linux/drivers/md/raid10.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * raid10.c : Multiple Devices driver for Linux
   4 *
   5 * Copyright (C) 2000-2004 Neil Brown
   6 *
   7 * RAID-10 support for md.
   8 *
   9 * Base on code in raid1.c.  See raid1.c for further copyright information.
  10 */
  11
  12#include <linux/slab.h>
  13#include <linux/delay.h>
  14#include <linux/blkdev.h>
  15#include <linux/module.h>
  16#include <linux/seq_file.h>
  17#include <linux/ratelimit.h>
  18#include <linux/kthread.h>
  19#include <linux/raid/md_p.h>
  20#include <trace/events/block.h>
  21#include "md.h"
  22#include "raid10.h"
  23#include "raid0.h"
  24#include "md-bitmap.h"
  25
  26/*
  27 * RAID10 provides a combination of RAID0 and RAID1 functionality.
  28 * The layout of data is defined by
  29 *    chunk_size
  30 *    raid_disks
  31 *    near_copies (stored in low byte of layout)
  32 *    far_copies (stored in second byte of layout)
  33 *    far_offset (stored in bit 16 of layout )
  34 *    use_far_sets (stored in bit 17 of layout )
  35 *    use_far_sets_bugfixed (stored in bit 18 of layout )
  36 *
  37 * The data to be stored is divided into chunks using chunksize.  Each device
  38 * is divided into far_copies sections.   In each section, chunks are laid out
  39 * in a style similar to raid0, but near_copies copies of each chunk is stored
  40 * (each on a different drive).  The starting device for each section is offset
  41 * near_copies from the starting device of the previous section.  Thus there
  42 * are (near_copies * far_copies) of each chunk, and each is on a different
  43 * drive.  near_copies and far_copies must be at least one, and their product
  44 * is at most raid_disks.
  45 *
  46 * If far_offset is true, then the far_copies are handled a bit differently.
  47 * The copies are still in different stripes, but instead of being very far
  48 * apart on disk, there are adjacent stripes.
  49 *
  50 * The far and offset algorithms are handled slightly differently if
  51 * 'use_far_sets' is true.  In this case, the array's devices are grouped into
  52 * sets that are (near_copies * far_copies) in size.  The far copied stripes
  53 * are still shifted by 'near_copies' devices, but this shifting stays confined
  54 * to the set rather than the entire array.  This is done to improve the number
  55 * of device combinations that can fail without causing the array to fail.
  56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
  57 * on a device):
  58 *    A B C D    A B C D E
  59 *      ...         ...
  60 *    D A B C    E A B C D
  61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
  62 *    [A B] [C D]    [A B] [C D E]
  63 *    |...| |...|    |...| | ... |
  64 *    [B A] [D C]    [B A] [E C D]
  65 */
  66
  67static void allow_barrier(struct r10conf *conf);
  68static void lower_barrier(struct r10conf *conf);
  69static int _enough(struct r10conf *conf, int previous, int ignore);
  70static int enough(struct r10conf *conf, int ignore);
  71static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
  72                                int *skipped);
  73static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
  74static void end_reshape_write(struct bio *bio);
  75static void end_reshape(struct r10conf *conf);
  76
  77#define raid10_log(md, fmt, args...)                            \
  78        do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
  79
  80#include "raid1-10.c"
  81
  82/*
  83 * for resync bio, r10bio pointer can be retrieved from the per-bio
  84 * 'struct resync_pages'.
  85 */
  86static inline struct r10bio *get_resync_r10bio(struct bio *bio)
  87{
  88        return get_resync_pages(bio)->raid_bio;
  89}
  90
  91static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
  92{
  93        struct r10conf *conf = data;
  94        int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
  95
  96        /* allocate a r10bio with room for raid_disks entries in the
  97         * bios array */
  98        return kzalloc(size, gfp_flags);
  99}
 100
 101#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 102/* amount of memory to reserve for resync requests */
 103#define RESYNC_WINDOW (1024*1024)
 104/* maximum number of concurrent requests, memory permitting */
 105#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
 106#define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
 107#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 108
 109/*
 110 * When performing a resync, we need to read and compare, so
 111 * we need as many pages are there are copies.
 112 * When performing a recovery, we need 2 bios, one for read,
 113 * one for write (we recover only one drive per r10buf)
 114 *
 115 */
 116static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
 117{
 118        struct r10conf *conf = data;
 119        struct r10bio *r10_bio;
 120        struct bio *bio;
 121        int j;
 122        int nalloc, nalloc_rp;
 123        struct resync_pages *rps;
 124
 125        r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 126        if (!r10_bio)
 127                return NULL;
 128
 129        if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
 130            test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
 131                nalloc = conf->copies; /* resync */
 132        else
 133                nalloc = 2; /* recovery */
 134
 135        /* allocate once for all bios */
 136        if (!conf->have_replacement)
 137                nalloc_rp = nalloc;
 138        else
 139                nalloc_rp = nalloc * 2;
 140        rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
 141        if (!rps)
 142                goto out_free_r10bio;
 143
 144        /*
 145         * Allocate bios.
 146         */
 147        for (j = nalloc ; j-- ; ) {
 148                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 149                if (!bio)
 150                        goto out_free_bio;
 151                r10_bio->devs[j].bio = bio;
 152                if (!conf->have_replacement)
 153                        continue;
 154                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 155                if (!bio)
 156                        goto out_free_bio;
 157                r10_bio->devs[j].repl_bio = bio;
 158        }
 159        /*
 160         * Allocate RESYNC_PAGES data pages and attach them
 161         * where needed.
 162         */
 163        for (j = 0; j < nalloc; j++) {
 164                struct bio *rbio = r10_bio->devs[j].repl_bio;
 165                struct resync_pages *rp, *rp_repl;
 166
 167                rp = &rps[j];
 168                if (rbio)
 169                        rp_repl = &rps[nalloc + j];
 170
 171                bio = r10_bio->devs[j].bio;
 172
 173                if (!j || test_bit(MD_RECOVERY_SYNC,
 174                                   &conf->mddev->recovery)) {
 175                        if (resync_alloc_pages(rp, gfp_flags))
 176                                goto out_free_pages;
 177                } else {
 178                        memcpy(rp, &rps[0], sizeof(*rp));
 179                        resync_get_all_pages(rp);
 180                }
 181
 182                rp->raid_bio = r10_bio;
 183                bio->bi_private = rp;
 184                if (rbio) {
 185                        memcpy(rp_repl, rp, sizeof(*rp));
 186                        rbio->bi_private = rp_repl;
 187                }
 188        }
 189
 190        return r10_bio;
 191
 192out_free_pages:
 193        while (--j >= 0)
 194                resync_free_pages(&rps[j]);
 195
 196        j = 0;
 197out_free_bio:
 198        for ( ; j < nalloc; j++) {
 199                if (r10_bio->devs[j].bio)
 200                        bio_put(r10_bio->devs[j].bio);
 201                if (r10_bio->devs[j].repl_bio)
 202                        bio_put(r10_bio->devs[j].repl_bio);
 203        }
 204        kfree(rps);
 205out_free_r10bio:
 206        rbio_pool_free(r10_bio, conf);
 207        return NULL;
 208}
 209
 210static void r10buf_pool_free(void *__r10_bio, void *data)
 211{
 212        struct r10conf *conf = data;
 213        struct r10bio *r10bio = __r10_bio;
 214        int j;
 215        struct resync_pages *rp = NULL;
 216
 217        for (j = conf->copies; j--; ) {
 218                struct bio *bio = r10bio->devs[j].bio;
 219
 220                if (bio) {
 221                        rp = get_resync_pages(bio);
 222                        resync_free_pages(rp);
 223                        bio_put(bio);
 224                }
 225
 226                bio = r10bio->devs[j].repl_bio;
 227                if (bio)
 228                        bio_put(bio);
 229        }
 230
 231        /* resync pages array stored in the 1st bio's .bi_private */
 232        kfree(rp);
 233
 234        rbio_pool_free(r10bio, conf);
 235}
 236
 237static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
 238{
 239        int i;
 240
 241        for (i = 0; i < conf->geo.raid_disks; i++) {
 242                struct bio **bio = & r10_bio->devs[i].bio;
 243                if (!BIO_SPECIAL(*bio))
 244                        bio_put(*bio);
 245                *bio = NULL;
 246                bio = &r10_bio->devs[i].repl_bio;
 247                if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
 248                        bio_put(*bio);
 249                *bio = NULL;
 250        }
 251}
 252
 253static void free_r10bio(struct r10bio *r10_bio)
 254{
 255        struct r10conf *conf = r10_bio->mddev->private;
 256
 257        put_all_bios(conf, r10_bio);
 258        mempool_free(r10_bio, &conf->r10bio_pool);
 259}
 260
 261static void put_buf(struct r10bio *r10_bio)
 262{
 263        struct r10conf *conf = r10_bio->mddev->private;
 264
 265        mempool_free(r10_bio, &conf->r10buf_pool);
 266
 267        lower_barrier(conf);
 268}
 269
 270static void reschedule_retry(struct r10bio *r10_bio)
 271{
 272        unsigned long flags;
 273        struct mddev *mddev = r10_bio->mddev;
 274        struct r10conf *conf = mddev->private;
 275
 276        spin_lock_irqsave(&conf->device_lock, flags);
 277        list_add(&r10_bio->retry_list, &conf->retry_list);
 278        conf->nr_queued ++;
 279        spin_unlock_irqrestore(&conf->device_lock, flags);
 280
 281        /* wake up frozen array... */
 282        wake_up(&conf->wait_barrier);
 283
 284        md_wakeup_thread(mddev->thread);
 285}
 286
 287/*
 288 * raid_end_bio_io() is called when we have finished servicing a mirrored
 289 * operation and are ready to return a success/failure code to the buffer
 290 * cache layer.
 291 */
 292static void raid_end_bio_io(struct r10bio *r10_bio)
 293{
 294        struct bio *bio = r10_bio->master_bio;
 295        struct r10conf *conf = r10_bio->mddev->private;
 296
 297        if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 298                bio->bi_status = BLK_STS_IOERR;
 299
 300        if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
 301                bio_end_io_acct(bio, r10_bio->start_time);
 302        bio_endio(bio);
 303        /*
 304         * Wake up any possible resync thread that waits for the device
 305         * to go idle.
 306         */
 307        allow_barrier(conf);
 308
 309        free_r10bio(r10_bio);
 310}
 311
 312/*
 313 * Update disk head position estimator based on IRQ completion info.
 314 */
 315static inline void update_head_pos(int slot, struct r10bio *r10_bio)
 316{
 317        struct r10conf *conf = r10_bio->mddev->private;
 318
 319        conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 320                r10_bio->devs[slot].addr + (r10_bio->sectors);
 321}
 322
 323/*
 324 * Find the disk number which triggered given bio
 325 */
 326static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
 327                         struct bio *bio, int *slotp, int *replp)
 328{
 329        int slot;
 330        int repl = 0;
 331
 332        for (slot = 0; slot < conf->geo.raid_disks; slot++) {
 333                if (r10_bio->devs[slot].bio == bio)
 334                        break;
 335                if (r10_bio->devs[slot].repl_bio == bio) {
 336                        repl = 1;
 337                        break;
 338                }
 339        }
 340
 341        update_head_pos(slot, r10_bio);
 342
 343        if (slotp)
 344                *slotp = slot;
 345        if (replp)
 346                *replp = repl;
 347        return r10_bio->devs[slot].devnum;
 348}
 349
 350static void raid10_end_read_request(struct bio *bio)
 351{
 352        int uptodate = !bio->bi_status;
 353        struct r10bio *r10_bio = bio->bi_private;
 354        int slot;
 355        struct md_rdev *rdev;
 356        struct r10conf *conf = r10_bio->mddev->private;
 357
 358        slot = r10_bio->read_slot;
 359        rdev = r10_bio->devs[slot].rdev;
 360        /*
 361         * this branch is our 'one mirror IO has finished' event handler:
 362         */
 363        update_head_pos(slot, r10_bio);
 364
 365        if (uptodate) {
 366                /*
 367                 * Set R10BIO_Uptodate in our master bio, so that
 368                 * we will return a good error code to the higher
 369                 * levels even if IO on some other mirrored buffer fails.
 370                 *
 371                 * The 'master' represents the composite IO operation to
 372                 * user-side. So if something waits for IO, then it will
 373                 * wait for the 'master' bio.
 374                 */
 375                set_bit(R10BIO_Uptodate, &r10_bio->state);
 376        } else {
 377                /* If all other devices that store this block have
 378                 * failed, we want to return the error upwards rather
 379                 * than fail the last device.  Here we redefine
 380                 * "uptodate" to mean "Don't want to retry"
 381                 */
 382                if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
 383                             rdev->raid_disk))
 384                        uptodate = 1;
 385        }
 386        if (uptodate) {
 387                raid_end_bio_io(r10_bio);
 388                rdev_dec_pending(rdev, conf->mddev);
 389        } else {
 390                /*
 391                 * oops, read error - keep the refcount on the rdev
 392                 */
 393                char b[BDEVNAME_SIZE];
 394                pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
 395                                   mdname(conf->mddev),
 396                                   bdevname(rdev->bdev, b),
 397                                   (unsigned long long)r10_bio->sector);
 398                set_bit(R10BIO_ReadError, &r10_bio->state);
 399                reschedule_retry(r10_bio);
 400        }
 401}
 402
 403static void close_write(struct r10bio *r10_bio)
 404{
 405        /* clear the bitmap if all writes complete successfully */
 406        md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 407                           r10_bio->sectors,
 408                           !test_bit(R10BIO_Degraded, &r10_bio->state),
 409                           0);
 410        md_write_end(r10_bio->mddev);
 411}
 412
 413static void one_write_done(struct r10bio *r10_bio)
 414{
 415        if (atomic_dec_and_test(&r10_bio->remaining)) {
 416                if (test_bit(R10BIO_WriteError, &r10_bio->state))
 417                        reschedule_retry(r10_bio);
 418                else {
 419                        close_write(r10_bio);
 420                        if (test_bit(R10BIO_MadeGood, &r10_bio->state))
 421                                reschedule_retry(r10_bio);
 422                        else
 423                                raid_end_bio_io(r10_bio);
 424                }
 425        }
 426}
 427
 428static void raid10_end_write_request(struct bio *bio)
 429{
 430        struct r10bio *r10_bio = bio->bi_private;
 431        int dev;
 432        int dec_rdev = 1;
 433        struct r10conf *conf = r10_bio->mddev->private;
 434        int slot, repl;
 435        struct md_rdev *rdev = NULL;
 436        struct bio *to_put = NULL;
 437        bool discard_error;
 438
 439        discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 440
 441        dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 442
 443        if (repl)
 444                rdev = conf->mirrors[dev].replacement;
 445        if (!rdev) {
 446                smp_rmb();
 447                repl = 0;
 448                rdev = conf->mirrors[dev].rdev;
 449        }
 450        /*
 451         * this branch is our 'one mirror IO has finished' event handler:
 452         */
 453        if (bio->bi_status && !discard_error) {
 454                if (repl)
 455                        /* Never record new bad blocks to replacement,
 456                         * just fail it.
 457                         */
 458                        md_error(rdev->mddev, rdev);
 459                else {
 460                        set_bit(WriteErrorSeen, &rdev->flags);
 461                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
 462                                set_bit(MD_RECOVERY_NEEDED,
 463                                        &rdev->mddev->recovery);
 464
 465                        dec_rdev = 0;
 466                        if (test_bit(FailFast, &rdev->flags) &&
 467                            (bio->bi_opf & MD_FAILFAST)) {
 468                                md_error(rdev->mddev, rdev);
 469                        }
 470
 471                        /*
 472                         * When the device is faulty, it is not necessary to
 473                         * handle write error.
 474                         */
 475                        if (!test_bit(Faulty, &rdev->flags))
 476                                set_bit(R10BIO_WriteError, &r10_bio->state);
 477                        else {
 478                                /* Fail the request */
 479                                set_bit(R10BIO_Degraded, &r10_bio->state);
 480                                r10_bio->devs[slot].bio = NULL;
 481                                to_put = bio;
 482                                dec_rdev = 1;
 483                        }
 484                }
 485        } else {
 486                /*
 487                 * Set R10BIO_Uptodate in our master bio, so that
 488                 * we will return a good error code for to the higher
 489                 * levels even if IO on some other mirrored buffer fails.
 490                 *
 491                 * The 'master' represents the composite IO operation to
 492                 * user-side. So if something waits for IO, then it will
 493                 * wait for the 'master' bio.
 494                 */
 495                sector_t first_bad;
 496                int bad_sectors;
 497
 498                /*
 499                 * Do not set R10BIO_Uptodate if the current device is
 500                 * rebuilding or Faulty. This is because we cannot use
 501                 * such device for properly reading the data back (we could
 502                 * potentially use it, if the current write would have felt
 503                 * before rdev->recovery_offset, but for simplicity we don't
 504                 * check this here.
 505                 */
 506                if (test_bit(In_sync, &rdev->flags) &&
 507                    !test_bit(Faulty, &rdev->flags))
 508                        set_bit(R10BIO_Uptodate, &r10_bio->state);
 509
 510                /* Maybe we can clear some bad blocks. */
 511                if (is_badblock(rdev,
 512                                r10_bio->devs[slot].addr,
 513                                r10_bio->sectors,
 514                                &first_bad, &bad_sectors) && !discard_error) {
 515                        bio_put(bio);
 516                        if (repl)
 517                                r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
 518                        else
 519                                r10_bio->devs[slot].bio = IO_MADE_GOOD;
 520                        dec_rdev = 0;
 521                        set_bit(R10BIO_MadeGood, &r10_bio->state);
 522                }
 523        }
 524
 525        /*
 526         *
 527         * Let's see if all mirrored write operations have finished
 528         * already.
 529         */
 530        one_write_done(r10_bio);
 531        if (dec_rdev)
 532                rdev_dec_pending(rdev, conf->mddev);
 533        if (to_put)
 534                bio_put(to_put);
 535}
 536
 537/*
 538 * RAID10 layout manager
 539 * As well as the chunksize and raid_disks count, there are two
 540 * parameters: near_copies and far_copies.
 541 * near_copies * far_copies must be <= raid_disks.
 542 * Normally one of these will be 1.
 543 * If both are 1, we get raid0.
 544 * If near_copies == raid_disks, we get raid1.
 545 *
 546 * Chunks are laid out in raid0 style with near_copies copies of the
 547 * first chunk, followed by near_copies copies of the next chunk and
 548 * so on.
 549 * If far_copies > 1, then after 1/far_copies of the array has been assigned
 550 * as described above, we start again with a device offset of near_copies.
 551 * So we effectively have another copy of the whole array further down all
 552 * the drives, but with blocks on different drives.
 553 * With this layout, and block is never stored twice on the one device.
 554 *
 555 * raid10_find_phys finds the sector offset of a given virtual sector
 556 * on each device that it is on.
 557 *
 558 * raid10_find_virt does the reverse mapping, from a device and a
 559 * sector offset to a virtual address
 560 */
 561
 562static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
 563{
 564        int n,f;
 565        sector_t sector;
 566        sector_t chunk;
 567        sector_t stripe;
 568        int dev;
 569        int slot = 0;
 570        int last_far_set_start, last_far_set_size;
 571
 572        last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 573        last_far_set_start *= geo->far_set_size;
 574
 575        last_far_set_size = geo->far_set_size;
 576        last_far_set_size += (geo->raid_disks % geo->far_set_size);
 577
 578        /* now calculate first sector/dev */
 579        chunk = r10bio->sector >> geo->chunk_shift;
 580        sector = r10bio->sector & geo->chunk_mask;
 581
 582        chunk *= geo->near_copies;
 583        stripe = chunk;
 584        dev = sector_div(stripe, geo->raid_disks);
 585        if (geo->far_offset)
 586                stripe *= geo->far_copies;
 587
 588        sector += stripe << geo->chunk_shift;
 589
 590        /* and calculate all the others */
 591        for (n = 0; n < geo->near_copies; n++) {
 592                int d = dev;
 593                int set;
 594                sector_t s = sector;
 595                r10bio->devs[slot].devnum = d;
 596                r10bio->devs[slot].addr = s;
 597                slot++;
 598
 599                for (f = 1; f < geo->far_copies; f++) {
 600                        set = d / geo->far_set_size;
 601                        d += geo->near_copies;
 602
 603                        if ((geo->raid_disks % geo->far_set_size) &&
 604                            (d > last_far_set_start)) {
 605                                d -= last_far_set_start;
 606                                d %= last_far_set_size;
 607                                d += last_far_set_start;
 608                        } else {
 609                                d %= geo->far_set_size;
 610                                d += geo->far_set_size * set;
 611                        }
 612                        s += geo->stride;
 613                        r10bio->devs[slot].devnum = d;
 614                        r10bio->devs[slot].addr = s;
 615                        slot++;
 616                }
 617                dev++;
 618                if (dev >= geo->raid_disks) {
 619                        dev = 0;
 620                        sector += (geo->chunk_mask + 1);
 621                }
 622        }
 623}
 624
 625static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
 626{
 627        struct geom *geo = &conf->geo;
 628
 629        if (conf->reshape_progress != MaxSector &&
 630            ((r10bio->sector >= conf->reshape_progress) !=
 631             conf->mddev->reshape_backwards)) {
 632                set_bit(R10BIO_Previous, &r10bio->state);
 633                geo = &conf->prev;
 634        } else
 635                clear_bit(R10BIO_Previous, &r10bio->state);
 636
 637        __raid10_find_phys(geo, r10bio);
 638}
 639
 640static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
 641{
 642        sector_t offset, chunk, vchunk;
 643        /* Never use conf->prev as this is only called during resync
 644         * or recovery, so reshape isn't happening
 645         */
 646        struct geom *geo = &conf->geo;
 647        int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
 648        int far_set_size = geo->far_set_size;
 649        int last_far_set_start;
 650
 651        if (geo->raid_disks % geo->far_set_size) {
 652                last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 653                last_far_set_start *= geo->far_set_size;
 654
 655                if (dev >= last_far_set_start) {
 656                        far_set_size = geo->far_set_size;
 657                        far_set_size += (geo->raid_disks % geo->far_set_size);
 658                        far_set_start = last_far_set_start;
 659                }
 660        }
 661
 662        offset = sector & geo->chunk_mask;
 663        if (geo->far_offset) {
 664                int fc;
 665                chunk = sector >> geo->chunk_shift;
 666                fc = sector_div(chunk, geo->far_copies);
 667                dev -= fc * geo->near_copies;
 668                if (dev < far_set_start)
 669                        dev += far_set_size;
 670        } else {
 671                while (sector >= geo->stride) {
 672                        sector -= geo->stride;
 673                        if (dev < (geo->near_copies + far_set_start))
 674                                dev += far_set_size - geo->near_copies;
 675                        else
 676                                dev -= geo->near_copies;
 677                }
 678                chunk = sector >> geo->chunk_shift;
 679        }
 680        vchunk = chunk * geo->raid_disks + dev;
 681        sector_div(vchunk, geo->near_copies);
 682        return (vchunk << geo->chunk_shift) + offset;
 683}
 684
 685/*
 686 * This routine returns the disk from which the requested read should
 687 * be done. There is a per-array 'next expected sequential IO' sector
 688 * number - if this matches on the next IO then we use the last disk.
