linux/drivers/md/raid5-ppl.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Partial Parity Log for closing the RAID5 write hole
   4 * Copyright (c) 2017, Intel Corporation.
   5 */
   6
   7#include <linux/kernel.h>
   8#include <linux/blkdev.h>
   9#include <linux/slab.h>
  10#include <linux/crc32c.h>
  11#include <linux/async_tx.h>
  12#include <linux/raid/md_p.h>
  13#include "md.h"
  14#include "raid5.h"
  15#include "raid5-log.h"
  16
  17/*
  18 * PPL consists of a 4KB header (struct ppl_header) and at least 128KB for
  19 * partial parity data. The header contains an array of entries
  20 * (struct ppl_header_entry) which describe the logged write requests.
  21 * Partial parity for the entries comes after the header, written in the same
  22 * sequence as the entries:
  23 *
  24 * Header
  25 *   entry0
  26 *   ...
  27 *   entryN
  28 * PP data
  29 *   PP for entry0
  30 *   ...
  31 *   PP for entryN
  32 *
  33 * An entry describes one or more consecutive stripe_heads, up to a full
  34 * stripe. The modifed raid data chunks form an m-by-n matrix, where m is the
  35 * number of stripe_heads in the entry and n is the number of modified data
  36 * disks. Every stripe_head in the entry must write to the same data disks.
  37 * An example of a valid case described by a single entry (writes to the first
  38 * stripe of a 4 disk array, 16k chunk size):
  39 *
  40 * sh->sector   dd0   dd1   dd2    ppl
  41 *            +-----+-----+-----+
  42 * 0          | --- | --- | --- | +----+
  43 * 8          | -W- | -W- | --- | | pp |   data_sector = 8
  44 * 16         | -W- | -W- | --- | | pp |   data_size = 3 * 2 * 4k
  45 * 24         | -W- | -W- | --- | | pp |   pp_size = 3 * 4k
  46 *            +-----+-----+-----+ +----+
  47 *
  48 * data_sector is the first raid sector of the modified data, data_size is the
  49 * total size of modified data and pp_size is the size of partial parity for
  50 * this entry. Entries for full stripe writes contain no partial parity
  51 * (pp_size = 0), they only mark the stripes for which parity should be
  52 * recalculated after an unclean shutdown. Every entry holds a checksum of its
  53 * partial parity, the header also has a checksum of the header itself.
  54 *
  55 * A write request is always logged to the PPL instance stored on the parity
  56 * disk of the corresponding stripe. For each member disk there is one ppl_log
  57 * used to handle logging for this disk, independently from others. They are
  58 * grouped in child_logs array in struct ppl_conf, which is assigned to
  59 * r5conf->log_private.
  60 *
  61 * ppl_io_unit represents a full PPL write, header_page contains the ppl_header.
  62 * PPL entries for logged stripes are added in ppl_log_stripe(). A stripe_head
  63 * can be appended to the last entry if it meets the conditions for a valid
  64 * entry described above, otherwise a new entry is added. Checksums of entries
  65 * are calculated incrementally as stripes containing partial parity are being
  66 * added. ppl_submit_iounit() calculates the checksum of the header and submits
  67 * a bio containing the header page and partial parity pages (sh->ppl_page) for
  68 * all stripes of the io_unit. When the PPL write completes, the stripes
  69 * associated with the io_unit are released and raid5d starts writing their data
  70 * and parity. When all stripes are written, the io_unit is freed and the next
  71 * can be submitted.
  72 *
  73 * An io_unit is used to gather stripes until it is submitted or becomes full
  74 * (if the maximum number of entries or size of PPL is reached). Another io_unit
  75 * can't be submitted until the previous has completed (PPL and stripe
  76 * data+parity is written). The log->io_list tracks all io_units of a log
  77 * (for a single member disk). New io_units are added to the end of the list
  78 * and the first io_unit is submitted, if it is not submitted already.
  79 * The current io_unit accepting new stripes is always at the end of the list.
  80 *
  81 * If write-back cache is enabled for any of the disks in the array, its data
  82 * must be flushed before next io_unit is submitted.
