages even if some device is suspended. These messages have a
 471 * small fixed number of arguments.
 472 *
 473 * On the other hand, dm-switch needs to process bulk data using messages and
 474 * excessive use of GFP_NOIO could cause trouble.
 475 */
 476static char **realloc_argv(unsigned *size, char **old_argv)
 477{
 478        char **argv;
 479        unsigned new_size;
 480        gfp_t gfp;
 481
 482        if (*size) {
 483                new_size = *size * 2;
 484                gfp = GFP_KERNEL;
 485        } else {
 486                new_size = 8;
 487                gfp = GFP_NOIO;
 488        }
 489        argv = kmalloc_array(new_size, sizeof(*argv), gfp);
 490        if (argv && old_argv) {
 491                memcpy(argv, old_argv, *size * sizeof(*argv));
 492                *size = new_size;
 493        }
 494
 495        kfree(old_argv);
 496        return argv;
 497}
 498
 499/*
 500 * Destructively splits up the argument list to pass to ctr.
 501 */
 502int dm_split_args(int *argc, char ***argvp, char *input)
 503{
 504        char *start, *end = input, *out, **argv = NULL;
 505        unsigned array_size = 0;
 506
 507        *argc = 0;
 508
 509        if (!input) {
 510                *argvp = NULL;
 511                return 0;
 512        }
 513
 514        argv = realloc_argv(&array_size, argv);
 515        if (!argv)
 516                return -ENOMEM;
 517
 518        while (1) {
 519                /* Skip whitespace */
 520                start = skip_spaces(end);
 521
 522                if (!*start)
 523                        break;  /* success, we hit the end */
 524
 525                /* 'out' is used to remove any back-quotes */
 526                end = out = start;
 527                while (*end) {
 528                        /* Everything apart from '\0' can be quoted */
 529                        if (*end == '\\' && *(end + 1)) {
 530                                *out++ = *(end + 1);
 531                                end += 2;
 532                                continue;
 533                        }
 534
 535                        if (isspace(*end))
 536                                break;  /* end of token */
 537
 538                        *out++ = *end++;
 539                }
 540
 541                /* have we already filled the array ? */
 542                if ((*argc + 1) > array_size) {
 543                        argv = realloc_argv(&array_size, argv);
 544                        if (!argv)
 545                                return -ENOMEM;
 546                }
 547
 548                /* we know this is whitespace */
 549                if (*end)
 550                        end++;
 551
 552                /* terminate the string and put it in the array */
 553                *out = '\0';
 554                argv[*argc] = start;
 555                (*argc)++;
 556        }
 557
 558        *argvp = argv;
 559        return 0;
 560}
 561
 562/*
 563 * Impose necessary and sufficient conditions on a devices's table such
 564 * that any incoming bio which respects its logical_block_size can be
 565 * processed successfully.  If it falls across the boundary between
 566 * two or more targets, the size of each piece it gets split into must
 567 * be compatible with the logical_block_size of the target processing it.
 568 */
 569static int validate_hardware_logical_block_alignment(struct dm_table *table,
 570                                                 struct queue_limits *limits)
 571{
 572        /*
 573         * This function uses arithmetic modulo the logical_block_size
 574         * (in units of 512-byte sectors).
 575         */
 576        unsigned short device_logical_block_size_sects =
 577                limits->logical_block_size >> SECTOR_SHIFT;
 578
 579        /*
 580         * Offset of the start of the next table entry, mod logical_block_size.
 581         */
 582        unsigned short next_target_start = 0;
 583
 584        /*
 585         * Given an aligned bio that extends beyond the end of a
 586         * target, how many sectors must the next target handle?
 587         */
 588        unsigned short remaining = 0;
 589
 590        struct dm_target *ti;
 591        struct queue_limits ti_limits;
 592        unsigned i;
 593
 594        /*
 595         * Check each entry in the table in turn.
 596         */
 597        for (i = 0; i < dm_table_get_num_targets(table); i++) {
 598                ti = dm_table_get_target(table, i);
 599
 600                blk_set_stacking_limits(&ti_limits);
 601
 602                /* combine all target devices' limits */
 603                if (ti->type->iterate_devices)
 604                        ti->type->iterate_devices(ti, dm_set_device_limits,
 605                                                  &ti_limits);
 606
 607                /*
 608                 * If the remaining sectors fall entirely within this
 609                 * table entry are they compatible with its logical_block_size?
 610                 */
 611                if (remaining < ti->len &&
 612                    remaining & ((ti_limits.logical_block_size >>
 613                                  SECTOR_SHIFT) - 1))
 614                        break;  /* Error */
 615
 616                next_target_start =
 617                    (unsigned short) ((next_target_start + ti->len) &
 618                                      (device_logical_block_size_sects - 1));
 619                remaining = next_target_start ?
 620                    device_logical_block_size_sects - next_target_start : 0;
 621        }
 622
 623        if (remaining) {
 624                DMWARN("%s: table line %u (start sect %llu len %llu) "
 625                       "not aligned to h/w logical block size %u",
 626                       dm_device_name(table->md), i,
 627                       (unsigned long long) ti->begin,
 628                       (unsigned long long) ti->len,
 629                       limits->logical_block_size);
 630                return -EINVAL;
 631        }
 632
 633        return 0;
 634}
 635
 636int dm_table_add_target(struct dm_table *t, const char *type,
 637                        sector_t start, sector_t len, char *params)
 638{
 639        int r = -EINVAL, argc;
 640        char **argv;
 641        struct dm_target *tgt;
 642
 643        if (t->singleton) {
 644                DMERR("%s: target type %s must appear alone in table",
 645                      dm_device_name(t->md), t->targets->type->name);
 646                return -EINVAL;
 647        }
 648
 649        BUG_ON(t->num_targets >= t->num_allocated);
 650
 651        tgt = t->targets + t->num_targets;
 652        memset(tgt, 0, sizeof(*tgt));
 653
 654        if (!len) {
 655                DMERR("%s: zero-length target", dm_device_name(t->md));
 656                return -EINVAL;
 657        }
 658
 659        tgt->type = dm_get_target_type(type);
 660        if (!tgt->type) {
 661                DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
 662                return -EINVAL;
 663        }
 664
 665        if (dm_target_needs_singleton(tgt->type)) {
 666                if (t->num_targets) {
 667                        tgt->error = "singleton target type must appear alone in table";
 668                        goto bad;
 669                }
 670                t->singleton = true;
 671        }
 672
 673        if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
 674                tgt->error = "target type may not be included in a read-only table";
 675                goto bad;
 676        }
 677
 678        if (t->immutable_target_type) {
 679                if (t->immutable_target_type != tgt->type) {
 680                        tgt->error = "immutable target type cannot be mixed with other target types";
 681                        goto bad;
 682                }
 683        } else if (dm_target_is_immutable(tgt->type)) {
 684                if (t->num_targets) {
 685                        tgt->error = "immutable target type cannot be mixed with other target types";
 686                        goto bad;
 687                }
 688                t->immutable_target_type = tgt->type;
 689        }
 690
 691        if (dm_target_has_integrity(tgt->type))
 692                t->integrity_added = 1;
 693
 694        tgt->table = t;
 695        tgt->begin = start;
 696        tgt->len = len;
 697        tgt->error = "Unknown error";
 698
 699        /*
 700         * Does this target adjoin the previous one ?