 689 * There is also a per-disk 'last know head position' sector that is
 690 * maintained from IRQ contexts, both the normal and the resync IO
 691 * completion handlers update this position correctly. If there is no
 692 * perfect sequential match then we pick the disk whose head is closest.
 693 *
 694 * If there are 2 mirrors in the same 2 devices, performance degrades
 695 * because position is mirror, not device based.
 696 *
 697 * The rdev for the device selected will have nr_pending incremented.
 698 */
 699
 700/*
 701 * FIXME: possibly should rethink readbalancing and do it differently
 702 * depending on near_copies / far_copies geometry.
 703 */
 704static struct md_rdev *read_balance(struct r10conf *conf,
 705                                    struct r10bio *r10_bio,
 706                                    int *max_sectors)
 707{
 708        const sector_t this_sector = r10_bio->sector;
 709        int disk, slot;
 710        int sectors = r10_bio->sectors;
 711        int best_good_sectors;
 712        sector_t new_distance, best_dist;
 713        struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
 714        int do_balance;
 715        int best_dist_slot, best_pending_slot;
 716        bool has_nonrot_disk = false;
 717        unsigned int min_pending;
 718        struct geom *geo = &conf->geo;
 719
 720        raid10_find_phys(conf, r10_bio);
 721        rcu_read_lock();
 722        best_dist_slot = -1;
 723        min_pending = UINT_MAX;
 724        best_dist_rdev = NULL;
 725        best_pending_rdev = NULL;
 726        best_dist = MaxSector;
 727        best_good_sectors = 0;
 728        do_balance = 1;
 729        clear_bit(R10BIO_FailFast, &r10_bio->state);
 730        /*
 731         * Check if we can balance. We can balance on the whole
 732         * device if no resync is going on (recovery is ok), or below
 733         * the resync window. We take the first readable disk when
 734         * above the resync window.
 735         */
 736        if ((conf->mddev->recovery_cp < MaxSector
 737             && (this_sector + sectors >= conf->next_resync)) ||
 738            (mddev_is_clustered(conf->mddev) &&
 739             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 740                                            this_sector + sectors)))
 741                do_balance = 0;
 742
 743        for (slot = 0; slot < conf->copies ; slot++) {
 744                sector_t first_bad;
 745                int bad_sectors;
 746                sector_t dev_sector;
 747                unsigned int pending;
 748                bool nonrot;
 749
 750                if (r10_bio->devs[slot].bio == IO_BLOCKED)
 751                        continue;
 752                disk = r10_bio->devs[slot].devnum;
 753                rdev = rcu_dereference(conf->mirrors[disk].replacement);
 754                if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
 755                    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 756                        rdev = rcu_dereference(conf->mirrors[disk].rdev);
 757                if (rdev == NULL ||
 758                    test_bit(Faulty, &rdev->flags))
 759                        continue;
 760                if (!test_bit(In_sync, &rdev->flags) &&
 761                    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 762                        continue;
 763
 764                dev_sector = r10_bio->devs[slot].addr;
 765                if (is_badblock(rdev, dev_sector, sectors,
 766                                &first_bad, &bad_sectors)) {
 767                        if (best_dist < MaxSector)
 768                                /* Already have a better slot */
 769                                continue;
 770                        if (first_bad <= dev_sector) {
 771                                /* Cannot read here.  If this is the
 772                                 * 'primary' device, then we must not read
 773                                 * beyond 'bad_sectors' from another device.
 774                                 */
 775                                bad_sectors -= (dev_sector - first_bad);
 776                                if (!do_balance && sectors > bad_sectors)
 777                                        sectors = bad_sectors;
 778                                if (best_good_sectors > sectors)
 779                                        best_good_sectors = sectors;
 780                        } else {
 781                                sector_t good_sectors =
 782                                        first_bad - dev_sector;
 783                                if (good_sectors > best_good_sectors) {
 784                                        best_good_sectors = good_sectors;
 785                                        best_dist_slot = slot;
 786                                        best_dist_rdev = rdev;
 787                                }
 788                                if (!do_balance)
 789                                        /* Must read from here */
 790                                        break;
 791                        }
 792                        continue;
 793                } else
 794                        best_good_sectors = sectors;
 795
 796                if (!do_balance)
 797                        break;
 798
 799                nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 800                has_nonrot_disk |= nonrot;
 801                pending = atomic_read(&rdev->nr_pending);
 802                if (min_pending > pending && nonrot) {
 803                        min_pending = pending;
 804                        best_pending_slot = slot;
 805                        best_pending_rdev = rdev;
 806                }
 807
 808                if (best_dist_slot >= 0)
 809                        /* At least 2 disks to choose from so failfast is OK */
 810                        set_bit(R10BIO_FailFast, &r10_bio->state);
 811                /* This optimisation is debatable, and completely destroys
 812                 * sequential read speed for 'far copies' arrays.  So only
 813                 * keep it for 'near' arrays, and review those later.
 814                 */
 815                if (geo->near_copies > 1 && !pending)
 816                        new_distance = 0;
 817
 818                /* for far > 1 always use the lowest address */
 819                else if (geo->far_copies > 1)
 820                        new_distance = r10_bio->devs[slot].addr;
 821                else
 822                        new_distance = abs(r10_bio->devs[slot].addr -
 823                                           conf->mirrors[disk].head_position);
 824
 825                if (new_distance < best_dist) {
 826                        best_dist = new_distance;
 827                        best_dist_slot = slot;
 828                        best_dist_rdev = rdev;
 829                }
 830        }
 831        if (slot >= conf->copies) {
 832                if (has_nonrot_disk) {
 833                        slot = best_pending_slot;
 834                        rdev = best_pending_rdev;
 835                } else {
 836                        slot = best_dist_slot;
 837                        rdev = best_dist_rdev;
 838                }
 839        }
 840
 841        if (slot >= 0) {
 842                atomic_inc(&rdev->nr_pending);
 843                r10_bio->read_slot = slot;
 844        } else
 845                rdev = NULL;
 846        rcu_read_unlock();
 847        *max_sectors = best_good_sectors;
 848
 849        return rdev;
 850}
 851
 852static void flush_pending_writes(struct r10conf *conf)
 853{
 854        /* Any writes that have been queued but are awaiting
 855         * bitmap updates get flushed here.
 856         */
 857        spin_lock_irq(&conf->device_lock);
 858
 859        if (conf->pending_bio_list.head) {
 860                struct blk_plug plug;
 861                struct bio *bio;
 862
 863                bio = bio_list_get(&conf->pending_bio_list);
 864                conf->pending_count = 0;
 865                spin_unlock_irq(&conf->device_lock);
 866
 867                /*
 868                 * As this is called in a wait_event() loop (see freeze_array),
 869                 * current->state might be TASK_UNINTERRUPTIBLE which will
 870                 * cause a warning when we prepare to wait again.  As it is
 871                 * rare that this path is taken, it is perfectly safe to force
 872                 * us to go around the wait_event() loop again, so the warning
 873                 * is a false-positive. Silence the warning by resetting
 874                 * thread state
 875                 */
 876                __set_current_state(TASK_RUNNING);
 877
 878                blk_start_plug(&plug);
 879                /* flush any pending bitmap writes to disk
 880                 * before proceeding w/ I/O */
 881                md_bitmap_unplug(conf->mddev->bitmap);
 882                wake_up(&conf->wait_barrier);
 883
 884                while (bio) { /* submit pending writes */
 885                        struct bio *next = bio->bi_next;
 886                        struct md_rdev *rdev = (void*)bio->bi_bdev;
 887                        bio->bi_next = NULL;
 888                        bio_set_dev(bio, rdev->bdev);
 889                        if (test_bit(Faulty, &rdev->flags)) {
 890                                bio_io_error(bio);
 891                        } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
 892                                            !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
 893                                /* Just ignore it */
 894                                bio_endio(bio);
 895                        else
 896                                submit_bio_noacct(bio);
 897                        bio = next;
 898                }
 899                blk_finish_plug(&plug);
 900        } else
 901                spin_unlock_irq(&conf->device_lock);
 902}
 903
 904/* Barriers....
 905 * Sometimes we need to suspend IO while we do something else,
 906 * either some resync/recovery, or reconfigure the array.
 907 * To do this we raise a 'barrier'.
 908 * The 'barrier' is a counter that can be raised multiple times
 909 * to count how many activities are happening which preclude
 910 * normal IO.
 911 * We can only raise the barrier if there is no pending IO.
 912 * i.e. if nr_pending == 0.
 913 * We choose only to raise the barrier if no-one is waiting for the
 914 * barrier to go down.  This means that as soon as an IO request
 915 * is ready, no other operations which require a barrier will start
 916 * until the IO request has had a chance.
 917 *
 918 * So: regular IO calls 'wait_barrier'.  When that returns there
 919 *    is no backgroup IO happening,  It must arrange to call
 920 *    allow_barrier when it has finished its IO.
 921 * backgroup IO calls must call raise_barrier.  Once that returns
 922 *    there is no normal IO happeing.  It must arrange to call
 923 *    lower_barrier when the particular background IO completes.
 924 */
 925
 926static void raise_barrier(struct r10conf *conf, int force)
 927{
 928        BUG_ON(force && !conf->barrier);
 929        spin_lock_irq(&conf->resync_lock);
 930
 931        /* Wait until no block IO is waiting (unless 'force') */
 932        wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
 933                            conf->resync_lock);
 934
 935        /* block any new IO from starting */
 936        conf->barrier++;
 937
 938        /* Now wait for all pending IO to complete */
 939        wait_event_lock_irq(conf->wait_barrier,
 940                            !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
 941                            conf->resync_lock);
 942
 943        spin_unlock_irq(&conf->resync_lock);
 944}
 945
 946static void lower_barrier(struct r10conf *conf)
 947{
 948        unsigned long flags;
 949        spin_lock_irqsave(&conf->resync_lock, flags);
 950        conf->barrier--;
 951        spin_unlock_irqrestore(&conf->resync_lock, flags);
 952        wake_up(&conf->wait_barrier);
 953}
 954
 955static void wait_barrier(struct r10conf *conf)
 956{
 957        spin_lock_irq(&conf->resync_lock);
 958        if (conf->barrier) {
 959                struct bio_list *bio_list = current->bio_list;
 960                conf->nr_waiting++;
 961                /* Wait for the barrier to drop.
 962                 * However if there are already pending
 963                 * requests (preventing the barrier from
 964                 * rising completely), and the
 965                 * pre-process bio queue isn't empty,
 966                 * then don't wait, as we need to empty
 967                 * that queue to get the nr_pending
 968                 * count down.
 969                 */
 970                raid10_log(conf->mddev, "wait barrier");
 971                wait_event_lock_irq(conf->wait_barrier,
 972                                    !conf->barrier ||
 973                                    (atomic_read(&conf->nr_pending) &&
 974                                     bio_list &&
 975                                     (!bio_list_empty(&bio_list[0]) ||
 976                                      !bio_list_empty(&bio_list[1]))) ||
 977                                     /* move on if recovery thread is
 978                                      * blocked by us
 979                                      */
 980                                     (conf->mddev->thread->tsk == current &&
 981                                      test_bit(MD_RECOVERY_RUNNING,
 982                                               &conf->mddev->recovery) &&
 983                                      conf->nr_queued > 0),
 984                                    conf->resync_lock);
 985                conf->nr_waiting--;
 986                if (!conf->nr_waiting)
 987                        wake_up(&conf->wait_barrier);
 988        }
 989        atomic_inc(&conf->nr_pending);
 990        spin_unlock_irq(&conf->resync_lock);
 991}
 992
 993static void allow_barrier(struct r10conf *conf)
 994{
 995        if ((atomic_dec_and_test(&conf->nr_pending)) ||
 996                        (conf->array_freeze_pending))
 997                wake_up(&conf->wait_barrier);
 998}
 999
1000static void freeze_array(struct r10conf *conf, int extra)
1001{
1002        /* stop syncio and normal IO and wait for everything to
1003         * go quiet.
1004         * We increment barrier and nr_waiting, and then
1005         * wait until nr_pending match nr_queued+extra
1006         * This is called in the context of one normal IO request
1007         * that has failed. Thus any sync request that might be pending
1008         * will be blocked by nr_pending, and we need to wait for
1009         * pending IO requests to complete or be queued for re-try.
1010         * Thus the number queued (nr_queued) plus this request (extra)
1011         * must match the number of pending IOs (nr_pending) before
1012         * we continue.
1013         */
1014        spin_lock_irq(&conf->resync_lock);
1015        conf->array_freeze_pending++;
1016        conf->barrier++;
1017        conf->nr_waiting++;
1018        wait_event_lock_irq_cmd(conf->wait_barrier,
1019                                atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1020                                conf->resync_lock,
1021                                flush_pending_writes(conf));
1022
1023        conf->array_freeze_pending--;
1024        spin_unlock_irq(&conf->resync_lock);
1025}
1026
1027static void unfreeze_array(struct r10conf *conf)
1028{
1029        /* reverse the effect of the freeze */
1030        spin_lock_irq(&conf->resync_lock);
1031        conf->barrier--;
1032        conf->nr_waiting--;
1033        wake_up(&conf->wait_barrier);
1034        spin_unlock_irq(&conf->resync_lock);
1035}
1036
1037static sector_t choose_data_offset(struct r10bio *r10_bio,
1038                                   struct md_rdev *rdev)
1039{
1040        if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1041            test_bit(R10BIO_Previous, &r10_bio->state))
1042                return rdev->data_offset;
1043        else
1044                return rdev->new_data_offset;
1045}
1046
1047struct raid10_plug_cb {
1048        struct blk_plug_cb      cb;
1049        struct bio_list         pending;
1050        int                     pending_cnt;
1051};
1052
1053static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1054{
1055        struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1056                                                   cb);
1057        struct mddev *mddev = plug->cb.data;
1058        struct r10conf *conf = mddev->private;
1059        struct bio *bio;
1060
1061        if (from_schedule || current->bio_list) {
1062                spin_lock_irq(&conf->device_lock);
1063                bio_list_merge(&conf->pending_bio_list, &plug->pending);
1064                conf->pending_count += plug->pending_cnt;
1065                spin_unlock_irq(&conf->device_lock);
1066                wake_up(&conf->wait_barrier);
1067                md_wakeup_thread(mddev->thread);
1068                kfree(plug);
1069                return;
1070        }
1071
1072        /* we aren't scheduling, so we can do the write-out directly. */
1073        bio = bio_list_get(&plug->pending);
1074        md_bitmap_unplug(mddev->bitmap);
1075        wake_up(&conf->wait_barrier);
1076
1077        while (bio) { /* submit pending writes */
1078                struct bio *next = bio->bi_next;
1079                struct md_rdev *rdev = (void*)bio->bi_bdev;
1080                bio->bi_next = NULL;
1081                bio_set_dev(bio, rdev->bdev);
1082                if (test_bit(Faulty, &rdev->flags)) {
1083                        bio_io_error(bio);
1084                } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1085                                    !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
1086                        /* Just ignore it */
1087                        bio_endio(bio);
1088                else
1089                        submit_bio_noacct(bio);
1090                bio = next;
1091        }
1092        kfree(plug);
1093}
1094
1095/*
1096 * 1. Register the new request and wait if the reconstruction thread has put
1097 * up a bar for new requests. Continue immediately if no resync is active
1098 * currently.
1099 * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1100 */
1101static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1102                                 struct bio *bio, sector_t sectors)
1103{
1104        wait_barrier(conf);
1105        while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1106            bio->bi_iter.bi_sector < conf->reshape_progress &&
1107            bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1108                raid10_log(conf->mddev, "wait reshape");
1109                allow_barrier(conf);
1110                wait_event(conf->wait_barrier,
1111                           conf->reshape_progress <= bio->bi_iter.bi_sector ||
1112                           conf->reshape_progress >= bio->bi_iter.bi_sector +
1113                           sectors);
1114                wait_barrier(conf);
1115        }
1116}
1117
1118static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1119                                struct r10bio *r10_bio)
1120{
1121        struct r10conf *conf = mddev->private;
1122        struct bio *read_bio;
1123        const int op = bio_op(bio);
1124        const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1125        int max_sectors;
1126        struct md_rdev *rdev;
1127        char b[BDEVNAME_SIZE];
1128        int slot = r10_bio->read_slot;
1129        struct md_rdev *err_rdev = NULL;
1130        gfp_t gfp = GFP_NOIO;
1131
1132        if (slot >= 0 && r10_bio->devs[slot].rdev) {
1133                /*
1134                 * This is an error retry, but we cannot
1135                 * safely dereference the rdev in the r10_bio,
1136                 * we must use the one in conf.
1137                 * If it has already been disconnected (unlikely)
1138                 * we lose the device name in error messages.
1139                 */
1140                int disk;
1141                /*
1142                 * As we are blocking raid10, it is a little safer to
1143                 * use __GFP_HIGH.
1144                 */
1145                gfp = GFP_NOIO | __GFP_HIGH;
1146
1147                rcu_read_lock();
1148                disk = r10_bio->devs[slot].devnum;
1149                err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1150                if (err_rdev)
1151                        bdevname(err_rdev->bdev, b);
1152                else {
1153                        strcpy(b, "???");
1154                        /* This never gets dereferenced */
1155                        err_rdev = r10_bio->devs[slot].rdev;
1156                }
1157                rcu_read_unlock();
1158        }
1159
1160        regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1161        rdev = read_balance(conf, r10_bio, &max_sectors);
1162        if (!rdev) {
1163                if (err_rdev) {
1164                        pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1165                                            mdname(mddev), b,
1166                                            (unsigned long long)r10_bio->sector);
1167                }
1168                raid_end_bio_io(r10_bio);
1169                return;
1170        }
1171        if (err_rdev)
1172                pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1173                                   mdname(mddev),
1174                                   bdevname(rdev->bdev, b),
1175                                   (unsigned long long)r10_bio->sector);
1176        if (max_sectors < bio_sectors(bio)) {
1177                struct bio *split = bio_split(bio, max_sectors,
1178                                              gfp, &conf->bio_split);
1179                bio_chain(split, bio);
1180                allow_barrier(conf);
1181                submit_bio_noacct(bio);
1182                wait_barrier(conf);
1183                bio = split;
1184                r10_bio->master_bio = bio;
1185                r10_bio->sectors = max_sectors;
1186        }
1187        slot = r10_bio->read_slot;
1188
1189        if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1190                r10_bio->start_time = bio_start_io_acct(bio);
1191        read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1192
1193        r10_bio->devs[slot].bio = read_bio;
1194        r10_bio->devs[slot].rdev = rdev;
1195
1196        read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1197                choose_data_offset(r10_bio, rdev);
1198        bio_set_dev(read_bio, rdev->bdev);
1199        read_bio->bi_end_io = raid10_end_read_request;
1200        bio_set_op_attrs(read_bio, op, do_sync);
1201        if (test_bit(FailFast, &rdev->flags) &&
1202            test_bit(R10BIO_FailFast, &r10_bio->state))
1203                read_bio->bi_opf |= MD_FAILFAST;
1204        read_bio->bi_private = r10_bio;
1205
1206        if (mddev->gendisk)
1207                trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1208                                      r10_bio->sector);
1209        submit_bio_noacct(read_bio);
1210        return;
1211}
1212
1213static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1214                                  struct bio *bio, bool replacement,
1215                                  int n_copy)
1216{
1217        const int op = bio_op(bio);
1218        const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1219        const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1220        unsigned long flags;
1221        struct blk_plug_cb *cb;
1222        struct raid10_plug_cb *plug = NULL;
1223        struct r10conf *conf = mddev->private;
1224        struct md_rdev *rdev;
1225        int devnum = r10_bio->devs[n_copy].devnum;
1226        struct bio *mbio;
1227
1228        if (replacement) {
1229                rdev = conf->mirrors[devnum].replacement;
1230                if (rdev == NULL) {
1231                        /* Replacement just got moved to main 'rdev' */
1232                        smp_mb();
1233                        rdev = conf->mirrors[devnum].rdev;
1234                }
1235        } else
1236                rdev = conf->mirrors[devnum].rdev;
1237
1238        mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1239        if (replacement)
1240                r10_bio->devs[n_copy].repl_bio = mbio;
1241        else
1242                r10_bio->devs[n_copy].bio = mbio;
1243
1244        mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1245                                   choose_data_offset(r10_bio, rdev));
1246        bio_set_dev(mbio, rdev->bdev);
1247        mbio->bi_end_io = raid10_end_write_request;
1248        bio_set_op_attrs(mbio, op, do_sync | do_fua);
1249        if (!replacement && test_bit(FailFast,
1250                                     &conf->mirrors[devnum].rdev->flags)
1251                         && enough(conf, devnum))
1252                mbio->bi_opf |= MD_FAILFAST;
1253        mbio->bi_private = r10_bio;
1254
1255        if (conf->mddev->gendisk)
1256                trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1257                                      r10_bio->sector);
1258        /* flush_pending_writes() needs access to the rdev so...*/
1259        mbio->bi_bdev = (void *)rdev;
1260
1261        atomic_inc(&r10_bio->remaining);
1262
1263        cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1264        if (cb)
1265                plug = container_of(cb, struct raid10_plug_cb, cb);
1266        else
1267                plug = NULL;
1268        if (plug) {
1269                bio_list_add(&plug->pending, mbio);
1270                plug->pending_cnt++;
1271        } else {
1272                spin_lock_irqsave(&conf->device_lock, flags);
1273                bio_list_add(&conf->pending_bio_list, mbio);
1274                conf->pending_count++;
1275                spin_unlock_irqrestore(&conf->device_lock, flags);
1276                md_wakeup_thread(mddev->thread);
1277        }
1278}
1279
1280static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1281{
1282        int i;
1283        struct r10conf *conf = mddev->private;
1284        struct md_rdev *blocked_rdev;
1285
1286retry_wait:
1287        blocked_rdev = NULL;
1288        rcu_read_lock();
1289        for (i = 0; i < conf->copies; i++) {
1290                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1291                struct md_rdev *rrdev = rcu_dereference(
1292                        conf->mirrors[i].replacement);
1293                if (rdev == rrdev)
1294                        rrdev = NULL;
1295                if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1296                        atomic_inc(&rdev->nr_pending);
1297                        blocked_rdev = rdev;
1298                        break;
1299                }
1300                if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1301                        atomic_inc(&rrdev->nr_pending);
1302                        blocked_rdev = rrdev;
1303                        break;
1304                }
1305
1306                if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1307                        sector_t first_bad;
1308                        sector_t dev_sector = r10_bio->devs[i].addr;
1309                        int bad_sectors;
1310                        int is_bad;
1311
1312                        /*
1313                         * Discard request doesn't care the write result
1314                         * so it doesn't need to wait blocked disk here.