  83 */
  84
  85#define PPL_SPACE_SIZE (128 * 1024)
  86
  87struct ppl_conf {
  88        struct mddev *mddev;
  89
  90        /* array of child logs, one for each raid disk */
  91        struct ppl_log *child_logs;
  92        int count;
  93
  94        int block_size;         /* the logical block size used for data_sector
  95                                 * in ppl_header_entry */
  96        u32 signature;          /* raid array identifier */
  97        atomic64_t seq;         /* current log write sequence number */
  98
  99        struct kmem_cache *io_kc;
 100        mempool_t io_pool;
 101        struct bio_set bs;
 102        struct bio_set flush_bs;
 103
 104        /* used only for recovery */
 105        int recovered_entries;
 106        int mismatch_count;
 107
 108        /* stripes to retry if failed to allocate io_unit */
 109        struct list_head no_mem_stripes;
 110        spinlock_t no_mem_stripes_lock;
 111
 112        unsigned short write_hint;
 113};
 114
 115struct ppl_log {
 116        struct ppl_conf *ppl_conf;      /* shared between all log instances */
 117
 118        struct md_rdev *rdev;           /* array member disk associated with
 119                                         * this log instance */
 120        struct mutex io_mutex;
 121        struct ppl_io_unit *current_io; /* current io_unit accepting new data
 122                                         * always at the end of io_list */
 123        spinlock_t io_list_lock;
 124        struct list_head io_list;       /* all io_units of this log */
 125
 126        sector_t next_io_sector;
 127        unsigned int entry_space;
 128        bool use_multippl;
 129        bool wb_cache_on;
 130        unsigned long disk_flush_bitmap;
 131};
 132
 133#define PPL_IO_INLINE_BVECS 32
 134
 135struct ppl_io_unit {
 136        struct ppl_log *log;
 137
 138        struct page *header_page;       /* for ppl_header */
 139
 140        unsigned int entries_count;     /* number of entries in ppl_header */
 141        unsigned int pp_size;           /* total size current of partial parity */
 142
 143        u64 seq;                        /* sequence number of this log write */
 144        struct list_head log_sibling;   /* log->io_list */
 145
 146        struct list_head stripe_list;   /* stripes added to the io_unit */
 147        atomic_t pending_stripes;       /* how many stripes not written to raid */
 148        atomic_t pending_flushes;       /* how many disk flushes are in progress */
 149
 150        bool submitted;                 /* true if write to log started */
 151
 152        /* inline bio and its biovec for submitting the iounit */
 153        struct bio bio;
 154        struct bio_vec biovec[PPL_IO_INLINE_BVECS];
 155};
 156
 157struct dma_async_tx_descriptor *
 158ops_run_partial_parity(struct stripe_head *sh, struct raid5_percpu *percpu,
 159                       struct dma_async_tx_descriptor *tx)
 160{
 161        int disks = sh->disks;
 162        struct page **srcs = percpu->scribble;
 163        int count = 0, pd_idx = sh->pd_idx, i;
 164        struct async_submit_ctl submit;
 165
 166        pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
 167
 168        /*
 169         * Partial parity is the XOR of stripe data chunks that are not changed
 170         * during the write request. Depending on available data
 171         * (read-modify-write vs. reconstruct-write case) we calculate it
 172         * differently.
 173         */
 174        if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
 175                /*
 176                 * rmw: xor old data and parity from updated disks
 177                 * This is calculated earlier by ops_run_prexor5() so just copy
 178                 * the parity dev page.
