linux/drivers/md/raid5-cache.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
   4 * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
   5 */
   6#include <linux/kernel.h>
   7#include <linux/wait.h>
   8#include <linux/blkdev.h>
   9#include <linux/slab.h>
  10#include <linux/raid/md_p.h>
  11#include <linux/crc32c.h>
  12#include <linux/random.h>
  13#include <linux/kthread.h>
  14#include <linux/types.h>
  15#include "md.h"
  16#include "raid5.h"
  17#include "md-bitmap.h"
  18#include "raid5-log.h"
  19
  20/*
  21 * metadata/data stored in disk with 4k size unit (a block) regardless
  22 * underneath hardware sector size. only works with PAGE_SIZE == 4096
  23 */
  24#define BLOCK_SECTORS (8)
  25#define BLOCK_SECTOR_SHIFT (3)
  26
  27/*
  28 * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
  29 *
  30 * In write through mode, the reclaim runs every log->max_free_space.
  31 * This can prevent the recovery scans for too long
  32 */
  33#define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
  34#define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
  35
  36/* wake up reclaim thread periodically */
  37#define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
  38/* start flush with these full stripes */
  39#define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
  40/* reclaim stripes in groups */
  41#define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
  42
  43/*
  44 * We only need 2 bios per I/O unit to make progress, but ensure we
  45 * have a few more available to not get too tight.
  46 */
  47#define R5L_POOL_SIZE   4
  48
  49static char *r5c_journal_mode_str[] = {"write-through",
  50                                       "write-back"};
  51/*
  52 * raid5 cache state machine
  53 *
  54 * With the RAID cache, each stripe works in two phases:
  55 *      - caching phase
  56 *      - writing-out phase
  57 *
  58 * These two phases are controlled by bit STRIPE_R5C_CACHING:
  59 *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
  60 *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
  61 *
  62 * When there is no journal, or the journal is in write-through mode,
  63 * the stripe is always in writing-out phase.
  64 *
  65 * For write-back journal, the stripe is sent to caching phase on write
  66 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
  67 * the write-out phase by clearing STRIPE_R5C_CACHING.
  68 *
  69 * Stripes in caching phase do not write the raid disks. Instead, all
  70 * writes are committed from the log device. Therefore, a stripe in
  71 * caching phase handles writes as:
  72 *      - write to log device
  73 *      - return IO
  74 *
  75 * Stripes in writing-out phase handle writes as:
  76 *      - calculate parity
  77 *      - write pending data and parity to journal
  78 *      - write data and parity to raid disks
  79 *      - return IO for pending writes
  80 */
  81
  82struct r5l_log {
  83        struct md_rdev *rdev;
  84
  85        u32 uuid_checksum;
  86
  87        sector_t device_size;           /* log device size, round to
  88                                         * BLOCK_SECTORS */
  89        sector_t max_free_space;        /* reclaim run if free space is at
  90                                         * this size */
  91
  92        sector_t last_checkpoint;       /* log tail. where recovery scan
  93                                         * starts from */
  94        u64 last_cp_seq;                /* log tail sequence */
  95
  96        sector_t log_start;             /* log head. where new data appends */
  97        u64 seq;                        /* log head sequence */
  98
  99        sector_t next_checkpoint;
 100
 101        struct mutex io_mutex;
 102        struct r5l_io_unit *current_io; /* current io_unit accepting new data */
 103
 104        spinlock_t io_list_lock;
 105        struct list_head running_ios;   /* io_units which are still running,
 106                                         * and have not yet been completely
 107                                         * written to the log */
 108        struct list_head io_end_ios;    /* io_units which have been completely
 109                                         * written to the log but not yet written
 110                                         * to the RAID */
 111        struct list_head flushing_ios;  /* io_units which are waiting for log
 112                                         * cache flush */
 113        struct list_head finished_ios;  /* io_units which settle down in log disk */
 114        struct bio flush_bio;
 115
 116        struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
 117
 118        struct kmem_cache *io_kc;
 119        mempool_t io_pool;
 120        struct bio_set bs;
 121        mempool_t meta_pool;
 122
 123        struct md_thread *reclaim_thread;
 124        unsigned long reclaim_target;   /* number of space that need to be
 125                                         * reclaimed.  if it's 0, reclaim spaces
 126                                         * used by io_units which are in
 127                                         * IO_UNIT_STRIPE_END state (eg, reclaim
 128                                         * dones't wait for specific io_unit
 129                                         * switching to IO_UNIT_STRIPE_END
 130                                         * state) */
 131        wait_queue_head_t iounit_wait;
 132
 133        struct list_head no_space_stripes; /* pending stripes, log has no space */
 134        spinlock_t no_space_stripes_lock;
 135
 136        bool need_cache_flush;
 137
 138        /* for r5c_cache */
 139        enum r5c_journal_mode r5c_journal_mode;
 140
 141        /* all stripes in r5cache, in the order of seq at sh->log_start */
 142        struct list_head stripe_in_journal_list;
 143
 144        spinlock_t stripe_in_journal_lock;
 145        atomic_t stripe_in_journal_count;
 146
 147        /* to submit async io_units, to fulfill ordering of flush */
 148        struct work_struct deferred_io_work;
 149        /* to disable write back during in degraded mode */
 150        struct work_struct disable_writeback_work;
 151
 152        /* to for chunk_aligned_read in writeback mode, details below */
 153        spinlock_t tree_lock;
 154        struct radix_tree_root big_stripe_tree;
 155};
 156
 157/*
 158 * Enable chunk_aligned_read() with write back cache.
 159 *
 160 * Each chunk may contain more than one stripe (for example, a 256kB
 161 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
 162 * chunk_aligned_read, these stripes are grouped into one "big_stripe".
 163 * For each big_stripe, we count how many stripes of this big_stripe
 164 * are in the write back cache. These data are tracked in a radix tree
 165 * (big_stripe_tree). We use radix_tree item pointer as the counter.
 166 * r5c_tree_index() is used to calculate keys for the radix tree.
 167 *
 168 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
 169 * big_stripe of each chunk in the tree. If this big_stripe is in the
 170 * tree, chunk_aligned_read() aborts. This look up is protected by
 171 * rcu_read_lock().
 172 *
 173 * It is necessary to remember whether a stripe is counted in
 174 * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
 175 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
 176 * two flags are set, the stripe is counted in big_stripe_tree. This
 177 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
 178 * r5c_try_caching_write(); and moving clear_bit of
 179 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
 180 * r5c_finish_stripe_write_out().
 181 */
 182
 183/*
 184 * radix tree requests lowest 2 bits of data pointer to be 2b'00.
 185 * So it is necessary to left shift the counter by 2 bits before using it
 186 * as data pointer of the tree.
 187 */
 188#define R5C_RADIX_COUNT_SHIFT 2
 189
 190/*
 191 * calculate key for big_stripe_tree
 192 *
 193 * sect: align_bi->bi_iter.bi_sector or sh->sector
 194 */
 195static inline sector_t r5c_tree_index(struct r5conf *conf,
 196                                      sector_t sect)
 197{
 198        sector_div(sect, conf->chunk_sectors);
 199        return sect;
 200}
 201
 202/*
 203 * an IO range starts from a meta data block and end at the next meta data
 204 * block. The io unit's the meta data block tracks data/parity followed it. io
 205 * unit is written to log disk with normal write, as we always flush log disk
 206 * first and then start move data to raid disks, there is no requirement to
 207 * write io unit with FLUSH/FUA
 208 */
 209struct r5l_io_unit {
 210        struct r5l_log *log;
 211
 212        struct page *meta_page; /* store meta block */
 213        int meta_offset;        /* current offset in meta_page */
 214
 215        struct bio *current_bio;/* current_bio accepting new data */
 216
 217        atomic_t pending_stripe;/* how many stripes not flushed to raid */
 218        u64 seq;                /* seq number of the metablock */
 219        sector_t log_start;     /* where the io_unit starts */
 220        sector_t log_end;       /* where the io_unit ends */
 221        struct list_head log_sibling; /* log->running_ios */
 222        struct list_head stripe_list; /* stripes added to the io_unit */
 223
 224        int state;
 225        bool need_split_bio;
 226        struct bio *split_bio;
 227
 228        unsigned int has_flush:1;               /* include flush request */
 229        unsigned int has_fua:1;                 /* include fua request */
 230        unsigned int has_null_flush:1;          /* include null flush request */
 231        unsigned int has_flush_payload:1;       /* include flush payload  */
 232        /*
 233         * io isn't sent yet, flush/fua request can only be submitted till it's
 234         * the first IO in running_ios list
 235         */
 236        unsigned int io_deferred:1;
 237
 238        struct bio_list flush_barriers;   /* size == 0 flush bios */
 239};
 240
 241/* r5l_io_unit state */
 242enum r5l_io_unit_state {
 243        IO_UNIT_RUNNING = 0,    /* accepting new IO */
 244        IO_UNIT_IO_START = 1,   /* io_unit bio start writing to log,
 245                                 * don't accepting new bio */
 246        IO_UNIT_IO_END = 2,     /* io_unit bio finish writing to log */
 247        IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
 248};
 249
 250bool r5c_is_writeback(struct r5l_log *log)
 251{
 252        return (log != NULL &&
 253                log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
 254}
 255
 256static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
 257{
 258        start += inc;
 259        if (start >= log->device_size)
 260                start = start - log->device_size;
 261        return start;
 262}
 263
 264static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
 265                                  sector_t end)
 266{
 267        if (end >= start)
 268                return end - start;
 269        else
 270                return end + log->device_size - start;
 271}
 272
 273static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
 274{
 275        sector_t used_size;
 276
 277        used_size = r5l_ring_distance(log, log->last_checkpoint,
 278                                        log->log_start);
 279
 280        return log->device_size > used_size + size;
 281}
 282
 283static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
 284                                    enum r5l_io_unit_state state)
 285{
 286        if (WARN_ON(io->state >= state))
 287                return;
 288        io->state = state;
 289}
 290
 291static void
 292r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
 293{
 294        struct bio *wbi, *wbi2;
 295
 296        wbi = dev->written;
 297        dev->written = NULL;
 298        while (wbi && wbi->bi_iter.bi_sector <
 299               dev->sector + RAID5_STRIPE_SECTORS(conf)) {
 300                wbi2 = r5_next_bio(conf, wbi, dev->sector);
 301                md_write_end(conf->mddev);
 302                bio_endio(wbi);
 303                wbi = wbi2;
 304        }
 305}
 306
 307void r5c_handle_cached_data_endio(struct r5conf *conf,
 308                                  struct stripe_head *sh, int disks)
 309{
 310        int i;
 311
 312        for (i = sh->disks; i--; ) {
 313                if (sh->dev[i].written) {
 314                        set_bit(R5_UPTODATE, &sh->dev[i].flags);
 315                        r5c_return_dev_pending_writes(conf, &sh->dev[i]);
 316                        md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
 317                                           RAID5_STRIPE_SECTORS(conf),
 318                                           !test_bit(STRIPE_DEGRADED, &sh->state),
 319                                           0);
 320                }
 321        }
 322}
 323
 324void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
 325
 326/* Check whether we should flush some stripes to free up stripe cache */
 327void r5c_check_stripe_cache_usage(struct r5conf *conf)
 328{
 329        int total_cached;
 330
 331        if (!r5c_is_writeback(conf->log))
 332                return;
 333
 334        total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
 335                atomic_read(&conf->r5c_cached_full_stripes);
 336
 337        /*
 338         * The following condition is true for either of the following:
 339         *   - stripe cache pressure high:
 340         *          total_cached > 3/4 min_nr_stripes ||
 341         *          empty_inactive_list_nr > 0
 342         *   - stripe cache pressure moderate:
 343         *          total_cached > 1/2 min_nr_stripes
 344         */
 345        if (total_cached > conf->min_nr_stripes * 1 / 2 ||
 346            atomic_read(&conf->empty_inactive_list_nr) > 0)
 347                r5l_wake_reclaim(conf->log, 0);
 348}
 349
 350/*
 351 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
 352 * stripes in the cache
 353 */
 354void r5c_check_cached_full_stripe(struct r5conf *conf)
 355{
 356        if (!r5c_is_writeback(conf->log))
 357                return;
 358
 359        /*
 360         * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
 361         * or a full stripe (chunk size / 4k stripes).
 362         */
 363        if (atomic_read(&conf->r5c_cached_full_stripes) >=
 364            min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
 365                conf->chunk_sectors >> RAID5_STRIPE_SHIFT(conf)))
 366                r5l_wake_reclaim(conf->log, 0);
 367}
 368
 369/*
 370 * Total log space (in sectors) needed to flush all data in cache
 371 *
 372 * To avoid deadlock due to log space, it is necessary to reserve log
 373 * space to flush critical stripes (stripes that occupying log space near
 374 * last_checkpoint). This function helps check how much log space is
 375 * required to flush all cached stripes.