1315                         */
1316                        if (!r10_bio->sectors)
1317                                continue;
1318
1319                        is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1320                                             &first_bad, &bad_sectors);
1321                        if (is_bad < 0) {
1322                                /*
1323                                 * Mustn't write here until the bad block
1324                                 * is acknowledged
1325                                 */
1326                                atomic_inc(&rdev->nr_pending);
1327                                set_bit(BlockedBadBlocks, &rdev->flags);
1328                                blocked_rdev = rdev;
1329                                break;
1330                        }
1331                }
1332        }
1333        rcu_read_unlock();
1334
1335        if (unlikely(blocked_rdev)) {
1336                /* Have to wait for this device to get unblocked, then retry */
1337                allow_barrier(conf);
1338                raid10_log(conf->mddev, "%s wait rdev %d blocked",
1339                                __func__, blocked_rdev->raid_disk);
1340                md_wait_for_blocked_rdev(blocked_rdev, mddev);
1341                wait_barrier(conf);
1342                goto retry_wait;
1343        }
1344}
1345
1346static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1347                                 struct r10bio *r10_bio)
1348{
1349        struct r10conf *conf = mddev->private;
1350        int i;
1351        sector_t sectors;
1352        int max_sectors;
1353
1354        if ((mddev_is_clustered(mddev) &&
1355             md_cluster_ops->area_resyncing(mddev, WRITE,
1356                                            bio->bi_iter.bi_sector,
1357                                            bio_end_sector(bio)))) {
1358                DEFINE_WAIT(w);
1359                for (;;) {
1360                        prepare_to_wait(&conf->wait_barrier,
1361                                        &w, TASK_IDLE);
1362                        if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1363                                 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1364                                break;
1365                        schedule();
1366                }
1367                finish_wait(&conf->wait_barrier, &w);
1368        }
1369
1370        sectors = r10_bio->sectors;
1371        regular_request_wait(mddev, conf, bio, sectors);
1372        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1373            (mddev->reshape_backwards
1374             ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1375                bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1376             : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1377                bio->bi_iter.bi_sector < conf->reshape_progress))) {
1378                /* Need to update reshape_position in metadata */
1379                mddev->reshape_position = conf->reshape_progress;
1380                set_mask_bits(&mddev->sb_flags, 0,
1381                              BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1382                md_wakeup_thread(mddev->thread);
1383                raid10_log(conf->mddev, "wait reshape metadata");
1384                wait_event(mddev->sb_wait,
1385                           !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1386
1387                conf->reshape_safe = mddev->reshape_position;
1388        }
1389
1390        if (conf->pending_count >= max_queued_requests) {
1391                md_wakeup_thread(mddev->thread);
1392                raid10_log(mddev, "wait queued");
1393                wait_event(conf->wait_barrier,
1394                           conf->pending_count < max_queued_requests);
1395        }
1396        /* first select target devices under rcu_lock and
1397         * inc refcount on their rdev.  Record them by setting
1398         * bios[x] to bio
1399         * If there are known/acknowledged bad blocks on any device
1400         * on which we have seen a write error, we want to avoid
1401         * writing to those blocks.  This potentially requires several
1402         * writes to write around the bad blocks.  Each set of writes
1403         * gets its own r10_bio with a set of bios attached.
1404         */
1405
1406        r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1407        raid10_find_phys(conf, r10_bio);
1408
1409        wait_blocked_dev(mddev, r10_bio);
1410
1411        rcu_read_lock();
1412        max_sectors = r10_bio->sectors;
1413
1414        for (i = 0;  i < conf->copies; i++) {
1415                int d = r10_bio->devs[i].devnum;
1416                struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1417                struct md_rdev *rrdev = rcu_dereference(
1418                        conf->mirrors[d].replacement);
1419                if (rdev == rrdev)
1420                        rrdev = NULL;
1421                if (rdev && (test_bit(Faulty, &rdev->flags)))
1422                        rdev = NULL;
1423                if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1424                        rrdev = NULL;
1425
1426                r10_bio->devs[i].bio = NULL;
1427                r10_bio->devs[i].repl_bio = NULL;
1428
1429                if (!rdev && !rrdev) {
1430                        set_bit(R10BIO_Degraded, &r10_bio->state);
1431                        continue;
1432                }
1433                if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1434                        sector_t first_bad;
1435                        sector_t dev_sector = r10_bio->devs[i].addr;
1436                        int bad_sectors;
1437                        int is_bad;
1438
1439                        is_bad = is_badblock(rdev, dev_sector, max_sectors,
1440                                             &first_bad, &bad_sectors);
1441                        if (is_bad && first_bad <= dev_sector) {
1442                                /* Cannot write here at all */
1443                                bad_sectors -= (dev_sector - first_bad);
1444                                if (bad_sectors < max_sectors)
1445                                        /* Mustn't write more than bad_sectors
1446                                         * to other devices yet
1447                                         */
1448                                        max_sectors = bad_sectors;
1449                                /* We don't set R10BIO_Degraded as that
1450                                 * only applies if the disk is missing,
1451                                 * so it might be re-added, and we want to
1452                                 * know to recover this chunk.
1453                                 * In this case the device is here, and the
1454                                 * fact that this chunk is not in-sync is
1455                                 * recorded in the bad block log.
1456                                 */
1457                                continue;
1458                        }
1459                        if (is_bad) {
1460                                int good_sectors = first_bad - dev_sector;
1461                                if (good_sectors < max_sectors)
1462                                        max_sectors = good_sectors;
1463                        }
1464                }
1465                if (rdev) {
1466                        r10_bio->devs[i].bio = bio;
1467                        atomic_inc(&rdev->nr_pending);
1468                }
1469                if (rrdev) {
1470                        r10_bio->devs[i].repl_bio = bio;
1471                        atomic_inc(&rrdev->nr_pending);
1472                }
1473        }
1474        rcu_read_unlock();
1475
1476        if (max_sectors < r10_bio->sectors)
1477                r10_bio->sectors = max_sectors;
1478
1479        if (r10_bio->sectors < bio_sectors(bio)) {
1480                struct bio *split = bio_split(bio, r10_bio->sectors,
1481                                              GFP_NOIO, &conf->bio_split);
1482                bio_chain(split, bio);
1483                allow_barrier(conf);
1484                submit_bio_noacct(bio);
1485                wait_barrier(conf);
1486                bio = split;
1487                r10_bio->master_bio = bio;
1488        }
1489
1490        if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1491                r10_bio->start_time = bio_start_io_acct(bio);
1492        atomic_set(&r10_bio->remaining, 1);
1493        md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1494
1495        for (i = 0; i < conf->copies; i++) {
1496                if (r10_bio->devs[i].bio)
1497                        raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1498                if (r10_bio->devs[i].repl_bio)
1499                        raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1500        }
1501        one_write_done(r10_bio);
1502}
1503
1504static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1505{
1506        struct r10conf *conf = mddev->private;
1507        struct r10bio *r10_bio;
1508
1509        r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1510
1511        r10_bio->master_bio = bio;
1512        r10_bio->sectors = sectors;
1513
1514        r10_bio->mddev = mddev;
1515        r10_bio->sector = bio->bi_iter.bi_sector;
1516        r10_bio->state = 0;
1517        r10_bio->read_slot = -1;
1518        memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1519                        conf->geo.raid_disks);
1520
1521        if (bio_data_dir(bio) == READ)
1522                raid10_read_request(mddev, bio, r10_bio);
1523        else
1524                raid10_write_request(mddev, bio, r10_bio);
1525}
1526
1527static void raid_end_discard_bio(struct r10bio *r10bio)
1528{
1529        struct r10conf *conf = r10bio->mddev->private;
1530        struct r10bio *first_r10bio;
1531
1532        while (atomic_dec_and_test(&r10bio->remaining)) {
1533
1534                allow_barrier(conf);
1535
1536                if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1537                        first_r10bio = (struct r10bio *)r10bio->master_bio;
1538                        free_r10bio(r10bio);
1539                        r10bio = first_r10bio;
1540                } else {
1541                        md_write_end(r10bio->mddev);
1542                        bio_endio(r10bio->master_bio);
1543                        free_r10bio(r10bio);
1544                        break;
1545                }
1546        }
1547}
1548
1549static void raid10_end_discard_request(struct bio *bio)
1550{
1551        struct r10bio *r10_bio = bio->bi_private;
1552        struct r10conf *conf = r10_bio->mddev->private;
1553        struct md_rdev *rdev = NULL;
1554        int dev;
1555        int slot, repl;
1556
1557        /*
1558         * We don't care the return value of discard bio
1559         */
1560        if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1561                set_bit(R10BIO_Uptodate, &r10_bio->state);
1562
1563        dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1564        if (repl)
1565                rdev = conf->mirrors[dev].replacement;
1566        if (!rdev) {
1567                /*
1568                 * raid10_remove_disk uses smp_mb to make sure rdev is set to
1569                 * replacement before setting replacement to NULL. It can read
1570                 * rdev first without barrier protect even replacment is NULL
1571                 */
1572                smp_rmb();
1573                rdev = conf->mirrors[dev].rdev;
1574        }
1575
1576        raid_end_discard_bio(r10_bio);
1577        rdev_dec_pending(rdev, conf->mddev);
1578}
1579
1580/*
1581 * There are some limitations to handle discard bio
1582 * 1st, the discard size is bigger than stripe_size*2.
1583 * 2st, if the discard bio spans reshape progress, we use the old way to
1584 * handle discard bio
1585 */
1586static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1587{
1588        struct r10conf *conf = mddev->private;
1589        struct geom *geo = &conf->geo;
1590        int far_copies = geo->far_copies;
1591        bool first_copy = true;
1592        struct r10bio *r10_bio, *first_r10bio;
1593        struct bio *split;
1594        int disk;
1595        sector_t chunk;
1596        unsigned int stripe_size;
1597        unsigned int stripe_data_disks;
1598        sector_t split_size;
1599        sector_t bio_start, bio_end;
1600        sector_t first_stripe_index, last_stripe_index;
1601        sector_t start_disk_offset;
1602        unsigned int start_disk_index;
1603        sector_t end_disk_offset;
1604        unsigned int end_disk_index;
1605        unsigned int remainder;
1606
1607        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1608                return -EAGAIN;
1609
1610        wait_barrier(conf);
1611
1612        /*
1613         * Check reshape again to avoid reshape happens after checking
1614         * MD_RECOVERY_RESHAPE and before wait_barrier
1615         */
1616        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1617                goto out;
1618
1619        if (geo->near_copies)
1620                stripe_data_disks = geo->raid_disks / geo->near_copies +
1621                                        geo->raid_disks % geo->near_copies;
1622        else
1623                stripe_data_disks = geo->raid_disks;
1624
1625        stripe_size = stripe_data_disks << geo->chunk_shift;
1626
1627        bio_start = bio->bi_iter.bi_sector;
1628        bio_end = bio_end_sector(bio);
1629
1630        /*
1631         * Maybe one discard bio is smaller than strip size or across one
1632         * stripe and discard region is larger than one stripe size. For far
1633         * offset layout, if the discard region is not aligned with stripe
1634         * size, there is hole when we submit discard bio to member disk.
1635         * For simplicity, we only handle discard bio which discard region
1636         * is bigger than stripe_size * 2
1637         */
1638        if (bio_sectors(bio) < stripe_size*2)
1639                goto out;
1640
1641        /*
1642         * Keep bio aligned with strip size.
1643         */
1644        div_u64_rem(bio_start, stripe_size, &remainder);
1645        if (remainder) {
1646                split_size = stripe_size - remainder;
1647                split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1648                bio_chain(split, bio);
1649                allow_barrier(conf);
1650                /* Resend the fist split part */
1651                submit_bio_noacct(split);
1652                wait_barrier(conf);
1653        }
1654        div_u64_rem(bio_end, stripe_size, &remainder);
1655        if (remainder) {
1656                split_size = bio_sectors(bio) - remainder;
1657                split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1658                bio_chain(split, bio);
1659                allow_barrier(conf);
1660                /* Resend the second split part */
1661                submit_bio_noacct(bio);
1662                bio = split;
1663                wait_barrier(conf);
1664        }
1665
1666        bio_start = bio->bi_iter.bi_sector;
1667        bio_end = bio_end_sector(bio);
1668
1669        /*
1670         * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1671         * One stripe contains the chunks from all member disk (one chunk from
1672         * one disk at the same HBA address). For layout detail, see 'man md 4'
1673         */
1674        chunk = bio_start >> geo->chunk_shift;
1675        chunk *= geo->near_copies;
1676        first_stripe_index = chunk;
1677        start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1678        if (geo->far_offset)
1679                first_stripe_index *= geo->far_copies;
1680        start_disk_offset = (bio_start & geo->chunk_mask) +
1681                                (first_stripe_index << geo->chunk_shift);
1682
1683        chunk = bio_end >> geo->chunk_shift;
1684        chunk *= geo->near_copies;
1685        last_stripe_index = chunk;
1686        end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1687        if (geo->far_offset)
1688                last_stripe_index *= geo->far_copies;
1689        end_disk_offset = (bio_end & geo->chunk_mask) +
1690                                (last_stripe_index << geo->chunk_shift);
1691
1692retry_discard:
1693        r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1694        r10_bio->mddev = mddev;
1695        r10_bio->state = 0;
1696        r10_bio->sectors = 0;
1697        memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1698        wait_blocked_dev(mddev, r10_bio);
1699
1700        /*
1701         * For far layout it needs more than one r10bio to cover all regions.
1702         * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1703         * to record the discard bio. Other r10bio->master_bio record the first
1704         * r10bio. The first r10bio only release after all other r10bios finish.
1705         * The discard bio returns only first r10bio finishes
1706         */
1707        if (first_copy) {
1708                r10_bio->master_bio = bio;
1709                set_bit(R10BIO_Discard, &r10_bio->state);
1710                first_copy = false;
1711                first_r10bio = r10_bio;
1712        } else
1713                r10_bio->master_bio = (struct bio *)first_r10bio;
1714
1715        /*
1716         * first select target devices under rcu_lock and
1717         * inc refcount on their rdev.  Record them by setting
1718         * bios[x] to bio
1719         */
1720        rcu_read_lock();
1721        for (disk = 0; disk < geo->raid_disks; disk++) {
1722                struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
1723                struct md_rdev *rrdev = rcu_dereference(
1724                        conf->mirrors[disk].replacement);
1725
1726                r10_bio->devs[disk].bio = NULL;
1727                r10_bio->devs[disk].repl_bio = NULL;
1728
1729                if (rdev && (test_bit(Faulty, &rdev->flags)))
1730                        rdev = NULL;
1731                if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1732                        rrdev = NULL;
1733                if (!rdev && !rrdev)
1734                        continue;
1735
1736                if (rdev) {
1737                        r10_bio->devs[disk].bio = bio;
1738                        atomic_inc(&rdev->nr_pending);
1739                }
1740                if (rrdev) {
1741                        r10_bio->devs[disk].repl_bio = bio;
1742                        atomic_inc(&rrdev->nr_pending);
1743                }
1744        }
1745        rcu_read_unlock();
1746
1747        atomic_set(&r10_bio->remaining, 1);
1748        for (disk = 0; disk < geo->raid_disks; disk++) {
1749                sector_t dev_start, dev_end;
1750                struct bio *mbio, *rbio = NULL;
1751
1752                /*
1753                 * Now start to calculate the start and end address for each disk.
1754                 * The space between dev_start and dev_end is the discard region.
1755                 *
1756                 * For dev_start, it needs to consider three conditions:
1757                 * 1st, the disk is before start_disk, you can imagine the disk in
1758                 * the next stripe. So the dev_start is the start address of next
1759                 * stripe.
1760                 * 2st, the disk is after start_disk, it means the disk is at the
1761                 * same stripe of first disk
1762                 * 3st, the first disk itself, we can use start_disk_offset directly
1763                 */
1764                if (disk < start_disk_index)
1765                        dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1766                else if (disk > start_disk_index)
1767                        dev_start = first_stripe_index * mddev->chunk_sectors;
1768                else
1769                        dev_start = start_disk_offset;
1770
1771                if (disk < end_disk_index)
1772                        dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1773                else if (disk > end_disk_index)
1774                        dev_end = last_stripe_index * mddev->chunk_sectors;
1775                else
1776                        dev_end = end_disk_offset;
1777
1778                /*
1779                 * It only handles discard bio which size is >= stripe size, so
1780                 * dev_end > dev_start all the time.
1781                 * It doesn't need to use rcu lock to get rdev here. We already
1782                 * add rdev->nr_pending in the first loop.
1783                 */
1784                if (r10_bio->devs[disk].bio) {
1785                        struct md_rdev *rdev = conf->mirrors[disk].rdev;
1786                        mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1787                        mbio->bi_end_io = raid10_end_discard_request;
1788                        mbio->bi_private = r10_bio;
1789                        r10_bio->devs[disk].bio = mbio;
1790                        r10_bio->devs[disk].devnum = disk;
1791                        atomic_inc(&r10_bio->remaining);
1792                        md_submit_discard_bio(mddev, rdev, mbio,
1793                                        dev_start + choose_data_offset(r10_bio, rdev),
1794                                        dev_end - dev_start);
1795                        bio_endio(mbio);
1796                }
1797                if (r10_bio->devs[disk].repl_bio) {
1798                        struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1799                        rbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1800                        rbio->bi_end_io = raid10_end_discard_request;
1801                        rbio->bi_private = r10_bio;
1802                        r10_bio->devs[disk].repl_bio = rbio;
1803                        r10_bio->devs[disk].devnum = disk;
1804                        atomic_inc(&r10_bio->remaining);
1805                        md_submit_discard_bio(mddev, rrdev, rbio,
1806                                        dev_start + choose_data_offset(r10_bio, rrdev),
1807                                        dev_end - dev_start);
1808                        bio_endio(rbio);
1809                }
1810        }
1811
1812        if (!geo->far_offset && --far_copies) {
1813                first_stripe_index += geo->stride >> geo->chunk_shift;
1814                start_disk_offset += geo->stride;
1815                last_stripe_index += geo->stride >> geo->chunk_shift;
1816                end_disk_offset += geo->stride;
1817                atomic_inc(&first_r10bio->remaining);
1818                raid_end_discard_bio(r10_bio);
1819                wait_barrier(conf);
1820                goto retry_discard;
1821        }
1822
1823        raid_end_discard_bio(r10_bio);
1824
1825        return 0;
1826out:
1827        allow_barrier(conf);
1828        return -EAGAIN;
1829}
1830
1831static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1832{
1833        struct r10conf *conf = mddev->private;
1834        sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1835        int chunk_sects = chunk_mask + 1;
1836        int sectors = bio_sectors(bio);
1837
1838        if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1839            && md_flush_request(mddev, bio))
1840                return true;
1841
1842        if (!md_write_start(mddev, bio))
1843                return false;
1844
1845        if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1846                if (!raid10_handle_discard(mddev, bio))
1847                        return true;
1848
1849        /*
1850         * If this request crosses a chunk boundary, we need to split
1851         * it.
1852         */
1853        if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1854                     sectors > chunk_sects
1855                     && (conf->geo.near_copies < conf->geo.raid_disks
1856                         || conf->prev.near_copies <
1857                         conf->prev.raid_disks)))
1858                sectors = chunk_sects -
1859                        (bio->bi_iter.bi_sector &
1860                         (chunk_sects - 1));
1861        __make_request(mddev, bio, sectors);
1862
1863        /* In case raid10d snuck in to freeze_array */
1864        wake_up(&conf->wait_barrier);
1865        return true;
1866}
1867
1868static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1869{
1870        struct r10conf *conf = mddev->private;
1871        int i;
1872
1873        if (conf->geo.near_copies < conf->geo.raid_disks)
1874                seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1875        if (conf->geo.near_copies > 1)
1876                seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1877        if (conf->geo.far_copies > 1) {
1878                if (conf->geo.far_offset)
1879                        seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1880                else
1881                        seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1882                if (conf->geo.far_set_size != conf->geo.raid_disks)
1883                        seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1884        }
1885        seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1886                                        conf->geo.raid_disks - mddev->degraded);
1887        rcu_read_lock();
1888        for (i = 0; i < conf->geo.raid_disks; i++) {
1889                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1890                seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1891        }
1892        rcu_read_unlock();
1893        seq_printf(seq, "]");
1894}
1895
1896/* check if there are enough drives for
1897 * every block to appear on atleast one.
1898 * Don't consider the device numbered 'ignore'
1899 * as we might be about to remove it.
1900 */
1901static int _enough(struct r10conf *conf, int previous, int ignore)
1902{
1903        int first = 0;
1904        int has_enough = 0;
1905        int disks, ncopies;
1906        if (previous) {
1907                disks = conf->prev.raid_disks;
1908                ncopies = conf->prev.near_copies;
1909        } else {
1910                disks = conf->geo.raid_disks;
1911                ncopies = conf->geo.near_copies;
1912        }
1913
1914        rcu_read_lock();
1915        do {
1916                int n = conf->copies;
1917                int cnt = 0;
1918                int this = first;
1919                while (n--) {
1920                        struct md_rdev *rdev;
1921                        if (this != ignore &&
1922                            (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1923                            test_bit(In_sync, &rdev->flags))
1924                                cnt++;
1925                        this = (this+1) % disks;
1926                }
1927                if (cnt == 0)
1928                        goto out;
1929                first = (first + ncopies) % disks;
1930        } while (first != 0);
1931        has_enough = 1;
1932out:
1933        rcu_read_unlock();
1934        return has_enough;
1935}
1936
1937static int enough(struct r10conf *conf, int ignore)
1938{
1939        /* when calling 'enough', both 'prev' and 'geo' must
1940         * be stable.
1941         * This is ensured if ->reconfig_mutex or ->device_lock
1942         * is held.
1943         */
1944        return _enough(conf, 0, ignore) &&
1945                _enough(conf, 1, ignore);
1946}
1947
1948static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1949{
1950        char b[BDEVNAME_SIZE];
1951        struct r10conf *conf = mddev->private;
1952        unsigned long flags;
1953
1954        /*
1955         * If it is not operational, then we have already marked it as dead
1956         * else if it is the last working disks with "fail_last_dev == false",
1957         * ignore the error, let the next level up know.