 179                 */
 180                srcs[count++] = sh->dev[pd_idx].page;
 181        } else if (sh->reconstruct_state == reconstruct_state_drain_run) {
 182                /* rcw: xor data from all not updated disks */
 183                for (i = disks; i--;) {
 184                        struct r5dev *dev = &sh->dev[i];
 185                        if (test_bit(R5_UPTODATE, &dev->flags))
 186                                srcs[count++] = dev->page;
 187                }
 188        } else {
 189                return tx;
 190        }
 191
 192        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, tx,
 193                          NULL, sh, (void *) (srcs + sh->disks + 2));
 194
 195        if (count == 1)
 196                tx = async_memcpy(sh->ppl_page, srcs[0], 0, 0, PAGE_SIZE,
 197                                  &submit);
 198        else
 199                tx = async_xor(sh->ppl_page, srcs, 0, count, PAGE_SIZE,
 200                               &submit);
 201
 202        return tx;
 203}
 204
 205static void *ppl_io_pool_alloc(gfp_t gfp_mask, void *pool_data)
 206{
 207        struct kmem_cache *kc = pool_data;
 208        struct ppl_io_unit *io;
 209
 210        io = kmem_cache_alloc(kc, gfp_mask);
 211        if (!io)
 212                return NULL;
 213
 214        io->header_page = alloc_page(gfp_mask);
 215        if (!io->header_page) {
 216                kmem_cache_free(kc, io);
 217                return NULL;
 218        }
 219
 220        return io;
 221}
 222
 223static void ppl_io_pool_free(void *element, void *pool_data)
 224{
 225        struct kmem_cache *kc = pool_data;
 226        struct ppl_io_unit *io = element;
 227
 228        __free_page(io->header_page);
 229        kmem_cache_free(kc, io);
 230}
 231
 232static struct ppl_io_unit *ppl_new_iounit(struct ppl_log *log,
 233                                          struct stripe_head *sh)
 234{
 235        struct ppl_conf *ppl_conf = log->ppl_conf;
 236        struct ppl_io_unit *io;
 237        struct ppl_header *pplhdr;
 238        struct page *header_page;
 239
 240        io = mempool_alloc(&ppl_conf->io_pool, GFP_NOWAIT);
 241        if (!io)
 242                return NULL;
 243
 244        header_page = io->header_page;
 245        memset(io, 0, sizeof(*io));
 246        io->header_page = header_page;
 247
 248        io->log = log;
 249        INIT_LIST_HEAD(&io->log_sibling);
 250        INIT_LIST_HEAD(&io->stripe_list);
 251        atomic_set(&io->pending_stripes, 0);
 252        atomic_set(&io->pending_flushes, 0);
 253        bio_init(&io->bio, io->biovec, PPL_IO_INLINE_BVECS);
 254
 255        pplhdr = page_address(io->header_page);
 256        clear_page(pplhdr);
 257        memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
 258        pplhdr->signature = cpu_to_le32(ppl_conf->signature);
 259
 260        io->seq = atomic64_add_return(1, &ppl_conf->seq);
 261        pplhdr->generation = cpu_to_le64(io->seq);
 262
 263        return io;
 264}
 265
 266static int ppl_log_stripe(struct ppl_log *log, struct stripe_head *sh)
 267{
 268        struct ppl_io_unit *io = log->current_io;
 269        struct ppl_header_entry *e = NULL;
 270        struct ppl_header *pplhdr;
 271        int i;
 272        sector_t data_sector = 0;
 273        int data_disks = 0;
 274        struct r5conf *conf = sh->raid_conf;
 275
 276        pr_debug("%s: stripe: %llu\n", __func__, (unsigned long long)sh->sector);
 277
 278        /* check if current io_unit is full */
 279        if (io && (io->pp_size == log->entry_space ||
 280                   io->entries_count == PPL_HDR_MAX_ENTRIES)) {
 281                pr_debug("%s: add io_unit blocked by seq: %llu\n",
 282                         __func__, io->seq);
 283                io = NULL;
 284        }
 285
 286        /* add a new unit if there is none or the current is full */
 287        if (!io) {
 288                io = ppl_new_iounit(log, sh);
 289                if (!io)
 290                        return -ENOMEM;
 291                spin_lock_irq(&log->io_list_lock);
 292                list_add_tail(&io->log_sibling, &log->io_list);
 293                spin_unlock_irq(&log->io_list_lock);
 294
 295                log->current_io = io;
 296        }
 297
 298        for (i = 0; i < sh->disks; i++) {
 299                struct r5dev *dev = &sh->dev[i];
 300
 301                if (i != sh->pd_idx && test_bit(R5_Wantwrite, &dev->flags)) {
 302                        if (!data_disks || dev->sector < data_sector)
 303                                data_sector = dev->sector;
 304                        data_disks++;
 305                }
 306        }
 307        BUG_ON(!data_disks);
 308
 309        pr_debug("%s: seq: %llu data_sector: %llu data_disks: %d\n", __func__,
 310                 io->seq, (unsigned long long)data_sector, data_disks);
 311
 312        pplhdr = page_address(io->header_page);
 313
 314        if (io->entries_count > 0) {
 315                struct ppl_header_entry *last =
 316                                &pplhdr->entries[io->entries_count - 1];
 317                struct stripe_head *sh_last = list_last_entry(
 318                                &io->stripe_list, struct stripe_head, log_list);
 319                u64 data_sector_last = le64_to_cpu(last->data_sector);
 320                u32 data_size_last = le32_to_cpu(last->data_size);
 321
 322                /*
 323                 * Check if we can append the stripe to the last entry. It must
 324                 * be just after the last logged stripe and write to the same
 325                 * disks. Use bit shift and logarithm to avoid 64-bit division.