 376 *
 377 * To reduce log space requirements, two mechanisms are used to give cache
 378 * flush higher priorities:
 379 *    1. In handle_stripe_dirtying() and schedule_reconstruction(),
 380 *       stripes ALREADY in journal can be flushed w/o pending writes;
 381 *    2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
 382 *       can be delayed (r5l_add_no_space_stripe).
 383 *
 384 * In cache flush, the stripe goes through 1 and then 2. For a stripe that
 385 * already passed 1, flushing it requires at most (conf->max_degraded + 1)
 386 * pages of journal space. For stripes that has not passed 1, flushing it
 387 * requires (conf->raid_disks + 1) pages of journal space. There are at
 388 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
 389 * required to flush all cached stripes (in pages) is:
 390 *
 391 *     (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
 392 *     (group_cnt + 1) * (raid_disks + 1)
 393 * or
 394 *     (stripe_in_journal_count) * (max_degraded + 1) +
 395 *     (group_cnt + 1) * (raid_disks - max_degraded)
 396 */
 397static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
 398{
 399        struct r5l_log *log = conf->log;
 400
 401        if (!r5c_is_writeback(log))
 402                return 0;
 403
 404        return BLOCK_SECTORS *
 405                ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
 406                 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
 407}
 408
 409/*
 410 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
 411 *
 412 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
 413 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
 414 * device is less than 2x of reclaim_required_space.
 415 */
 416static inline void r5c_update_log_state(struct r5l_log *log)
 417{
 418        struct r5conf *conf = log->rdev->mddev->private;
 419        sector_t free_space;
 420        sector_t reclaim_space;
 421        bool wake_reclaim = false;
 422
 423        if (!r5c_is_writeback(log))
 424                return;
 425
 426        free_space = r5l_ring_distance(log, log->log_start,
 427                                       log->last_checkpoint);
 428        reclaim_space = r5c_log_required_to_flush_cache(conf);
 429        if (free_space < 2 * reclaim_space)
 430                set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
 431        else {
 432                if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
 433                        wake_reclaim = true;
 434                clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
 435        }
 436        if (free_space < 3 * reclaim_space)
 437                set_bit(R5C_LOG_TIGHT, &conf->cache_state);
 438        else
 439                clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
 440
 441        if (wake_reclaim)
 442                r5l_wake_reclaim(log, 0);
 443}
 444
 445/*
 446 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
 447 * This function should only be called in write-back mode.
 448 */
 449void r5c_make_stripe_write_out(struct stripe_head *sh)
 450{
 451        struct r5conf *conf = sh->raid_conf;
 452        struct r5l_log *log = conf->log;
 453
 454        BUG_ON(!r5c_is_writeback(log));
 455
 456        WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
 457        clear_bit(STRIPE_R5C_CACHING, &sh->state);
 458
 459        if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 460                atomic_inc(&conf->preread_active_stripes);
 461}
 462
 463static void r5c_handle_data_cached(struct stripe_head *sh)
 464{
 465        int i;
 466
 467        for (i = sh->disks; i--; )
 468                if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
 469                        set_bit(R5_InJournal, &sh->dev[i].flags);
 470                        clear_bit(R5_LOCKED, &sh->dev[i].flags);
 471                }
 472        clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
 473}
 474
 475/*
 476 * this journal write must contain full parity,
 477 * it may also contain some data pages
 478 */
 479static void r5c_handle_parity_cached(struct stripe_head *sh)
 480{
 481        int i;
 482
 483        for (i = sh->disks; i--; )
 484                if (test_bit(R5_InJournal, &sh->dev[i].flags))
 485                        set_bit(R5_Wantwrite, &sh->dev[i].flags);
 486}
 487
 488/*
 489 * Setting proper flags after writing (or flushing) data and/or parity to the
 490 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
 491 */
 492static void r5c_finish_cache_stripe(struct stripe_head *sh)
 493{
 494        struct r5l_log *log = sh->raid_conf->log;
 495
 496        if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
 497                BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
 498                /*
 499                 * Set R5_InJournal for parity dev[pd_idx]. This means
 500                 * all data AND parity in the journal. For RAID 6, it is
 501                 * NOT necessary to set the flag for dev[qd_idx], as the
 502                 * two parities are written out together.
 503                 */
 504                set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
 505        } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
 506                r5c_handle_data_cached(sh);
 507        } else {
 508                r5c_handle_parity_cached(sh);
 509                set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
 510        }
 511}
 512
 513static void r5l_io_run_stripes(struct r5l_io_unit *io)
 514{
 515        struct stripe_head *sh, *next;
 516
 517        list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
 518                list_del_init(&sh->log_list);
 519
 520                r5c_finish_cache_stripe(sh);
 521
 522                set_bit(STRIPE_HANDLE, &sh->state);
 523                raid5_release_stripe(sh);
 524        }
 525}
 526
 527static void r5l_log_run_stripes(struct r5l_log *log)
 528{
 529        struct r5l_io_unit *io, *next;
 530
 531        lockdep_assert_held(&log->io_list_lock);
 532
 533        list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
 534                /* don't change list order */
 535                if (io->state < IO_UNIT_IO_END)
 536                        break;
 537
 538                list_move_tail(&io->log_sibling, &log->finished_ios);
 539                r5l_io_run_stripes(io);
 540        }
 541}
 542
 543static void r5l_move_to_end_ios(struct r5l_log *log)
 544{
 545        struct r5l_io_unit *io, *next;
 546
 547        lockdep_assert_held(&log->io_list_lock);
 548
 549        list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
 550                /* don't change list order */
 551                if (io->state < IO_UNIT_IO_END)
 552                        break;
 553                list_move_tail(&io->log_sibling, &log->io_end_ios);
 554        }
 555}
 556
 557static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
 558static void r5l_log_endio(struct bio *bio)
 559{
 560        struct r5l_io_unit *io = bio->bi_private;
 561        struct r5l_io_unit *io_deferred;
 562        struct r5l_log *log = io->log;
 563        unsigned long flags;
 564        bool has_null_flush;
 565        bool has_flush_payload;
 566
 567        if (bio->bi_status)
 568                md_error(log->rdev->mddev, log->rdev);
 569
 570        bio_put(bio);
 571        mempool_free(io->meta_page, &log->meta_pool);
 572
 573        spin_lock_irqsave(&log->io_list_lock, flags);
 574        __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
 575
 576        /*
 577         * if the io doesn't not have null_flush or flush payload,
 578         * it is not safe to access it after releasing io_list_lock.
 579         * Therefore, it is necessary to check the condition with
 580         * the lock held.
 581         */
 582        has_null_flush = io->has_null_flush;
 583        has_flush_payload = io->has_flush_payload;
 584
 585        if (log->need_cache_flush && !list_empty(&io->stripe_list))
 586                r5l_move_to_end_ios(log);
 587        else
 588                r5l_log_run_stripes(log);
 589        if (!list_empty(&log->running_ios)) {
 590                /*
 591                 * FLUSH/FUA io_unit is deferred because of ordering, now we
 592                 * can dispatch it
 593                 */
 594                io_deferred = list_first_entry(&log->running_ios,
 595                                               struct r5l_io_unit, log_sibling);
 596                if (io_deferred->io_deferred)
 597                        schedule_work(&log->deferred_io_work);
 598        }
 599
 600        spin_unlock_irqrestore(&log->io_list_lock, flags);
 601
 602        if (log->need_cache_flush)
 603                md_wakeup_thread(log->rdev->mddev->thread);
 604
 605        /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
 606        if (has_null_flush) {
 607                struct bio *bi;
 608
 609                WARN_ON(bio_list_empty(&io->flush_barriers));
 610                while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
 611                        bio_endio(bi);
 612                        if (atomic_dec_and_test(&io->pending_stripe)) {
 613                                __r5l_stripe_write_finished(io);
 614                                return;
 615                        }
 616                }
 617        }
 618        /* decrease pending_stripe for flush payload */
 619        if (has_flush_payload)
 620                if (atomic_dec_and_test(&io->pending_stripe))
 621                        __r5l_stripe_write_finished(io);
 622}
 623
 624static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
 625{
 626        unsigned long flags;
 627
 628        spin_lock_irqsave(&log->io_list_lock, flags);
 629        __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
 630        spin_unlock_irqrestore(&log->io_list_lock, flags);
 631
 632        /*
 633         * In case of journal device failures, submit_bio will get error
 634         * and calls endio, then active stripes will continue write
 635         * process. Therefore, it is not necessary to check Faulty bit
 636         * of journal device here.
 637         *
 638         * We can't check split_bio after current_bio is submitted. If
 639         * io->split_bio is null, after current_bio is submitted, current_bio
 640         * might already be completed and the io_unit is freed. We submit
 641         * split_bio first to avoid the issue.
 642         */
 643        if (io->split_bio) {
 644                if (io->has_flush)
 645                        io->split_bio->bi_opf |= REQ_PREFLUSH;
 646                if (io->has_fua)
 647                        io->split_bio->bi_opf |= REQ_FUA;
 648                submit_bio(io->split_bio);
 649        }
 650
 651        if (io->has_flush)
 652                io->current_bio->bi_opf |= REQ_PREFLUSH;
 653        if (io->has_fua)
 654                io->current_bio->bi_opf |= REQ_FUA;
 655        submit_bio(io->current_bio);
 656}
 657
 658/* deferred io_unit will be dispatched here */
 659static void r5l_submit_io_async(struct work_struct *work)
 660{
 661        struct r5l_log *log = container_of(work, struct r5l_log,
 662                                           deferred_io_work);
 663        struct r5l_io_unit *io = NULL;
 664        unsigned long flags;
 665
 666        spin_lock_irqsave(&log->io_list_lock, flags);
 667        if (!list_empty(&log->running_ios)) {
 668                io = list_first_entry(&log->running_ios, struct r5l_io_unit,
 669                                      log_sibling);
 670                if (!io->io_deferred)
 671                        io = NULL;
 672                else
 673                        io->io_deferred = 0;
 674        }
 675        spin_unlock_irqrestore(&log->io_list_lock, flags);
 676        if (io)
 677                r5l_do_submit_io(log, io);
 678}
 679
 680static void r5c_disable_writeback_async(struct work_struct *work)
 681{
 682        struct r5l_log *log = container_of(work, struct r5l_log,
 683                                           disable_writeback_work);
 684        struct mddev *mddev = log->rdev->mddev;
 685        struct r5conf *conf = mddev->private;
 686        int locked = 0;
 687
 688        if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
 689                return;
 690        pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
 691                mdname(mddev));
 692
 693        /* wait superblock change before suspend */
 694        wait_event(mddev->sb_wait,
 695                   conf->log == NULL ||
 696                   (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) &&
 697                    (locked = mddev_trylock(mddev))));
 698        if (locked) {
 699                mddev_suspend(mddev);
 700                log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
 701                mddev_resume(mddev);
 702                mddev_unlock(mddev);
 703        }
 704}
 705
 706static void r5l_submit_current_io(struct r5l_log *log)
 707{
 708        struct r5l_io_unit *io = log->current_io;
 709        struct r5l_meta_block *block;
 710        unsigned long flags;
 711        u32 crc;
 712        bool do_submit = true;
 713
 714        if (!io)
 715                return;
 716
 717        block = page_address(io->meta_page);
 718        block->meta_size = cpu_to_le32(io->meta_offset);
 719        crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
 720        block->checksum = cpu_to_le32(crc);
 721
 722        log->current_io = NULL;
 723        spin_lock_irqsave(&log->io_list_lock, flags);
 724        if (io->has_flush || io->has_fua) {
 725                if (io != list_first_entry(&log->running_ios,
 726                                           struct r5l_io_unit, log_sibling)) {
 727                        io->io_deferred = 1;
 728                        do_submit = false;
 729                }
 730        }
 731        spin_unlock_irqrestore(&log->io_list_lock, flags);
 732        if (do_submit)
 733                r5l_do_submit_io(log, io);
 734}
 735
 736static struct bio *r5l_bio_alloc(struct r5l_log *log)
 737{
 738        struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_VECS, &log->bs);
 739
 740        bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
 741        bio_set_dev(bio, log->rdev->bdev);
 742        bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
 743
 744        return bio;
 745}
 746
 747static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
 748{
 749        log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
 750
 751        r5c_update_log_state(log);
 752        /*
 753         * If we filled up the log device start from the beginning again,
 754         * which will require a new bio.
 755         *
 756         * Note: for this to work properly the log size needs to me a multiple
 757         * of BLOCK_SECTORS.