1958         * else mark the drive as failed
1959         */
1960        spin_lock_irqsave(&conf->device_lock, flags);
1961        if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1962            && !enough(conf, rdev->raid_disk)) {
1963                /*
1964                 * Don't fail the drive, just return an IO error.
1965                 */
1966                spin_unlock_irqrestore(&conf->device_lock, flags);
1967                return;
1968        }
1969        if (test_and_clear_bit(In_sync, &rdev->flags))
1970                mddev->degraded++;
1971        /*
1972         * If recovery is running, make sure it aborts.
1973         */
1974        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1975        set_bit(Blocked, &rdev->flags);
1976        set_bit(Faulty, &rdev->flags);
1977        set_mask_bits(&mddev->sb_flags, 0,
1978                      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1979        spin_unlock_irqrestore(&conf->device_lock, flags);
1980        pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1981                "md/raid10:%s: Operation continuing on %d devices.\n",
1982                mdname(mddev), bdevname(rdev->bdev, b),
1983                mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1984}
1985
1986static void print_conf(struct r10conf *conf)
1987{
1988        int i;
1989        struct md_rdev *rdev;
1990
1991        pr_debug("RAID10 conf printout:\n");
1992        if (!conf) {
1993                pr_debug("(!conf)\n");
1994                return;
1995        }
1996        pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1997                 conf->geo.raid_disks);
1998
1999        /* This is only called with ->reconfix_mutex held, so
2000         * rcu protection of rdev is not needed */
2001        for (i = 0; i < conf->geo.raid_disks; i++) {
2002                char b[BDEVNAME_SIZE];
2003                rdev = conf->mirrors[i].rdev;
2004                if (rdev)
2005                        pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
2006                                 i, !test_bit(In_sync, &rdev->flags),
2007                                 !test_bit(Faulty, &rdev->flags),
2008                                 bdevname(rdev->bdev,b));
2009        }
2010}
2011
2012static void close_sync(struct r10conf *conf)
2013{
2014        wait_barrier(conf);
2015        allow_barrier(conf);
2016
2017        mempool_exit(&conf->r10buf_pool);
2018}
2019
2020static int raid10_spare_active(struct mddev *mddev)
2021{
2022        int i;
2023        struct r10conf *conf = mddev->private;
2024        struct raid10_info *tmp;
2025        int count = 0;
2026        unsigned long flags;
2027
2028        /*
2029         * Find all non-in_sync disks within the RAID10 configuration
2030         * and mark them in_sync
2031         */
2032        for (i = 0; i < conf->geo.raid_disks; i++) {
2033                tmp = conf->mirrors + i;
2034                if (tmp->replacement
2035                    && tmp->replacement->recovery_offset == MaxSector
2036                    && !test_bit(Faulty, &tmp->replacement->flags)
2037                    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2038                        /* Replacement has just become active */
2039                        if (!tmp->rdev
2040                            || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2041                                count++;
2042                        if (tmp->rdev) {
2043                                /* Replaced device not technically faulty,
2044                                 * but we need to be sure it gets removed
2045                                 * and never re-added.
2046                                 */
2047                                set_bit(Faulty, &tmp->rdev->flags);
2048                                sysfs_notify_dirent_safe(
2049                                        tmp->rdev->sysfs_state);
2050                        }
2051                        sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2052                } else if (tmp->rdev
2053                           && tmp->rdev->recovery_offset == MaxSector
2054                           && !test_bit(Faulty, &tmp->rdev->flags)
2055                           && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2056                        count++;
2057                        sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2058                }
2059        }
2060        spin_lock_irqsave(&conf->device_lock, flags);
2061        mddev->degraded -= count;
2062        spin_unlock_irqrestore(&conf->device_lock, flags);
2063
2064        print_conf(conf);
2065        return count;
2066}
2067
2068static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2069{
2070        struct r10conf *conf = mddev->private;
2071        int err = -EEXIST;
2072        int mirror;
2073        int first = 0;
2074        int last = conf->geo.raid_disks - 1;
2075
2076        if (mddev->recovery_cp < MaxSector)
2077                /* only hot-add to in-sync arrays, as recovery is
2078                 * very different from resync
2079                 */
2080                return -EBUSY;
2081        if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2082                return -EINVAL;
2083
2084        if (md_integrity_add_rdev(rdev, mddev))
2085                return -ENXIO;
2086
2087        if (rdev->raid_disk >= 0)
2088                first = last = rdev->raid_disk;
2089
2090        if (rdev->saved_raid_disk >= first &&
2091            rdev->saved_raid_disk < conf->geo.raid_disks &&
2092            conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2093                mirror = rdev->saved_raid_disk;
2094        else
2095                mirror = first;
2096        for ( ; mirror <= last ; mirror++) {
2097                struct raid10_info *p = &conf->mirrors[mirror];
2098                if (p->recovery_disabled == mddev->recovery_disabled)
2099                        continue;
2100                if (p->rdev) {
2101                        if (!test_bit(WantReplacement, &p->rdev->flags) ||
2102                            p->replacement != NULL)
2103                                continue;
2104                        clear_bit(In_sync, &rdev->flags);
2105                        set_bit(Replacement, &rdev->flags);
2106                        rdev->raid_disk = mirror;
2107                        err = 0;
2108                        if (mddev->gendisk)
2109                                disk_stack_limits(mddev->gendisk, rdev->bdev,
2110                                                  rdev->data_offset << 9);
2111                        conf->fullsync = 1;
2112                        rcu_assign_pointer(p->replacement, rdev);
2113                        break;
2114                }
2115
2116                if (mddev->gendisk)
2117                        disk_stack_limits(mddev->gendisk, rdev->bdev,
2118                                          rdev->data_offset << 9);
2119
2120                p->head_position = 0;
2121                p->recovery_disabled = mddev->recovery_disabled - 1;
2122                rdev->raid_disk = mirror;
2123                err = 0;
2124                if (rdev->saved_raid_disk != mirror)
2125                        conf->fullsync = 1;
2126                rcu_assign_pointer(p->rdev, rdev);
2127                break;
2128        }
2129        if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2130                blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
2131
2132        print_conf(conf);
2133        return err;
2134}
2135
2136static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2137{
2138        struct r10conf *conf = mddev->private;
2139        int err = 0;
2140        int number = rdev->raid_disk;
2141        struct md_rdev **rdevp;
2142        struct raid10_info *p = conf->mirrors + number;
2143
2144        print_conf(conf);
2145        if (rdev == p->rdev)
2146                rdevp = &p->rdev;
2147        else if (rdev == p->replacement)
2148                rdevp = &p->replacement;
2149        else
2150                return 0;
2151
2152        if (test_bit(In_sync, &rdev->flags) ||
2153            atomic_read(&rdev->nr_pending)) {
2154                err = -EBUSY;
2155                goto abort;
2156        }
2157        /* Only remove non-faulty devices if recovery
2158         * is not possible.
2159         */
2160        if (!test_bit(Faulty, &rdev->flags) &&
2161            mddev->recovery_disabled != p->recovery_disabled &&
2162            (!p->replacement || p->replacement == rdev) &&
2163            number < conf->geo.raid_disks &&
2164            enough(conf, -1)) {
2165                err = -EBUSY;
2166                goto abort;
2167        }
2168        *rdevp = NULL;
2169        if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2170                synchronize_rcu();
2171                if (atomic_read(&rdev->nr_pending)) {
2172                        /* lost the race, try later */
2173                        err = -EBUSY;
2174                        *rdevp = rdev;
2175                        goto abort;
2176                }
2177        }
2178        if (p->replacement) {
2179                /* We must have just cleared 'rdev' */
2180                p->rdev = p->replacement;
2181                clear_bit(Replacement, &p->replacement->flags);
2182                smp_mb(); /* Make sure other CPUs may see both as identical
2183                           * but will never see neither -- if they are careful.
2184                           */
2185                p->replacement = NULL;
2186        }
2187
2188        clear_bit(WantReplacement, &rdev->flags);
2189        err = md_integrity_register(mddev);
2190
2191abort:
2192
2193        print_conf(conf);
2194        return err;
2195}
2196
2197static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2198{
2199        struct r10conf *conf = r10_bio->mddev->private;
2200
2201        if (!bio->bi_status)
2202                set_bit(R10BIO_Uptodate, &r10_bio->state);
2203        else
2204                /* The write handler will notice the lack of
2205                 * R10BIO_Uptodate and record any errors etc
2206                 */
2207                atomic_add(r10_bio->sectors,
2208                           &conf->mirrors[d].rdev->corrected_errors);
2209
2210        /* for reconstruct, we always reschedule after a read.
2211         * for resync, only after all reads
2212         */
2213        rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2214        if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2215            atomic_dec_and_test(&r10_bio->remaining)) {
2216                /* we have read all the blocks,
2217                 * do the comparison in process context in raid10d
2218                 */
2219                reschedule_retry(r10_bio);
2220        }
2221}
2222
2223static void end_sync_read(struct bio *bio)
2224{
2225        struct r10bio *r10_bio = get_resync_r10bio(bio);
2226        struct r10conf *conf = r10_bio->mddev->private;
2227        int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2228
2229        __end_sync_read(r10_bio, bio, d);
2230}
2231
2232static void end_reshape_read(struct bio *bio)
2233{
2234        /* reshape read bio isn't allocated from r10buf_pool */
2235        struct r10bio *r10_bio = bio->bi_private;
2236
2237        __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2238}
2239
2240static void end_sync_request(struct r10bio *r10_bio)
2241{
2242        struct mddev *mddev = r10_bio->mddev;
2243
2244        while (atomic_dec_and_test(&r10_bio->remaining)) {
2245                if (r10_bio->master_bio == NULL) {
2246                        /* the primary of several recovery bios */
2247                        sector_t s = r10_bio->sectors;
2248                        if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2249                            test_bit(R10BIO_WriteError, &r10_bio->state))
2250                                reschedule_retry(r10_bio);
2251                        else
2252                                put_buf(r10_bio);
2253                        md_done_sync(mddev, s, 1);
2254                        break;
2255                } else {
2256                        struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2257                        if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2258                            test_bit(R10BIO_WriteError, &r10_bio->state))
2259                                reschedule_retry(r10_bio);
2260                        else
2261                                put_buf(r10_bio);
2262                        r10_bio = r10_bio2;
2263                }
2264        }
2265}
2266
2267static void end_sync_write(struct bio *bio)
2268{
2269        struct r10bio *r10_bio = get_resync_r10bio(bio);
2270        struct mddev *mddev = r10_bio->mddev;
2271        struct r10conf *conf = mddev->private;
2272        int d;
2273        sector_t first_bad;
2274        int bad_sectors;
2275        int slot;
2276        int repl;
2277        struct md_rdev *rdev = NULL;
2278
2279        d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2280        if (repl)
2281                rdev = conf->mirrors[d].replacement;
2282        else
2283                rdev = conf->mirrors[d].rdev;
2284
2285        if (bio->bi_status) {
2286                if (repl)
2287                        md_error(mddev, rdev);
2288                else {
2289                        set_bit(WriteErrorSeen, &rdev->flags);
2290                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
2291                                set_bit(MD_RECOVERY_NEEDED,
2292                                        &rdev->mddev->recovery);
2293                        set_bit(R10BIO_WriteError, &r10_bio->state);
2294                }
2295        } else if (is_badblock(rdev,
2296                             r10_bio->devs[slot].addr,
2297                             r10_bio->sectors,
2298                             &first_bad, &bad_sectors))
2299                set_bit(R10BIO_MadeGood, &r10_bio->state);
2300
2301        rdev_dec_pending(rdev, mddev);
2302
2303        end_sync_request(r10_bio);
2304}
2305
2306/*
2307 * Note: sync and recover and handled very differently for raid10
2308 * This code is for resync.
2309 * For resync, we read through virtual addresses and read all blocks.
2310 * If there is any error, we schedule a write.  The lowest numbered
2311 * drive is authoritative.
2312 * However requests come for physical address, so we need to map.
2313 * For every physical address there are raid_disks/copies virtual addresses,
2314 * which is always are least one, but is not necessarly an integer.
2315 * This means that a physical address can span multiple chunks, so we may
2316 * have to submit multiple io requests for a single sync request.
2317 */
2318/*
2319 * We check if all blocks are in-sync and only write to blocks that
2320 * aren't in sync
2321 */
2322static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2323{
2324        struct r10conf *conf = mddev->private;
2325        int i, first;
2326        struct bio *tbio, *fbio;
2327        int vcnt;
2328        struct page **tpages, **fpages;
2329
2330        atomic_set(&r10_bio->remaining, 1);
2331
2332        /* find the first device with a block */
2333        for (i=0; i<conf->copies; i++)
2334                if (!r10_bio->devs[i].bio->bi_status)
2335                        break;
2336
2337        if (i == conf->copies)
2338                goto done;
2339
2340        first = i;
2341        fbio = r10_bio->devs[i].bio;
2342        fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2343        fbio->bi_iter.bi_idx = 0;
2344        fpages = get_resync_pages(fbio)->pages;
2345
2346        vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2347        /* now find blocks with errors */
2348        for (i=0 ; i < conf->copies ; i++) {
2349                int  j, d;
2350                struct md_rdev *rdev;
2351                struct resync_pages *rp;
2352
2353                tbio = r10_bio->devs[i].bio;
2354
2355                if (tbio->bi_end_io != end_sync_read)
2356                        continue;
2357                if (i == first)
2358                        continue;
2359
2360                tpages = get_resync_pages(tbio)->pages;
2361                d = r10_bio->devs[i].devnum;
2362                rdev = conf->mirrors[d].rdev;
2363                if (!r10_bio->devs[i].bio->bi_status) {
2364                        /* We know that the bi_io_vec layout is the same for
2365                         * both 'first' and 'i', so we just compare them.
2366                         * All vec entries are PAGE_SIZE;
2367                         */
2368                        int sectors = r10_bio->sectors;
2369                        for (j = 0; j < vcnt; j++) {
2370                                int len = PAGE_SIZE;
2371                                if (sectors < (len / 512))
2372                                        len = sectors * 512;
2373                                if (memcmp(page_address(fpages[j]),
2374                                           page_address(tpages[j]),
2375                                           len))
2376                                        break;
2377                                sectors -= len/512;
2378                        }
2379                        if (j == vcnt)
2380                                continue;
2381                        atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2382                        if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2383                                /* Don't fix anything. */
2384                                continue;
2385                } else if (test_bit(FailFast, &rdev->flags)) {
2386                        /* Just give up on this device */
2387                        md_error(rdev->mddev, rdev);
2388                        continue;
2389                }
2390                /* Ok, we need to write this bio, either to correct an
2391                 * inconsistency or to correct an unreadable block.
2392                 * First we need to fixup bv_offset, bv_len and
2393                 * bi_vecs, as the read request might have corrupted these
2394                 */
2395                rp = get_resync_pages(tbio);
2396                bio_reset(tbio);
2397
2398                md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2399
2400                rp->raid_bio = r10_bio;
2401                tbio->bi_private = rp;
2402                tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2403                tbio->bi_end_io = end_sync_write;
2404                bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2405
2406                bio_copy_data(tbio, fbio);
2407
2408                atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2409                atomic_inc(&r10_bio->remaining);
2410                md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2411
2412                if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2413                        tbio->bi_opf |= MD_FAILFAST;
2414                tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2415                bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2416                submit_bio_noacct(tbio);
2417        }
2418
2419        /* Now write out to any replacement devices
2420         * that are active
2421         */
2422        for (i = 0; i < conf->copies; i++) {
2423                int d;
2424
2425                tbio = r10_bio->devs[i].repl_bio;
2426                if (!tbio || !tbio->bi_end_io)
2427                        continue;
2428                if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2429                    && r10_bio->devs[i].bio != fbio)
2430                        bio_copy_data(tbio, fbio);
2431                d = r10_bio->devs[i].devnum;
2432                atomic_inc(&r10_bio->remaining);
2433                md_sync_acct(conf->mirrors[d].replacement->bdev,
2434                             bio_sectors(tbio));
2435                submit_bio_noacct(tbio);
2436        }
2437
2438done:
2439        if (atomic_dec_and_test(&r10_bio->remaining)) {
2440                md_done_sync(mddev, r10_bio->sectors, 1);
2441                put_buf(r10_bio);
2442        }
2443}
2444
2445/*
2446 * Now for the recovery code.
2447 * Recovery happens across physical sectors.
2448 * We recover all non-is_sync drives by finding the virtual address of
2449 * each, and then choose a working drive that also has that virt address.
2450 * There is a separate r10_bio for each non-in_sync drive.
2451 * Only the first two slots are in use. The first for reading,
2452 * The second for writing.
2453 *
2454 */
2455static void fix_recovery_read_error(struct r10bio *r10_bio)
2456{
2457        /* We got a read error during recovery.
2458         * We repeat the read in smaller page-sized sections.
2459         * If a read succeeds, write it to the new device or record
2460         * a bad block if we cannot.
2461         * If a read fails, record a bad block on both old and
2462         * new devices.
2463         */
2464        struct mddev *mddev = r10_bio->mddev;
2465        struct r10conf *conf = mddev->private;
2466        struct bio *bio = r10_bio->devs[0].bio;
2467        sector_t sect = 0;
2468        int sectors = r10_bio->sectors;
2469        int idx = 0;
2470        int dr = r10_bio->devs[0].devnum;
2471        int dw = r10_bio->devs[1].devnum;
2472        struct page **pages = get_resync_pages(bio)->pages;
2473
2474        while (sectors) {
2475                int s = sectors;
2476                struct md_rdev *rdev;
2477                sector_t addr;
2478                int ok;
2479
2480                if (s > (PAGE_SIZE>>9))
2481                        s = PAGE_SIZE >> 9;
2482
2483                rdev = conf->mirrors[dr].rdev;
2484                addr = r10_bio->devs[0].addr + sect,
2485                ok = sync_page_io(rdev,
2486                                  addr,
2487                                  s << 9,
2488                                  pages[idx],
2489                                  REQ_OP_READ, 0, false);
2490                if (ok) {
2491                        rdev = conf->mirrors[dw].rdev;
2492                        addr = r10_bio->devs[1].addr + sect;
2493                        ok = sync_page_io(rdev,
2494                                          addr,
2495                                          s << 9,
2496                                          pages[idx],
2497                                          REQ_OP_WRITE, 0, false);
2498                        if (!ok) {
2499                                set_bit(WriteErrorSeen, &rdev->flags);
2500                                if (!test_and_set_bit(WantReplacement,
2501                                                      &rdev->flags))
2502                                        set_bit(MD_RECOVERY_NEEDED,
2503                                                &rdev->mddev->recovery);
2504                        }
2505                }
2506                if (!ok) {
2507                        /* We don't worry if we cannot set a bad block -
2508                         * it really is bad so there is no loss in not
2509                         * recording it yet
2510                         */
2511                        rdev_set_badblocks(rdev, addr, s, 0);
2512
2513                        if (rdev != conf->mirrors[dw].rdev) {
2514                                /* need bad block on destination too */
2515                                struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2516                                addr = r10_bio->devs[1].addr + sect;
2517                                ok = rdev_set_badblocks(rdev2, addr, s, 0);
2518                                if (!ok) {
2519                                        /* just abort the recovery */
2520                                        pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2521                                                  mdname(mddev));
2522
2523                                        conf->mirrors[dw].recovery_disabled
2524                                                = mddev->recovery_disabled;
2525                                        set_bit(MD_RECOVERY_INTR,
2526                                                &mddev->recovery);
2527                                        break;
2528                                }
2529                        }
2530                }
2531
2532                sectors -= s;
2533                sect += s;
2534                idx++;
2535        }
2536}
2537
2538static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2539{
2540        struct r10conf *conf = mddev->private;
2541        int d;
2542        struct bio *wbio, *wbio2;
2543
2544        if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2545                fix_recovery_read_error(r10_bio);
2546                end_sync_request(r10_bio);
2547                return;
2548        }
2549
2550        /*
2551         * share the pages with the first bio
2552         * and submit the write request
2553         */
2554        d = r10_bio->devs[1].devnum;
2555        wbio = r10_bio->devs[1].bio;
2556        wbio2 = r10_bio->devs[1].repl_bio;
2557        /* Need to test wbio2->bi_end_io before we call
2558         * submit_bio_noacct as if the former is NULL,
2559         * the latter is free to free wbio2.
2560         */
2561        if (wbio2 && !wbio2->bi_end_io)
2562                wbio2 = NULL;
2563        if (wbio->bi_end_io) {
2564                atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2565                md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2566                submit_bio_noacct(wbio);
2567        }
2568        if (wbio2) {
2569                atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2570                md_sync_acct(conf->mirrors[d].replacement->bdev,
2571                             bio_sectors(wbio2));
2572                submit_bio_noacct(wbio2);
2573        }
2574}
2575
2576/*
2577 * Used by fix_read_error() to decay the per rdev read_errors.
2578 * We halve the read error count for every hour that has elapsed
2579 * since the last recorded read error.
2580 *
2581 */
2582static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2583{
2584        long cur_time_mon;
2585        unsigned long hours_since_last;
2586        unsigned int read_errors = atomic_read(&rdev->read_errors);
2587
2588        cur_time_mon = ktime_get_seconds();
2589
2590        if (rdev->last_read_error == 0) {
2591                /* first time we've seen a read error */
2592                rdev->last_read_error = cur_time_mon;
2593                return;
2594        }
2595
2596        hours_since_last = (long)(cur_time_mon -
2597                            rdev->last_read_error) / 3600;
2598
2599        rdev->last_read_error = cur_time_mon;
2600
2601        /*
2602         * if hours_since_last is > the number of bits in read_errors
2603         * just set read errors to 0. We do this to avoid
2604         * overflowing the shift of read_errors by hours_since_last.
2605         */
2606        if (hours_since_last >= 8 * sizeof(read_errors))
2607                atomic_set(&rdev->read_errors, 0);
2608        else
2609                atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2610}
2611
2612static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2613                            int sectors, struct page *page, int rw)
2614{
2615        sector_t first_bad;
2616        int bad_sectors;
2617
2618        if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2619            && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2620                return -1;
2621        if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2622                /* success */
2623                return 1;
2624        if (rw == WRITE) {
2625                set_bit(WriteErrorSeen, &rdev->flags);
2626                if (!test_and_set_bit(WantReplacement, &rdev->flags))
2627                        set_bit(MD_RECOVERY_NEEDED,
2628                                &rdev->mddev->recovery);
2629        }
2630        /* need to record an error - either for the block or the device */
2631        if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2632                md_error(rdev->mddev, rdev);
2633        return 0;
2634}
2635
2636/*
2637 * This is a kernel thread which:
2638 *
2639 *      1.      Retries failed read operations on working mirrors.
2640 *      2.      Updates the raid superblock when problems encounter.