 326                 */
 327                if ((sh->sector == sh_last->sector + RAID5_STRIPE_SECTORS(conf)) &&
 328                    (data_sector >> ilog2(conf->chunk_sectors) ==
 329                     data_sector_last >> ilog2(conf->chunk_sectors)) &&
 330                    ((data_sector - data_sector_last) * data_disks ==
 331                     data_size_last >> 9))
 332                        e = last;
 333        }
 334
 335        if (!e) {
 336                e = &pplhdr->entries[io->entries_count++];
 337                e->data_sector = cpu_to_le64(data_sector);
 338                e->parity_disk = cpu_to_le32(sh->pd_idx);
 339                e->checksum = cpu_to_le32(~0);
 340        }
 341
 342        le32_add_cpu(&e->data_size, data_disks << PAGE_SHIFT);
 343
 344        /* don't write any PP if full stripe write */
 345        if (!test_bit(STRIPE_FULL_WRITE, &sh->state)) {
 346                le32_add_cpu(&e->pp_size, PAGE_SIZE);
 347                io->pp_size += PAGE_SIZE;
 348                e->checksum = cpu_to_le32(crc32c_le(le32_to_cpu(e->checksum),
 349                                                    page_address(sh->ppl_page),
 350                                                    PAGE_SIZE));
 351        }
 352
 353        list_add_tail(&sh->log_list, &io->stripe_list);
 354        atomic_inc(&io->pending_stripes);
 355        sh->ppl_io = io;
 356
 357        return 0;
 358}
 359
 360int ppl_write_stripe(struct r5conf *conf, struct stripe_head *sh)
 361{
 362        struct ppl_conf *ppl_conf = conf->log_private;
 363        struct ppl_io_unit *io = sh->ppl_io;
 364        struct ppl_log *log;
 365
 366        if (io || test_bit(STRIPE_SYNCING, &sh->state) || !sh->ppl_page ||
 367            !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
 368            !test_bit(R5_Insync, &sh->dev[sh->pd_idx].flags)) {
 369                clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
 370                return -EAGAIN;
 371        }
 372
 373        log = &ppl_conf->child_logs[sh->pd_idx];
 374
 375        mutex_lock(&log->io_mutex);
 376
 377        if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
 378                mutex_unlock(&log->io_mutex);
 379                return -EAGAIN;
 380        }
 381
 382        set_bit(STRIPE_LOG_TRAPPED, &sh->state);
 383        clear_bit(STRIPE_DELAYED, &sh->state);
 384        atomic_inc(&sh->count);
 385
 386        if (ppl_log_stripe(log, sh)) {
 387                spin_lock_irq(&ppl_conf->no_mem_stripes_lock);
 388                list_add_tail(&sh->log_list, &ppl_conf->no_mem_stripes);
 389                spin_unlock_irq(&ppl_conf->no_mem_stripes_lock);
 390        }
 391
 392        mutex_unlock(&log->io_mutex);
 393
 394        return 0;
 395}
 396
 397static void ppl_log_endio(struct bio *bio)
 398{
 399        struct ppl_io_unit *io = bio->bi_private;
 400        struct ppl_log *log = io->log;
 401        struct ppl_conf *ppl_conf = log->ppl_conf;
 402        struct stripe_head *sh, *next;
 403
 404        pr_debug("%s: seq: %llu\n", __func__, io->seq);
 405
 406        if (bio->bi_status)
 407                md_error(ppl_conf->mddev, log->rdev);
 408
 409        list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
 410                list_del_init(&sh->log_list);
 411
 412                set_bit(STRIPE_HANDLE, &sh->state);
 413                raid5_release_stripe(sh);
 414        }
 415}
 416
 417static void ppl_submit_iounit_bio(struct ppl_io_unit *io, struct bio *bio)
 418{
 419        char b[BDEVNAME_SIZE];
 420
 421        pr_debug("%s: seq: %llu size: %u sector: %llu dev: %s\n",
 422                 __func__, io->seq, bio->bi_iter.bi_size,
 423                 (unsigned long long)bio->bi_iter.bi_sector,
 424                 bio_devname(bio, b));
 425
 426        submit_bio(bio);
 427}
 428
 429static void ppl_submit_iounit(struct ppl_io_unit *io)
 430{
 431        struct ppl_log *log = io->log;
 432        struct ppl_conf *ppl_conf = log->ppl_conf;
 433        struct ppl_header *pplhdr = page_address(io->header_page);
 434        struct bio *bio = &io->bio;
 435        struct stripe_head *sh;
 436        int i;
 437
 438        bio->bi_private = io;
 439
 440        if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