 758         */
 759        if (log->log_start == 0)
 760                io->need_split_bio = true;
 761
 762        io->log_end = log->log_start;
 763}
 764
 765static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
 766{
 767        struct r5l_io_unit *io;
 768        struct r5l_meta_block *block;
 769
 770        io = mempool_alloc(&log->io_pool, GFP_ATOMIC);
 771        if (!io)
 772                return NULL;
 773        memset(io, 0, sizeof(*io));
 774
 775        io->log = log;
 776        INIT_LIST_HEAD(&io->log_sibling);
 777        INIT_LIST_HEAD(&io->stripe_list);
 778        bio_list_init(&io->flush_barriers);
 779        io->state = IO_UNIT_RUNNING;
 780
 781        io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO);
 782        block = page_address(io->meta_page);
 783        clear_page(block);
 784        block->magic = cpu_to_le32(R5LOG_MAGIC);
 785        block->version = R5LOG_VERSION;
 786        block->seq = cpu_to_le64(log->seq);
 787        block->position = cpu_to_le64(log->log_start);
 788
 789        io->log_start = log->log_start;
 790        io->meta_offset = sizeof(struct r5l_meta_block);
 791        io->seq = log->seq++;
 792
 793        io->current_bio = r5l_bio_alloc(log);
 794        io->current_bio->bi_end_io = r5l_log_endio;
 795        io->current_bio->bi_private = io;
 796        bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
 797
 798        r5_reserve_log_entry(log, io);
 799
 800        spin_lock_irq(&log->io_list_lock);
 801        list_add_tail(&io->log_sibling, &log->running_ios);
 802        spin_unlock_irq(&log->io_list_lock);
 803
 804        return io;
 805}
 806
 807static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
 808{
 809        if (log->current_io &&
 810            log->current_io->meta_offset + payload_size > PAGE_SIZE)
 811                r5l_submit_current_io(log);
 812
 813        if (!log->current_io) {
 814                log->current_io = r5l_new_meta(log);
 815                if (!log->current_io)
 816                        return -ENOMEM;
 817        }
 818
 819        return 0;
 820}
 821
 822static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
 823                                    sector_t location,
 824                                    u32 checksum1, u32 checksum2,
 825                                    bool checksum2_valid)
 826{
 827        struct r5l_io_unit *io = log->current_io;
 828        struct r5l_payload_data_parity *payload;
 829
 830        payload = page_address(io->meta_page) + io->meta_offset;
 831        payload->header.type = cpu_to_le16(type);
 832        payload->header.flags = cpu_to_le16(0);
 833        payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
 834                                    (PAGE_SHIFT - 9));
 835        payload->location = cpu_to_le64(location);
 836        payload->checksum[0] = cpu_to_le32(checksum1);
 837        if (checksum2_valid)
 838                payload->checksum[1] = cpu_to_le32(checksum2);
 839
 840        io->meta_offset += sizeof(struct r5l_payload_data_parity) +
 841                sizeof(__le32) * (1 + !!checksum2_valid);
 842}
 843
 844static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
 845{
 846        struct r5l_io_unit *io = log->current_io;
 847
 848        if (io->need_split_bio) {
 849                BUG_ON(io->split_bio);
 850                io->split_bio = io->current_bio;
 851                io->current_bio = r5l_bio_alloc(log);
 852                bio_chain(io->current_bio, io->split_bio);
 853                io->need_split_bio = false;
 854        }
 855
 856        if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
 857                BUG();
 858
 859        r5_reserve_log_entry(log, io);
 860}
 861
 862static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
 863{
 864        struct mddev *mddev = log->rdev->mddev;
 865        struct r5conf *conf = mddev->private;
 866        struct r5l_io_unit *io;
 867        struct r5l_payload_flush *payload;
 868        int meta_size;
 869
 870        /*
 871         * payload_flush requires extra writes to the journal.
 872         * To avoid handling the extra IO in quiesce, just skip
 873         * flush_payload
 874         */
 875        if (conf->quiesce)
 876                return;
 877
 878        mutex_lock(&log->io_mutex);
 879        meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
 880
 881        if (r5l_get_meta(log, meta_size)) {
 882                mutex_unlock(&log->io_mutex);
 883                return;
 884        }
 885
 886        /* current implementation is one stripe per flush payload */
 887        io = log->current_io;
 888        payload = page_address(io->meta_page) + io->meta_offset;
 889        payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
 890        payload->header.flags = cpu_to_le16(0);
 891        payload->size = cpu_to_le32(sizeof(__le64));
 892        payload->flush_stripes[0] = cpu_to_le64(sect);
 893        io->meta_offset += meta_size;
 894        /* multiple flush payloads count as one pending_stripe */
 895        if (!io->has_flush_payload) {
 896                io->has_flush_payload = 1;
 897                atomic_inc(&io->pending_stripe);
 898        }
 899        mutex_unlock(&log->io_mutex);
 900}
 901
 902static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
 903                           int data_pages, int parity_pages)
 904{
 905        int i;
 906        int meta_size;
 907        int ret;
 908        struct r5l_io_unit *io;
 909
 910        meta_size =
 911                ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
 912                 * data_pages) +
 913                sizeof(struct r5l_payload_data_parity) +
 914                sizeof(__le32) * parity_pages;
 915
 916        ret = r5l_get_meta(log, meta_size);
 917        if (ret)
 918                return ret;
 919
 920        io = log->current_io;
 921
 922        if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
 923                io->has_flush = 1;
 924
 925        for (i = 0; i < sh->disks; i++) {
 926                if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
 927                    test_bit(R5_InJournal, &sh->dev[i].flags))
 928                        continue;
 929                if (i == sh->pd_idx || i == sh->qd_idx)
 930                        continue;
 931                if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
 932                    log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
 933                        io->has_fua = 1;
 934                        /*
 935                         * we need to flush journal to make sure recovery can
 936                         * reach the data with fua flag
 937                         */
 938                        io->has_flush = 1;
 939                }
 940                r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
 941                                        raid5_compute_blocknr(sh, i, 0),
 942                                        sh->dev[i].log_checksum, 0, false);
 943                r5l_append_payload_page(log, sh->dev[i].page);
 944        }
 945
 946        if (parity_pages == 2) {
 947                r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
 948                                        sh->sector, sh->dev[sh->pd_idx].log_checksum,
 949                                        sh->dev[sh->qd_idx].log_checksum, true);
 950                r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
 951                r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
 952        } else if (parity_pages == 1) {
 953                r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
 954                                        sh->sector, sh->dev[sh->pd_idx].log_checksum,
 955                                        0, false);
 956                r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
 957        } else  /* Just writing data, not parity, in caching phase */
 958                BUG_ON(parity_pages != 0);
 959
 960        list_add_tail(&sh->log_list, &io->stripe_list);
 961        atomic_inc(&io->pending_stripe);
 962        sh->log_io = io;
 963
 964        if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
 965                return 0;
 966
 967        if (sh->log_start == MaxSector) {
 968                BUG_ON(!list_empty(&sh->r5c));
 969                sh->log_start = io->log_start;
 970                spin_lock_irq(&log->stripe_in_journal_lock);
 971                list_add_tail(&sh->r5c,
 972                              &log->stripe_in_journal_list);
 973                spin_unlock_irq(&log->stripe_in_journal_lock);
 974                atomic_inc(&log->stripe_in_journal_count);
 975        }
 976        return 0;
 977}
 978
 979/* add stripe to no_space_stripes, and then wake up reclaim */
 980static inline void r5l_add_no_space_stripe(struct r5l_log *log,
 981                                           struct stripe_head *sh)
 982{
 983        spin_lock(&log->no_space_stripes_lock);
 984        list_add_tail(&sh->log_list, &log->no_space_stripes);
 985        spin_unlock(&log->no_space_stripes_lock);
 986}
 987
 988/*
 989 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
 990 * data from log to raid disks), so we shouldn't wait for reclaim here
 991 */
 992int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
 993{
 994        struct r5conf *conf = sh->raid_conf;
 995        int write_disks = 0;
 996        int data_pages, parity_pages;
 997        int reserve;
 998        int i;
 999        int ret = 0;
1000        bool wake_reclaim = false;
1001
1002        if (!log)
1003                return -EAGAIN;
1004        /* Don't support stripe batch */
1005        if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
1006            test_bit(STRIPE_SYNCING, &sh->state)) {
1007                /* the stripe is written to log, we start writing it to raid */
1008                clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
1009                return -EAGAIN;
1010        }
1011
1012        WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
1013
1014        for (i = 0; i < sh->disks; i++) {
1015                void *addr;
1016
1017                if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
1018                    test_bit(R5_InJournal, &sh->dev[i].flags))
1019                        continue;
1020
1021                write_disks++;
1022                /* checksum is already calculated in last run */
1023                if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1024                        continue;
1025                addr = kmap_atomic(sh->dev[i].page);
1026                sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
1027                                                    addr, PAGE_SIZE);
1028                kunmap_atomic(addr);
1029        }
1030        parity_pages = 1 + !!(sh->qd_idx >= 0);
1031        data_pages = write_disks - parity_pages;
1032
1033        set_bit(STRIPE_LOG_TRAPPED, &sh->state);
1034        /*
1035         * The stripe must enter state machine again to finish the write, so
1036         * don't delay.
1037         */
1038        clear_bit(STRIPE_DELAYED, &sh->state);
1039        atomic_inc(&sh->count);
1040
1041        mutex_lock(&log->io_mutex);
1042        /* meta + data */
1043        reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
1044
1045        if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1046                if (!r5l_has_free_space(log, reserve)) {
1047                        r5l_add_no_space_stripe(log, sh);
1048                        wake_reclaim = true;
1049                } else {
1050                        ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1051                        if (ret) {
1052                                spin_lock_irq(&log->io_list_lock);
1053                                list_add_tail(&sh->log_list,
1054                                              &log->no_mem_stripes);
1055                                spin_unlock_irq(&log->io_list_lock);
1056                        }
1057                }
1058        } else {  /* R5C_JOURNAL_MODE_WRITE_BACK */
1059                /*
1060                 * log space critical, do not process stripes that are
1061                 * not in cache yet (sh->log_start == MaxSector).