 701         */
 702        if (!adjoin(t, tgt)) {
 703                tgt->error = "Gap in table";
 704                goto bad;
 705        }
 706
 707        r = dm_split_args(&argc, &argv, params);
 708        if (r) {
 709                tgt->error = "couldn't split parameters (insufficient memory)";
 710                goto bad;
 711        }
 712
 713        r = tgt->type->ctr(tgt, argc, argv);
 714        kfree(argv);
 715        if (r)
 716                goto bad;
 717
 718        t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
 719
 720        if (!tgt->num_discard_bios && tgt->discards_supported)
 721                DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
 722                       dm_device_name(t->md), type);
 723
 724        return 0;
 725
 726 bad:
 727        DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
 728        dm_put_target_type(tgt->type);
 729        return r;
 730}
 731
 732/*
 733 * Target argument parsing helpers.
 734 */
 735static int validate_next_arg(const struct dm_arg *arg,
 736                             struct dm_arg_set *arg_set,
 737                             unsigned *value, char **error, unsigned grouped)
 738{
 739        const char *arg_str = dm_shift_arg(arg_set);
 740        char dummy;
 741
 742        if (!arg_str ||
 743            (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
 744            (*value < arg->min) ||
 745            (*value > arg->max) ||
 746            (grouped && arg_set->argc < *value)) {
 747                *error = arg->error;
 748                return -EINVAL;
 749        }
 750
 751        return 0;
 752}
 753
 754int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
 755                unsigned *value, char **error)
 756{
 757        return validate_next_arg(arg, arg_set, value, error, 0);
 758}
 759EXPORT_SYMBOL(dm_read_arg);
 760
 761int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
 762                      unsigned *value, char **error)
 763{
 764        return validate_next_arg(arg, arg_set, value, error, 1);
 765}
 766EXPORT_SYMBOL(dm_read_arg_group);
 767
 768const char *dm_shift_arg(struct dm_arg_set *as)
 769{
 770        char *r;
 771
 772        if (as->argc) {
 773                as->argc--;
 774                r = *as->argv;
 775                as->argv++;
 776                return r;
 777        }
 778
 779        return NULL;
 780}
 781EXPORT_SYMBOL(dm_shift_arg);
 782
 783void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
 784{
 785        BUG_ON(as->argc < num_args);
 786        as->argc -= num_args;
 787        as->argv += num_args;
 788}
 789EXPORT_SYMBOL(dm_consume_args);
 790
 791static bool __table_type_bio_based(enum dm_queue_mode table_type)
 792{
 793        return (table_type == DM_TYPE_BIO_BASED ||
 794                table_type == DM_TYPE_DAX_BIO_BASED);
 795}
 796
 797static bool __table_type_request_based(enum dm_queue_mode table_type)
 798{
 799        return table_type == DM_TYPE_REQUEST_BASED;
 800}
 801
 802void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
 803{
 804        t->type = type;
 805}
 806EXPORT_SYMBOL_GPL(dm_table_set_type);
 807
 808/* validate the dax capability of the target device span */
 809int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
 810                        sector_t start, sector_t len, void *data)
 811{
 812        int blocksize = *(int *) data;
 813
 814        return !dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len);
 815}
 816
 817/* Check devices support synchronous DAX */
 818static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
 819                                              sector_t start, sector_t len, void *data)
 820{
 821        return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
 822}
 823
 824bool dm_table_supports_dax(struct dm_table *t,
 825                           iterate_devices_callout_fn iterate_fn, int *blocksize)
 826{
 827        struct dm_target *ti;
 828        unsigned i;
 829
 830        /* Ensure that all targets support DAX. */
 831        for (i = 0; i < dm_table_get_num_targets(t); i++) {
 832                ti = dm_table_get_target(t, i);
 833
 834                if (!ti->type->direct_access)
 835                        return false;
 836
 837                if (!ti->type->iterate_devices ||
 838                    ti->type->iterate_devices(ti, iterate_fn, blocksize))
 839                        return false;
 840        }
 841
 842        return true;
 843}
 844
 845static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
 846                                  sector_t start, sector_t len, void *data)
 847{
 848        struct block_device *bdev = dev->bdev;
 849        struct request_queue *q = bdev_get_queue(bdev);
 850
 851        /* request-based cannot stack on partitions! */
 852        if (bdev_is_partition(bdev))
 853                return false;
 854
 855        return queue_is_mq(q);
 856}
 857
 858static int dm_table_determine_type(struct dm_table *t)
 859{
 860        unsigned i;
 861        unsigned bio_based = 0, request_based = 0, hybrid = 0;
 862        struct dm_target *tgt;
 863        struct list_head *devices = dm_table_get_devices(t);
 864        enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
 865        int page_size = PAGE_SIZE;
 866
 867        if (t->type != DM_TYPE_NONE) {
 868                /* target already set the table's type */
 869                if (t->type == DM_TYPE_BIO_BASED) {
 870                        /* possibly upgrade to a variant of bio-based */
 871                        goto verify_bio_based;
 872                }
 873                BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
 874                goto verify_rq_based;
 875        }
 876
 877        for (i = 0; i < t->num_targets; i++) {
 878                tgt = t->targets + i;
 879                if (dm_target_hybrid(tgt))
 880                        hybrid = 1;
 881                else if (dm_target_request_based(tgt))
 882                        request_based = 1;
 883                else
 884                        bio_based = 1;
 885
 886                if (bio_based && request_based) {
 887                        DMERR("Inconsistent table: different target types"
 888                              " can't be mixed up");
 889                        return -EINVAL;
 890                }
 891        }
 892
 893        if (hybrid && !bio_based && !request_based) {
 894                /*
 895                 * The targets can work either way.
 896                 * Determine the type from the live device.
 897                 * Default to bio-based if device is new.