 441                ppl_log_endio(bio);
 442                return;
 443        }
 444
 445        for (i = 0; i < io->entries_count; i++) {
 446                struct ppl_header_entry *e = &pplhdr->entries[i];
 447
 448                pr_debug("%s: seq: %llu entry: %d data_sector: %llu pp_size: %u data_size: %u\n",
 449                         __func__, io->seq, i, le64_to_cpu(e->data_sector),
 450                         le32_to_cpu(e->pp_size), le32_to_cpu(e->data_size));
 451
 452                e->data_sector = cpu_to_le64(le64_to_cpu(e->data_sector) >>
 453                                             ilog2(ppl_conf->block_size >> 9));
 454                e->checksum = cpu_to_le32(~le32_to_cpu(e->checksum));
 455        }
 456
 457        pplhdr->entries_count = cpu_to_le32(io->entries_count);
 458        pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PPL_HEADER_SIZE));
 459
 460        /* Rewind the buffer if current PPL is larger then remaining space */
 461        if (log->use_multippl &&
 462            log->rdev->ppl.sector + log->rdev->ppl.size - log->next_io_sector <
 463            (PPL_HEADER_SIZE + io->pp_size) >> 9)
 464                log->next_io_sector = log->rdev->ppl.sector;
 465
 466
 467        bio->bi_end_io = ppl_log_endio;
 468        bio->bi_opf = REQ_OP_WRITE | REQ_FUA;
 469        bio_set_dev(bio, log->rdev->bdev);
 470        bio->bi_iter.bi_sector = log->next_io_sector;
 471        bio_add_page(bio, io->header_page, PAGE_SIZE, 0);
 472        bio->bi_write_hint = ppl_conf->write_hint;
 473
 474        pr_debug("%s: log->current_io_sector: %llu\n", __func__,
 475            (unsigned long long)log->next_io_sector);
 476
 477        if (log->use_multippl)
 478                log->next_io_sector += (PPL_HEADER_SIZE + io->pp_size) >> 9;
 479
 480        WARN_ON(log->disk_flush_bitmap != 0);
 481
 482        list_for_each_entry(sh, &io->stripe_list, log_list) {
 483                for (i = 0; i < sh->disks; i++) {
 484                        struct r5dev *dev = &sh->dev[i];
 485
 486                        if ((ppl_conf->child_logs[i].wb_cache_on) &&
 487                            (test_bit(R5_Wantwrite, &dev->flags))) {
 488                                set_bit(i, &log->disk_flush_bitmap);
 489                        }
 490                }
 491
 492                /* entries for full stripe writes have no partial parity */
 493                if (test_bit(STRIPE_FULL_WRITE, &sh->state))
 494                        continue;
 495
 496                if (!bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0)) {
 497                        struct bio *prev = bio;
 498
 499                        bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_VECS,
 500                                               &ppl_conf->bs);
 501                        bio->bi_opf = prev->bi_opf;
 502                        bio->bi_write_hint = prev->bi_write_hint;
 503                        bio_copy_dev(bio, prev);
 504                        bio->bi_iter.bi_sector = bio_end_sector(prev);
 505                        bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0);
 506
 507                        bio_chain(bio, prev);
 508                        ppl_submit_iounit_bio(io, prev);
 509                }
 510        }
 511
 512        ppl_submit_iounit_bio(io, bio);
 513}
 514
 515static void ppl_submit_current_io(struct ppl_log *log)
 516{
 517        struct ppl_io_unit *io;
 518
 519        spin_lock_irq(&log->io_list_lock);
 520
 521        io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit,
 522                                      log_sibling);
 523        if (io && io->submitted)
 524                io = NULL;
 525
 526        spin_unlock_irq(&log->io_list_lock);
 527
 528        if (io) {
 529                io->submitted = true;
 530
 531                if (io == log->current_io)
 532                        log->current_io = NULL;
 533
 534                ppl_submit_iounit(io);
 535        }
 536}
 537
 538void ppl_write_stripe_run(struct r5conf *conf)
 539{
 540        struct ppl_conf *ppl_conf = conf->log_private;
 541        struct ppl_log *log;
 542        int i;
 543
 544        for (i = 0; i < ppl_conf->count; i++) {