1062                 */
1063                if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1064                    sh->log_start == MaxSector) {
1065                        r5l_add_no_space_stripe(log, sh);
1066                        wake_reclaim = true;
1067                        reserve = 0;
1068                } else if (!r5l_has_free_space(log, reserve)) {
1069                        if (sh->log_start == log->last_checkpoint)
1070                                BUG();
1071                        else
1072                                r5l_add_no_space_stripe(log, sh);
1073                } else {
1074                        ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1075                        if (ret) {
1076                                spin_lock_irq(&log->io_list_lock);
1077                                list_add_tail(&sh->log_list,
1078                                              &log->no_mem_stripes);
1079                                spin_unlock_irq(&log->io_list_lock);
1080                        }
1081                }
1082        }
1083
1084        mutex_unlock(&log->io_mutex);
1085        if (wake_reclaim)
1086                r5l_wake_reclaim(log, reserve);
1087        return 0;
1088}
1089
1090void r5l_write_stripe_run(struct r5l_log *log)
1091{
1092        if (!log)
1093                return;
1094        mutex_lock(&log->io_mutex);
1095        r5l_submit_current_io(log);
1096        mutex_unlock(&log->io_mutex);
1097}
1098
1099int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1100{
1101        if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1102                /*
1103                 * in write through (journal only)
1104                 * we flush log disk cache first, then write stripe data to
1105                 * raid disks. So if bio is finished, the log disk cache is
1106                 * flushed already. The recovery guarantees we can recovery
1107                 * the bio from log disk, so we don't need to flush again
1108                 */
1109                if (bio->bi_iter.bi_size == 0) {
1110                        bio_endio(bio);
1111                        return 0;
1112                }
1113                bio->bi_opf &= ~REQ_PREFLUSH;
1114        } else {
1115                /* write back (with cache) */
1116                if (bio->bi_iter.bi_size == 0) {
1117                        mutex_lock(&log->io_mutex);
1118                        r5l_get_meta(log, 0);
1119                        bio_list_add(&log->current_io->flush_barriers, bio);
1120                        log->current_io->has_flush = 1;
1121                        log->current_io->has_null_flush = 1;
1122                        atomic_inc(&log->current_io->pending_stripe);
1123                        r5l_submit_current_io(log);
1124                        mutex_unlock(&log->io_mutex);
1125                        return 0;
1126                }
1127        }
1128        return -EAGAIN;
1129}
1130
1131/* This will run after log space is reclaimed */
1132static void r5l_run_no_space_stripes(struct r5l_log *log)
1133{
1134        struct stripe_head *sh;
1135
1136        spin_lock(&log->no_space_stripes_lock);
1137        while (!list_empty(&log->no_space_stripes)) {
1138                sh = list_first_entry(&log->no_space_stripes,
1139                                      struct stripe_head, log_list);
1140                list_del_init(&sh->log_list);
1141                set_bit(STRIPE_HANDLE, &sh->state);
1142                raid5_release_stripe(sh);
1143        }
1144        spin_unlock(&log->no_space_stripes_lock);
1145}
1146
1147/*
1148 * calculate new last_checkpoint
1149 * for write through mode, returns log->next_checkpoint
1150 * for write back, returns log_start of first sh in stripe_in_journal_list
1151 */
1152static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1153{
1154        struct stripe_head *sh;
1155        struct r5l_log *log = conf->log;
1156        sector_t new_cp;
1157        unsigned long flags;
1158
1159        if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1160                return log->next_checkpoint;
1161
1162        spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1163        if (list_empty(&conf->log->stripe_in_journal_list)) {
1164                /* all stripes flushed */
1165                spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1166                return log->next_checkpoint;
1167        }
1168        sh = list_first_entry(&conf->log->stripe_in_journal_list,
1169                              struct stripe_head, r5c);
1170        new_cp = sh->log_start;
1171        spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1172        return new_cp;
1173}
1174
1175static sector_t r5l_reclaimable_space(struct r5l_log *log)
1176{
1177        struct r5conf *conf = log->rdev->mddev->private;
1178
1179        return r5l_ring_distance(log, log->last_checkpoint,
1180                                 r5c_calculate_new_cp(conf));
1181}
1182
1183static void r5l_run_no_mem_stripe(struct r5l_log *log)
1184{
1185        struct stripe_head *sh;
1186
1187        lockdep_assert_held(&log->io_list_lock);
1188
1189        if (!list_empty(&log->no_mem_stripes)) {
1190                sh = list_first_entry(&log->no_mem_stripes,
1191                                      struct stripe_head, log_list);
1192                list_del_init(&sh->log_list);
1193                set_bit(STRIPE_HANDLE, &sh->state);
1194                raid5_release_stripe(sh);
1195        }
1196}
1197
1198static bool r5l_complete_finished_ios(struct r5l_log *log)
1199{
1200        struct r5l_io_unit *io, *next;
1201        bool found = false;
1202
1203        lockdep_assert_held(&log->io_list_lock);
1204
1205        list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1206                /* don't change list order */
1207                if (io->state < IO_UNIT_STRIPE_END)
1208                        break;
1209
1210                log->next_checkpoint = io->log_start;
1211
1212                list_del(&io->log_sibling);
1213                mempool_free(io, &log->io_pool);
1214                r5l_run_no_mem_stripe(log);
1215
1216                found = true;
1217        }
1218
1219        return found;
1220}
1221
1222static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1223{
1224        struct r5l_log *log = io->log;
1225        struct r5conf *conf = log->rdev->mddev->private;
1226        unsigned long flags;
1227
1228        spin_lock_irqsave(&log->io_list_lock, flags);
1229        __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1230
1231        if (!r5l_complete_finished_ios(log)) {
1232                spin_unlock_irqrestore(&log->io_list_lock, flags);
1233                return;
1234        }
1235
1236        if (r5l_reclaimable_space(log) > log->max_free_space ||
1237            test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1238                r5l_wake_reclaim(log, 0);
1239
1240        spin_unlock_irqrestore(&log->io_list_lock, flags);
1241        wake_up(&log->iounit_wait);
1242}
1243
1244void r5l_stripe_write_finished(struct stripe_head *sh)
1245{
1246        struct r5l_io_unit *io;
1247
1248        io = sh->log_io;
1249        sh->log_io = NULL;
1250
1251        if (io && atomic_dec_and_test(&io->pending_stripe))
1252                __r5l_stripe_write_finished(io);
1253}
1254
1255static void r5l_log_flush_endio(struct bio *bio)
1256{
1257        struct r5l_log *log = container_of(bio, struct r5l_log,
1258                flush_bio);
1259        unsigned long flags;
1260        struct r5l_io_unit *io;
1261
1262        if (bio->bi_status)
1263                md_error(log->rdev->mddev, log->rdev);
1264
1265        spin_lock_irqsave(&log->io_list_lock, flags);
1266        list_for_each_entry(io, &log->flushing_ios, log_sibling)
1267                r5l_io_run_stripes(io);
1268        list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1269        spin_unlock_irqrestore(&log->io_list_lock, flags);
1270}
1271
1272/*
1273 * Starting dispatch IO to raid.
1274 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1275 * broken meta in the middle of a log causes recovery can't find meta at the
1276 * head of log. If operations require meta at the head persistent in log, we
1277 * must make sure meta before it persistent in log too. A case is:
1278 *
1279 * stripe data/parity is in log, we start write stripe to raid disks. stripe
1280 * data/parity must be persistent in log before we do the write to raid disks.
1281 *
1282 * The solution is we restrictly maintain io_unit list order. In this case, we
1283 * only write stripes of an io_unit to raid disks till the io_unit is the first
1284 * one whose data/parity is in log.
1285 */
1286void r5l_flush_stripe_to_raid(struct r5l_log *log)
1287{
1288        bool do_flush;
1289
1290        if (!log || !log->need_cache_flush)
1291                return;
1292
1293        spin_lock_irq(&log->io_list_lock);
1294        /* flush bio is running */
1295        if (!list_empty(&log->flushing_ios)) {
1296                spin_unlock_irq(&log->io_list_lock);
1297                return;
1298        }
1299        list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1300        do_flush = !list_empty(&log->flushing_ios);
1301        spin_unlock_irq(&log->io_list_lock);
1302
1303        if (!do_flush)
1304                return;
1305        bio_reset(&log->flush_bio);
1306        bio_set_dev(&log->flush_bio, log->rdev->bdev);
1307        log->flush_bio.bi_end_io = r5l_log_flush_endio;
1308        log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1309        submit_bio(&log->flush_bio);
1310}
1311
1312static void r5l_write_super(struct r5l_log *log, sector_t cp);
1313static void r5l_write_super_and_discard_space(struct r5l_log *log,
1314        sector_t end)
1315{
1316        struct block_device *bdev = log->rdev->bdev;
1317        struct mddev *mddev;
1318
1319        r5l_write_super(log, end);
1320
1321        if (!blk_queue_discard(bdev_get_queue(bdev)))
1322                return;
1323
1324        mddev = log->rdev->mddev;
1325        /*
1326         * Discard could zero data, so before discard we must make sure
1327         * superblock is updated to new log tail. Updating superblock (either
1328         * directly call md_update_sb() or depend on md thread) must hold
1329         * reconfig mutex. On the other hand, raid5_quiesce is called with
1330         * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1331         * for all IO finish, hence waitting for reclaim thread, while reclaim
1332         * thread is calling this function and waitting for reconfig mutex. So
1333         * there is a deadlock. We workaround this issue with a trylock.
1334         * FIXME: we could miss discard if we can't take reconfig mutex
1335         */
1336        set_mask_bits(&mddev->sb_flags, 0,
1337                BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1338        if (!mddev_trylock(mddev))
1339                return;
1340        md_update_sb(mddev, 1);
1341        mddev_unlock(mddev);
1342
1343        /* discard IO error really doesn't matter, ignore it */
1344        if (log->last_checkpoint < end) {
1345                blkdev_issue_discard(bdev,
1346                                log->last_checkpoint + log->rdev->data_offset,
1347                                end - log->last_checkpoint, GFP_NOIO, 0);
1348        } else {
1349                blkdev_issue_discard(bdev,
1350                                log->last_checkpoint + log->rdev->data_offset,
1351                                log->device_size - log->last_checkpoint,
1352                                GFP_NOIO, 0);
1353                blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1354                                GFP_NOIO, 0);
1355        }
1356}
1357
1358/*
1359 * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1360 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1361 *
1362 * must hold conf->device_lock
1363 */
1364static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1365{
1366        BUG_ON(list_empty(&sh->lru));
1367        BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1368        BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1369
1370        /*
1371         * The stripe is not ON_RELEASE_LIST, so it is safe to call
1372         * raid5_release_stripe() while holding conf->device_lock
1373         */
1374        BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1375        lockdep_assert_held(&conf->device_lock);
1376
1377        list_del_init(&sh->lru);
1378        atomic_inc(&sh->count);
1379
1380        set_bit(STRIPE_HANDLE, &sh->state);
1381        atomic_inc(&conf->active_stripes);
1382        r5c_make_stripe_write_out(sh);
1383
1384        if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1385                atomic_inc(&conf->r5c_flushing_partial_stripes);
1386        else
1387                atomic_inc(&conf->r5c_flushing_full_stripes);
1388        raid5_release_stripe(sh);
1389}
1390
1391/*
1392 * if num == 0, flush all full stripes
1393 * if num > 0, flush all full stripes. If less than num full stripes are
1394 *             flushed, flush some partial stripes until totally num stripes are
1395 *             flushed or there is no more cached stripes.
1396 */
1397void r5c_flush_cache(struct r5conf *conf, int num)
1398{
1399        int count;
1400        struct stripe_head *sh, *next;
1401
1402        lockdep_assert_held(&conf->device_lock);
1403        if (!conf->log)
1404                return;
1405
1406        count = 0;
1407        list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1408                r5c_flush_stripe(conf, sh);
1409                count++;
1410        }
1411
1412        if (count >= num)
1413                return;
1414        list_for_each_entry_safe(sh, next,
1415                                 &conf->r5c_partial_stripe_list, lru) {
1416                r5c_flush_stripe(conf, sh);
1417                if (++count >= num)
1418                        break;
1419        }
1420}
1421
1422static void r5c_do_reclaim(struct r5conf *conf)
1423{
1424        struct r5l_log *log = conf->log;
1425        struct stripe_head *sh;
1426        int count = 0;
1427        unsigned long flags;
1428        int total_cached;
1429        int stripes_to_flush;
1430        int flushing_partial, flushing_full;
1431
1432        if (!r5c_is_writeback(log))
1433                return;
1434
1435        flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1436        flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1437        total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1438                atomic_read(&conf->r5c_cached_full_stripes) -
1439                flushing_full - flushing_partial;
1440
1441        if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1442            atomic_read(&conf->empty_inactive_list_nr) > 0)
1443                /*
1444                 * if stripe cache pressure high, flush all full stripes and
1445                 * some partial stripes
1446                 */
1447                stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1448        else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1449                 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1450                 R5C_FULL_STRIPE_FLUSH_BATCH(conf))
1451                /*
1452                 * if stripe cache pressure moderate, or if there is many full
1453                 * stripes,flush all full stripes
1454                 */
1455                stripes_to_flush = 0;
1456        else
1457                /* no need to flush */
1458                stripes_to_flush = -1;
1459
1460        if (stripes_to_flush >= 0) {
1461                spin_lock_irqsave(&conf->device_lock, flags);
1462                r5c_flush_cache(conf, stripes_to_flush);
1463                spin_unlock_irqrestore(&conf->device_lock, flags);
1464        }
1465
1466        /* if log space is tight, flush stripes on stripe_in_journal_list */
1467        if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1468                spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1469                spin_lock(&conf->device_lock);
1470                list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1471                        /*
1472                         * stripes on stripe_in_journal_list could be in any
1473                         * state of the stripe_cache state machine. In this
1474                         * case, we only want to flush stripe on
1475                         * r5c_cached_full/partial_stripes. The following
1476                         * condition makes sure the stripe is on one of the
1477                         * two lists.
1478                         */
1479                        if (!list_empty(&sh->lru) &&
1480                            !test_bit(STRIPE_HANDLE, &sh->state) &&
1481                            atomic_read(&sh->count) == 0) {
1482                                r5c_flush_stripe(conf, sh);
1483                                if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1484                                        break;
1485                        }
1486                }
1487                spin_unlock(&conf->device_lock);
1488                spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1489        }
1490
1491        if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1492                r5l_run_no_space_stripes(log);
1493
1494        md_wakeup_thread(conf->mddev->thread);
1495}
1496
1497static void r5l_do_reclaim(struct r5l_log *log)
1498{
1499        struct r5conf *conf = log->rdev->mddev->private;
1500        sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1501        sector_t reclaimable;
1502        sector_t next_checkpoint;
1503        bool write_super;
1504
1505        spin_lock_irq(&log->io_list_lock);
1506        write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1507                reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1508        /*
1509         * move proper io_unit to reclaim list. We should not change the order.