 898                 */
 899                if (__table_type_request_based(live_md_type))
 900                        request_based = 1;
 901                else
 902                        bio_based = 1;
 903        }
 904
 905        if (bio_based) {
 906verify_bio_based:
 907                /* We must use this table as bio-based */
 908                t->type = DM_TYPE_BIO_BASED;
 909                if (dm_table_supports_dax(t, device_not_dax_capable, &page_size) ||
 910                    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
 911                        t->type = DM_TYPE_DAX_BIO_BASED;
 912                }
 913                return 0;
 914        }
 915
 916        BUG_ON(!request_based); /* No targets in this table */
 917
 918        t->type = DM_TYPE_REQUEST_BASED;
 919
 920verify_rq_based:
 921        /*
 922         * Request-based dm supports only tables that have a single target now.
 923         * To support multiple targets, request splitting support is needed,
 924         * and that needs lots of changes in the block-layer.
 925         * (e.g. request completion process for partial completion.)
 926         */
 927        if (t->num_targets > 1) {
 928                DMERR("request-based DM doesn't support multiple targets");
 929                return -EINVAL;
 930        }
 931
 932        if (list_empty(devices)) {
 933                int srcu_idx;
 934                struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
 935
 936                /* inherit live table's type */
 937                if (live_table)
 938                        t->type = live_table->type;
 939                dm_put_live_table(t->md, srcu_idx);
 940                return 0;
 941        }
 942
 943        tgt = dm_table_get_immutable_target(t);
 944        if (!tgt) {
 945                DMERR("table load rejected: immutable target is required");
 946                return -EINVAL;
 947        } else if (tgt->max_io_len) {
 948                DMERR("table load rejected: immutable target that splits IO is not supported");
 949                return -EINVAL;
 950        }
 951
 952        /* Non-request-stackable devices can't be used for request-based dm */
 953        if (!tgt->type->iterate_devices ||
 954            !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
 955                DMERR("table load rejected: including non-request-stackable devices");
 956                return -EINVAL;
 957        }
 958
 959        return 0;
 960}
 961
 962enum dm_queue_mode dm_table_get_type(struct dm_table *t)
 963{
 964        return t->type;
 965}
 966
 967struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
 968{
 969        return t->immutable_target_type;
 970}
 971
 972struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
 973{
 974        /* Immutable target is implicitly a singleton */
 975        if (t->num_targets > 1 ||
 976            !dm_target_is_immutable(t->targets[0].type))
 977                return NULL;
 978
 979        return t->targets;
 980}
 981
 982struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
 983{
 984        struct dm_target *ti;
 985        unsigned i;
 986
 987        for (i = 0; i < dm_table_get_num_targets(t); i++) {
 988                ti = dm_table_get_target(t, i);
 989                if (dm_target_is_wildcard(ti->type))
 990                        return ti;
 991        }
 992
 993        return NULL;
 994}
 995
 996bool dm_table_bio_based(struct dm_table *t)
 997{
 998        return __table_type_bio_based(dm_table_get_type(t));
 999}
1000
1001bool dm_table_request_based(struct dm_table *t)
1002{
1003        return __table_type_request_based(dm_table_get_type(t));
1004}
1005
1006static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1007{
1008        enum dm_queue_mode type = dm_table_get_type(t);
1009        unsigned per_io_data_size = 0;
1010        unsigned min_pool_size = 0;
1011        struct dm_target *ti;
1012        unsigned i;
1013
1014        if (unlikely(type == DM_TYPE_NONE)) {
1015                DMWARN("no table type is set, can't allocate mempools");
1016                return -EINVAL;
1017        }
1018
1019        if (__table_type_bio_based(type))
1020                for (i = 0; i < t->num_targets; i++) {
1021                        ti = t->targets + i;
1022                        per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1023                        min_pool_size = max(min_pool_size, ti->num_flush_bios);
1024                }
1025
1026        t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1027                                           per_io_data_size, min_pool_size);
1028        if (!t->mempools)
1029                return -ENOMEM;
1030
1031        return 0;
1032}
1033
1034void dm_table_free_md_mempools(struct dm_table *t)
1035{
1036        dm_free_md_mempools(t->mempools);
1037        t->mempools = NULL;
1038}
1039
1040struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1041{
1042        return t->mempools;
1043}
1044
1045static int setup_indexes(struct dm_table *t)
1046{
1047        int i;
1048        unsigned int total = 0;
1049        sector_t *indexes;
1050
1051        /* allocate the space for *all* the indexes */
1052        for (i = t->depth - 2; i >= 0; i--) {
1053                t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1054                total += t->counts[i];
1055        }
1056
1057        indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1058        if (!indexes)
1059                return -ENOMEM;
1060
1061        /* set up internal nodes, bottom-up */
1062        for (i = t->depth - 2; i >= 0; i--) {
1063                t->index[i] = indexes;
1064                indexes += (KEYS_PER_NODE * t->counts[i]);
1065                setup_btree_index(i, t);
1066        }
1067
1068        return 0;
1069}
1070
1071/*
1072 * Builds the btree to index the map.
1073 */
1074static int dm_table_build_index(struct dm_table *t)
1075{
1076        int r = 0;
1077        unsigned int leaf_nodes;
1078
1079        /* how many indexes will the btree have ? */
1080        leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1081        t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1082
1083        /* leaf layer has already been set up */
1084        t->counts[t->depth - 1] = leaf_nodes;
1085        t->index[t->depth - 1] = t->highs;
1086
1087        if (t->depth >= 2)
1088                r = setup_indexes(t);
1089
1090        return r;
1091}
1092
1093static bool integrity_profile_exists(struct gendisk *disk)
1094{
1095        return !!blk_get_integrity(disk);
1096}
1097
1098/*
1099 * Get a disk whose integrity profile reflects the table's profile.
1100 * Returns NULL if integrity support was inconsistent or unavailable.