2641 *      3.      Performs writes following reads for array synchronising.
2642 */
2643
2644static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2645{
2646        int sect = 0; /* Offset from r10_bio->sector */
2647        int sectors = r10_bio->sectors;
2648        struct md_rdev *rdev;
2649        int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2650        int d = r10_bio->devs[r10_bio->read_slot].devnum;
2651
2652        /* still own a reference to this rdev, so it cannot
2653         * have been cleared recently.
2654         */
2655        rdev = conf->mirrors[d].rdev;
2656
2657        if (test_bit(Faulty, &rdev->flags))
2658                /* drive has already been failed, just ignore any
2659                   more fix_read_error() attempts */
2660                return;
2661
2662        check_decay_read_errors(mddev, rdev);
2663        atomic_inc(&rdev->read_errors);
2664        if (atomic_read(&rdev->read_errors) > max_read_errors) {
2665                char b[BDEVNAME_SIZE];
2666                bdevname(rdev->bdev, b);
2667
2668                pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2669                          mdname(mddev), b,
2670                          atomic_read(&rdev->read_errors), max_read_errors);
2671                pr_notice("md/raid10:%s: %s: Failing raid device\n",
2672                          mdname(mddev), b);
2673                md_error(mddev, rdev);
2674                r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2675                return;
2676        }
2677
2678        while(sectors) {
2679                int s = sectors;
2680                int sl = r10_bio->read_slot;
2681                int success = 0;
2682                int start;
2683
2684                if (s > (PAGE_SIZE>>9))
2685                        s = PAGE_SIZE >> 9;
2686
2687                rcu_read_lock();
2688                do {
2689                        sector_t first_bad;
2690                        int bad_sectors;
2691
2692                        d = r10_bio->devs[sl].devnum;
2693                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2694                        if (rdev &&
2695                            test_bit(In_sync, &rdev->flags) &&
2696                            !test_bit(Faulty, &rdev->flags) &&
2697                            is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2698                                        &first_bad, &bad_sectors) == 0) {
2699                                atomic_inc(&rdev->nr_pending);
2700                                rcu_read_unlock();
2701                                success = sync_page_io(rdev,
2702                                                       r10_bio->devs[sl].addr +
2703                                                       sect,
2704                                                       s<<9,
2705                                                       conf->tmppage,
2706                                                       REQ_OP_READ, 0, false);
2707                                rdev_dec_pending(rdev, mddev);
2708                                rcu_read_lock();
2709                                if (success)
2710                                        break;
2711                        }
2712                        sl++;
2713                        if (sl == conf->copies)
2714                                sl = 0;
2715                } while (!success && sl != r10_bio->read_slot);
2716                rcu_read_unlock();
2717
2718                if (!success) {
2719                        /* Cannot read from anywhere, just mark the block
2720                         * as bad on the first device to discourage future
2721                         * reads.
2722                         */
2723                        int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2724                        rdev = conf->mirrors[dn].rdev;
2725
2726                        if (!rdev_set_badblocks(
2727                                    rdev,
2728                                    r10_bio->devs[r10_bio->read_slot].addr
2729                                    + sect,
2730                                    s, 0)) {
2731                                md_error(mddev, rdev);
2732                                r10_bio->devs[r10_bio->read_slot].bio
2733                                        = IO_BLOCKED;
2734                        }
2735                        break;
2736                }
2737
2738                start = sl;
2739                /* write it back and re-read */
2740                rcu_read_lock();
2741                while (sl != r10_bio->read_slot) {
2742                        char b[BDEVNAME_SIZE];
2743
2744                        if (sl==0)
2745                                sl = conf->copies;
2746                        sl--;
2747                        d = r10_bio->devs[sl].devnum;
2748                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2749                        if (!rdev ||
2750                            test_bit(Faulty, &rdev->flags) ||
2751                            !test_bit(In_sync, &rdev->flags))
2752                                continue;
2753
2754                        atomic_inc(&rdev->nr_pending);
2755                        rcu_read_unlock();
2756                        if (r10_sync_page_io(rdev,
2757                                             r10_bio->devs[sl].addr +
2758                                             sect,
2759                                             s, conf->tmppage, WRITE)
2760                            == 0) {
2761                                /* Well, this device is dead */
2762                                pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2763                                          mdname(mddev), s,
2764                                          (unsigned long long)(
2765                                                  sect +
2766                                                  choose_data_offset(r10_bio,
2767                                                                     rdev)),
2768                                          bdevname(rdev->bdev, b));
2769                                pr_notice("md/raid10:%s: %s: failing drive\n",
2770                                          mdname(mddev),
2771                                          bdevname(rdev->bdev, b));
2772                        }
2773                        rdev_dec_pending(rdev, mddev);
2774                        rcu_read_lock();
2775                }
2776                sl = start;
2777                while (sl != r10_bio->read_slot) {
2778                        char b[BDEVNAME_SIZE];
2779
2780                        if (sl==0)
2781                                sl = conf->copies;
2782                        sl--;
2783                        d = r10_bio->devs[sl].devnum;
2784                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2785                        if (!rdev ||
2786                            test_bit(Faulty, &rdev->flags) ||
2787                            !test_bit(In_sync, &rdev->flags))
2788                                continue;
2789
2790                        atomic_inc(&rdev->nr_pending);
2791                        rcu_read_unlock();
2792                        switch (r10_sync_page_io(rdev,
2793                                             r10_bio->devs[sl].addr +
2794                                             sect,
2795                                             s, conf->tmppage,
2796                                                 READ)) {
2797                        case 0:
2798                                /* Well, this device is dead */
2799                                pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2800                                       mdname(mddev), s,
2801                                       (unsigned long long)(
2802                                               sect +
2803                                               choose_data_offset(r10_bio, rdev)),
2804                                       bdevname(rdev->bdev, b));
2805                                pr_notice("md/raid10:%s: %s: failing drive\n",
2806                                       mdname(mddev),
2807                                       bdevname(rdev->bdev, b));
2808                                break;
2809                        case 1:
2810                                pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2811                                       mdname(mddev), s,
2812                                       (unsigned long long)(
2813                                               sect +
2814                                               choose_data_offset(r10_bio, rdev)),
2815                                       bdevname(rdev->bdev, b));
2816                                atomic_add(s, &rdev->corrected_errors);
2817                        }
2818
2819                        rdev_dec_pending(rdev, mddev);
2820                        rcu_read_lock();
2821                }
2822                rcu_read_unlock();
2823
2824                sectors -= s;
2825                sect += s;
2826        }
2827}
2828
2829static int narrow_write_error(struct r10bio *r10_bio, int i)
2830{
2831        struct bio *bio = r10_bio->master_bio;
2832        struct mddev *mddev = r10_bio->mddev;
2833        struct r10conf *conf = mddev->private;
2834        struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2835        /* bio has the data to be written to slot 'i' where
2836         * we just recently had a write error.
2837         * We repeatedly clone the bio and trim down to one block,
2838         * then try the write.  Where the write fails we record
2839         * a bad block.
2840         * It is conceivable that the bio doesn't exactly align with
2841         * blocks.  We must handle this.
2842         *
2843         * We currently own a reference to the rdev.
2844         */
2845
2846        int block_sectors;
2847        sector_t sector;
2848        int sectors;
2849        int sect_to_write = r10_bio->sectors;
2850        int ok = 1;
2851
2852        if (rdev->badblocks.shift < 0)
2853                return 0;
2854
2855        block_sectors = roundup(1 << rdev->badblocks.shift,
2856                                bdev_logical_block_size(rdev->bdev) >> 9);
2857        sector = r10_bio->sector;
2858        sectors = ((r10_bio->sector + block_sectors)
2859                   & ~(sector_t)(block_sectors - 1))
2860                - sector;
2861
2862        while (sect_to_write) {
2863                struct bio *wbio;
2864                sector_t wsector;
2865                if (sectors > sect_to_write)
2866                        sectors = sect_to_write;
2867                /* Write at 'sector' for 'sectors' */
2868                wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2869                bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2870                wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2871                wbio->bi_iter.bi_sector = wsector +
2872                                   choose_data_offset(r10_bio, rdev);
2873                bio_set_dev(wbio, rdev->bdev);
2874                bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2875
2876                if (submit_bio_wait(wbio) < 0)
2877                        /* Failure! */
2878                        ok = rdev_set_badblocks(rdev, wsector,
2879                                                sectors, 0)
2880                                && ok;
2881
2882                bio_put(wbio);
2883                sect_to_write -= sectors;
2884                sector += sectors;
2885                sectors = block_sectors;
2886        }
2887        return ok;
2888}
2889
2890static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2891{
2892        int slot = r10_bio->read_slot;
2893        struct bio *bio;
2894        struct r10conf *conf = mddev->private;
2895        struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2896
2897        /* we got a read error. Maybe the drive is bad.  Maybe just
2898         * the block and we can fix it.
2899         * We freeze all other IO, and try reading the block from
2900         * other devices.  When we find one, we re-write
2901         * and check it that fixes the read error.
2902         * This is all done synchronously while the array is
2903         * frozen.
2904         */
2905        bio = r10_bio->devs[slot].bio;
2906        bio_put(bio);
2907        r10_bio->devs[slot].bio = NULL;
2908
2909        if (mddev->ro)
2910                r10_bio->devs[slot].bio = IO_BLOCKED;
2911        else if (!test_bit(FailFast, &rdev->flags)) {
2912                freeze_array(conf, 1);
2913                fix_read_error(conf, mddev, r10_bio);
2914                unfreeze_array(conf);
2915        } else
2916                md_error(mddev, rdev);
2917
2918        rdev_dec_pending(rdev, mddev);
2919        allow_barrier(conf);
2920        r10_bio->state = 0;
2921        raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2922}
2923
2924static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2925{
2926        /* Some sort of write request has finished and it
2927         * succeeded in writing where we thought there was a
2928         * bad block.  So forget the bad block.
2929         * Or possibly if failed and we need to record
2930         * a bad block.
2931         */
2932        int m;
2933        struct md_rdev *rdev;
2934
2935        if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2936            test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2937                for (m = 0; m < conf->copies; m++) {
2938                        int dev = r10_bio->devs[m].devnum;
2939                        rdev = conf->mirrors[dev].rdev;
2940                        if (r10_bio->devs[m].bio == NULL ||
2941                                r10_bio->devs[m].bio->bi_end_io == NULL)
2942                                continue;
2943                        if (!r10_bio->devs[m].bio->bi_status) {
2944                                rdev_clear_badblocks(
2945                                        rdev,
2946                                        r10_bio->devs[m].addr,
2947                                        r10_bio->sectors, 0);
2948                        } else {
2949                                if (!rdev_set_badblocks(
2950                                            rdev,
2951                                            r10_bio->devs[m].addr,
2952                                            r10_bio->sectors, 0))
2953                                        md_error(conf->mddev, rdev);
2954                        }
2955                        rdev = conf->mirrors[dev].replacement;
2956                        if (r10_bio->devs[m].repl_bio == NULL ||
2957                                r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2958                                continue;
2959
2960                        if (!r10_bio->devs[m].repl_bio->bi_status) {
2961                                rdev_clear_badblocks(
2962                                        rdev,
2963                                        r10_bio->devs[m].addr,
2964                                        r10_bio->sectors, 0);
2965                        } else {
2966                                if (!rdev_set_badblocks(
2967                                            rdev,
2968                                            r10_bio->devs[m].addr,
2969                                            r10_bio->sectors, 0))
2970                                        md_error(conf->mddev, rdev);
2971                        }
2972                }
2973                put_buf(r10_bio);
2974        } else {
2975                bool fail = false;
2976                for (m = 0; m < conf->copies; m++) {
2977                        int dev = r10_bio->devs[m].devnum;
2978                        struct bio *bio = r10_bio->devs[m].bio;
2979                        rdev = conf->mirrors[dev].rdev;
2980                        if (bio == IO_MADE_GOOD) {
2981                                rdev_clear_badblocks(
2982                                        rdev,
2983                                        r10_bio->devs[m].addr,
2984                                        r10_bio->sectors, 0);
2985                                rdev_dec_pending(rdev, conf->mddev);
2986                        } else if (bio != NULL && bio->bi_status) {
2987                                fail = true;
2988                                if (!narrow_write_error(r10_bio, m)) {
2989                                        md_error(conf->mddev, rdev);
2990                                        set_bit(R10BIO_Degraded,
2991                                                &r10_bio->state);
2992                                }
2993                                rdev_dec_pending(rdev, conf->mddev);
2994                        }
2995                        bio = r10_bio->devs[m].repl_bio;
2996                        rdev = conf->mirrors[dev].replacement;
2997                        if (rdev && bio == IO_MADE_GOOD) {
2998                                rdev_clear_badblocks(
2999                                        rdev,
3000                                        r10_bio->devs[m].addr,
3001                                        r10_bio->sectors, 0);
3002                                rdev_dec_pending(rdev, conf->mddev);
3003                        }
3004                }
3005                if (fail) {
3006                        spin_lock_irq(&conf->device_lock);
3007                        list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
3008                        conf->nr_queued++;
3009                        spin_unlock_irq(&conf->device_lock);
3010                        /*
3011                         * In case freeze_array() is waiting for condition
3012                         * nr_pending == nr_queued + extra to be true.
3013                         */
3014                        wake_up(&conf->wait_barrier);
3015                        md_wakeup_thread(conf->mddev->thread);
3016                } else {
3017                        if (test_bit(R10BIO_WriteError,
3018                                     &r10_bio->state))
3019                                close_write(r10_bio);
3020                        raid_end_bio_io(r10_bio);
3021                }
3022        }
3023}
3024
3025static void raid10d(struct md_thread *thread)
3026{
3027        struct mddev *mddev = thread->mddev;
3028        struct r10bio *r10_bio;
3029        unsigned long flags;
3030        struct r10conf *conf = mddev->private;
3031        struct list_head *head = &conf->retry_list;
3032        struct blk_plug plug;
3033
3034        md_check_recovery(mddev);
3035
3036        if (!list_empty_careful(&conf->bio_end_io_list) &&
3037            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3038                LIST_HEAD(tmp);
3039                spin_lock_irqsave(&conf->device_lock, flags);
3040                if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3041                        while (!list_empty(&conf->bio_end_io_list)) {
3042                                list_move(conf->bio_end_io_list.prev, &tmp);
3043                                conf->nr_queued--;
3044                        }
3045                }
3046                spin_unlock_irqrestore(&conf->device_lock, flags);
3047                while (!list_empty(&tmp)) {
3048                        r10_bio = list_first_entry(&tmp, struct r10bio,
3049                                                   retry_list);
3050                        list_del(&r10_bio->retry_list);
3051                        if (mddev->degraded)
3052                                set_bit(R10BIO_Degraded, &r10_bio->state);
3053
3054                        if (test_bit(R10BIO_WriteError,
3055                                     &r10_bio->state))
3056                                close_write(r10_bio);
3057                        raid_end_bio_io(r10_bio);
3058                }
3059        }
3060
3061        blk_start_plug(&plug);
3062        for (;;) {
3063
3064                flush_pending_writes(conf);
3065
3066                spin_lock_irqsave(&conf->device_lock, flags);
3067                if (list_empty(head)) {
3068                        spin_unlock_irqrestore(&conf->device_lock, flags);
3069                        break;
3070                }
3071                r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3072                list_del(head->prev);
3073                conf->nr_queued--;
3074                spin_unlock_irqrestore(&conf->device_lock, flags);
3075
3076                mddev = r10_bio->mddev;
3077                conf = mddev->private;
3078                if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3079                    test_bit(R10BIO_WriteError, &r10_bio->state))
3080                        handle_write_completed(conf, r10_bio);
3081                else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3082                        reshape_request_write(mddev, r10_bio);
3083                else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3084                        sync_request_write(mddev, r10_bio);
3085                else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3086                        recovery_request_write(mddev, r10_bio);
3087                else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3088                        handle_read_error(mddev, r10_bio);
3089                else
3090                        WARN_ON_ONCE(1);
3091
3092                cond_resched();
3093                if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3094                        md_check_recovery(mddev);
3095        }
3096        blk_finish_plug(&plug);
3097}
3098
3099static int init_resync(struct r10conf *conf)
3100{
3101        int ret, buffs, i;
3102
3103        buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3104        BUG_ON(mempool_initialized(&conf->r10buf_pool));
3105        conf->have_replacement = 0;
3106        for (i = 0; i < conf->geo.raid_disks; i++)
3107                if (conf->mirrors[i].replacement)
3108                        conf->have_replacement = 1;
3109        ret = mempool_init(&conf->r10buf_pool, buffs,
3110                           r10buf_pool_alloc, r10buf_pool_free, conf);
3111        if (ret)
3112                return ret;
3113        conf->next_resync = 0;
3114        return 0;
3115}
3116
3117static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3118{
3119        struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3120        struct rsync_pages *rp;
3121        struct bio *bio;
3122        int nalloc;
3123        int i;
3124
3125        if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3126            test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3127                nalloc = conf->copies; /* resync */
3128        else
3129                nalloc = 2; /* recovery */
3130
3131        for (i = 0; i < nalloc; i++) {
3132                bio = r10bio->devs[i].bio;
3133                rp = bio->bi_private;
3134                bio_reset(bio);
3135                bio->bi_private = rp;
3136                bio = r10bio->devs[i].repl_bio;
3137                if (bio) {
3138                        rp = bio->bi_private;
3139                        bio_reset(bio);
3140                        bio->bi_private = rp;
3141                }
3142        }
3143        return r10bio;
3144}
3145
3146/*
3147 * Set cluster_sync_high since we need other nodes to add the
3148 * range [cluster_sync_low, cluster_sync_high] to suspend list.
3149 */
3150static void raid10_set_cluster_sync_high(struct r10conf *conf)
3151{
3152        sector_t window_size;
3153        int extra_chunk, chunks;
3154
3155        /*
3156         * First, here we define "stripe" as a unit which across
3157         * all member devices one time, so we get chunks by use
3158         * raid_disks / near_copies. Otherwise, if near_copies is
3159         * close to raid_disks, then resync window could increases
3160         * linearly with the increase of raid_disks, which means
3161         * we will suspend a really large IO window while it is not
3162         * necessary. If raid_disks is not divisible by near_copies,
3163         * an extra chunk is needed to ensure the whole "stripe" is
3164         * covered.
3165         */
3166
3167        chunks = conf->geo.raid_disks / conf->geo.near_copies;
3168        if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3169                extra_chunk = 0;
3170        else
3171                extra_chunk = 1;
3172        window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3173
3174        /*
3175         * At least use a 32M window to align with raid1's resync window
3176         */
3177        window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3178                        CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3179
3180        conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3181}
3182
3183/*
3184 * perform a "sync" on one "block"
3185 *
3186 * We need to make sure that no normal I/O request - particularly write
3187 * requests - conflict with active sync requests.
3188 *
3189 * This is achieved by tracking pending requests and a 'barrier' concept
3190 * that can be installed to exclude normal IO requests.
3191 *
3192 * Resync and recovery are handled very differently.
3193 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3194 *
3195 * For resync, we iterate over virtual addresses, read all copies,
3196 * and update if there are differences.  If only one copy is live,
3197 * skip it.
3198 * For recovery, we iterate over physical addresses, read a good
3199 * value for each non-in_sync drive, and over-write.
3200 *
3201 * So, for recovery we may have several outstanding complex requests for a
3202 * given address, one for each out-of-sync device.  We model this by allocating
3203 * a number of r10_bio structures, one for each out-of-sync device.
3204 * As we setup these structures, we collect all bio's together into a list
3205 * which we then process collectively to add pages, and then process again
3206 * to pass to submit_bio_noacct.
3207 *
3208 * The r10_bio structures are linked using a borrowed master_bio pointer.
3209 * This link is counted in ->remaining.  When the r10_bio that points to NULL
3210 * has its remaining count decremented to 0, the whole complex operation
3211 * is complete.
3212 *
3213 */
3214
3215static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3216                             int *skipped)
3217{
3218        struct r10conf *conf = mddev->private;
3219        struct r10bio *r10_bio;
3220        struct bio *biolist = NULL, *bio;
3221        sector_t max_sector, nr_sectors;
3222        int i;
3223        int max_sync;
3224        sector_t sync_blocks;
3225        sector_t sectors_skipped = 0;
3226        int chunks_skipped = 0;
3227        sector_t chunk_mask = conf->geo.chunk_mask;
3228        int page_idx = 0;
3229
3230        if (!mempool_initialized(&conf->r10buf_pool))
3231                if (init_resync(conf))
3232                        return 0;
3233
3234        /*
3235         * Allow skipping a full rebuild for incremental assembly
3236         * of a clean array, like RAID1 does.
3237         */
3238        if (mddev->bitmap == NULL &&
3239            mddev->recovery_cp == MaxSector &&
3240            mddev->reshape_position == MaxSector &&
3241            !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3242            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3243            !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3244            conf->fullsync == 0) {
3245                *skipped = 1;
3246                return mddev->dev_sectors - sector_nr;
3247        }
3248
3249 skipped:
3250        max_sector = mddev->dev_sectors;
3251        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3252            test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3253                max_sector = mddev->resync_max_sectors;
3254        if (sector_nr >= max_sector) {
3255                conf->cluster_sync_low = 0;
3256                conf->cluster_sync_high = 0;
3257
3258                /* If we aborted, we need to abort the
3259                 * sync on the 'current' bitmap chucks (there can
3260                 * be several when recovering multiple devices).
3261                 * as we may have started syncing it but not finished.
3262                 * We can find the current address in
3263                 * mddev->curr_resync, but for recovery,
3264                 * we need to convert that to several
3265                 * virtual addresses.
3266                 */
3267                if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3268                        end_reshape(conf);
3269                        close_sync(conf);
3270                        return 0;
3271                }
3272
3273                if (mddev->curr_resync < max_sector) { /* aborted */
3274                        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3275                                md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3276                                                   &sync_blocks, 1);
3277                        else for (i = 0; i < conf->geo.raid_disks; i++) {
3278                                sector_t sect =
3279                                        raid10_find_virt(conf, mddev->curr_resync, i);
3280                                md_bitmap_end_sync(mddev->bitmap, sect,
3281                                                   &sync_blocks, 1);
3282                        }
3283                } else {
3284                        /* completed sync */
3285                        if ((!mddev->bitmap || conf->fullsync)
3286                            && conf->have_replacement
3287                            && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3288                                /* Completed a full sync so the replacements
3289                                 * are now fully recovered.