1510         * reclaimable/unreclaimable io_unit can be mixed in the list, we
1511         * shouldn't reuse space of an unreclaimable io_unit
1512         */
1513        while (1) {
1514                reclaimable = r5l_reclaimable_space(log);
1515                if (reclaimable >= reclaim_target ||
1516                    (list_empty(&log->running_ios) &&
1517                     list_empty(&log->io_end_ios) &&
1518                     list_empty(&log->flushing_ios) &&
1519                     list_empty(&log->finished_ios)))
1520                        break;
1521
1522                md_wakeup_thread(log->rdev->mddev->thread);
1523                wait_event_lock_irq(log->iounit_wait,
1524                                    r5l_reclaimable_space(log) > reclaimable,
1525                                    log->io_list_lock);
1526        }
1527
1528        next_checkpoint = r5c_calculate_new_cp(conf);
1529        spin_unlock_irq(&log->io_list_lock);
1530
1531        if (reclaimable == 0 || !write_super)
1532                return;
1533
1534        /*
1535         * write_super will flush cache of each raid disk. We must write super
1536         * here, because the log area might be reused soon and we don't want to
1537         * confuse recovery
1538         */
1539        r5l_write_super_and_discard_space(log, next_checkpoint);
1540
1541        mutex_lock(&log->io_mutex);
1542        log->last_checkpoint = next_checkpoint;
1543        r5c_update_log_state(log);
1544        mutex_unlock(&log->io_mutex);
1545
1546        r5l_run_no_space_stripes(log);
1547}
1548
1549static void r5l_reclaim_thread(struct md_thread *thread)
1550{
1551        struct mddev *mddev = thread->mddev;
1552        struct r5conf *conf = mddev->private;
1553        struct r5l_log *log = conf->log;
1554
1555        if (!log)
1556                return;
1557        r5c_do_reclaim(conf);
1558        r5l_do_reclaim(log);
1559}
1560
1561void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1562{
1563        unsigned long target;
1564        unsigned long new = (unsigned long)space; /* overflow in theory */
1565
1566        if (!log)
1567                return;
1568        do {
1569                target = log->reclaim_target;
1570                if (new < target)
1571                        return;
1572        } while (cmpxchg(&log->reclaim_target, target, new) != target);
1573        md_wakeup_thread(log->reclaim_thread);
1574}
1575
1576void r5l_quiesce(struct r5l_log *log, int quiesce)
1577{
1578        struct mddev *mddev;
1579
1580        if (quiesce) {
1581                /* make sure r5l_write_super_and_discard_space exits */
1582                mddev = log->rdev->mddev;
1583                wake_up(&mddev->sb_wait);
1584                kthread_park(log->reclaim_thread->tsk);
1585                r5l_wake_reclaim(log, MaxSector);
1586                r5l_do_reclaim(log);
1587        } else
1588                kthread_unpark(log->reclaim_thread->tsk);
1589}
1590
1591bool r5l_log_disk_error(struct r5conf *conf)
1592{
1593        struct r5l_log *log;
1594        bool ret;
1595        /* don't allow write if journal disk is missing */
1596        rcu_read_lock();
1597        log = rcu_dereference(conf->log);
1598
1599        if (!log)
1600                ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1601        else
1602                ret = test_bit(Faulty, &log->rdev->flags);
1603        rcu_read_unlock();
1604        return ret;
1605}
1606
1607#define R5L_RECOVERY_PAGE_POOL_SIZE 256
1608
1609struct r5l_recovery_ctx {
1610        struct page *meta_page;         /* current meta */
1611        sector_t meta_total_blocks;     /* total size of current meta and data */
1612        sector_t pos;                   /* recovery position */
1613        u64 seq;                        /* recovery position seq */
1614        int data_parity_stripes;        /* number of data_parity stripes */
1615        int data_only_stripes;          /* number of data_only stripes */
1616        struct list_head cached_list;
1617
1618        /*
1619         * read ahead page pool (ra_pool)
1620         * in recovery, log is read sequentially. It is not efficient to
1621         * read every page with sync_page_io(). The read ahead page pool
1622         * reads multiple pages with one IO, so further log read can
1623         * just copy data from the pool.
1624         */
1625        struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1626        sector_t pool_offset;   /* offset of first page in the pool */
1627        int total_pages;        /* total allocated pages */
1628        int valid_pages;        /* pages with valid data */
1629        struct bio *ra_bio;     /* bio to do the read ahead */
1630};
1631
1632static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1633                                            struct r5l_recovery_ctx *ctx)
1634{
1635        struct page *page;
1636
1637        ctx->ra_bio = bio_alloc_bioset(GFP_KERNEL, BIO_MAX_VECS, &log->bs);
1638        if (!ctx->ra_bio)
1639                return -ENOMEM;
1640
1641        ctx->valid_pages = 0;
1642        ctx->total_pages = 0;
1643        while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1644                page = alloc_page(GFP_KERNEL);
1645
1646                if (!page)
1647                        break;
1648                ctx->ra_pool[ctx->total_pages] = page;
1649                ctx->total_pages += 1;
1650        }
1651
1652        if (ctx->total_pages == 0) {
1653                bio_put(ctx->ra_bio);
1654                return -ENOMEM;
1655        }
1656
1657        ctx->pool_offset = 0;
1658        return 0;
1659}
1660
1661static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1662                                        struct r5l_recovery_ctx *ctx)
1663{
1664        int i;
1665
1666        for (i = 0; i < ctx->total_pages; ++i)
1667                put_page(ctx->ra_pool[i]);
1668        bio_put(ctx->ra_bio);
1669}
1670
1671/*
1672 * fetch ctx->valid_pages pages from offset
1673 * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1674 * However, if the offset is close to the end of the journal device,
1675 * ctx->valid_pages could be smaller than ctx->total_pages
1676 */
1677static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1678                                      struct r5l_recovery_ctx *ctx,
1679                                      sector_t offset)
1680{
1681        bio_reset(ctx->ra_bio);
1682        bio_set_dev(ctx->ra_bio, log->rdev->bdev);
1683        bio_set_op_attrs(ctx->ra_bio, REQ_OP_READ, 0);
1684        ctx->ra_bio->bi_iter.bi_sector = log->rdev->data_offset + offset;
1685
1686        ctx->valid_pages = 0;
1687        ctx->pool_offset = offset;
1688
1689        while (ctx->valid_pages < ctx->total_pages) {
1690                bio_add_page(ctx->ra_bio,
1691                             ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 0);
1692                ctx->valid_pages += 1;
1693
1694                offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1695
1696                if (offset == 0)  /* reached end of the device */
1697                        break;
1698        }
1699
1700        return submit_bio_wait(ctx->ra_bio);
1701}
1702
1703/*
1704 * try read a page from the read ahead page pool, if the page is not in the
1705 * pool, call r5l_recovery_fetch_ra_pool
1706 */
1707static int r5l_recovery_read_page(struct r5l_log *log,
1708                                  struct r5l_recovery_ctx *ctx,
1709                                  struct page *page,
1710                                  sector_t offset)
1711{
1712        int ret;
1713
1714        if (offset < ctx->pool_offset ||
1715            offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1716                ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1717                if (ret)
1718                        return ret;
1719        }
1720
1721        BUG_ON(offset < ctx->pool_offset ||
1722               offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1723
1724        memcpy(page_address(page),
1725               page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1726                                         BLOCK_SECTOR_SHIFT]),
1727               PAGE_SIZE);
1728        return 0;
1729}
1730
1731static int r5l_recovery_read_meta_block(struct r5l_log *log,
1732                                        struct r5l_recovery_ctx *ctx)
1733{
1734        struct page *page = ctx->meta_page;
1735        struct r5l_meta_block *mb;
1736        u32 crc, stored_crc;
1737        int ret;
1738
1739        ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1740        if (ret != 0)
1741                return ret;
1742
1743        mb = page_address(page);
1744        stored_crc = le32_to_cpu(mb->checksum);
1745        mb->checksum = 0;
1746
1747        if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1748            le64_to_cpu(mb->seq) != ctx->seq ||
1749            mb->version != R5LOG_VERSION ||
1750            le64_to_cpu(mb->position) != ctx->pos)
1751                return -EINVAL;
1752
1753        crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1754        if (stored_crc != crc)
1755                return -EINVAL;
1756
1757        if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1758                return -EINVAL;
1759
1760        ctx->meta_total_blocks = BLOCK_SECTORS;
1761
1762        return 0;
1763}
1764
1765static void
1766r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1767                                     struct page *page,
1768                                     sector_t pos, u64 seq)
1769{
1770        struct r5l_meta_block *mb;
1771
1772        mb = page_address(page);
1773        clear_page(mb);
1774        mb->magic = cpu_to_le32(R5LOG_MAGIC);
1775        mb->version = R5LOG_VERSION;
1776        mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1777        mb->seq = cpu_to_le64(seq);
1778        mb->position = cpu_to_le64(pos);
1779}
1780
1781static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1782                                          u64 seq)
1783{
1784        struct page *page;
1785        struct r5l_meta_block *mb;
1786
1787        page = alloc_page(GFP_KERNEL);
1788        if (!page)
1789                return -ENOMEM;
1790        r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1791        mb = page_address(page);
1792        mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1793                                             mb, PAGE_SIZE));
1794        if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
1795                          REQ_SYNC | REQ_FUA, false)) {
1796                __free_page(page);
1797                return -EIO;
1798        }
1799        __free_page(page);
1800        return 0;
1801}
1802
1803/*
1804 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1805 * to mark valid (potentially not flushed) data in the journal.
1806 *
1807 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1808 * so there should not be any mismatch here.
1809 */
1810static void r5l_recovery_load_data(struct r5l_log *log,
1811                                   struct stripe_head *sh,
1812                                   struct r5l_recovery_ctx *ctx,
1813                                   struct r5l_payload_data_parity *payload,
1814                                   sector_t log_offset)
1815{
1816        struct mddev *mddev = log->rdev->mddev;
1817        struct r5conf *conf = mddev->private;
1818        int dd_idx;
1819
1820        raid5_compute_sector(conf,
1821                             le64_to_cpu(payload->location), 0,
1822                             &dd_idx, sh);
1823        r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
1824        sh->dev[dd_idx].log_checksum =
1825                le32_to_cpu(payload->checksum[0]);
1826        ctx->meta_total_blocks += BLOCK_SECTORS;
1827
1828        set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1829        set_bit(STRIPE_R5C_CACHING, &sh->state);
1830}
1831
1832static void r5l_recovery_load_parity(struct r5l_log *log,
1833                                     struct stripe_head *sh,
1834                                     struct r5l_recovery_ctx *ctx,
1835                                     struct r5l_payload_data_parity *payload,
1836                                     sector_t log_offset)
1837{
1838        struct mddev *mddev = log->rdev->mddev;
1839        struct r5conf *conf = mddev->private;
1840
1841        ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1842        r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
1843        sh->dev[sh->pd_idx].log_checksum =
1844                le32_to_cpu(payload->checksum[0]);
1845        set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1846
1847        if (sh->qd_idx >= 0) {
1848                r5l_recovery_read_page(
1849                        log, ctx, sh->dev[sh->qd_idx].page,
1850                        r5l_ring_add(log, log_offset, BLOCK_SECTORS));
1851                sh->dev[sh->qd_idx].log_checksum =
1852                        le32_to_cpu(payload->checksum[1]);
1853                set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1854        }
1855        clear_bit(STRIPE_R5C_CACHING, &sh->state);
1856}
1857
1858static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1859{
1860        int i;
1861
1862        sh->state = 0;
1863        sh->log_start = MaxSector;
1864        for (i = sh->disks; i--; )
1865                sh->dev[i].flags = 0;
1866}
1867
1868static void
1869r5l_recovery_replay_one_stripe(struct r5conf *conf,
1870                               struct stripe_head *sh,
1871                               struct r5l_recovery_ctx *ctx)
1872{
1873        struct md_rdev *rdev, *rrdev;
1874        int disk_index;
1875        int data_count = 0;
1876
1877        for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1878                if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1879                        continue;
1880                if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1881                        continue;
1882                data_count++;
1883        }
1884
1885        /*
1886         * stripes that only have parity must have been flushed
1887         * before the crash that we are now recovering from, so
1888         * there is nothing more to recovery.