1101 */
1102static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1103{
1104        struct list_head *devices = dm_table_get_devices(t);
1105        struct dm_dev_internal *dd = NULL;
1106        struct gendisk *prev_disk = NULL, *template_disk = NULL;
1107        unsigned i;
1108
1109        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1110                struct dm_target *ti = dm_table_get_target(t, i);
1111                if (!dm_target_passes_integrity(ti->type))
1112                        goto no_integrity;
1113        }
1114
1115        list_for_each_entry(dd, devices, list) {
1116                template_disk = dd->dm_dev->bdev->bd_disk;
1117                if (!integrity_profile_exists(template_disk))
1118                        goto no_integrity;
1119                else if (prev_disk &&
1120                         blk_integrity_compare(prev_disk, template_disk) < 0)
1121                        goto no_integrity;
1122                prev_disk = template_disk;
1123        }
1124
1125        return template_disk;
1126
1127no_integrity:
1128        if (prev_disk)
1129                DMWARN("%s: integrity not set: %s and %s profile mismatch",
1130                       dm_device_name(t->md),
1131                       prev_disk->disk_name,
1132                       template_disk->disk_name);
1133        return NULL;
1134}
1135
1136/*
1137 * Register the mapped device for blk_integrity support if the
1138 * underlying devices have an integrity profile.  But all devices may
1139 * not have matching profiles (checking all devices isn't reliable
1140 * during table load because this table may use other DM device(s) which
1141 * must be resumed before they will have an initialized integity
1142 * profile).  Consequently, stacked DM devices force a 2 stage integrity
1143 * profile validation: First pass during table load, final pass during
1144 * resume.
1145 */
1146static int dm_table_register_integrity(struct dm_table *t)
1147{
1148        struct mapped_device *md = t->md;
1149        struct gendisk *template_disk = NULL;
1150
1151        /* If target handles integrity itself do not register it here. */
1152        if (t->integrity_added)
1153                return 0;
1154
1155        template_disk = dm_table_get_integrity_disk(t);
1156        if (!template_disk)
1157                return 0;
1158
1159        if (!integrity_profile_exists(dm_disk(md))) {
1160                t->integrity_supported = true;
1161                /*
1162                 * Register integrity profile during table load; we can do
1163                 * this because the final profile must match during resume.
1164                 */
1165                blk_integrity_register(dm_disk(md),
1166                                       blk_get_integrity(template_disk));
1167                return 0;
1168        }
1169
1170        /*
1171         * If DM device already has an initialized integrity
1172         * profile the new profile should not conflict.
1173         */
1174        if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1175                DMWARN("%s: conflict with existing integrity profile: "
1176                       "%s profile mismatch",
1177                       dm_device_name(t->md),
1178                       template_disk->disk_name);
1179                return 1;
1180        }
1181
1182        /* Preserve existing integrity profile */
1183        t->integrity_supported = true;
1184        return 0;
1185}
1186
1187#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1188
1189struct dm_keyslot_manager {
1190        struct blk_keyslot_manager ksm;
1191        struct mapped_device *md;
1192};
1193
1194struct dm_keyslot_evict_args {
1195        const struct blk_crypto_key *key;
1196        int err;
1197};
1198
1199static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1200                                     sector_t start, sector_t len, void *data)
1201{
1202        struct dm_keyslot_evict_args *args = data;
1203        int err;
1204
1205        err = blk_crypto_evict_key(bdev_get_queue(dev->bdev), args->key);
1206        if (!args->err)
1207                args->err = err;
1208        /* Always try to evict the key from all devices. */
1209        return 0;
1210}
1211
1212/*
1213 * When an inline encryption key is evicted from a device-mapper device, evict
1214 * it from all the underlying devices.
1215 */
1216static int dm_keyslot_evict(struct blk_keyslot_manager *ksm,
1217                            const struct blk_crypto_key *key, unsigned int slot)
1218{
1219        struct dm_keyslot_manager *dksm = container_of(ksm,
1220                                                       struct dm_keyslot_manager,
1221                                                       ksm);
1222        struct mapped_device *md = dksm->md;
1223        struct dm_keyslot_evict_args args = { key };
1224        struct dm_table *t;
1225        int srcu_idx;
1226        int i;
1227        struct dm_target *ti;
1228
1229        t = dm_get_live_table(md, &srcu_idx);
1230        if (!t)
1231                return 0;
1232        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1233                ti = dm_table_get_target(t, i);
1234                if (!ti->type->iterate_devices)
1235                        continue;
1236                ti->type->iterate_devices(ti, dm_keyslot_evict_callback, &args);
1237        }
1238        dm_put_live_table(md, srcu_idx);
1239        return args.err;
1240}
1241
1242static const struct blk_ksm_ll_ops dm_ksm_ll_ops = {
1243        .keyslot_evict = dm_keyslot_evict,
1244};
1245
1246static int device_intersect_crypto_modes(struct dm_target *ti,
1247                                         struct dm_dev *dev, sector_t start,
1248                                         sector_t len, void *data)
1249{
1250        struct blk_keyslot_manager *parent = data;
1251        struct blk_keyslot_manager *child = bdev_get_queue(dev->bdev)->ksm;
1252
1253        blk_ksm_intersect_modes(parent, child);
1254        return 0;
1255}
1256
1257void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm)
1258{
1259        struct dm_keyslot_manager *dksm = container_of(ksm,
1260                                                       struct dm_keyslot_manager,
1261                                                       ksm);
1262
1263        if (!ksm)
1264                return;
1265
1266        blk_ksm_destroy(ksm);
1267        kfree(dksm);
1268}
1269
1270static void dm_table_destroy_keyslot_manager(struct dm_table *t)
1271{
1272        dm_destroy_keyslot_manager(t->ksm);
1273        t->ksm = NULL;
1274}
1275
1276/*
1277 * Constructs and initializes t->ksm with a keyslot manager that
1278 * represents the common set of crypto capabilities of the devices
1279 * described by the dm_table. However, if the constructed keyslot
1280 * manager does not support a superset of the crypto capabilities
1281 * supported by the current keyslot manager of the mapped_device,
1282 * it returns an error instead, since we don't support restricting
1283 * crypto capabilities on table changes. Finally, if the constructed
1284 * keyslot manager doesn't actually support any crypto modes at all,
1285 * it just returns NULL.
1286 */
1287static int dm_table_construct_keyslot_manager(struct dm_table *t)
1288{
1289        struct dm_keyslot_manager *dksm;
1290        struct blk_keyslot_manager *ksm;
1291        struct dm_target *ti;
1292        unsigned int i;
1293        bool ksm_is_empty = true;
1294
1295        dksm = kmalloc(sizeof(*dksm), GFP_KERNEL);
1296        if (!dksm)
1297                return -ENOMEM;
1298        dksm->md = t->md;
1299
1300        ksm = &dksm->ksm;
1301        blk_ksm_init_passthrough(ksm);
1302        ksm->ksm_ll_ops = dm_ksm_ll_ops;
1303        ksm->max_dun_bytes_supported = UINT_MAX;
1304        memset(ksm->crypto_modes_supported, 0xFF,
1305               sizeof(ksm->crypto_modes_supported));
1306
1307        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1308                ti = dm_table_get_target(t, i);
1309
1310                if (!dm_target_passes_crypto(ti->type)) {
1311                        blk_ksm_intersect_modes(ksm, NULL);
1312                        break;
1313                }
1314                if (!ti->type->iterate_devices)
1315                        continue;
1316                ti->type->iterate_devices(ti, device_intersect_crypto_modes,
1317                                          ksm);
1318        }
1319
1320        if (t->md->queue && !blk_ksm_is_superset(ksm, t->md->queue->ksm)) {
1321                DMWARN("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1322                dm_destroy_keyslot_manager(ksm);
1323                return -EINVAL;
1324        }
1325
1326        /*
1327         * If the new KSM doesn't actually support any crypto modes, we may as
1328         * well represent it with a NULL ksm.