3290                                 */
3291                                rcu_read_lock();
3292                                for (i = 0; i < conf->geo.raid_disks; i++) {
3293                                        struct md_rdev *rdev =
3294                                                rcu_dereference(conf->mirrors[i].replacement);
3295                                        if (rdev)
3296                                                rdev->recovery_offset = MaxSector;
3297                                }
3298                                rcu_read_unlock();
3299                        }
3300                        conf->fullsync = 0;
3301                }
3302                md_bitmap_close_sync(mddev->bitmap);
3303                close_sync(conf);
3304                *skipped = 1;
3305                return sectors_skipped;
3306        }
3307
3308        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3309                return reshape_request(mddev, sector_nr, skipped);
3310
3311        if (chunks_skipped >= conf->geo.raid_disks) {
3312                /* if there has been nothing to do on any drive,
3313                 * then there is nothing to do at all..
3314                 */
3315                *skipped = 1;
3316                return (max_sector - sector_nr) + sectors_skipped;
3317        }
3318
3319        if (max_sector > mddev->resync_max)
3320                max_sector = mddev->resync_max; /* Don't do IO beyond here */
3321
3322        /* make sure whole request will fit in a chunk - if chunks
3323         * are meaningful
3324         */
3325        if (conf->geo.near_copies < conf->geo.raid_disks &&
3326            max_sector > (sector_nr | chunk_mask))
3327                max_sector = (sector_nr | chunk_mask) + 1;
3328
3329        /*
3330         * If there is non-resync activity waiting for a turn, then let it
3331         * though before starting on this new sync request.
3332         */
3333        if (conf->nr_waiting)
3334                schedule_timeout_uninterruptible(1);
3335
3336        /* Again, very different code for resync and recovery.
3337         * Both must result in an r10bio with a list of bios that
3338         * have bi_end_io, bi_sector, bi_bdev set,
3339         * and bi_private set to the r10bio.
3340         * For recovery, we may actually create several r10bios
3341         * with 2 bios in each, that correspond to the bios in the main one.
3342         * In this case, the subordinate r10bios link back through a
3343         * borrowed master_bio pointer, and the counter in the master
3344         * includes a ref from each subordinate.
3345         */
3346        /* First, we decide what to do and set ->bi_end_io
3347         * To end_sync_read if we want to read, and
3348         * end_sync_write if we will want to write.
3349         */
3350
3351        max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3352        if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3353                /* recovery... the complicated one */
3354                int j;
3355                r10_bio = NULL;
3356
3357                for (i = 0 ; i < conf->geo.raid_disks; i++) {
3358                        int still_degraded;
3359                        struct r10bio *rb2;
3360                        sector_t sect;
3361                        int must_sync;
3362                        int any_working;
3363                        int need_recover = 0;
3364                        int need_replace = 0;
3365                        struct raid10_info *mirror = &conf->mirrors[i];
3366                        struct md_rdev *mrdev, *mreplace;
3367
3368                        rcu_read_lock();
3369                        mrdev = rcu_dereference(mirror->rdev);
3370                        mreplace = rcu_dereference(mirror->replacement);
3371
3372                        if (mrdev != NULL &&
3373                            !test_bit(Faulty, &mrdev->flags) &&
3374                            !test_bit(In_sync, &mrdev->flags))
3375                                need_recover = 1;
3376                        if (mreplace != NULL &&
3377                            !test_bit(Faulty, &mreplace->flags))
3378                                need_replace = 1;
3379
3380                        if (!need_recover && !need_replace) {
3381                                rcu_read_unlock();
3382                                continue;
3383                        }
3384
3385                        still_degraded = 0;
3386                        /* want to reconstruct this device */
3387                        rb2 = r10_bio;
3388                        sect = raid10_find_virt(conf, sector_nr, i);
3389                        if (sect >= mddev->resync_max_sectors) {
3390                                /* last stripe is not complete - don't
3391                                 * try to recover this sector.
3392                                 */
3393                                rcu_read_unlock();
3394                                continue;
3395                        }
3396                        if (mreplace && test_bit(Faulty, &mreplace->flags))
3397                                mreplace = NULL;
3398                        /* Unless we are doing a full sync, or a replacement
3399                         * we only need to recover the block if it is set in
3400                         * the bitmap
3401                         */
3402                        must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3403                                                         &sync_blocks, 1);
3404                        if (sync_blocks < max_sync)
3405                                max_sync = sync_blocks;
3406                        if (!must_sync &&
3407                            mreplace == NULL &&
3408                            !conf->fullsync) {
3409                                /* yep, skip the sync_blocks here, but don't assume
3410                                 * that there will never be anything to do here
3411                                 */
3412                                chunks_skipped = -1;
3413                                rcu_read_unlock();
3414                                continue;
3415                        }
3416                        atomic_inc(&mrdev->nr_pending);
3417                        if (mreplace)
3418                                atomic_inc(&mreplace->nr_pending);
3419                        rcu_read_unlock();
3420
3421                        r10_bio = raid10_alloc_init_r10buf(conf);
3422                        r10_bio->state = 0;
3423                        raise_barrier(conf, rb2 != NULL);
3424                        atomic_set(&r10_bio->remaining, 0);
3425
3426                        r10_bio->master_bio = (struct bio*)rb2;
3427                        if (rb2)
3428                                atomic_inc(&rb2->remaining);
3429                        r10_bio->mddev = mddev;
3430                        set_bit(R10BIO_IsRecover, &r10_bio->state);
3431                        r10_bio->sector = sect;
3432
3433                        raid10_find_phys(conf, r10_bio);
3434
3435                        /* Need to check if the array will still be
3436                         * degraded
3437                         */
3438                        rcu_read_lock();
3439                        for (j = 0; j < conf->geo.raid_disks; j++) {
3440                                struct md_rdev *rdev = rcu_dereference(
3441                                        conf->mirrors[j].rdev);
3442                                if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3443                                        still_degraded = 1;
3444                                        break;
3445                                }
3446                        }
3447
3448                        must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3449                                                         &sync_blocks, still_degraded);
3450
3451                        any_working = 0;
3452                        for (j=0; j<conf->copies;j++) {
3453                                int k;
3454                                int d = r10_bio->devs[j].devnum;
3455                                sector_t from_addr, to_addr;
3456                                struct md_rdev *rdev =
3457                                        rcu_dereference(conf->mirrors[d].rdev);
3458                                sector_t sector, first_bad;
3459                                int bad_sectors;
3460                                if (!rdev ||
3461                                    !test_bit(In_sync, &rdev->flags))
3462                                        continue;
3463                                /* This is where we read from */
3464                                any_working = 1;
3465                                sector = r10_bio->devs[j].addr;
3466
3467                                if (is_badblock(rdev, sector, max_sync,
3468                                                &first_bad, &bad_sectors)) {
3469                                        if (first_bad > sector)
3470                                                max_sync = first_bad - sector;
3471                                        else {
3472                                                bad_sectors -= (sector
3473                                                                - first_bad);
3474                                                if (max_sync > bad_sectors)
3475                                                        max_sync = bad_sectors;
3476                                                continue;
3477                                        }
3478                                }
3479                                bio = r10_bio->devs[0].bio;
3480                                bio->bi_next = biolist;
3481                                biolist = bio;
3482                                bio->bi_end_io = end_sync_read;
3483                                bio_set_op_attrs(bio, REQ_OP_READ, 0);
3484                                if (test_bit(FailFast, &rdev->flags))
3485                                        bio->bi_opf |= MD_FAILFAST;
3486                                from_addr = r10_bio->devs[j].addr;
3487                                bio->bi_iter.bi_sector = from_addr +
3488                                        rdev->data_offset;
3489                                bio_set_dev(bio, rdev->bdev);
3490                                atomic_inc(&rdev->nr_pending);
3491                                /* and we write to 'i' (if not in_sync) */
3492
3493                                for (k=0; k<conf->copies; k++)
3494                                        if (r10_bio->devs[k].devnum == i)
3495                                                break;
3496                                BUG_ON(k == conf->copies);
3497                                to_addr = r10_bio->devs[k].addr;
3498                                r10_bio->devs[0].devnum = d;
3499                                r10_bio->devs[0].addr = from_addr;
3500                                r10_bio->devs[1].devnum = i;
3501                                r10_bio->devs[1].addr = to_addr;
3502
3503                                if (need_recover) {
3504                                        bio = r10_bio->devs[1].bio;
3505                                        bio->bi_next = biolist;
3506                                        biolist = bio;
3507                                        bio->bi_end_io = end_sync_write;
3508                                        bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3509                                        bio->bi_iter.bi_sector = to_addr
3510                                                + mrdev->data_offset;
3511                                        bio_set_dev(bio, mrdev->bdev);
3512                                        atomic_inc(&r10_bio->remaining);
3513                                } else
3514                                        r10_bio->devs[1].bio->bi_end_io = NULL;
3515
3516                                /* and maybe write to replacement */
3517                                bio = r10_bio->devs[1].repl_bio;
3518                                if (bio)
3519                                        bio->bi_end_io = NULL;
3520                                /* Note: if need_replace, then bio
3521                                 * cannot be NULL as r10buf_pool_alloc will
3522                                 * have allocated it.
3523                                 */
3524                                if (!need_replace)
3525                                        break;
3526                                bio->bi_next = biolist;
3527                                biolist = bio;
3528                                bio->bi_end_io = end_sync_write;
3529                                bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3530                                bio->bi_iter.bi_sector = to_addr +
3531                                        mreplace->data_offset;
3532                                bio_set_dev(bio, mreplace->bdev);
3533                                atomic_inc(&r10_bio->remaining);
3534                                break;
3535                        }
3536                        rcu_read_unlock();
3537                        if (j == conf->copies) {
3538                                /* Cannot recover, so abort the recovery or
3539                                 * record a bad block */
3540                                if (any_working) {
3541                                        /* problem is that there are bad blocks
3542                                         * on other device(s)
3543                                         */
3544                                        int k;
3545                                        for (k = 0; k < conf->copies; k++)
3546                                                if (r10_bio->devs[k].devnum == i)
3547                                                        break;
3548                                        if (!test_bit(In_sync,
3549                                                      &mrdev->flags)
3550                                            && !rdev_set_badblocks(
3551                                                    mrdev,
3552                                                    r10_bio->devs[k].addr,
3553                                                    max_sync, 0))
3554                                                any_working = 0;
3555                                        if (mreplace &&
3556                                            !rdev_set_badblocks(
3557                                                    mreplace,
3558                                                    r10_bio->devs[k].addr,
3559                                                    max_sync, 0))
3560                                                any_working = 0;
3561                                }
3562                                if (!any_working)  {
3563                                        if (!test_and_set_bit(MD_RECOVERY_INTR,
3564                                                              &mddev->recovery))
3565                                                pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3566                                                       mdname(mddev));
3567                                        mirror->recovery_disabled
3568                                                = mddev->recovery_disabled;
3569                                }
3570                                put_buf(r10_bio);
3571                                if (rb2)
3572                                        atomic_dec(&rb2->remaining);
3573                                r10_bio = rb2;
3574                                rdev_dec_pending(mrdev, mddev);
3575                                if (mreplace)
3576                                        rdev_dec_pending(mreplace, mddev);
3577                                break;
3578                        }
3579                        rdev_dec_pending(mrdev, mddev);
3580                        if (mreplace)
3581                                rdev_dec_pending(mreplace, mddev);
3582                        if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3583                                /* Only want this if there is elsewhere to
3584                                 * read from. 'j' is currently the first
3585                                 * readable copy.
3586                                 */
3587                                int targets = 1;
3588                                for (; j < conf->copies; j++) {
3589                                        int d = r10_bio->devs[j].devnum;
3590                                        if (conf->mirrors[d].rdev &&
3591                                            test_bit(In_sync,
3592                                                      &conf->mirrors[d].rdev->flags))
3593                                                targets++;
3594                                }
3595                                if (targets == 1)
3596                                        r10_bio->devs[0].bio->bi_opf
3597                                                &= ~MD_FAILFAST;
3598                        }
3599                }
3600                if (biolist == NULL) {
3601                        while (r10_bio) {
3602                                struct r10bio *rb2 = r10_bio;
3603                                r10_bio = (struct r10bio*) rb2->master_bio;
3604                                rb2->master_bio = NULL;
3605                                put_buf(rb2);
3606                        }
3607                        goto giveup;
3608                }
3609        } else {
3610                /* resync. Schedule a read for every block at this virt offset */
3611                int count = 0;
3612
3613                /*
3614                 * Since curr_resync_completed could probably not update in
3615                 * time, and we will set cluster_sync_low based on it.
3616                 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3617                 * safety reason, which ensures curr_resync_completed is
3618                 * updated in bitmap_cond_end_sync.
3619                 */
3620                md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3621                                        mddev_is_clustered(mddev) &&
3622                                        (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3623
3624                if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3625                                          &sync_blocks, mddev->degraded) &&
3626                    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3627                                                 &mddev->recovery)) {
3628                        /* We can skip this block */
3629                        *skipped = 1;
3630                        return sync_blocks + sectors_skipped;
3631                }
3632                if (sync_blocks < max_sync)
3633                        max_sync = sync_blocks;
3634                r10_bio = raid10_alloc_init_r10buf(conf);
3635                r10_bio->state = 0;
3636
3637                r10_bio->mddev = mddev;
3638                atomic_set(&r10_bio->remaining, 0);
3639                raise_barrier(conf, 0);
3640                conf->next_resync = sector_nr;
3641
3642                r10_bio->master_bio = NULL;
3643                r10_bio->sector = sector_nr;
3644                set_bit(R10BIO_IsSync, &r10_bio->state);
3645                raid10_find_phys(conf, r10_bio);
3646                r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3647
3648                for (i = 0; i < conf->copies; i++) {
3649                        int d = r10_bio->devs[i].devnum;
3650                        sector_t first_bad, sector;
3651                        int bad_sectors;
3652                        struct md_rdev *rdev;
3653
3654                        if (r10_bio->devs[i].repl_bio)
3655                                r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3656
3657                        bio = r10_bio->devs[i].bio;
3658                        bio->bi_status = BLK_STS_IOERR;
3659                        rcu_read_lock();
3660                        rdev = rcu_dereference(conf->mirrors[d].rdev);
3661                        if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3662                                rcu_read_unlock();
3663                                continue;
3664                        }
3665                        sector = r10_bio->devs[i].addr;
3666                        if (is_badblock(rdev, sector, max_sync,
3667                                        &first_bad, &bad_sectors)) {
3668                                if (first_bad > sector)
3669                                        max_sync = first_bad - sector;
3670                                else {
3671                                        bad_sectors -= (sector - first_bad);
3672                                        if (max_sync > bad_sectors)
3673                                                max_sync = bad_sectors;
3674                                        rcu_read_unlock();
3675                                        continue;
3676                                }
3677                        }
3678                        atomic_inc(&rdev->nr_pending);
3679                        atomic_inc(&r10_bio->remaining);
3680                        bio->bi_next = biolist;
3681                        biolist = bio;
3682                        bio->bi_end_io = end_sync_read;
3683                        bio_set_op_attrs(bio, REQ_OP_READ, 0);
3684                        if (test_bit(FailFast, &rdev->flags))
3685                                bio->bi_opf |= MD_FAILFAST;
3686                        bio->bi_iter.bi_sector = sector + rdev->data_offset;
3687                        bio_set_dev(bio, rdev->bdev);
3688                        count++;
3689
3690                        rdev = rcu_dereference(conf->mirrors[d].replacement);
3691                        if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3692                                rcu_read_unlock();
3693                                continue;
3694                        }
3695                        atomic_inc(&rdev->nr_pending);
3696
3697                        /* Need to set up for writing to the replacement */
3698                        bio = r10_bio->devs[i].repl_bio;
3699                        bio->bi_status = BLK_STS_IOERR;
3700
3701                        sector = r10_bio->devs[i].addr;
3702                        bio->bi_next = biolist;
3703                        biolist = bio;
3704                        bio->bi_end_io = end_sync_write;
3705                        bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3706                        if (test_bit(FailFast, &rdev->flags))
3707                                bio->bi_opf |= MD_FAILFAST;
3708                        bio->bi_iter.bi_sector = sector + rdev->data_offset;
3709                        bio_set_dev(bio, rdev->bdev);
3710                        count++;
3711                        rcu_read_unlock();
3712                }
3713
3714                if (count < 2) {
3715                        for (i=0; i<conf->copies; i++) {
3716                                int d = r10_bio->devs[i].devnum;
3717                                if (r10_bio->devs[i].bio->bi_end_io)
3718                                        rdev_dec_pending(conf->mirrors[d].rdev,
3719                                                         mddev);
3720                                if (r10_bio->devs[i].repl_bio &&
3721                                    r10_bio->devs[i].repl_bio->bi_end_io)
3722                                        rdev_dec_pending(
3723                                                conf->mirrors[d].replacement,
3724                                                mddev);
3725                        }
3726                        put_buf(r10_bio);
3727                        biolist = NULL;
3728                        goto giveup;
3729                }
3730        }
3731
3732        nr_sectors = 0;
3733        if (sector_nr + max_sync < max_sector)
3734                max_sector = sector_nr + max_sync;
3735        do {
3736                struct page *page;
3737                int len = PAGE_SIZE;
3738                if (sector_nr + (len>>9) > max_sector)
3739                        len = (max_sector - sector_nr) << 9;
3740                if (len == 0)
3741                        break;
3742                for (bio= biolist ; bio ; bio=bio->bi_next) {
3743                        struct resync_pages *rp = get_resync_pages(bio);
3744                        page = resync_fetch_page(rp, page_idx);
3745                        /*
3746                         * won't fail because the vec table is big enough
3747                         * to hold all these pages
3748                         */
3749                        bio_add_page(bio, page, len, 0);
3750                }
3751                nr_sectors += len>>9;
3752                sector_nr += len>>9;
3753        } while (++page_idx < RESYNC_PAGES);
3754        r10_bio->sectors = nr_sectors;
3755
3756        if (mddev_is_clustered(mddev) &&
3757            test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3758                /* It is resync not recovery */
3759                if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3760                        conf->cluster_sync_low = mddev->curr_resync_completed;
3761                        raid10_set_cluster_sync_high(conf);
3762                        /* Send resync message */
3763                        md_cluster_ops->resync_info_update(mddev,
3764                                                conf->cluster_sync_low,
3765                                                conf->cluster_sync_high);
3766                }
3767        } else if (mddev_is_clustered(mddev)) {
3768                /* This is recovery not resync */
3769                sector_t sect_va1, sect_va2;
3770                bool broadcast_msg = false;
3771
3772                for (i = 0; i < conf->geo.raid_disks; i++) {
3773                        /*
3774                         * sector_nr is a device address for recovery, so we
3775                         * need translate it to array address before compare
3776                         * with cluster_sync_high.
3777                         */
3778                        sect_va1 = raid10_find_virt(conf, sector_nr, i);
3779
3780                        if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3781                                broadcast_msg = true;
3782                                /*
3783                                 * curr_resync_completed is similar as
3784                                 * sector_nr, so make the translation too.
3785                                 */
3786                                sect_va2 = raid10_find_virt(conf,
3787                                        mddev->curr_resync_completed, i);
3788
3789                                if (conf->cluster_sync_low == 0 ||
3790                                    conf->cluster_sync_low > sect_va2)
3791                                        conf->cluster_sync_low = sect_va2;
3792                        }
3793                }
3794                if (broadcast_msg) {
3795                        raid10_set_cluster_sync_high(conf);
3796                        md_cluster_ops->resync_info_update(mddev,
3797                                                conf->cluster_sync_low,
3798                                                conf->cluster_sync_high);
3799                }
3800        }
3801
3802        while (biolist) {
3803                bio = biolist;
3804                biolist = biolist->bi_next;
3805
3806                bio->bi_next = NULL;
3807                r10_bio = get_resync_r10bio(bio);
3808                r10_bio->sectors = nr_sectors;
3809
3810                if (bio->bi_end_io == end_sync_read) {
3811                        md_sync_acct_bio(bio, nr_sectors);
3812                        bio->bi_status = 0;
3813                        submit_bio_noacct(bio);
3814                }
3815        }
3816
3817        if (sectors_skipped)
3818                /* pretend they weren't skipped, it makes
3819                 * no important difference in this case
3820                 */
3821                md_done_sync(mddev, sectors_skipped, 1);
3822
3823        return sectors_skipped + nr_sectors;
3824 giveup:
3825        /* There is nowhere to write, so all non-sync
3826         * drives must be failed or in resync, all drives
3827         * have a bad block, so try the next chunk...
3828         */
3829        if (sector_nr + max_sync < max_sector)
3830                max_sector = sector_nr + max_sync;
3831
3832        sectors_skipped += (max_sector - sector_nr);
3833        chunks_skipped ++;
3834        sector_nr = max_sector;
3835        goto skipped;
3836}
3837
3838static sector_t
3839raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3840{
3841        sector_t size;
3842        struct r10conf *conf = mddev->private;
3843
3844        if (!raid_disks)
3845                raid_disks = min(conf->geo.raid_disks,
3846                                 conf->prev.raid_disks);
3847        if (!sectors)
3848                sectors = conf->dev_sectors;
3849
3850        size = sectors >> conf->geo.chunk_shift;
3851        sector_div(size, conf->geo.far_copies);
3852        size = size * raid_disks;
3853        sector_div(size, conf->geo.near_copies);
3854
3855        return size << conf->geo.chunk_shift;
3856}
3857
3858static void calc_sectors(struct r10conf *conf, sector_t size)
3859{
3860        /* Calculate the number of sectors-per-device that will
3861         * actually be used, and set conf->dev_sectors and
3862         * conf->stride
3863         */
3864
3865        size = size >> conf->geo.chunk_shift;
3866        sector_div(size, conf->geo.far_copies);
3867        size = size * conf->geo.raid_disks;
3868        sector_div(size, conf->geo.near_copies);
3869        /* 'size' is now the number of chunks in the array */
3870        /* calculate "used chunks per device" */
3871        size = size * conf->copies;
3872
3873        /* We need to round up when dividing by raid_disks to
3874         * get the stride size.