1889         */
1890        if (data_count == 0)
1891                goto out;
1892
1893        for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1894                if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1895                        continue;
1896
1897                /* in case device is broken */
1898                rcu_read_lock();
1899                rdev = rcu_dereference(conf->disks[disk_index].rdev);
1900                if (rdev) {
1901                        atomic_inc(&rdev->nr_pending);
1902                        rcu_read_unlock();
1903                        sync_page_io(rdev, sh->sector, PAGE_SIZE,
1904                                     sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1905                                     false);
1906                        rdev_dec_pending(rdev, rdev->mddev);
1907                        rcu_read_lock();
1908                }
1909                rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1910                if (rrdev) {
1911                        atomic_inc(&rrdev->nr_pending);
1912                        rcu_read_unlock();
1913                        sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1914                                     sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1915                                     false);
1916                        rdev_dec_pending(rrdev, rrdev->mddev);
1917                        rcu_read_lock();
1918                }
1919                rcu_read_unlock();
1920        }
1921        ctx->data_parity_stripes++;
1922out:
1923        r5l_recovery_reset_stripe(sh);
1924}
1925
1926static struct stripe_head *
1927r5c_recovery_alloc_stripe(
1928                struct r5conf *conf,
1929                sector_t stripe_sect,
1930                int noblock)
1931{
1932        struct stripe_head *sh;
1933
1934        sh = raid5_get_active_stripe(conf, stripe_sect, 0, noblock, 0);
1935        if (!sh)
1936                return NULL;  /* no more stripe available */
1937
1938        r5l_recovery_reset_stripe(sh);
1939
1940        return sh;
1941}
1942
1943static struct stripe_head *
1944r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1945{
1946        struct stripe_head *sh;
1947
1948        list_for_each_entry(sh, list, lru)
1949                if (sh->sector == sect)
1950                        return sh;
1951        return NULL;
1952}
1953
1954static void
1955r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1956                          struct r5l_recovery_ctx *ctx)
1957{
1958        struct stripe_head *sh, *next;
1959
1960        list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1961                r5l_recovery_reset_stripe(sh);
1962                list_del_init(&sh->lru);
1963                raid5_release_stripe(sh);
1964        }
1965}
1966
1967static void
1968r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1969                            struct r5l_recovery_ctx *ctx)
1970{
1971        struct stripe_head *sh, *next;
1972
1973        list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1974                if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1975                        r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1976                        list_del_init(&sh->lru);
1977                        raid5_release_stripe(sh);
1978                }
1979}
1980
1981/* if matches return 0; otherwise return -EINVAL */
1982static int
1983r5l_recovery_verify_data_checksum(struct r5l_log *log,
1984                                  struct r5l_recovery_ctx *ctx,
1985                                  struct page *page,
1986                                  sector_t log_offset, __le32 log_checksum)
1987{
1988        void *addr;
1989        u32 checksum;
1990
1991        r5l_recovery_read_page(log, ctx, page, log_offset);
1992        addr = kmap_atomic(page);
1993        checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1994        kunmap_atomic(addr);
1995        return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1996}
1997
1998/*
1999 * before loading data to stripe cache, we need verify checksum for all data,
2000 * if there is mismatch for any data page, we drop all data in the mata block
2001 */
2002static int
2003r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
2004                                         struct r5l_recovery_ctx *ctx)
2005{
2006        struct mddev *mddev = log->rdev->mddev;
2007        struct r5conf *conf = mddev->private;
2008        struct r5l_meta_block *mb = page_address(ctx->meta_page);
2009        sector_t mb_offset = sizeof(struct r5l_meta_block);
2010        sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2011        struct page *page;
2012        struct r5l_payload_data_parity *payload;
2013        struct r5l_payload_flush *payload_flush;
2014
2015        page = alloc_page(GFP_KERNEL);
2016        if (!page)
2017                return -ENOMEM;
2018
2019        while (mb_offset < le32_to_cpu(mb->meta_size)) {
2020                payload = (void *)mb + mb_offset;
2021                payload_flush = (void *)mb + mb_offset;
2022
2023                if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2024                        if (r5l_recovery_verify_data_checksum(
2025                                    log, ctx, page, log_offset,
2026                                    payload->checksum[0]) < 0)
2027                                goto mismatch;
2028                } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
2029                        if (r5l_recovery_verify_data_checksum(
2030                                    log, ctx, page, log_offset,
2031                                    payload->checksum[0]) < 0)
2032                                goto mismatch;
2033                        if (conf->max_degraded == 2 && /* q for RAID 6 */
2034                            r5l_recovery_verify_data_checksum(
2035                                    log, ctx, page,
2036                                    r5l_ring_add(log, log_offset,
2037                                                 BLOCK_SECTORS),
2038                                    payload->checksum[1]) < 0)
2039                                goto mismatch;
2040                } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2041                        /* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2042                } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2043                        goto mismatch;
2044
2045                if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2046                        mb_offset += sizeof(struct r5l_payload_flush) +
2047                                le32_to_cpu(payload_flush->size);
2048                } else {
2049                        /* DATA or PARITY payload */
2050                        log_offset = r5l_ring_add(log, log_offset,
2051                                                  le32_to_cpu(payload->size));
2052                        mb_offset += sizeof(struct r5l_payload_data_parity) +
2053                                sizeof(__le32) *
2054                                (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2055                }
2056
2057        }
2058
2059        put_page(page);
2060        return 0;
2061
2062mismatch:
2063        put_page(page);
2064        return -EINVAL;
2065}
2066
2067/*
2068 * Analyze all data/parity pages in one meta block
2069 * Returns:
2070 * 0 for success
2071 * -EINVAL for unknown playload type
2072 * -EAGAIN for checksum mismatch of data page
2073 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2074 */
2075static int
2076r5c_recovery_analyze_meta_block(struct r5l_log *log,
2077                                struct r5l_recovery_ctx *ctx,
2078                                struct list_head *cached_stripe_list)
2079{
2080        struct mddev *mddev = log->rdev->mddev;
2081        struct r5conf *conf = mddev->private;
2082        struct r5l_meta_block *mb;
2083        struct r5l_payload_data_parity *payload;
2084        struct r5l_payload_flush *payload_flush;
2085        int mb_offset;
2086        sector_t log_offset;
2087        sector_t stripe_sect;
2088        struct stripe_head *sh;
2089        int ret;
2090
2091        /*
2092         * for mismatch in data blocks, we will drop all data in this mb, but
2093         * we will still read next mb for other data with FLUSH flag, as
2094         * io_unit could finish out of order.
2095         */
2096        ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2097        if (ret == -EINVAL)
2098                return -EAGAIN;
2099        else if (ret)
2100                return ret;   /* -ENOMEM duo to alloc_page() failed */
2101
2102        mb = page_address(ctx->meta_page);
2103        mb_offset = sizeof(struct r5l_meta_block);
2104        log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2105
2106        while (mb_offset < le32_to_cpu(mb->meta_size)) {
2107                int dd;
2108
2109                payload = (void *)mb + mb_offset;
2110                payload_flush = (void *)mb + mb_offset;
2111
2112                if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2113                        int i, count;
2114
2115                        count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2116                        for (i = 0; i < count; ++i) {
2117                                stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2118                                sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2119                                                                stripe_sect);
2120                                if (sh) {
2121                                        WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2122                                        r5l_recovery_reset_stripe(sh);
2123                                        list_del_init(&sh->lru);
2124                                        raid5_release_stripe(sh);
2125                                }
2126                        }
2127
2128                        mb_offset += sizeof(struct r5l_payload_flush) +
2129                                le32_to_cpu(payload_flush->size);
2130                        continue;
2131                }
2132
2133                /* DATA or PARITY payload */
2134                stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
2135                        raid5_compute_sector(
2136                                conf, le64_to_cpu(payload->location), 0, &dd,
2137                                NULL)
2138                        : le64_to_cpu(payload->location);
2139
2140                sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2141                                                stripe_sect);
2142
2143                if (!sh) {
2144                        sh = r5c_recovery_alloc_stripe(conf, stripe_sect, 1);
2145                        /*
2146                         * cannot get stripe from raid5_get_active_stripe
2147                         * try replay some stripes
2148                         */
2149                        if (!sh) {
2150                                r5c_recovery_replay_stripes(
2151                                        cached_stripe_list, ctx);
2152                                sh = r5c_recovery_alloc_stripe(
2153                                        conf, stripe_sect, 1);
2154                        }
2155                        if (!sh) {
2156                                int new_size = conf->min_nr_stripes * 2;
2157                                pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2158                                        mdname(mddev),
2159                                        new_size);
2160                                ret = raid5_set_cache_size(mddev, new_size);
2161                                if (conf->min_nr_stripes <= new_size / 2) {
2162                                        pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n",
2163                                                mdname(mddev),
2164                                                ret,
2165                                                new_size,
2166                                                conf->min_nr_stripes,
2167                                                conf->max_nr_stripes);
2168                                        return -ENOMEM;
2169                                }
2170                                sh = r5c_recovery_alloc_stripe(
2171                                        conf, stripe_sect, 0);
2172                        }
2173                        if (!sh) {
2174                                pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2175                                        mdname(mddev));
2176                                return -ENOMEM;
2177                        }
2178                        list_add_tail(&sh->lru, cached_stripe_list);
2179                }
2180
2181                if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2182                        if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2183                            test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
2184                                r5l_recovery_replay_one_stripe(conf, sh, ctx);
2185                                list_move_tail(&sh->lru, cached_stripe_list);
2186                        }
2187                        r5l_recovery_load_data(log, sh, ctx, payload,
2188                                               log_offset);
2189                } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
2190                        r5l_recovery_load_parity(log, sh, ctx, payload,
2191                                                 log_offset);
2192                else
2193                        return -EINVAL;
2194
2195                log_offset = r5l_ring_add(log, log_offset,
2196                                          le32_to_cpu(payload->size));
2197
2198                mb_offset += sizeof(struct r5l_payload_data_parity) +
2199                        sizeof(__le32) *
2200                        (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2201        }
2202
2203        return 0;
2204}
2205
2206/*
2207 * Load the stripe into cache. The stripe will be written out later by
2208 * the stripe cache state machine.
2209 */
2210static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2211                                         struct stripe_head *sh)
2212{
2213        struct r5dev *dev;
2214        int i;
2215
2216        for (i = sh->disks; i--; ) {
2217                dev = sh->dev + i;
2218                if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2219                        set_bit(R5_InJournal, &dev->flags);
2220                        set_bit(R5_UPTODATE, &dev->flags);
2221                }
2222        }
2223}
2224
2225/*
2226 * Scan through the log for all to-be-flushed data
2227 *
2228 * For stripes with data and parity, namely Data-Parity stripe
2229 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2230 *
2231 * For stripes with only data, namely Data-Only stripe
2232 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2233 *
2234 * For a stripe, if we see data after parity, we should discard all previous
2235 * data and parity for this stripe, as these data are already flushed to
2236 * the array.
2237 *
2238 * At the end of the scan, we return the new journal_tail, which points to
2239 * first data-only stripe on the journal device, or next invalid meta block.
2240 */
2241static int r5c_recovery_flush_log(struct r5l_log *log,
2242                                  struct r5l_recovery_ctx *ctx)
2243{
2244        struct stripe_head *sh;
2245        int ret = 0;
2246
2247        /* scan through the log */
2248        while (1) {
2249                if (r5l_recovery_read_meta_block(log, ctx))
2250                        break;
2251
2252                ret = r5c_recovery_analyze_meta_block(log, ctx,
2253                                                      &ctx->cached_list);
2254                /*
2255                 * -EAGAIN means mismatch in data block, in this case, we still
2256                 * try scan the next metablock
2257                 */
2258                if (ret && ret != -EAGAIN)
2259                        break;   /* ret == -EINVAL or -ENOMEM */
2260                ctx->seq++;
2261                ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2262        }
2263
2264        if (ret == -ENOMEM) {
2265                r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2266                return ret;
2267        }
2268
2269        /* replay data-parity stripes */
2270        r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2271
2272        /* load data-only stripes to stripe cache */
2273        list_for_each_entry(sh, &ctx->cached_list, lru) {
2274                WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2275                r5c_recovery_load_one_stripe(log, sh);
2276                ctx->data_only_stripes++;
2277        }
2278
2279        return 0;
2280}
2281
2282/*
2283 * we did a recovery. Now ctx.pos points to an invalid meta block. New
2284 * log will start here. but we can't let superblock point to last valid
2285 * meta block. The log might looks like:
2286 * | meta 1| meta 2| meta 3|
2287 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2288 * superblock points to meta 1, we write a new valid meta 2n.  if crash
2289 * happens again, new recovery will start from meta 1. Since meta 2n is
2290 * valid now, recovery will think meta 3 is valid, which is wrong.
2291 * The solution is we create a new meta in meta2 with its seq == meta
2292 * 1's seq + 10000 and let superblock points to meta2. The same recovery
2293 * will not think meta 3 is a valid meta, because its seq doesn't match
2294 */
2295
2296/*
2297 * Before recovery, the log looks like the following
2298 *
2299 *   ---------------------------------------------
2300 *   |           valid log        | invalid log  |
2301 *   ---------------------------------------------
2302 *   ^
2303 *   |- log->last_checkpoint
2304 *   |- log->last_cp_seq
2305 *
2306 * Now we scan through the log until we see invalid entry
2307 *
2308 *   ---------------------------------------------
2309 *   |           valid log        | invalid log  |
2310 *   ---------------------------------------------
2311 *   ^                            ^
2312 *   |- log->last_checkpoint      |- ctx->pos
2313 *   |- log->last_cp_seq          |- ctx->seq
2314 *
2315 * From this point, we need to increase seq number by 10 to avoid
2316 * confusing next recovery.
2317 *
2318 *   ---------------------------------------------
2319 *   |           valid log        | invalid log  |
2320 *   ---------------------------------------------
2321 *   ^                              ^
2322 *   |- log->last_checkpoint        |- ctx->pos+1
2323 *   |- log->last_cp_seq            |- ctx->seq+10001
2324 *
2325 * However, it is not safe to start the state machine yet, because data only
2326 * parities are not yet secured in RAID. To save these data only parities, we
2327 * rewrite them from seq+11.
2328 *
2329 *   -----------------------------------------------------------------
2330 *   |           valid log        | data only stripes | invalid log  |
2331 *   -----------------------------------------------------------------
2332 *   ^                                                ^
2333 *   |- log->last_checkpoint                          |- ctx->pos+n
2334 *   |- log->last_cp_seq                              |- ctx->seq+10000+n
2335 *
2336 * If failure happens again during this process, the recovery can safe start
2337 * again from log->last_checkpoint.
2338 *
2339 * Once data only stripes are rewritten to journal, we move log_tail
2340 *
2341 *   -----------------------------------------------------------------
2342 *   |     old log        |    data only stripes    | invalid log  |
2343 *   -----------------------------------------------------------------
2344 *                        ^                         ^
2345 *                        |- log->last_checkpoint   |- ctx->pos+n
2346 *                        |- log->last_cp_seq       |- ctx->seq+10000+n
2347 *
2348 * Then we can safely start the state machine. If failure happens from this
2349 * point on, the recovery will start from new log->last_checkpoint.