1329         */
1330        ksm_is_empty = true;
1331        for (i = 0; i < ARRAY_SIZE(ksm->crypto_modes_supported); i++) {
1332                if (ksm->crypto_modes_supported[i]) {
1333                        ksm_is_empty = false;
1334                        break;
1335                }
1336        }
1337
1338        if (ksm_is_empty) {
1339                dm_destroy_keyslot_manager(ksm);
1340                ksm = NULL;
1341        }
1342
1343        /*
1344         * t->ksm is only set temporarily while the table is being set
1345         * up, and it gets set to NULL after the capabilities have
1346         * been transferred to the request_queue.
1347         */
1348        t->ksm = ksm;
1349
1350        return 0;
1351}
1352
1353static void dm_update_keyslot_manager(struct request_queue *q,
1354                                      struct dm_table *t)
1355{
1356        if (!t->ksm)
1357                return;
1358
1359        /* Make the ksm less restrictive */
1360        if (!q->ksm) {
1361                blk_ksm_register(t->ksm, q);
1362        } else {
1363                blk_ksm_update_capabilities(q->ksm, t->ksm);
1364                dm_destroy_keyslot_manager(t->ksm);
1365        }
1366        t->ksm = NULL;
1367}
1368
1369#else /* CONFIG_BLK_INLINE_ENCRYPTION */
1370
1371static int dm_table_construct_keyslot_manager(struct dm_table *t)
1372{
1373        return 0;
1374}
1375
1376void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm)
1377{
1378}
1379
1380static void dm_table_destroy_keyslot_manager(struct dm_table *t)
1381{
1382}
1383
1384static void dm_update_keyslot_manager(struct request_queue *q,
1385                                      struct dm_table *t)
1386{
1387}
1388
1389#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1390
1391/*
1392 * Prepares the table for use by building the indices,
1393 * setting the type, and allocating mempools.
1394 */
1395int dm_table_complete(struct dm_table *t)
1396{
1397        int r;
1398
1399        r = dm_table_determine_type(t);
1400        if (r) {
1401                DMERR("unable to determine table type");
1402                return r;
1403        }
1404
1405        r = dm_table_build_index(t);
1406        if (r) {
1407                DMERR("unable to build btrees");
1408                return r;
1409        }
1410
1411        r = dm_table_register_integrity(t);
1412        if (r) {
1413                DMERR("could not register integrity profile.");
1414                return r;
1415        }
1416
1417        r = dm_table_construct_keyslot_manager(t);
1418        if (r) {
1419                DMERR("could not construct keyslot manager.");
1420                return r;
1421        }
1422
1423        r = dm_table_alloc_md_mempools(t, t->md);
1424        if (r)
1425                DMERR("unable to allocate mempools");
1426
1427        return r;
1428}
1429
1430static DEFINE_MUTEX(_event_lock);
1431void dm_table_event_callback(struct dm_table *t,
1432                             void (*fn)(void *), void *context)
1433{
1434        mutex_lock(&_event_lock);
1435        t->event_fn = fn;
1436        t->event_context = context;
1437        mutex_unlock(&_event_lock);
1438}
1439
1440void dm_table_event(struct dm_table *t)
1441{
1442        mutex_lock(&_event_lock);
1443        if (t->event_fn)
1444                t->event_fn(t->event_context);
1445        mutex_unlock(&_event_lock);
1446}
1447EXPORT_SYMBOL(dm_table_event);
1448
1449inline sector_t dm_table_get_size(struct dm_table *t)
1450{
1451        return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1452}
1453EXPORT_SYMBOL(dm_table_get_size);
1454
1455struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1456{
1457        if (index >= t->num_targets)
1458                return NULL;
1459
1460        return t->targets + index;
1461}
1462
1463/*
1464 * Search the btree for the correct target.
1465 *
1466 * Caller should check returned pointer for NULL
1467 * to trap I/O beyond end of device.
1468 */
1469struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1470{
1471        unsigned int l, n = 0, k = 0;
1472        sector_t *node;
1473
1474        if (unlikely(sector >= dm_table_get_size(t)))
1475                return NULL;
1476
1477        for (l = 0; l < t->depth; l++) {
1478                n = get_child(n, k);
1479                node = get_node(t, l, n);
1480
1481                for (k = 0; k < KEYS_PER_NODE; k++)
1482                        if (node[k] >= sector)
1483                                break;
1484        }
1485
1486        return &t->targets[(KEYS_PER_NODE * n) + k];
1487}
1488
1489/*
1490 * type->iterate_devices() should be called when the sanity check needs to
1491 * iterate and check all underlying data devices. iterate_devices() will
1492 * iterate all underlying data devices until it encounters a non-zero return
1493 * code, returned by whether the input iterate_devices_callout_fn, or
1494 * iterate_devices() itself internally.
1495 *
1496 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1497 * iterate multiple underlying devices internally, in which case a non-zero
1498 * return code returned by iterate_devices_callout_fn will stop the iteration
1499 * in advance.
1500 *
1501 * Cases requiring _any_ underlying device supporting some kind of attribute,
1502 * should use the iteration structure like dm_table_any_dev_attr(), or call
1503 * it directly. @func should handle semantics of positive examples, e.g.
1504 * capable of something.
1505 *
1506 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1507 * should use the iteration structure like dm_table_supports_nowait() or
1508 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1509 * uses an @anti_func that handle semantics of counter examples, e.g. not
1510 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1511 */
1512static bool dm_table_any_dev_attr(struct dm_table *t,
1513                                  iterate_devices_callout_fn func, void *data)
1514{
1515        struct dm_target *ti;
1516        unsigned int i;
1517
1518        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1519                ti = dm_table_get_target(t, i);
1520
1521                if (ti->type->iterate_devices &&
1522                    ti->type->iterate_devices(ti, func, data))
1523                        return true;
1524        }
1525
1526        return false;
1527}
1528
1529static int count_device(struct dm_target *ti, struct dm_dev *dev,
1530                        sector_t start, sector_t len, void *data)
1531{
1532        unsigned *num_devices = data;
1533
1534        (*num_devices)++;
1535
1536        return 0;
1537}
1538
1539/*
1540 * Check whether a table has no data devices attached using each
1541 * target's iterate_devices method.