 545                log = &ppl_conf->child_logs[i];
 546
 547                mutex_lock(&log->io_mutex);
 548                ppl_submit_current_io(log);
 549                mutex_unlock(&log->io_mutex);
 550        }
 551}
 552
 553static void ppl_io_unit_finished(struct ppl_io_unit *io)
 554{
 555        struct ppl_log *log = io->log;
 556        struct ppl_conf *ppl_conf = log->ppl_conf;
 557        struct r5conf *conf = ppl_conf->mddev->private;
 558        unsigned long flags;
 559
 560        pr_debug("%s: seq: %llu\n", __func__, io->seq);
 561
 562        local_irq_save(flags);
 563
 564        spin_lock(&log->io_list_lock);
 565        list_del(&io->log_sibling);
 566        spin_unlock(&log->io_list_lock);
 567
 568        mempool_free(io, &ppl_conf->io_pool);
 569
 570        spin_lock(&ppl_conf->no_mem_stripes_lock);
 571        if (!list_empty(&ppl_conf->no_mem_stripes)) {
 572                struct stripe_head *sh;
 573
 574                sh = list_first_entry(&ppl_conf->no_mem_stripes,
 575                                      struct stripe_head, log_list);
 576                list_del_init(&sh->log_list);
 577                set_bit(STRIPE_HANDLE, &sh->state);
 578                raid5_release_stripe(sh);
 579        }
 580        spin_unlock(&ppl_conf->no_mem_stripes_lock);
 581
 582        local_irq_restore(flags);
 583
 584        wake_up(&conf->wait_for_quiescent);
 585}
 586
 587static void ppl_flush_endio(struct bio *bio)
 588{
 589        struct ppl_io_unit *io = bio->bi_private;
 590        struct ppl_log *log = io->log;
 591        struct ppl_conf *ppl_conf = log->ppl_conf;
 592        struct r5conf *conf = ppl_conf->mddev->private;
 593        char b[BDEVNAME_SIZE];
 594
 595        pr_debug("%s: dev: %s\n", __func__, bio_devname(bio, b));
 596
 597        if (bio->bi_status) {
 598                struct md_rdev *rdev;
 599
 600                rcu_read_lock();
 601                rdev = md_find_rdev_rcu(conf->mddev, bio_dev(bio));
 602                if (rdev)
 603                        md_error(rdev->mddev, rdev);
 604                rcu_read_unlock();
 605        }
 606
 607        bio_put(bio);
 608
 609        if (atomic_dec_and_test(&io->pending_flushes)) {
 610                ppl_io_unit_finished(io);
 611                md_wakeup_thread(conf->mddev->thread);
 612        }
 613}
 614
 615static void ppl_do_flush(struct ppl_io_unit *io)
 616{
 617        struct ppl_log *log = io->log;
 618        struct ppl_conf *ppl_conf = log->ppl_conf;
 619        struct r5conf *conf = ppl_conf->mddev->private;
 620        int raid_disks = conf->raid_disks;
 621        int flushed_disks = 0;
 622        int i;
 623
 624        atomic_set(&io->pending_flushes, raid_disks);
 625
 626        for_each_set_bit(i, &log->disk_flush_bitmap, raid_disks) {
 627                struct md_rdev *rdev;
 628                struct block_device *bdev = NULL;
 629
 630                rcu_read_lock();
 631                rdev = rcu_dereference(conf->disks[i].rdev);
 632                if (rdev && !test_bit(Faulty, &rdev->flags))
 633                        bdev = rdev->bdev;
 634                rcu_read_unlock();
 635
 636                if (bdev) {
 637                        struct bio *bio;
 638                        char b[BDEVNAME_SIZE];
 639
 640                        bio = bio_alloc_bioset(GFP_NOIO, 0, &ppl_conf->flush_bs);
 641                        bio_set_dev(bio, bdev);
 642                        bio->bi_private = io;
 643                        bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
 644                        bio->bi_end_io = ppl_flush_endio;
 645
 646                        pr_debug("%s: dev: %s\n", __func__,
 647                                 bio_devname(bio, b));
 648
 649                        submit_bio(bio);
 650                        flushed_disks++;
 651                }
 652        }
 653
 654        log->disk_flush_bitmap = 0;
 655
 656        for (i = flushed_disks ; i < raid_disks; i++) {
 657                if (atomic_dec_and_test(&io->pending_flushes))
 658                        ppl_io_unit_finished(io);
 659        }
 660}
 661
 662static inline bool ppl_no_io_unit_submitted(struct r5conf *conf,
 663                                            struct ppl_log *log)