2350 */
2351static int
2352r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2353                                       struct r5l_recovery_ctx *ctx)
2354{
2355        struct stripe_head *sh;
2356        struct mddev *mddev = log->rdev->mddev;
2357        struct page *page;
2358        sector_t next_checkpoint = MaxSector;
2359
2360        page = alloc_page(GFP_KERNEL);
2361        if (!page) {
2362                pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2363                       mdname(mddev));
2364                return -ENOMEM;
2365        }
2366
2367        WARN_ON(list_empty(&ctx->cached_list));
2368
2369        list_for_each_entry(sh, &ctx->cached_list, lru) {
2370                struct r5l_meta_block *mb;
2371                int i;
2372                int offset;
2373                sector_t write_pos;
2374
2375                WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2376                r5l_recovery_create_empty_meta_block(log, page,
2377                                                     ctx->pos, ctx->seq);
2378                mb = page_address(page);
2379                offset = le32_to_cpu(mb->meta_size);
2380                write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2381
2382                for (i = sh->disks; i--; ) {
2383                        struct r5dev *dev = &sh->dev[i];
2384                        struct r5l_payload_data_parity *payload;
2385                        void *addr;
2386
2387                        if (test_bit(R5_InJournal, &dev->flags)) {
2388                                payload = (void *)mb + offset;
2389                                payload->header.type = cpu_to_le16(
2390                                        R5LOG_PAYLOAD_DATA);
2391                                payload->size = cpu_to_le32(BLOCK_SECTORS);
2392                                payload->location = cpu_to_le64(
2393                                        raid5_compute_blocknr(sh, i, 0));
2394                                addr = kmap_atomic(dev->page);
2395                                payload->checksum[0] = cpu_to_le32(
2396                                        crc32c_le(log->uuid_checksum, addr,
2397                                                  PAGE_SIZE));
2398                                kunmap_atomic(addr);
2399                                sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2400                                             dev->page, REQ_OP_WRITE, 0, false);
2401                                write_pos = r5l_ring_add(log, write_pos,
2402                                                         BLOCK_SECTORS);
2403                                offset += sizeof(__le32) +
2404                                        sizeof(struct r5l_payload_data_parity);
2405
2406                        }
2407                }
2408                mb->meta_size = cpu_to_le32(offset);
2409                mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2410                                                     mb, PAGE_SIZE));
2411                sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2412                             REQ_OP_WRITE, REQ_SYNC | REQ_FUA, false);
2413                sh->log_start = ctx->pos;
2414                list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2415                atomic_inc(&log->stripe_in_journal_count);
2416                ctx->pos = write_pos;
2417                ctx->seq += 1;
2418                next_checkpoint = sh->log_start;
2419        }
2420        log->next_checkpoint = next_checkpoint;
2421        __free_page(page);
2422        return 0;
2423}
2424
2425static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2426                                                 struct r5l_recovery_ctx *ctx)
2427{
2428        struct mddev *mddev = log->rdev->mddev;
2429        struct r5conf *conf = mddev->private;
2430        struct stripe_head *sh, *next;
2431        bool cleared_pending = false;
2432
2433        if (ctx->data_only_stripes == 0)
2434                return;
2435
2436        if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2437                cleared_pending = true;
2438                clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2439        }
2440        log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2441
2442        list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2443                r5c_make_stripe_write_out(sh);
2444                set_bit(STRIPE_HANDLE, &sh->state);
2445                list_del_init(&sh->lru);
2446                raid5_release_stripe(sh);
2447        }
2448
2449        /* reuse conf->wait_for_quiescent in recovery */
2450        wait_event(conf->wait_for_quiescent,
2451                   atomic_read(&conf->active_stripes) == 0);
2452
2453        log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2454        if (cleared_pending)
2455                set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2456}
2457
2458static int r5l_recovery_log(struct r5l_log *log)
2459{
2460        struct mddev *mddev = log->rdev->mddev;
2461        struct r5l_recovery_ctx *ctx;
2462        int ret;
2463        sector_t pos;
2464
2465        ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2466        if (!ctx)
2467                return -ENOMEM;
2468
2469        ctx->pos = log->last_checkpoint;
2470        ctx->seq = log->last_cp_seq;
2471        INIT_LIST_HEAD(&ctx->cached_list);
2472        ctx->meta_page = alloc_page(GFP_KERNEL);
2473
2474        if (!ctx->meta_page) {
2475                ret =  -ENOMEM;
2476                goto meta_page;
2477        }
2478
2479        if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2480                ret = -ENOMEM;
2481                goto ra_pool;
2482        }
2483
2484        ret = r5c_recovery_flush_log(log, ctx);
2485
2486        if (ret)
2487                goto error;
2488
2489        pos = ctx->pos;
2490        ctx->seq += 10000;
2491
2492        if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
2493                pr_info("md/raid:%s: starting from clean shutdown\n",
2494                         mdname(mddev));
2495        else
2496                pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2497                         mdname(mddev), ctx->data_only_stripes,
2498                         ctx->data_parity_stripes);
2499
2500        if (ctx->data_only_stripes == 0) {
2501                log->next_checkpoint = ctx->pos;
2502                r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2503                ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2504        } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
2505                pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2506                       mdname(mddev));
2507                ret =  -EIO;
2508                goto error;
2509        }
2510
2511        log->log_start = ctx->pos;
2512        log->seq = ctx->seq;
2513        log->last_checkpoint = pos;
2514        r5l_write_super(log, pos);
2515
2516        r5c_recovery_flush_data_only_stripes(log, ctx);
2517        ret = 0;
2518error:
2519        r5l_recovery_free_ra_pool(log, ctx);
2520ra_pool:
2521        __free_page(ctx->meta_page);
2522meta_page:
2523        kfree(ctx);
2524        return ret;
2525}
2526
2527static void r5l_write_super(struct r5l_log *log, sector_t cp)
2528{
2529        struct mddev *mddev = log->rdev->mddev;
2530
2531        log->rdev->journal_tail = cp;
2532        set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2533}
2534
2535static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2536{
2537        struct r5conf *conf;
2538        int ret;
2539
2540        spin_lock(&mddev->lock);
2541        conf = mddev->private;
2542        if (!conf || !conf->log) {
2543                spin_unlock(&mddev->lock);
2544                return 0;
2545        }
2546
2547        switch (conf->log->r5c_journal_mode) {
2548        case R5C_JOURNAL_MODE_WRITE_THROUGH:
2549                ret = snprintf(
2550                        page, PAGE_SIZE, "[%s] %s\n",
2551                        r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2552                        r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2553                break;
2554        case R5C_JOURNAL_MODE_WRITE_BACK:
2555                ret = snprintf(
2556                        page, PAGE_SIZE, "%s [%s]\n",
2557                        r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2558                        r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2559                break;
2560        default:
2561                ret = 0;
2562        }
2563        spin_unlock(&mddev->lock);
2564        return ret;
2565}
2566
2567/*
2568 * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2569 *
2570 * @mode as defined in 'enum r5c_journal_mode'.
2571 *
2572 */
2573int r5c_journal_mode_set(struct mddev *mddev, int mode)
2574{
2575        struct r5conf *conf;
2576
2577        if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2578            mode > R5C_JOURNAL_MODE_WRITE_BACK)
2579                return -EINVAL;
2580
2581        conf = mddev->private;
2582        if (!conf || !conf->log)
2583                return -ENODEV;
2584
2585        if (raid5_calc_degraded(conf) > 0 &&
2586            mode == R5C_JOURNAL_MODE_WRITE_BACK)
2587                return -EINVAL;
2588
2589        mddev_suspend(mddev);
2590        conf->log->r5c_journal_mode = mode;
2591        mddev_resume(mddev);
2592
2593        pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2594                 mdname(mddev), mode, r5c_journal_mode_str[mode]);
2595        return 0;
2596}
2597EXPORT_SYMBOL(r5c_journal_mode_set);
2598
2599static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2600                                      const char *page, size_t length)
2601{
2602        int mode = ARRAY_SIZE(r5c_journal_mode_str);
2603        size_t len = length;
2604        int ret;
2605
2606        if (len < 2)
2607                return -EINVAL;
2608
2609        if (page[len - 1] == '\n')
2610                len--;
2611
2612        while (mode--)
2613                if (strlen(r5c_journal_mode_str[mode]) == len &&
2614                    !strncmp(page, r5c_journal_mode_str[mode], len))
2615                        break;
2616        ret = mddev_lock(mddev);
2617        if (ret)
2618                return ret;
2619        ret = r5c_journal_mode_set(mddev, mode);
2620        mddev_unlock(mddev);
2621        return ret ?: length;
2622}
2623
2624struct md_sysfs_entry
2625r5c_journal_mode = __ATTR(journal_mode, 0644,
2626                          r5c_journal_mode_show, r5c_journal_mode_store);
2627
2628/*
2629 * Try handle write operation in caching phase. This function should only
2630 * be called in write-back mode.
2631 *
2632 * If all outstanding writes can be handled in caching phase, returns 0
2633 * If writes requires write-out phase, call r5c_make_stripe_write_out()
2634 * and returns -EAGAIN
2635 */
2636int r5c_try_caching_write(struct r5conf *conf,
2637                          struct stripe_head *sh,
2638                          struct stripe_head_state *s,
2639                          int disks)
2640{
2641        struct r5l_log *log = conf->log;
2642        int i;
2643        struct r5dev *dev;
2644        int to_cache = 0;
2645        void **pslot;
2646        sector_t tree_index;
2647        int ret;
2648        uintptr_t refcount;
2649
2650        BUG_ON(!r5c_is_writeback(log));
2651
2652        if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2653                /*
2654                 * There are two different scenarios here:
2655                 *  1. The stripe has some data cached, and it is sent to
2656                 *     write-out phase for reclaim
2657                 *  2. The stripe is clean, and this is the first write
2658                 *
2659                 * For 1, return -EAGAIN, so we continue with
2660                 * handle_stripe_dirtying().
2661                 *
2662                 * For 2, set STRIPE_R5C_CACHING and continue with caching
2663                 * write.
2664                 */
2665
2666                /* case 1: anything injournal or anything in written */
2667                if (s->injournal > 0 || s->written > 0)
2668                        return -EAGAIN;
2669                /* case 2 */
2670                set_bit(STRIPE_R5C_CACHING, &sh->state);
2671        }
2672
2673        /*
2674         * When run in degraded mode, array is set to write-through mode.
2675         * This check helps drain pending write safely in the transition to
2676         * write-through mode.
2677         *
2678         * When a stripe is syncing, the write is also handled in write
2679         * through mode.
2680         */
2681        if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) {
2682                r5c_make_stripe_write_out(sh);
2683                return -EAGAIN;
2684        }
2685
2686        for (i = disks; i--; ) {
2687                dev = &sh->dev[i];
2688                /* if non-overwrite, use writing-out phase */
2689                if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2690                    !test_bit(R5_InJournal, &dev->flags)) {
2691                        r5c_make_stripe_write_out(sh);
2692                        return -EAGAIN;
2693                }
2694        }
2695
2696        /* if the stripe is not counted in big_stripe_tree, add it now */
2697        if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2698            !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2699                tree_index = r5c_tree_index(conf, sh->sector);
2700                spin_lock(&log->tree_lock);
2701                pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2702                                               tree_index);
2703                if (pslot) {
2704                        refcount = (uintptr_t)radix_tree_deref_slot_protected(
2705                                pslot, &log->tree_lock) >>
2706                                R5C_RADIX_COUNT_SHIFT;
2707                        radix_tree_replace_slot(
2708                                &log->big_stripe_tree, pslot,
2709                                (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2710                } else {
2711                        /*
2712                         * this radix_tree_insert can fail safely, so no
2713                         * need to call radix_tree_preload()
2714                         */
2715                        ret = radix_tree_insert(
2716                                &log->big_stripe_tree, tree_index,
2717                                (void *)(1 << R5C_RADIX_COUNT_SHIFT));
2718                        if (ret) {
2719                                spin_unlock(&log->tree_lock);
2720                                r5c_make_stripe_write_out(sh);
2721                                return -EAGAIN;
2722                        }
2723                }
2724                spin_unlock(&log->tree_lock);
2725
2726                /*
2727                 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2728                 * counted in the radix tree
2729                 */
2730                set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2731                atomic_inc(&conf->r5c_cached_partial_stripes);
2732        }
2733
2734        for (i = disks; i--; ) {
2735                dev = &sh->dev[i];
2736                if (dev->towrite) {
2737                        set_bit(R5_Wantwrite, &dev->flags);
2738                        set_bit(R5_Wantdrain, &dev->flags);
2739                        set_bit(R5_LOCKED, &dev->flags);
2740                        to_cache++;
2741                }
2742        }
2743
2744        if (to_cache) {
2745                set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2746                /*
2747                 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2748                 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2749                 * r5c_handle_data_cached()
2750                 */
2751                set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2752        }
2753
2754        return 0;
2755}
2756
2757/*
2758 * free extra pages (orig_page) we allocated for prexor
2759 */
2760void r5c_release_extra_page(struct stripe_head *sh)
2761{
2762        struct r5conf *conf = sh->raid_conf;
2763        int i;
2764        bool using_disk_info_extra_page;
2765
2766        using_disk_info_extra_page =
2767                sh->dev[0].orig_page == conf->disks[0].extra_page;
2768
2769        for (i = sh->disks; i--; )
2770                if (sh->dev[i].page != sh->dev[i].orig_page) {
2771                        struct page *p = sh->dev[i].orig_page;
2772
2773                        sh->dev[i].orig_page = sh->dev[i].page;
2774                        clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2775
2776                        if (!using_disk_info_extra_page)
2777                                put_page(p);
2778                }
2779
2780        if (using_disk_info_extra_page) {
2781                clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2782                md_wakeup_thread(conf->mddev->thread);
2783        }
2784}
2785
2786void r5c_use_extra_page(struct stripe_head *sh)
2787{
2788        struct r5conf *conf = sh->raid_conf;
2789        int i;
2790        struct r5dev *dev;
2791
2792        for (i = sh->disks; i--; ) {
2793                dev = &sh->dev[i];
2794                if (dev->orig_page != dev->page)
2795                        put_page(dev->orig_page);
2796                dev->orig_page = conf->disks[i].extra_page;
2797        }
2798}
2799
2800/*
2801 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2802 * stripe is committed to RAID disks.