1542 * Returns false if the result is unknown because a target doesn't
1543 * support iterate_devices.
1544 */
1545bool dm_table_has_no_data_devices(struct dm_table *table)
1546{
1547        struct dm_target *ti;
1548        unsigned i, num_devices;
1549
1550        for (i = 0; i < dm_table_get_num_targets(table); i++) {
1551                ti = dm_table_get_target(table, i);
1552
1553                if (!ti->type->iterate_devices)
1554                        return false;
1555
1556                num_devices = 0;
1557                ti->type->iterate_devices(ti, count_device, &num_devices);
1558                if (num_devices)
1559                        return false;
1560        }
1561
1562        return true;
1563}
1564
1565static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1566                                  sector_t start, sector_t len, void *data)
1567{
1568        struct request_queue *q = bdev_get_queue(dev->bdev);
1569        enum blk_zoned_model *zoned_model = data;
1570
1571        return blk_queue_zoned_model(q) != *zoned_model;
1572}
1573
1574/*
1575 * Check the device zoned model based on the target feature flag. If the target
1576 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1577 * also accepted but all devices must have the same zoned model. If the target
1578 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1579 * zoned model with all zoned devices having the same zone size.
1580 */
1581static bool dm_table_supports_zoned_model(struct dm_table *t,
1582                                          enum blk_zoned_model zoned_model)
1583{
1584        struct dm_target *ti;
1585        unsigned i;
1586
1587        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1588                ti = dm_table_get_target(t, i);
1589
1590                if (dm_target_supports_zoned_hm(ti->type)) {
1591                        if (!ti->type->iterate_devices ||
1592                            ti->type->iterate_devices(ti, device_not_zoned_model,
1593                                                      &zoned_model))
1594                                return false;
1595                } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1596                        if (zoned_model == BLK_ZONED_HM)
1597                                return false;
1598                }
1599        }
1600
1601        return true;
1602}
1603
1604static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1605                                           sector_t start, sector_t len, void *data)
1606{
1607        struct request_queue *q = bdev_get_queue(dev->bdev);
1608        unsigned int *zone_sectors = data;
1609
1610        if (!blk_queue_is_zoned(q))
1611                return 0;
1612
1613        return blk_queue_zone_sectors(q) != *zone_sectors;
1614}
1615
1616/*
1617 * Check consistency of zoned model and zone sectors across all targets. For
1618 * zone sectors, if the destination device is a zoned block device, it shall
1619 * have the specified zone_sectors.
1620 */
1621static int validate_hardware_zoned_model(struct dm_table *table,
1622                                         enum blk_zoned_model zoned_model,
1623                                         unsigned int zone_sectors)
1624{
1625        if (zoned_model == BLK_ZONED_NONE)
1626                return 0;
1627
1628        if (!dm_table_supports_zoned_model(table, zoned_model)) {
1629                DMERR("%s: zoned model is not consistent across all devices",
1630                      dm_device_name(table->md));
1631                return -EINVAL;
1632        }
1633
1634        /* Check zone size validity and compatibility */
1635        if (!zone_sectors || !is_power_of_2(zone_sectors))
1636                return -EINVAL;
1637
1638        if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) {
1639                DMERR("%s: zone sectors is not consistent across all zoned devices",
1640                      dm_device_name(table->md));
1641                return -EINVAL;
1642        }
1643
1644        return 0;
1645}
1646
1647/*
1648 * Establish the new table's queue_limits and validate them.
1649 */
1650int dm_calculate_queue_limits(struct dm_table *table,
1651                              struct queue_limits *limits)
1652{
1653        struct dm_target *ti;
1654        struct queue_limits ti_limits;
1655        unsigned i;
1656        enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1657        unsigned int zone_sectors = 0;
1658
1659        blk_set_stacking_limits(limits);
1660
1661        for (i = 0; i < dm_table_get_num_targets(table); i++) {
1662                blk_set_stacking_limits(&ti_limits);
1663
1664                ti = dm_table_get_target(table, i);
1665
1666                if (!ti->type->iterate_devices)
1667                        goto combine_limits;
1668
1669                /*
1670                 * Combine queue limits of all the devices this target uses.
1671                 */
1672                ti->type->iterate_devices(ti, dm_set_device_limits,
1673                                          &ti_limits);
1674
1675                if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1676                        /*
1677                         * After stacking all limits, validate all devices
1678                         * in table support this zoned model and zone sectors.
1679                         */
1680                        zoned_model = ti_limits.zoned;
1681                        zone_sectors = ti_limits.chunk_sectors;
1682                }
1683
1684                /* Set I/O hints portion of queue limits */
1685                if (ti->type->io_hints)
1686                        ti->type->io_hints(ti, &ti_limits);
1687
1688                /*
1689                 * Check each device area is consistent with the target's
1690                 * overall queue limits.
1691                 */
1692                if (ti->type->iterate_devices(ti, device_area_is_invalid,
1693                                              &ti_limits))
1694                        return -EINVAL;
1695
1696combine_limits:
1697                /*
1698                 * Merge this target's queue limits into the overall limits
1699                 * for the table.
1700                 */
1701                if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1702                        DMWARN("%s: adding target device "
1703                               "(start sect %llu len %llu) "
1704                               "caused an alignment inconsistency",
1705                               dm_device_name(table->md),
1706                               (unsigned long long) ti->begin,
1707                               (unsigned long long) ti->len);
1708        }
1709
1710        /*
1711         * Verify that the zoned model and zone sectors, as determined before
1712         * any .io_hints override, are the same across all devices in the table.
1713         * - this is especially relevant if .io_hints is emulating a disk-managed
1714         *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1715         * BUT...
1716         */
1717        if (limits->zoned != BLK_ZONED_NONE) {
1718                /*
1719                 * ...IF the above limits stacking determined a zoned model
1720                 * validate that all of the table's devices conform to it.
1721                 */
1722                zoned_model = limits->zoned;
1723                zone_sectors = limits->chunk_sectors;
1724        }
1725        if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1726                return -EINVAL;
1727
1728        return validate_hardware_logical_block_alignment(table, limits);
1729}
1730
1731/*
1732 * Verify that all devices have an integrity profile that matches the
1733 * DM device's registered integrity profile.  If the profiles don't
1734 * match then unregister the DM device's integrity profile.