3875         */
3876        size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3877
3878        conf->dev_sectors = size << conf->geo.chunk_shift;
3879
3880        if (conf->geo.far_offset)
3881                conf->geo.stride = 1 << conf->geo.chunk_shift;
3882        else {
3883                sector_div(size, conf->geo.far_copies);
3884                conf->geo.stride = size << conf->geo.chunk_shift;
3885        }
3886}
3887
3888enum geo_type {geo_new, geo_old, geo_start};
3889static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3890{
3891        int nc, fc, fo;
3892        int layout, chunk, disks;
3893        switch (new) {
3894        case geo_old:
3895                layout = mddev->layout;
3896                chunk = mddev->chunk_sectors;
3897                disks = mddev->raid_disks - mddev->delta_disks;
3898                break;
3899        case geo_new:
3900                layout = mddev->new_layout;
3901                chunk = mddev->new_chunk_sectors;
3902                disks = mddev->raid_disks;
3903                break;
3904        default: /* avoid 'may be unused' warnings */
3905        case geo_start: /* new when starting reshape - raid_disks not
3906                         * updated yet. */
3907                layout = mddev->new_layout;
3908                chunk = mddev->new_chunk_sectors;
3909                disks = mddev->raid_disks + mddev->delta_disks;
3910                break;
3911        }
3912        if (layout >> 19)
3913                return -1;
3914        if (chunk < (PAGE_SIZE >> 9) ||
3915            !is_power_of_2(chunk))
3916                return -2;
3917        nc = layout & 255;
3918        fc = (layout >> 8) & 255;
3919        fo = layout & (1<<16);
3920        geo->raid_disks = disks;
3921        geo->near_copies = nc;
3922        geo->far_copies = fc;
3923        geo->far_offset = fo;
3924        switch (layout >> 17) {
3925        case 0: /* original layout.  simple but not always optimal */
3926                geo->far_set_size = disks;
3927                break;
3928        case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3929                 * actually using this, but leave code here just in case.*/
3930                geo->far_set_size = disks/fc;
3931                WARN(geo->far_set_size < fc,
3932                     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3933                break;
3934        case 2: /* "improved" layout fixed to match documentation */
3935                geo->far_set_size = fc * nc;
3936                break;
3937        default: /* Not a valid layout */
3938                return -1;
3939        }
3940        geo->chunk_mask = chunk - 1;
3941        geo->chunk_shift = ffz(~chunk);
3942        return nc*fc;
3943}
3944
3945static struct r10conf *setup_conf(struct mddev *mddev)
3946{
3947        struct r10conf *conf = NULL;
3948        int err = -EINVAL;
3949        struct geom geo;
3950        int copies;
3951
3952        copies = setup_geo(&geo, mddev, geo_new);
3953
3954        if (copies == -2) {
3955                pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3956                        mdname(mddev), PAGE_SIZE);
3957                goto out;
3958        }
3959
3960        if (copies < 2 || copies > mddev->raid_disks) {
3961                pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3962                        mdname(mddev), mddev->new_layout);
3963                goto out;
3964        }
3965
3966        err = -ENOMEM;
3967        conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3968        if (!conf)
3969                goto out;
3970
3971        /* FIXME calc properly */
3972        conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3973                                sizeof(struct raid10_info),
3974                                GFP_KERNEL);
3975        if (!conf->mirrors)
3976                goto out;
3977
3978        conf->tmppage = alloc_page(GFP_KERNEL);
3979        if (!conf->tmppage)
3980                goto out;
3981
3982        conf->geo = geo;
3983        conf->copies = copies;
3984        err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3985                           rbio_pool_free, conf);
3986        if (err)
3987                goto out;
3988
3989        err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3990        if (err)
3991                goto out;
3992
3993        calc_sectors(conf, mddev->dev_sectors);
3994        if (mddev->reshape_position == MaxSector) {
3995                conf->prev = conf->geo;
3996                conf->reshape_progress = MaxSector;
3997        } else {
3998                if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3999                        err = -EINVAL;
4000                        goto out;
4001                }
4002                conf->reshape_progress = mddev->reshape_position;
4003                if (conf->prev.far_offset)
4004                        conf->prev.stride = 1 << conf->prev.chunk_shift;
4005                else
4006                        /* far_copies must be 1 */
4007                        conf->prev.stride = conf->dev_sectors;
4008        }
4009        conf->reshape_safe = conf->reshape_progress;
4010        spin_lock_init(&conf->device_lock);
4011        INIT_LIST_HEAD(&conf->retry_list);
4012        INIT_LIST_HEAD(&conf->bio_end_io_list);
4013
4014        spin_lock_init(&conf->resync_lock);
4015        init_waitqueue_head(&conf->wait_barrier);
4016        atomic_set(&conf->nr_pending, 0);
4017
4018        err = -ENOMEM;
4019        conf->thread = md_register_thread(raid10d, mddev, "raid10");
4020        if (!conf->thread)
4021                goto out;
4022
4023        conf->mddev = mddev;
4024        return conf;
4025
4026 out:
4027        if (conf) {
4028                mempool_exit(&conf->r10bio_pool);
4029                kfree(conf->mirrors);
4030                safe_put_page(conf->tmppage);
4031                bioset_exit(&conf->bio_split);
4032                kfree(conf);
4033        }
4034        return ERR_PTR(err);
4035}
4036
4037static void raid10_set_io_opt(struct r10conf *conf)
4038{
4039        int raid_disks = conf->geo.raid_disks;
4040
4041        if (!(conf->geo.raid_disks % conf->geo.near_copies))
4042                raid_disks /= conf->geo.near_copies;
4043        blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4044                         raid_disks);
4045}
4046
4047static int raid10_run(struct mddev *mddev)
4048{
4049        struct r10conf *conf;
4050        int i, disk_idx;
4051        struct raid10_info *disk;
4052        struct md_rdev *rdev;
4053        sector_t size;
4054        sector_t min_offset_diff = 0;
4055        int first = 1;
4056        bool discard_supported = false;
4057
4058        if (mddev_init_writes_pending(mddev) < 0)
4059                return -ENOMEM;
4060
4061        if (mddev->private == NULL) {
4062                conf = setup_conf(mddev);
4063                if (IS_ERR(conf))
4064                        return PTR_ERR(conf);
4065                mddev->private = conf;
4066        }
4067        conf = mddev->private;
4068        if (!conf)
4069                goto out;
4070
4071        if (mddev_is_clustered(conf->mddev)) {
4072                int fc, fo;
4073
4074                fc = (mddev->layout >> 8) & 255;
4075                fo = mddev->layout & (1<<16);
4076                if (fc > 1 || fo > 0) {
4077                        pr_err("only near layout is supported by clustered"
4078                                " raid10\n");
4079                        goto out_free_conf;
4080                }
4081        }
4082
4083        mddev->thread = conf->thread;
4084        conf->thread = NULL;
4085
4086        if (mddev->queue) {
4087                blk_queue_max_discard_sectors(mddev->queue,
4088                                              UINT_MAX);
4089                blk_queue_max_write_same_sectors(mddev->queue, 0);
4090                blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
4091                blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4092                raid10_set_io_opt(conf);
4093        }
4094
4095        rdev_for_each(rdev, mddev) {
4096                long long diff;
4097
4098                disk_idx = rdev->raid_disk;
4099                if (disk_idx < 0)
4100                        continue;
4101                if (disk_idx >= conf->geo.raid_disks &&
4102                    disk_idx >= conf->prev.raid_disks)
4103                        continue;
4104                disk = conf->mirrors + disk_idx;
4105
4106                if (test_bit(Replacement, &rdev->flags)) {
4107                        if (disk->replacement)
4108                                goto out_free_conf;
4109                        disk->replacement = rdev;
4110                } else {
4111                        if (disk->rdev)
4112                                goto out_free_conf;
4113                        disk->rdev = rdev;
4114                }
4115                diff = (rdev->new_data_offset - rdev->data_offset);
4116                if (!mddev->reshape_backwards)
4117                        diff = -diff;
4118                if (diff < 0)
4119                        diff = 0;
4120                if (first || diff < min_offset_diff)
4121                        min_offset_diff = diff;
4122
4123                if (mddev->gendisk)
4124                        disk_stack_limits(mddev->gendisk, rdev->bdev,
4125                                          rdev->data_offset << 9);
4126
4127                disk->head_position = 0;
4128
4129                if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
4130                        discard_supported = true;
4131                first = 0;
4132        }
4133
4134        if (mddev->queue) {
4135                if (discard_supported)
4136                        blk_queue_flag_set(QUEUE_FLAG_DISCARD,
4137                                                mddev->queue);
4138                else
4139                        blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
4140                                                  mddev->queue);
4141        }
4142        /* need to check that every block has at least one working mirror */
4143        if (!enough(conf, -1)) {
4144                pr_err("md/raid10:%s: not enough operational mirrors.\n",
4145                       mdname(mddev));
4146                goto out_free_conf;
4147        }
4148
4149        if (conf->reshape_progress != MaxSector) {
4150                /* must ensure that shape change is supported */
4151                if (conf->geo.far_copies != 1 &&
4152                    conf->geo.far_offset == 0)
4153                        goto out_free_conf;
4154                if (conf->prev.far_copies != 1 &&
4155                    conf->prev.far_offset == 0)
4156                        goto out_free_conf;
4157        }
4158
4159        mddev->degraded = 0;
4160        for (i = 0;
4161             i < conf->geo.raid_disks
4162                     || i < conf->prev.raid_disks;
4163             i++) {
4164
4165                disk = conf->mirrors + i;
4166
4167                if (!disk->rdev && disk->replacement) {
4168                        /* The replacement is all we have - use it */
4169                        disk->rdev = disk->replacement;
4170                        disk->replacement = NULL;
4171                        clear_bit(Replacement, &disk->rdev->flags);
4172                }
4173
4174                if (!disk->rdev ||
4175                    !test_bit(In_sync, &disk->rdev->flags)) {
4176                        disk->head_position = 0;
4177                        mddev->degraded++;
4178                        if (disk->rdev &&
4179                            disk->rdev->saved_raid_disk < 0)
4180                                conf->fullsync = 1;
4181                }
4182
4183                if (disk->replacement &&
4184                    !test_bit(In_sync, &disk->replacement->flags) &&
4185                    disk->replacement->saved_raid_disk < 0) {
4186                        conf->fullsync = 1;
4187                }
4188
4189                disk->recovery_disabled = mddev->recovery_disabled - 1;
4190        }
4191
4192        if (mddev->recovery_cp != MaxSector)
4193                pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4194                          mdname(mddev));
4195        pr_info("md/raid10:%s: active with %d out of %d devices\n",
4196                mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4197                conf->geo.raid_disks);
4198        /*
4199         * Ok, everything is just fine now
4200         */
4201        mddev->dev_sectors = conf->dev_sectors;
4202        size = raid10_size(mddev, 0, 0);
4203        md_set_array_sectors(mddev, size);
4204        mddev->resync_max_sectors = size;
4205        set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4206
4207        if (md_integrity_register(mddev))
4208                goto out_free_conf;
4209
4210        if (conf->reshape_progress != MaxSector) {
4211                unsigned long before_length, after_length;
4212
4213                before_length = ((1 << conf->prev.chunk_shift) *
4214                                 conf->prev.far_copies);
4215                after_length = ((1 << conf->geo.chunk_shift) *
4216                                conf->geo.far_copies);
4217
4218                if (max(before_length, after_length) > min_offset_diff) {
4219                        /* This cannot work */
4220                        pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4221                        goto out_free_conf;
4222                }
4223                conf->offset_diff = min_offset_diff;
4224
4225                clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4226                clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4227                set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4228                set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4229                mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4230                                                        "reshape");
4231                if (!mddev->sync_thread)
4232                        goto out_free_conf;
4233        }
4234
4235        return 0;
4236
4237out_free_conf:
4238        md_unregister_thread(&mddev->thread);
4239        mempool_exit(&conf->r10bio_pool);
4240        safe_put_page(conf->tmppage);
4241        kfree(conf->mirrors);
4242        kfree(conf);
4243        mddev->private = NULL;
4244out:
4245        return -EIO;
4246}
4247
4248static void raid10_free(struct mddev *mddev, void *priv)
4249{
4250        struct r10conf *conf = priv;
4251
4252        mempool_exit(&conf->r10bio_pool);
4253        safe_put_page(conf->tmppage);
4254        kfree(conf->mirrors);
4255        kfree(conf->mirrors_old);
4256        kfree(conf->mirrors_new);
4257        bioset_exit(&conf->bio_split);
4258        kfree(conf);
4259}
4260
4261static void raid10_quiesce(struct mddev *mddev, int quiesce)
4262{
4263        struct r10conf *conf = mddev->private;
4264
4265        if (quiesce)
4266                raise_barrier(conf, 0);
4267        else
4268                lower_barrier(conf);
4269}
4270
4271static int raid10_resize(struct mddev *mddev, sector_t sectors)
4272{
4273        /* Resize of 'far' arrays is not supported.
4274         * For 'near' and 'offset' arrays we can set the
4275         * number of sectors used to be an appropriate multiple
4276         * of the chunk size.
4277         * For 'offset', this is far_copies*chunksize.
4278         * For 'near' the multiplier is the LCM of
4279         * near_copies and raid_disks.
4280         * So if far_copies > 1 && !far_offset, fail.
4281         * Else find LCM(raid_disks, near_copy)*far_copies and
4282         * multiply by chunk_size.  Then round to this number.
4283         * This is mostly done by raid10_size()
4284         */
4285        struct r10conf *conf = mddev->private;
4286        sector_t oldsize, size;
4287
4288        if (mddev->reshape_position != MaxSector)
4289                return -EBUSY;
4290
4291        if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4292                return -EINVAL;
4293
4294        oldsize = raid10_size(mddev, 0, 0);
4295        size = raid10_size(mddev, sectors, 0);
4296        if (mddev->external_size &&
4297            mddev->array_sectors > size)
4298                return -EINVAL;
4299        if (mddev->bitmap) {
4300                int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4301                if (ret)
4302                        return ret;
4303        }
4304        md_set_array_sectors(mddev, size);
4305        if (sectors > mddev->dev_sectors &&
4306            mddev->recovery_cp > oldsize) {
4307                mddev->recovery_cp = oldsize;
4308                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4309        }
4310        calc_sectors(conf, sectors);
4311        mddev->dev_sectors = conf->dev_sectors;
4312        mddev->resync_max_sectors = size;
4313        return 0;
4314}
4315
4316static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4317{
4318        struct md_rdev *rdev;
4319        struct r10conf *conf;
4320
4321        if (mddev->degraded > 0) {
4322                pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4323                        mdname(mddev));
4324                return ERR_PTR(-EINVAL);
4325        }
4326        sector_div(size, devs);
4327
4328        /* Set new parameters */
4329        mddev->new_level = 10;
4330        /* new layout: far_copies = 1, near_copies = 2 */
4331        mddev->new_layout = (1<<8) + 2;
4332        mddev->new_chunk_sectors = mddev->chunk_sectors;
4333        mddev->delta_disks = mddev->raid_disks;
4334        mddev->raid_disks *= 2;
4335        /* make sure it will be not marked as dirty */
4336        mddev->recovery_cp = MaxSector;
4337        mddev->dev_sectors = size;
4338
4339        conf = setup_conf(mddev);
4340        if (!IS_ERR(conf)) {
4341                rdev_for_each(rdev, mddev)
4342                        if (rdev->raid_disk >= 0) {
4343                                rdev->new_raid_disk = rdev->raid_disk * 2;
4344                                rdev->sectors = size;
4345                        }
4346                conf->barrier = 1;
4347        }
4348
4349        return conf;
4350}
4351
4352static void *raid10_takeover(struct mddev *mddev)
4353{
4354        struct r0conf *raid0_conf;
4355
4356        /* raid10 can take over:
4357         *  raid0 - providing it has only two drives
4358         */
4359        if (mddev->level == 0) {
4360                /* for raid0 takeover only one zone is supported */
4361                raid0_conf = mddev->private;
4362                if (raid0_conf->nr_strip_zones > 1) {
4363                        pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4364                                mdname(mddev));
4365                        return ERR_PTR(-EINVAL);
4366                }
4367                return raid10_takeover_raid0(mddev,
4368                        raid0_conf->strip_zone->zone_end,
4369                        raid0_conf->strip_zone->nb_dev);
4370        }
4371        return ERR_PTR(-EINVAL);
4372}
4373
4374static int raid10_check_reshape(struct mddev *mddev)
4375{
4376        /* Called when there is a request to change
4377         * - layout (to ->new_layout)
4378         * - chunk size (to ->new_chunk_sectors)
4379         * - raid_disks (by delta_disks)
4380         * or when trying to restart a reshape that was ongoing.
4381         *
4382         * We need to validate the request and possibly allocate
4383         * space if that might be an issue later.
4384         *
4385         * Currently we reject any reshape of a 'far' mode array,
4386         * allow chunk size to change if new is generally acceptable,
4387         * allow raid_disks to increase, and allow
4388         * a switch between 'near' mode and 'offset' mode.
4389         */
4390        struct r10conf *conf = mddev->private;
4391        struct geom geo;
4392
4393        if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4394                return -EINVAL;
4395
4396        if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4397                /* mustn't change number of copies */
4398                return -EINVAL;
4399        if (geo.far_copies > 1 && !geo.far_offset)
4400                /* Cannot switch to 'far' mode */
4401                return -EINVAL;
4402
4403        if (mddev->array_sectors & geo.chunk_mask)
4404                        /* not factor of array size */
4405                        return -EINVAL;
4406
4407        if (!enough(conf, -1))
4408                return -EINVAL;
4409
4410        kfree(conf->mirrors_new);
4411        conf->mirrors_new = NULL;
4412        if (mddev->delta_disks > 0) {
4413                /* allocate new 'mirrors' list */
4414                conf->mirrors_new =
4415                        kcalloc(mddev->raid_disks + mddev->delta_disks,
4416                                sizeof(struct raid10_info),
4417                                GFP_KERNEL);
4418                if (!conf->mirrors_new)
4419                        return -ENOMEM;
4420        }
4421        return 0;
4422}
4423
4424/*
4425 * Need to check if array has failed when deciding whether to:
4426 *  - start an array
4427 *  - remove non-faulty devices
4428 *  - add a spare
4429 *  - allow a reshape
4430 * This determination is simple when no reshape is happening.
4431 * However if there is a reshape, we need to carefully check
4432 * both the before and after sections.
4433 * This is because some failed devices may only affect one
4434 * of the two sections, and some non-in_sync devices may
4435 * be insync in the section most affected by failed devices.
4436 */
4437static int calc_degraded(struct r10conf *conf)
4438{
4439        int degraded, degraded2;
4440        int i;
4441
4442        rcu_read_lock();
4443        degraded = 0;
4444        /* 'prev' section first */
4445        for (i = 0; i < conf->prev.raid_disks; i++) {
4446                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4447                if (!rdev || test_bit(Faulty, &rdev->flags))
4448                        degraded++;
4449                else if (!test_bit(In_sync, &rdev->flags))
4450                        /* When we can reduce the number of devices in
4451                         * an array, this might not contribute to
4452                         * 'degraded'.  It does now.
4453                         */
4454                        degraded++;
4455        }
4456        rcu_read_unlock();
4457        if (conf->geo.raid_disks == conf->prev.raid_disks)
4458                return degraded;
4459        rcu_read_lock();
4460        degraded2 = 0;
4461        for (i = 0; i < conf->geo.raid_disks; i++) {
4462                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4463                if (!rdev || test_bit(Faulty, &rdev->flags))
4464                        degraded2++;
4465                else if (!test_bit(In_sync, &rdev->flags)) {
4466                        /* If reshape is increasing the number of devices,
4467                         * this section has already been recovered, so
4468                         * it doesn't contribute to degraded.
4469                         * else it does.
4470                         */
4471                        if (conf->geo.raid_disks <= conf->prev.raid_disks)
4472                                degraded2++;
4473                }
4474        }
4475        rcu_read_unlock();
4476        if (degraded2 > degraded)
4477                return degraded2;
4478        return degraded;
4479}
4480
4481static int raid10_start_reshape(struct mddev *mddev)
4482{
4483        /* A 'reshape' has been requested. This commits
4484         * the various 'new' fields and sets MD_RECOVER_RESHAPE
4485         * This also checks if there are enough spares and adds them
4486         * to the array.
4487         * We currently require enough spares to make the final
4488         * array non-degraded.  We also require that the difference
4489         * between old and new data_offset - on each device - is
4490         * enough that we never risk over-writing.
4491         */
4492
4493        unsigned long before_length, after_length;
4494        sector_t min_offset_diff = 0;
4495        int first = 1;
4496        struct geom new;
4497        struct r10conf *conf = mddev->private;
4498        struct md_rdev *rdev;
4499        int spares = 0;
4500        int ret;
4501
4502        if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4503                return -EBUSY;
4504
4505        if (setup_geo(&new, mddev, geo_start) != conf->copies)
4506                return -EINVAL;
4507
4508        before_length = ((1 << conf->prev.chunk_shift) *
4509                         conf->prev.far_copies);
4510        after_length = ((1 << conf->geo.chunk_shift) *
4511                        conf->geo.far_copies);
4512
4513        rdev_for_each(rdev, mddev) {
4514                if (!test_bit(In_sync, &rdev->flags)
4515                    && !test_bit(Faulty, &rdev->flags))
4516                        spares++;
4517                if (rdev->raid_disk >= 0) {
4518                        long long diff = (rdev->new_data_offset
4519                                          - rdev->data_offset);
4520                        if (!mddev->reshape_backwards)
4521                                diff = -diff;
4522                        if (diff < 0)
4523                                diff = 0;
4524                        if (first || diff < min_offset_diff)
4525                                min_offset_diff = diff;
4526                        first = 0;
4527                }
4528        }
4529
4530        if (max(before_length, after_length) > min_offset_diff)
4531                return -EINVAL;
4532
4533        if (spares < mddev->delta_disks)
4534                return -EINVAL;
4535
4536        conf->offset_diff = min_offset_diff;
4537        spin_lock_irq(&conf->device_lock);
4538        if (conf->mirrors_new) {
4539                memcpy(conf->mirrors_new, conf->mirrors,
4540                       sizeof(struct raid10_info)*conf->prev.raid_disks);
4541                smp_mb();
4542                kfree(conf->mirrors_old);
4543                conf->mirrors_old = conf->mirrors;
4544                conf->mirrors = conf->mirrors_new;
4545                conf->mirrors_new = NULL;
4546        }
4547        setup_geo(&conf->geo, mddev, geo_start);
4548        smp_mb();
4549        if (mddev->reshape_backwards) {
4550                sector_t size = raid10_size(mddev, 0, 0);
4551                if (size < mddev->array_sectors) {
4552                        spin_unlock_irq(&conf->device_lock);
4553                        pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4554                                mdname(mddev));
4555                        return -EINVAL;
4556                }
4557                mddev->resync_max_sectors = size;
4558                conf->reshape_progress = size;
4559        } else
4560                conf->reshape_progress = 0;
4561        conf->reshape_safe = conf->reshape_progress;
4562        spin_unlock_irq(&conf->device_lock);
4563
4564        if (mddev->delta_disks && mddev->bitmap) {
4565                struct mdp_superblock_1 *sb = NULL;
4566                sector_t oldsize, newsize;
4567
4568                oldsize = raid10_size(mddev, 0, 0);
4569                newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4570
4571                if (!mddev_is_clustered(mddev)) {
4572                        ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4573                        if (ret)
4574                                goto abort;
4575                        else
4576                                goto out;
4577                }
4578
4579                rdev_for_each(rdev, mddev) {
4580                        if (rdev->raid_disk > -1 &&
4581                            !test_bit(Faulty, &rdev->flags))
4582                                sb = page_address(rdev->sb_page);
4583                }
4584
4585                /*
4586                 * some node is already performing reshape, and no need to
4587                 * call md_bitmap_resize again since it should be called when
4588                 * receiving BITMAP_RESIZE msg
4589                 */
4590                if ((sb && (le32_to_cpu(sb->feature_map) &
4591                            MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4592                        goto out;
4593
4594                ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4595                if (ret)
4596                        goto abort;
4597
4598                ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4599                if (ret) {
4600                        md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4601                        goto abort;
4602                }
4603        }
4604out:
4605        if (mddev->delta_disks > 0) {
4606                rdev_for_each(rdev, mddev)
4607                        if (rdev->raid_disk < 0 &&
4608                            !test_bit(Faulty, &rdev->flags)) {
4609                                if (raid10_add_disk(mddev, rdev) == 0) {
4610                                        if (rdev->raid_disk >=
4611                                            conf->prev.raid_disks)
4612                                                set_bit(In_sync, &rdev->flags);
4613                                        else
4614                                                rdev->recovery_offset = 0;
4615
4616                                        /* Failure here is OK */
4617                                        sysfs_link_rdev(mddev, rdev);
4618                                }
4619                        } else if (rdev->raid_disk >= conf->prev.raid_disks
4620                                   && !test_bit(Faulty, &rdev->flags)) {
4621                                /* This is a spare that was manually added */
4622                                set_bit(In_sync, &rdev->flags);
4623                        }
4624        }
4625        /* When a reshape changes the number of devices,
4626         * ->degraded is measured against the larger of the
4627         * pre and  post numbers.