 664{
 665        struct ppl_io_unit *io;
 666
 667        io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit,
 668                                      log_sibling);
 669
 670        return !io || !io->submitted;
 671}
 672
 673void ppl_quiesce(struct r5conf *conf, int quiesce)
 674{
 675        struct ppl_conf *ppl_conf = conf->log_private;
 676        int i;
 677
 678        if (quiesce) {
 679                for (i = 0; i < ppl_conf->count; i++) {
 680                        struct ppl_log *log = &ppl_conf->child_logs[i];
 681
 682                        spin_lock_irq(&log->io_list_lock);
 683                        wait_event_lock_irq(conf->wait_for_quiescent,
 684                                            ppl_no_io_unit_submitted(conf, log),
 685                                            log->io_list_lock);
 686                        spin_unlock_irq(&log->io_list_lock);
 687                }
 688        }
 689}
 690
 691int ppl_handle_flush_request(struct r5l_log *log, struct bio *bio)
 692{
 693        if (bio->bi_iter.bi_size == 0) {
 694                bio_endio(bio);
 695                return 0;
 696        }
 697        bio->bi_opf &= ~REQ_PREFLUSH;
 698        return -EAGAIN;
 699}
 700
 701void ppl_stripe_write_finished(struct stripe_head *sh)
 702{
 703        struct ppl_io_unit *io;
 704
 705        io = sh->ppl_io;
 706        sh->ppl_io = NULL;
 707
 708        if (io && atomic_dec_and_test(&io->pending_stripes)) {
 709                if (io->log->disk_flush_bitmap)
 710                        ppl_do_flush(io);
 711                else
 712                        ppl_io_unit_finished(io);
 713        }
 714}
 715
 716static void ppl_xor(int size, struct page *page1, struct page *page2)
 717{
 718        struct async_submit_ctl submit;
 719        struct dma_async_tx_descriptor *tx;
 720        struct page *xor_srcs[] = { page1, page2 };
 721
 722        init_async_submit(&submit, ASYNC_TX_ACK|ASYNC_TX_XOR_DROP_DST,
 723                          NULL, NULL, NULL, NULL);
 724        tx = async_xor(page1, xor_srcs, 0, 2, size, &submit);
 725
 726        async_tx_quiesce(&tx);
 727}
 728
 729/*
 730 * PPL recovery strategy: xor partial parity and data from all modified data
 731 * disks within a stripe and write the result as the new stripe parity. If all
 732 * stripe data disks are modified (full stripe write), no partial parity is
 733 * available, so just xor the data disks.
 734 *
 735 * Recovery of a PPL entry shall occur only if all modified data disks are
 736 * available and read from all of them succeeds.
 737 *
 738 * A PPL entry applies to a stripe, partial parity size for an entry is at most
 739 * the size of the chunk. Examples of possible cases for a single entry:
 740 *
 741 * case 0: single data disk write:
 742 *   data0    data1    data2     ppl        parity
 743 * +--------+--------+--------+           +--------------------+
 744 * | ------ | ------ | ------ | +----+    | (no change)        |
 745 * | ------ | -data- | ------ | | pp | -> | data1 ^ pp         |
 746 * | ------ | -data- | ------ | | pp | -> | data1 ^ pp         |
 747 * | ------ | ------ | ------ | +----+    | (no change)        |
 748 * +--------+--------+--------+           +--------------------+
 749 * pp_size = data_size
 750 *
 751 * case 1: more than one data disk write:
 752 *   data0    data1    data2     ppl        parity
 753 * +--------+--------+--------+           +--------------------+
 754 * | ------ | ------ | ------ | +----+    | (no change)        |
 755 * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
 756 * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
 757 * | ------ | ------ | ------ | +----+    | (no change)        |
 758 * +--------+--------+--------+           +--------------------+
 759 * pp_size = data_size / modified_data_disks
 760 *
 761 * case 2: write to all data disks (also full stripe write):
 762 *   data0    data1    data2                parity
 763 * +--------+--------+--------+           +--------------------+
 764 * | ------ | ------ | ------ |           | (no change)        |
 765 * | -data- | -data- | -data- | --------> | xor all data       |
 766 * | ------ | ------ | ------ | --------> | (no change)        |