1735 */
1736static void dm_table_verify_integrity(struct dm_table *t)
1737{
1738        struct gendisk *template_disk = NULL;
1739
1740        if (t->integrity_added)
1741                return;
1742
1743        if (t->integrity_supported) {
1744                /*
1745                 * Verify that the original integrity profile
1746                 * matches all the devices in this table.
1747                 */
1748                template_disk = dm_table_get_integrity_disk(t);
1749                if (template_disk &&
1750                    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1751                        return;
1752        }
1753
1754        if (integrity_profile_exists(dm_disk(t->md))) {
1755                DMWARN("%s: unable to establish an integrity profile",
1756                       dm_device_name(t->md));
1757                blk_integrity_unregister(dm_disk(t->md));
1758        }
1759}
1760
1761static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1762                                sector_t start, sector_t len, void *data)
1763{
1764        unsigned long flush = (unsigned long) data;
1765        struct request_queue *q = bdev_get_queue(dev->bdev);
1766
1767        return (q->queue_flags & flush);
1768}
1769
1770static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1771{
1772        struct dm_target *ti;
1773        unsigned i;
1774
1775        /*
1776         * Require at least one underlying device to support flushes.
1777         * t->devices includes internal dm devices such as mirror logs
1778         * so we need to use iterate_devices here, which targets
1779         * supporting flushes must provide.
1780         */
1781        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1782                ti = dm_table_get_target(t, i);
1783
1784                if (!ti->num_flush_bios)
1785                        continue;
1786
1787                if (ti->flush_supported)
1788                        return true;
1789
1790                if (ti->type->iterate_devices &&
1791                    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1792                        return true;
1793        }
1794
1795        return false;
1796}
1797
1798static int device_dax_write_cache_enabled(struct dm_target *ti,
1799                                          struct dm_dev *dev, sector_t start,
1800                                          sector_t len, void *data)
1801{
1802        struct dax_device *dax_dev = dev->dax_dev;
1803
1804        if (!dax_dev)
1805                return false;
1806
1807        if (dax_write_cache_enabled(dax_dev))
1808                return true;
1809        return false;
1810}
1811
1812static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1813                                sector_t start, sector_t len, void *data)
1814{
1815        struct request_queue *q = bdev_get_queue(dev->bdev);
1816
1817        return !blk_queue_nonrot(q);
1818}
1819
1820static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1821                             sector_t start, sector_t len, void *data)
1822{
1823        struct request_queue *q = bdev_get_queue(dev->bdev);
1824
1825        return !blk_queue_add_random(q);
1826}
1827
1828static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1829                                         sector_t start, sector_t len, void *data)
1830{
1831        struct request_queue *q = bdev_get_queue(dev->bdev);
1832
1833        return !q->limits.max_write_same_sectors;
1834}
1835
1836static bool dm_table_supports_write_same(struct dm_table *t)
1837{
1838        struct dm_target *ti;
1839        unsigned i;
1840
1841        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1842                ti = dm_table_get_target(t, i);
1843
1844                if (!ti->num_write_same_bios)
1845                        return false;
1846
1847                if (!ti->type->iterate_devices ||
1848                    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1849                        return false;
1850        }
1851
1852        return true;
1853}
1854
1855static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1856                                           sector_t start, sector_t len, void *data)
1857{
1858        struct request_queue *q = bdev_get_queue(dev->bdev);
1859
1860        return !q->limits.max_write_zeroes_sectors;
1861}
1862
1863static bool dm_table_supports_write_zeroes(struct dm_table *t)
1864{
1865        struct dm_target *ti;
1866        unsigned i = 0;
1867
1868        while (i < dm_table_get_num_targets(t)) {
1869                ti = dm_table_get_target(t, i++);
1870
1871                if (!ti->num_write_zeroes_bios)
1872                        return false;
1873
1874                if (!ti->type->iterate_devices ||
1875                    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1876                        return false;
1877        }
1878
1879        return true;
1880}
1881
1882static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1883                                     sector_t start, sector_t len, void *data)
1884{
1885        struct request_queue *q = bdev_get_queue(dev->bdev);
1886
1887        return !blk_queue_nowait(q);
1888}
1889
1890static bool dm_table_supports_nowait(struct dm_table *t)
1891{
1892        struct dm_target *ti;
1893        unsigned i = 0;
1894
1895        while (i < dm_table_get_num_targets(t)) {
1896                ti = dm_table_get_target(t, i++);
1897
1898                if (!dm_target_supports_nowait(ti->type))
1899                        return false;
1900
1901                if (!ti->type->iterate_devices ||
1902                    ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1903                        return false;
1904        }
1905
1906        return true;
1907}
1908
1909static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1910                                      sector_t start, sector_t len, void *data)
1911{
1912        struct request_queue *q = bdev_get_queue(dev->bdev);
1913
1914        return !blk_queue_discard(q);
1915}
1916
1917static bool dm_table_supports_discards(struct dm_table *t)
1918{
1919        struct dm_target *ti;
1920        unsigned i;
1921
1922        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1923                ti = dm_table_get_target(t, i);
1924
1925                if (!ti->num_discard_bios)
1926                        return false;
1927
1928                /*
1929                 * Either the target provides discard support (as implied by setting
1930                 * 'discards_supported') or it relies on _all_ data devices having
1931                 * discard support.