4628         */
4629        spin_lock_irq(&conf->device_lock);
4630        mddev->degraded = calc_degraded(conf);
4631        spin_unlock_irq(&conf->device_lock);
4632        mddev->raid_disks = conf->geo.raid_disks;
4633        mddev->reshape_position = conf->reshape_progress;
4634        set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4635
4636        clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4637        clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4638        clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4639        set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4640        set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4641
4642        mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4643                                                "reshape");
4644        if (!mddev->sync_thread) {
4645                ret = -EAGAIN;
4646                goto abort;
4647        }
4648        conf->reshape_checkpoint = jiffies;
4649        md_wakeup_thread(mddev->sync_thread);
4650        md_new_event(mddev);
4651        return 0;
4652
4653abort:
4654        mddev->recovery = 0;
4655        spin_lock_irq(&conf->device_lock);
4656        conf->geo = conf->prev;
4657        mddev->raid_disks = conf->geo.raid_disks;
4658        rdev_for_each(rdev, mddev)
4659                rdev->new_data_offset = rdev->data_offset;
4660        smp_wmb();
4661        conf->reshape_progress = MaxSector;
4662        conf->reshape_safe = MaxSector;
4663        mddev->reshape_position = MaxSector;
4664        spin_unlock_irq(&conf->device_lock);
4665        return ret;
4666}
4667
4668/* Calculate the last device-address that could contain
4669 * any block from the chunk that includes the array-address 's'
4670 * and report the next address.
4671 * i.e. the address returned will be chunk-aligned and after
4672 * any data that is in the chunk containing 's'.
4673 */
4674static sector_t last_dev_address(sector_t s, struct geom *geo)
4675{
4676        s = (s | geo->chunk_mask) + 1;
4677        s >>= geo->chunk_shift;
4678        s *= geo->near_copies;
4679        s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4680        s *= geo->far_copies;
4681        s <<= geo->chunk_shift;
4682        return s;
4683}
4684
4685/* Calculate the first device-address that could contain
4686 * any block from the chunk that includes the array-address 's'.
4687 * This too will be the start of a chunk
4688 */
4689static sector_t first_dev_address(sector_t s, struct geom *geo)
4690{
4691        s >>= geo->chunk_shift;
4692        s *= geo->near_copies;
4693        sector_div(s, geo->raid_disks);
4694        s *= geo->far_copies;
4695        s <<= geo->chunk_shift;
4696        return s;
4697}
4698
4699static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4700                                int *skipped)
4701{
4702        /* We simply copy at most one chunk (smallest of old and new)
4703         * at a time, possibly less if that exceeds RESYNC_PAGES,
4704         * or we hit a bad block or something.
4705         * This might mean we pause for normal IO in the middle of
4706         * a chunk, but that is not a problem as mddev->reshape_position
4707         * can record any location.
4708         *
4709         * If we will want to write to a location that isn't
4710         * yet recorded as 'safe' (i.e. in metadata on disk) then
4711         * we need to flush all reshape requests and update the metadata.
4712         *
4713         * When reshaping forwards (e.g. to more devices), we interpret
4714         * 'safe' as the earliest block which might not have been copied
4715         * down yet.  We divide this by previous stripe size and multiply
4716         * by previous stripe length to get lowest device offset that we
4717         * cannot write to yet.
4718         * We interpret 'sector_nr' as an address that we want to write to.
4719         * From this we use last_device_address() to find where we might
4720         * write to, and first_device_address on the  'safe' position.
4721         * If this 'next' write position is after the 'safe' position,
4722         * we must update the metadata to increase the 'safe' position.
4723         *
4724         * When reshaping backwards, we round in the opposite direction
4725         * and perform the reverse test:  next write position must not be
4726         * less than current safe position.
4727         *
4728         * In all this the minimum difference in data offsets
4729         * (conf->offset_diff - always positive) allows a bit of slack,
4730         * so next can be after 'safe', but not by more than offset_diff
4731         *
4732         * We need to prepare all the bios here before we start any IO
4733         * to ensure the size we choose is acceptable to all devices.
4734         * The means one for each copy for write-out and an extra one for
4735         * read-in.
4736         * We store the read-in bio in ->master_bio and the others in
4737         * ->devs[x].bio and ->devs[x].repl_bio.
4738         */
4739        struct r10conf *conf = mddev->private;
4740        struct r10bio *r10_bio;
4741        sector_t next, safe, last;
4742        int max_sectors;
4743        int nr_sectors;
4744        int s;
4745        struct md_rdev *rdev;
4746        int need_flush = 0;
4747        struct bio *blist;
4748        struct bio *bio, *read_bio;
4749        int sectors_done = 0;
4750        struct page **pages;
4751
4752        if (sector_nr == 0) {
4753                /* If restarting in the middle, skip the initial sectors */
4754                if (mddev->reshape_backwards &&
4755                    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4756                        sector_nr = (raid10_size(mddev, 0, 0)
4757                                     - conf->reshape_progress);
4758                } else if (!mddev->reshape_backwards &&
4759                           conf->reshape_progress > 0)
4760                        sector_nr = conf->reshape_progress;
4761                if (sector_nr) {
4762                        mddev->curr_resync_completed = sector_nr;
4763                        sysfs_notify_dirent_safe(mddev->sysfs_completed);
4764                        *skipped = 1;
4765                        return sector_nr;
4766                }
4767        }
4768
4769        /* We don't use sector_nr to track where we are up to
4770         * as that doesn't work well for ->reshape_backwards.
4771         * So just use ->reshape_progress.
4772         */
4773        if (mddev->reshape_backwards) {
4774                /* 'next' is the earliest device address that we might
4775                 * write to for this chunk in the new layout
4776                 */
4777                next = first_dev_address(conf->reshape_progress - 1,
4778                                         &conf->geo);
4779
4780                /* 'safe' is the last device address that we might read from
4781                 * in the old layout after a restart
4782                 */
4783                safe = last_dev_address(conf->reshape_safe - 1,
4784                                        &conf->prev);
4785
4786                if (next + conf->offset_diff < safe)
4787                        need_flush = 1;
4788
4789                last = conf->reshape_progress - 1;
4790                sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4791                                               & conf->prev.chunk_mask);
4792                if (sector_nr + RESYNC_SECTORS < last)
4793                        sector_nr = last + 1 - RESYNC_SECTORS;
4794        } else {
4795                /* 'next' is after the last device address that we
4796                 * might write to for this chunk in the new layout
4797                 */
4798                next = last_dev_address(conf->reshape_progress, &conf->geo);
4799
4800                /* 'safe' is the earliest device address that we might
4801                 * read from in the old layout after a restart
4802                 */
4803                safe = first_dev_address(conf->reshape_safe, &conf->prev);
4804
4805                /* Need to update metadata if 'next' might be beyond 'safe'
4806                 * as that would possibly corrupt data
4807                 */
4808                if (next > safe + conf->offset_diff)
4809                        need_flush = 1;
4810
4811                sector_nr = conf->reshape_progress;
4812                last  = sector_nr | (conf->geo.chunk_mask
4813                                     & conf->prev.chunk_mask);
4814
4815                if (sector_nr + RESYNC_SECTORS <= last)
4816                        last = sector_nr + RESYNC_SECTORS - 1;
4817        }
4818
4819        if (need_flush ||
4820            time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4821                /* Need to update reshape_position in metadata */
4822                wait_barrier(conf);
4823                mddev->reshape_position = conf->reshape_progress;
4824                if (mddev->reshape_backwards)
4825                        mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4826                                - conf->reshape_progress;
4827                else
4828                        mddev->curr_resync_completed = conf->reshape_progress;
4829                conf->reshape_checkpoint = jiffies;
4830                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4831                md_wakeup_thread(mddev->thread);
4832                wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4833                           test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4834                if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4835                        allow_barrier(conf);
4836                        return sectors_done;
4837                }
4838                conf->reshape_safe = mddev->reshape_position;
4839                allow_barrier(conf);
4840        }
4841
4842        raise_barrier(conf, 0);
4843read_more:
4844        /* Now schedule reads for blocks from sector_nr to last */
4845        r10_bio = raid10_alloc_init_r10buf(conf);
4846        r10_bio->state = 0;
4847        raise_barrier(conf, 1);
4848        atomic_set(&r10_bio->remaining, 0);
4849        r10_bio->mddev = mddev;
4850        r10_bio->sector = sector_nr;
4851        set_bit(R10BIO_IsReshape, &r10_bio->state);
4852        r10_bio->sectors = last - sector_nr + 1;
4853        rdev = read_balance(conf, r10_bio, &max_sectors);
4854        BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4855
4856        if (!rdev) {
4857                /* Cannot read from here, so need to record bad blocks
4858                 * on all the target devices.
4859                 */
4860                // FIXME
4861                mempool_free(r10_bio, &conf->r10buf_pool);
4862                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4863                return sectors_done;
4864        }
4865
4866        read_bio = bio_alloc_bioset(GFP_KERNEL, RESYNC_PAGES, &mddev->bio_set);
4867
4868        bio_set_dev(read_bio, rdev->bdev);
4869        read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4870                               + rdev->data_offset);
4871        read_bio->bi_private = r10_bio;
4872        read_bio->bi_end_io = end_reshape_read;
4873        bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4874        r10_bio->master_bio = read_bio;
4875        r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4876
4877        /*
4878         * Broadcast RESYNC message to other nodes, so all nodes would not
4879         * write to the region to avoid conflict.
4880        */
4881        if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4882                struct mdp_superblock_1 *sb = NULL;
4883                int sb_reshape_pos = 0;
4884
4885                conf->cluster_sync_low = sector_nr;
4886                conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4887                sb = page_address(rdev->sb_page);
4888                if (sb) {
4889                        sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4890                        /*
4891                         * Set cluster_sync_low again if next address for array
4892                         * reshape is less than cluster_sync_low. Since we can't
4893                         * update cluster_sync_low until it has finished reshape.
4894                         */
4895                        if (sb_reshape_pos < conf->cluster_sync_low)
4896                                conf->cluster_sync_low = sb_reshape_pos;
4897                }
4898
4899                md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4900                                                          conf->cluster_sync_high);
4901        }
4902
4903        /* Now find the locations in the new layout */
4904        __raid10_find_phys(&conf->geo, r10_bio);
4905
4906        blist = read_bio;
4907        read_bio->bi_next = NULL;
4908
4909        rcu_read_lock();
4910        for (s = 0; s < conf->copies*2; s++) {
4911                struct bio *b;
4912                int d = r10_bio->devs[s/2].devnum;
4913                struct md_rdev *rdev2;
4914                if (s&1) {
4915                        rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4916                        b = r10_bio->devs[s/2].repl_bio;
4917                } else {
4918                        rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4919                        b = r10_bio->devs[s/2].bio;
4920                }
4921                if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4922                        continue;
4923
4924                bio_set_dev(b, rdev2->bdev);
4925                b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4926                        rdev2->new_data_offset;
4927                b->bi_end_io = end_reshape_write;
4928                bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4929                b->bi_next = blist;
4930                blist = b;
4931        }
4932
4933        /* Now add as many pages as possible to all of these bios. */
4934
4935        nr_sectors = 0;
4936        pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4937        for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4938                struct page *page = pages[s / (PAGE_SIZE >> 9)];
4939                int len = (max_sectors - s) << 9;
4940                if (len > PAGE_SIZE)
4941                        len = PAGE_SIZE;
4942                for (bio = blist; bio ; bio = bio->bi_next) {
4943                        /*
4944                         * won't fail because the vec table is big enough
4945                         * to hold all these pages
4946                         */
4947                        bio_add_page(bio, page, len, 0);
4948                }
4949                sector_nr += len >> 9;
4950                nr_sectors += len >> 9;
4951        }
4952        rcu_read_unlock();
4953        r10_bio->sectors = nr_sectors;
4954
4955        /* Now submit the read */
4956        md_sync_acct_bio(read_bio, r10_bio->sectors);
4957        atomic_inc(&r10_bio->remaining);
4958        read_bio->bi_next = NULL;
4959        submit_bio_noacct(read_bio);
4960        sectors_done += nr_sectors;
4961        if (sector_nr <= last)
4962                goto read_more;
4963
4964        lower_barrier(conf);
4965
4966        /* Now that we have done the whole section we can
4967         * update reshape_progress
4968         */
4969        if (mddev->reshape_backwards)
4970                conf->reshape_progress -= sectors_done;
4971        else
4972                conf->reshape_progress += sectors_done;
4973
4974        return sectors_done;
4975}
4976
4977static void end_reshape_request(struct r10bio *r10_bio);
4978static int handle_reshape_read_error(struct mddev *mddev,
4979                                     struct r10bio *r10_bio);
4980static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4981{
4982        /* Reshape read completed.  Hopefully we have a block
4983         * to write out.
4984         * If we got a read error then we do sync 1-page reads from
4985         * elsewhere until we find the data - or give up.
4986         */
4987        struct r10conf *conf = mddev->private;
4988        int s;
4989
4990        if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4991                if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4992                        /* Reshape has been aborted */
4993                        md_done_sync(mddev, r10_bio->sectors, 0);
4994                        return;
4995                }
4996
4997        /* We definitely have the data in the pages, schedule the
4998         * writes.
4999         */
5000        atomic_set(&r10_bio->remaining, 1);
5001        for (s = 0; s < conf->copies*2; s++) {
5002                struct bio *b;
5003                int d = r10_bio->devs[s/2].devnum;
5004                struct md_rdev *rdev;
5005                rcu_read_lock();
5006                if (s&1) {
5007                        rdev = rcu_dereference(conf->mirrors[d].replacement);
5008                        b = r10_bio->devs[s/2].repl_bio;
5009                } else {
5010                        rdev = rcu_dereference(conf->mirrors[d].rdev);
5011                        b = r10_bio->devs[s/2].bio;
5012                }
5013                if (!rdev || test_bit(Faulty, &rdev->flags)) {
5014                        rcu_read_unlock();
5015                        continue;
5016                }
5017                atomic_inc(&rdev->nr_pending);
5018                rcu_read_unlock();
5019                md_sync_acct_bio(b, r10_bio->sectors);
5020                atomic_inc(&r10_bio->remaining);
5021                b->bi_next = NULL;
5022                submit_bio_noacct(b);
5023        }
5024        end_reshape_request(r10_bio);
5025}
5026
5027static void end_reshape(struct r10conf *conf)
5028{
5029        if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5030                return;
5031
5032        spin_lock_irq(&conf->device_lock);
5033        conf->prev = conf->geo;
5034        md_finish_reshape(conf->mddev);
5035        smp_wmb();
5036        conf->reshape_progress = MaxSector;
5037        conf->reshape_safe = MaxSector;
5038        spin_unlock_irq(&conf->device_lock);
5039
5040        if (conf->mddev->queue)
5041                raid10_set_io_opt(conf);
5042        conf->fullsync = 0;
5043}
5044
5045static void raid10_update_reshape_pos(struct mddev *mddev)
5046{
5047        struct r10conf *conf = mddev->private;
5048        sector_t lo, hi;
5049
5050        md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5051        if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5052            || mddev->reshape_position == MaxSector)
5053                conf->reshape_progress = mddev->reshape_position;
5054        else
5055                WARN_ON_ONCE(1);
5056}
5057
5058static int handle_reshape_read_error(struct mddev *mddev,
5059                                     struct r10bio *r10_bio)
5060{
5061        /* Use sync reads to get the blocks from somewhere else */
5062        int sectors = r10_bio->sectors;
5063        struct r10conf *conf = mddev->private;
5064        struct r10bio *r10b;
5065        int slot = 0;
5066        int idx = 0;
5067        struct page **pages;
5068
5069        r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5070        if (!r10b) {
5071                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5072                return -ENOMEM;
5073        }
5074
5075        /* reshape IOs share pages from .devs[0].bio */
5076        pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5077
5078        r10b->sector = r10_bio->sector;
5079        __raid10_find_phys(&conf->prev, r10b);
5080
5081        while (sectors) {
5082                int s = sectors;
5083                int success = 0;
5084                int first_slot = slot;
5085
5086                if (s > (PAGE_SIZE >> 9))
5087                        s = PAGE_SIZE >> 9;
5088
5089                rcu_read_lock();
5090                while (!success) {
5091                        int d = r10b->devs[slot].devnum;
5092                        struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5093                        sector_t addr;
5094                        if (rdev == NULL ||
5095                            test_bit(Faulty, &rdev->flags) ||
5096                            !test_bit(In_sync, &rdev->flags))
5097                                goto failed;
5098
5099                        addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5100                        atomic_inc(&rdev->nr_pending);
5101                        rcu_read_unlock();
5102                        success = sync_page_io(rdev,
5103                                               addr,
5104                                               s << 9,
5105                                               pages[idx],
5106                                               REQ_OP_READ, 0, false);
5107                        rdev_dec_pending(rdev, mddev);
5108                        rcu_read_lock();
5109                        if (success)
5110                                break;
5111                failed:
5112                        slot++;
5113                        if (slot >= conf->copies)
5114                                slot = 0;
5115                        if (slot == first_slot)
5116                                break;
5117                }
5118                rcu_read_unlock();
5119                if (!success) {
5120                        /* couldn't read this block, must give up */
5121                        set_bit(MD_RECOVERY_INTR,
5122                                &mddev->recovery);
5123                        kfree(r10b);
5124                        return -EIO;
5125                }
5126                sectors -= s;
5127                idx++;
5128        }
5129        kfree(r10b);
5130        return 0;
5131}
5132
5133static void end_reshape_write(struct bio *bio)
5134{
5135        struct r10bio *r10_bio = get_resync_r10bio(bio);
5136        struct mddev *mddev = r10_bio->mddev;
5137        struct r10conf *conf = mddev->private;
5138        int d;
5139        int slot;
5140        int repl;
5141        struct md_rdev *rdev = NULL;
5142
5143        d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5144        if (repl)
5145                rdev = conf->mirrors[d].replacement;
5146        if (!rdev) {
5147                smp_mb();
5148                rdev = conf->mirrors[d].rdev;
5149        }
5150
5151        if (bio->bi_status) {
5152                /* FIXME should record badblock */
5153                md_error(mddev, rdev);
5154        }
5155
5156        rdev_dec_pending(rdev, mddev);
5157        end_reshape_request(r10_bio);
5158}
5159
5160static void end_reshape_request(struct r10bio *r10_bio)
5161{
5162        if (!atomic_dec_and_test(&r10_bio->remaining))
5163                return;
5164        md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5165        bio_put(r10_bio->master_bio);
5166        put_buf(r10_bio);
5167}
5168
5169static void raid10_finish_reshape(struct mddev *mddev)
5170{
5171        struct r10conf *conf = mddev->private;
5172
5173        if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5174                return;
5175
5176        if (mddev->delta_disks > 0) {
5177                if (mddev->recovery_cp > mddev->resync_max_sectors) {
5178                        mddev->recovery_cp = mddev->resync_max_sectors;
5179                        set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5180                }
5181                mddev->resync_max_sectors = mddev->array_sectors;
5182        } else {
5183                int d;
5184                rcu_read_lock();
5185                for (d = conf->geo.raid_disks ;
5186                     d < conf->geo.raid_disks - mddev->delta_disks;
5187                     d++) {
5188                        struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5189                        if (rdev)
5190                                clear_bit(In_sync, &rdev->flags);
5191                        rdev = rcu_dereference(conf->mirrors[d].replacement);
5192                        if (rdev)
5193                                clear_bit(In_sync, &rdev->flags);
5194                }
5195                rcu_read_unlock();
5196        }
5197        mddev->layout = mddev->new_layout;
5198        mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5199        mddev->reshape_position = MaxSector;
5200        mddev->delta_disks = 0;
5201        mddev->reshape_backwards = 0;
5202}
5203
5204static struct md_personality raid10_personality =
5205{
5206        .name           = "raid10",
5207        .level          = 10,
5208        .owner          = THIS_MODULE,
5209        .make_request   = raid10_make_request,
5210        .run            = raid10_run,
5211        .free           = raid10_free,
5212        .status         = raid10_status,
5213        .error_handler  = raid10_error,
5214        .hot_add_disk   = raid10_add_disk,
5215        .hot_remove_disk= raid10_remove_disk,
5216        .spare_active   = raid10_spare_active,
5217        .sync_request   = raid10_sync_request,
5218        .quiesce        = raid10_quiesce,
5219        .size           = raid10_size,
5220        .resize         = raid10_resize,
5221        .takeover       = raid10_takeover,
5222        .check_reshape  = raid10_check_reshape,
5223        .start_reshape  = raid10_start_reshape,
5224        .finish_reshape = raid10_finish_reshape,
5225        .update_reshape_pos = raid10_update_reshape_pos,
5226};
5227
5228static int __init raid_init(void)
5229{
5230        return register_md_personality(&raid10_personality);
5231}
5232
5233static void raid_exit(void)
5234{
5235        unregister_md_personality(&raid10_personality);
5236}
5237
5238module_init(raid_init);
5239module_exit(raid_exit);
5240MODULE_LICENSE("GPL");
5241MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5242MODULE_ALIAS("md-personality-9"); /* RAID10 */
5243MODULE_ALIAS("md-raid10");
5244MODULE_ALIAS("md-level-10");
5245
5246module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
5247