2803 */
2804void r5c_finish_stripe_write_out(struct r5conf *conf,
2805                                 struct stripe_head *sh,
2806                                 struct stripe_head_state *s)
2807{
2808        struct r5l_log *log = conf->log;
2809        int i;
2810        int do_wakeup = 0;
2811        sector_t tree_index;
2812        void **pslot;
2813        uintptr_t refcount;
2814
2815        if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2816                return;
2817
2818        WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2819        clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2820
2821        if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2822                return;
2823
2824        for (i = sh->disks; i--; ) {
2825                clear_bit(R5_InJournal, &sh->dev[i].flags);
2826                if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2827                        do_wakeup = 1;
2828        }
2829
2830        /*
2831         * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2832         * We updated R5_InJournal, so we also update s->injournal.
2833         */
2834        s->injournal = 0;
2835
2836        if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2837                if (atomic_dec_and_test(&conf->pending_full_writes))
2838                        md_wakeup_thread(conf->mddev->thread);
2839
2840        if (do_wakeup)
2841                wake_up(&conf->wait_for_overlap);
2842
2843        spin_lock_irq(&log->stripe_in_journal_lock);
2844        list_del_init(&sh->r5c);
2845        spin_unlock_irq(&log->stripe_in_journal_lock);
2846        sh->log_start = MaxSector;
2847
2848        atomic_dec(&log->stripe_in_journal_count);
2849        r5c_update_log_state(log);
2850
2851        /* stop counting this stripe in big_stripe_tree */
2852        if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2853            test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2854                tree_index = r5c_tree_index(conf, sh->sector);
2855                spin_lock(&log->tree_lock);
2856                pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2857                                               tree_index);
2858                BUG_ON(pslot == NULL);
2859                refcount = (uintptr_t)radix_tree_deref_slot_protected(
2860                        pslot, &log->tree_lock) >>
2861                        R5C_RADIX_COUNT_SHIFT;
2862                if (refcount == 1)
2863                        radix_tree_delete(&log->big_stripe_tree, tree_index);
2864                else
2865                        radix_tree_replace_slot(
2866                                &log->big_stripe_tree, pslot,
2867                                (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2868                spin_unlock(&log->tree_lock);
2869        }
2870
2871        if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2872                BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2873                atomic_dec(&conf->r5c_flushing_partial_stripes);
2874                atomic_dec(&conf->r5c_cached_partial_stripes);
2875        }
2876
2877        if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2878                BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2879                atomic_dec(&conf->r5c_flushing_full_stripes);
2880                atomic_dec(&conf->r5c_cached_full_stripes);
2881        }
2882
2883        r5l_append_flush_payload(log, sh->sector);
2884        /* stripe is flused to raid disks, we can do resync now */
2885        if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2886                set_bit(STRIPE_HANDLE, &sh->state);
2887}
2888
2889int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
2890{
2891        struct r5conf *conf = sh->raid_conf;
2892        int pages = 0;
2893        int reserve;
2894        int i;
2895        int ret = 0;
2896
2897        BUG_ON(!log);
2898
2899        for (i = 0; i < sh->disks; i++) {
2900                void *addr;
2901
2902                if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2903                        continue;
2904                addr = kmap_atomic(sh->dev[i].page);
2905                sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2906                                                    addr, PAGE_SIZE);
2907                kunmap_atomic(addr);
2908                pages++;
2909        }
2910        WARN_ON(pages == 0);
2911
2912        /*
2913         * The stripe must enter state machine again to call endio, so
2914         * don't delay.
2915         */
2916        clear_bit(STRIPE_DELAYED, &sh->state);
2917        atomic_inc(&sh->count);
2918
2919        mutex_lock(&log->io_mutex);
2920        /* meta + data */
2921        reserve = (1 + pages) << (PAGE_SHIFT - 9);
2922
2923        if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2924            sh->log_start == MaxSector)
2925                r5l_add_no_space_stripe(log, sh);
2926        else if (!r5l_has_free_space(log, reserve)) {
2927                if (sh->log_start == log->last_checkpoint)
2928                        BUG();
2929                else
2930                        r5l_add_no_space_stripe(log, sh);
2931        } else {
2932                ret = r5l_log_stripe(log, sh, pages, 0);
2933                if (ret) {
2934                        spin_lock_irq(&log->io_list_lock);
2935                        list_add_tail(&sh->log_list, &log->no_mem_stripes);
2936                        spin_unlock_irq(&log->io_list_lock);
2937                }
2938        }
2939
2940        mutex_unlock(&log->io_mutex);
2941        return 0;
2942}
2943
2944/* check whether this big stripe is in write back cache. */
2945bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2946{
2947        struct r5l_log *log = conf->log;
2948        sector_t tree_index;
2949        void *slot;
2950
2951        if (!log)
2952                return false;
2953
2954        WARN_ON_ONCE(!rcu_read_lock_held());
2955        tree_index = r5c_tree_index(conf, sect);
2956        slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2957        return slot != NULL;
2958}
2959
2960static int r5l_load_log(struct r5l_log *log)
2961{
2962        struct md_rdev *rdev = log->rdev;
2963        struct page *page;
2964        struct r5l_meta_block *mb;
2965        sector_t cp = log->rdev->journal_tail;
2966        u32 stored_crc, expected_crc;
2967        bool create_super = false;
2968        int ret = 0;
2969
2970        /* Make sure it's valid */
2971        if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2972                cp = 0;
2973        page = alloc_page(GFP_KERNEL);
2974        if (!page)
2975                return -ENOMEM;
2976
2977        if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
2978                ret = -EIO;
2979                goto ioerr;
2980        }
2981        mb = page_address(page);
2982
2983        if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2984            mb->version != R5LOG_VERSION) {
2985                create_super = true;
2986                goto create;
2987        }
2988        stored_crc = le32_to_cpu(mb->checksum);
2989        mb->checksum = 0;
2990        expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2991        if (stored_crc != expected_crc) {
2992                create_super = true;
2993                goto create;
2994        }
2995        if (le64_to_cpu(mb->position) != cp) {
2996                create_super = true;
2997                goto create;
2998        }
2999create:
3000        if (create_super) {
3001                log->last_cp_seq = prandom_u32();
3002                cp = 0;
3003                r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
3004                /*
3005                 * Make sure super points to correct address. Log might have
3006                 * data very soon. If super hasn't correct log tail address,
3007                 * recovery can't find the log
3008                 */
3009                r5l_write_super(log, cp);
3010        } else
3011                log->last_cp_seq = le64_to_cpu(mb->seq);
3012
3013        log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
3014        log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
3015        if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
3016                log->max_free_space = RECLAIM_MAX_FREE_SPACE;
3017        log->last_checkpoint = cp;
3018
3019        __free_page(page);
3020
3021        if (create_super) {
3022                log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
3023                log->seq = log->last_cp_seq + 1;
3024                log->next_checkpoint = cp;
3025        } else
3026                ret = r5l_recovery_log(log);
3027
3028        r5c_update_log_state(log);
3029        return ret;
3030ioerr:
3031        __free_page(page);
3032        return ret;
3033}
3034
3035int r5l_start(struct r5l_log *log)
3036{
3037        int ret;
3038
3039        if (!log)
3040                return 0;
3041
3042        ret = r5l_load_log(log);
3043        if (ret) {
3044                struct mddev *mddev = log->rdev->mddev;
3045                struct r5conf *conf = mddev->private;
3046
3047                r5l_exit_log(conf);
3048        }
3049        return ret;
3050}
3051
3052void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev)
3053{
3054        struct r5conf *conf = mddev->private;
3055        struct r5l_log *log = conf->log;
3056
3057        if (!log)
3058                return;
3059
3060        if ((raid5_calc_degraded(conf) > 0 ||
3061             test_bit(Journal, &rdev->flags)) &&
3062            conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
3063                schedule_work(&log->disable_writeback_work);
3064}
3065
3066int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
3067{
3068        struct request_queue *q = bdev_get_queue(rdev->bdev);
3069        struct r5l_log *log;
3070        char b[BDEVNAME_SIZE];
3071        int ret;
3072
3073        pr_debug("md/raid:%s: using device %s as journal\n",
3074                 mdname(conf->mddev), bdevname(rdev->bdev, b));
3075
3076        if (PAGE_SIZE != 4096)
3077                return -EINVAL;
3078
3079        /*
3080         * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3081         * raid_disks r5l_payload_data_parity.
3082         *
3083         * Write journal and cache does not work for very big array
3084         * (raid_disks > 203)
3085         */
3086        if (sizeof(struct r5l_meta_block) +
3087            ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3088             conf->raid_disks) > PAGE_SIZE) {
3089                pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3090                       mdname(conf->mddev), conf->raid_disks);
3091                return -EINVAL;
3092        }
3093
3094        log = kzalloc(sizeof(*log), GFP_KERNEL);
3095        if (!log)
3096                return -ENOMEM;
3097        log->rdev = rdev;
3098
3099        log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
3100
3101        log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3102                                       sizeof(rdev->mddev->uuid));
3103
3104        mutex_init(&log->io_mutex);
3105
3106        spin_lock_init(&log->io_list_lock);
3107        INIT_LIST_HEAD(&log->running_ios);
3108        INIT_LIST_HEAD(&log->io_end_ios);
3109        INIT_LIST_HEAD(&log->flushing_ios);
3110        INIT_LIST_HEAD(&log->finished_ios);
3111        bio_init(&log->flush_bio, NULL, 0);
3112
3113        log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3114        if (!log->io_kc)
3115                goto io_kc;
3116
3117        ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc);
3118        if (ret)
3119                goto io_pool;
3120
3121        ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS);
3122        if (ret)
3123                goto io_bs;
3124
3125        ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0);
3126        if (ret)
3127                goto out_mempool;
3128
3129        spin_lock_init(&log->tree_lock);
3130        INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3131
3132        log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
3133                                                 log->rdev->mddev, "reclaim");
3134        if (!log->reclaim_thread)
3135                goto reclaim_thread;
3136        log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3137
3138        init_waitqueue_head(&log->iounit_wait);
3139
3140        INIT_LIST_HEAD(&log->no_mem_stripes);
3141
3142        INIT_LIST_HEAD(&log->no_space_stripes);
3143        spin_lock_init(&log->no_space_stripes_lock);
3144
3145        INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
3146        INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3147
3148        log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
3149        INIT_LIST_HEAD(&log->stripe_in_journal_list);
3150        spin_lock_init(&log->stripe_in_journal_lock);
3151        atomic_set(&log->stripe_in_journal_count, 0);
3152
3153        rcu_assign_pointer(conf->log, log);
3154
3155        set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
3156        return 0;
3157
3158reclaim_thread:
3159        mempool_exit(&log->meta_pool);
3160out_mempool:
3161        bioset_exit(&log->bs);
3162io_bs:
3163        mempool_exit(&log->io_pool);
3164io_pool:
3165        kmem_cache_destroy(log->io_kc);
3166io_kc:
3167        kfree(log);
3168        return -EINVAL;
3169}
3170
3171void r5l_exit_log(struct r5conf *conf)
3172{
3173        struct r5l_log *log = conf->log;
3174
3175        conf->log = NULL;
3176        synchronize_rcu();
3177
3178        /* Ensure disable_writeback_work wakes up and exits */
3179        wake_up(&conf->mddev->sb_wait);
3180        flush_work(&log->disable_writeback_work);
3181        md_unregister_thread(&log->reclaim_thread);
3182        mempool_exit(&log->meta_pool);
3183        bioset_exit(&log->bs);
3184        mempool_exit(&log->io_pool);
3185        kmem_cache_destroy(log->io_kc);
3186        kfree(log);
3187}
3188