1932                 */
1933                if (!ti->discards_supported &&
1934                    (!ti->type->iterate_devices ||
1935                     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1936                        return false;
1937        }
1938
1939        return true;
1940}
1941
1942static int device_not_secure_erase_capable(struct dm_target *ti,
1943                                           struct dm_dev *dev, sector_t start,
1944                                           sector_t len, void *data)
1945{
1946        struct request_queue *q = bdev_get_queue(dev->bdev);
1947
1948        return !blk_queue_secure_erase(q);
1949}
1950
1951static bool dm_table_supports_secure_erase(struct dm_table *t)
1952{
1953        struct dm_target *ti;
1954        unsigned int i;
1955
1956        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1957                ti = dm_table_get_target(t, i);
1958
1959                if (!ti->num_secure_erase_bios)
1960                        return false;
1961
1962                if (!ti->type->iterate_devices ||
1963                    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1964                        return false;
1965        }
1966
1967        return true;
1968}
1969
1970static int device_requires_stable_pages(struct dm_target *ti,
1971                                        struct dm_dev *dev, sector_t start,
1972                                        sector_t len, void *data)
1973{
1974        struct request_queue *q = bdev_get_queue(dev->bdev);
1975
1976        return blk_queue_stable_writes(q);
1977}
1978
1979int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1980                              struct queue_limits *limits)
1981{
1982        bool wc = false, fua = false;
1983        int page_size = PAGE_SIZE;
1984        int r;
1985
1986        /*
1987         * Copy table's limits to the DM device's request_queue
1988         */
1989        q->limits = *limits;
1990
1991        if (dm_table_supports_nowait(t))
1992                blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1993        else
1994                blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1995
1996        if (!dm_table_supports_discards(t)) {
1997                blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1998                /* Must also clear discard limits... */
1999                q->limits.max_discard_sectors = 0;
2000                q->limits.max_hw_discard_sectors = 0;
2001                q->limits.discard_granularity = 0;
2002                q->limits.discard_alignment = 0;
2003                q->limits.discard_misaligned = 0;
2004        } else
2005                blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
2006
2007        if (dm_table_supports_secure_erase(t))
2008                blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
2009
2010        if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
2011                wc = true;
2012                if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
2013                        fua = true;
2014        }
2015        blk_queue_write_cache(q, wc, fua);
2016
2017        if (dm_table_supports_dax(t, device_not_dax_capable, &page_size)) {
2018                blk_queue_flag_set(QUEUE_FLAG_DAX, q);
2019                if (dm_table_supports_dax(t, device_not_dax_synchronous_capable, NULL))
2020                        set_dax_synchronous(t->md->dax_dev);
2021        }
2022        else
2023                blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
2024
2025        if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
2026                dax_write_cache(t->md->dax_dev, true);
2027
2028        /* Ensure that all underlying devices are non-rotational. */
2029        if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
2030                blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2031        else
2032                blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2033
2034        if (!dm_table_supports_write_same(t))
2035                q->limits.max_write_same_sectors = 0;
2036        if (!dm_table_supports_write_zeroes(t))
2037                q->limits.max_write_zeroes_sectors = 0;
2038
2039        dm_table_verify_integrity(t);
2040
2041        /*
2042         * Some devices don't use blk_integrity but still want stable pages
2043         * because they do their own checksumming.
2044         * If any underlying device requires stable pages, a table must require
2045         * them as well.  Only targets that support iterate_devices are considered:
2046         * don't want error, zero, etc to require stable pages.
2047         */
2048        if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2049                blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2050        else
2051                blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2052
2053        /*
2054         * Determine whether or not this queue's I/O timings contribute
2055         * to the entropy pool, Only request-based targets use this.
2056         * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2057         * have it set.
2058         */
2059        if (blk_queue_add_random(q) &&
2060            dm_table_any_dev_attr(t, device_is_not_random, NULL))
2061                blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2062
2063        /*
2064         * For a zoned target, setup the zones related queue attributes
2065         * and resources necessary for zone append emulation if necessary.
2066         */
2067        if (blk_queue_is_zoned(q)) {
2068                r = dm_set_zones_restrictions(t, q);
2069                if (r)
2070                        return r;
2071        }
2072
2073        dm_update_keyslot_manager(q, t);
2074        disk_update_readahead(t->md->disk);
2075
2076        return 0;
2077}
2078
2079unsigned int dm_table_get_num_targets(struct dm_table *t)
2080{
2081        return t->num_targets;
2082}
2083
2084struct list_head *dm_table_get_devices(struct dm_table *t)
2085{
2086        return &t->devices;
2087}
2088
2089fmode_t dm_table_get_mode(struct dm_table *t)
2090{
2091        return t->mode;
2092}
2093EXPORT_SYMBOL(dm_table_get_mode);
2094
2095enum suspend_mode {
2096        PRESUSPEND,
2097        PRESUSPEND_UNDO,
2098        POSTSUSPEND,
2099};
2100
2101static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2102{
2103        int i = t->num_targets;
2104        struct dm_target *ti = t->targets;
2105
2106        lockdep_assert_held(&t->md->suspend_lock);
2107
2108        while (i--) {
2109                switch (mode) {
2110                case PRESUSPEND:
2111                        if (ti->type->presuspend)
2112                                ti->type->presuspend(ti);
2113                        break;
2114                case PRESUSPEND_UNDO:
2115                        if (ti->type->presuspend_undo)
2116                                ti->type->presuspend_undo(ti);
2117                        break;
2118                case POSTSUSPEND:
2119                        if (ti->type->postsuspend)
2120                                ti->type->postsuspend(ti);
2121                        break;
2122                }
2123                ti++;
2124        }
2125}
2126
2127void dm_table_presuspend_targets(struct dm_table *t)
2128{
2129        if (!t)
2130                return;
2131
2132        suspend_targets(t, PRESUSPEND);
2133}
2134
2135void dm_table_presuspend_undo_targets(struct dm_table *t)
2136{
2137        if (!t)
2138                return;
2139
2140        suspend_targets(t, PRESUSPEND_UNDO);
2141}
2142
2143void dm_table_postsuspend_targets(struct dm_table *t)
2144{
2145        if (!t)
2146                return;
2147
2148        suspend_targets(t, POSTSUSPEND);
2149}
2150
2151int dm_table_resume_targets(struct dm_table *t)
2152{
2153        int i, r = 0;
2154
2155        lockdep_assert_held(&t->md->suspend_lock);
2156
2157        for (i = 0; i < t->num_targets; i++) {
2158                struct dm_target *ti = t->targets + i;
2159
2160                if (!ti->type->preresume)
2161                        continue;
2162
2163                r = ti->type->preresume(ti);
2164                if (r) {
2165                        DMERR("%s: %s: preresume failed, error = %d",
2166                              dm_device_name(t->md), ti->type->name, r);
2167                        return r;
2168                }
2169        }
2170
2171        for (i = 0; i < t->num_targets; i++) {
2172                struct dm_target *ti = t->targets + i;
2173
2174                if (ti->type->resume)
2175                        ti->type->resume(ti);
2176        }
2177
2178        return 0;
2179}
2180
2181struct mapped_device *dm_table_get_md(struct dm_table *t)
2182{
2183        return t->md;
2184}
2185EXPORT_SYMBOL(dm_table_get_md);
2186
2187const char *dm_table_device_name(struct dm_table *t)
2188{
2189        return dm_device_name(t->md);
2190}
2191EXPORT_SYMBOL_GPL(dm_table_device_name);
2192
2193void dm_table_run_md_queue_async(struct dm_table *t)
2194{
2195        if (!dm_table_request_based(t))
2196                return;
2197
2198        if (t->md->queue)
2199                blk_mq_run_hw_queues(t->md->queue, true);
2200}
2201EXPORT_SYMBOL(dm_table_run_md_queue_async);
2202
2203