 767 * | ------ | ------ | ------ |           | (no change)        |
 768 * +--------+--------+--------+           +--------------------+
 769 * pp_size = 0
 770 *
 771 * The following cases are possible only in other implementations. The recovery
 772 * code can handle them, but they are not generated at runtime because they can
 773 * be reduced to cases 0, 1 and 2:
 774 *
 775 * case 3:
 776 *   data0    data1    data2     ppl        parity
 777 * +--------+--------+--------+ +----+    +--------------------+
 778 * | ------ | -data- | -data- | | pp |    | data1 ^ data2 ^ pp |
 779 * | ------ | -data- | -data- | | pp | -> | data1 ^ data2 ^ pp |
 780 * | -data- | -data- | -data- | | -- | -> | xor all data       |
 781 * | -data- | -data- | ------ | | pp |    | data0 ^ data1 ^ pp |
 782 * +--------+--------+--------+ +----+    +--------------------+
 783 * pp_size = chunk_size
 784 *
 785 * case 4:
 786 *   data0    data1    data2     ppl        parity
 787 * +--------+--------+--------+ +----+    +--------------------+
 788 * | ------ | -data- | ------ | | pp |    | data1 ^ pp         |
 789 * | ------ | ------ | ------ | | -- | -> | (no change)        |
 790 * | ------ | ------ | ------ | | -- | -> | (no change)        |
 791 * | -data- | ------ | ------ | | pp |    | data0 ^ pp         |
 792 * +--------+--------+--------+ +----+    +--------------------+
 793 * pp_size = chunk_size
 794 */
 795static int ppl_recover_entry(struct ppl_log *log, struct ppl_header_entry *e,
 796                             sector_t ppl_sector)
 797{
 798        struct ppl_conf *ppl_conf = log->ppl_conf;
 799        struct mddev *mddev = ppl_conf->mddev;
 800        struct r5conf *conf = mddev->private;
 801        int block_size = ppl_conf->block_size;
 802        struct page *page1;
 803        struct page *page2;
 804        sector_t r_sector_first;
 805        sector_t r_sector_last;
 806        int strip_sectors;
 807        int data_disks;
 808        int i;
 809        int ret = 0;
 810        char b[BDEVNAME_SIZE];
 811        unsigned int pp_size = le32_to_cpu(e->pp_size);
 812        unsigned int data_size = le32_to_cpu(e->data_size);
 813
 814        page1 = alloc_page(GFP_KERNEL);
 815        page2 = alloc_page(GFP_KERNEL);
 816
 817        if (!page1 || !page2) {
 818                ret = -ENOMEM;
 819                goto out;
 820        }
 821
 822        r_sector_first = le64_to_cpu(e->data_sector) * (block_size >> 9);
 823
 824        if ((pp_size >> 9) < conf->chunk_sectors) {
 825                if (pp_size > 0) {
 826                        data_disks = data_size / pp_size;
 827                        strip_sectors = pp_size >> 9;
 828                } else {
 829                        data_disks = conf->raid_disks - conf->max_degraded;
 830                        strip_sectors = (data_size >> 9) / data_disks;
 831                }
 832                r_sector_last = r_sector_first +
 833                                (data_disks - 1) * conf->chunk_sectors +
 834                                strip_sectors;
 835        } else {
 836                data_disks = conf->raid_disks - conf->max_degraded;
 837                strip_sectors = conf->chunk_sectors;
 838                r_sector_last = r_sector_first + (data_size >> 9);
 839        }
 840
 841        pr_debug("%s: array sector first: %llu last: %llu\n", __func__,
 842                 (unsigned long long)r_sector_first,
 843                 (unsigned long long)r_sector_last);
 844
 845        /* if start and end is 4k aligned, use a 4k block */
 846        if (block_size == 512 &&
 847            (r_sector_first & (RAID5_STRIPE_SECTORS(conf) - 1)) == 0 &&
 848            (r_sector_last & (RAID5_STRIPE_SECTORS(conf) - 1)) == 0)
 849                block_size = RAID5_STRIPE_SIZE(conf);
 850
 851        /* iterate through blocks in strip */
 852        for (i = 0; i < strip_sectors; i += (block_size >> 9)) {
 853                bool update_parity = false;
 854                sector_t parity_sector;
 855                struct md_rdev *parity_rdev;
 856                struct stripe_head sh;
 857                int disk;
 858                int indent = 0;
 859
 860                pr_debug("%s:%*s iter %d start\n", __func__, indent, "", i);
 861                indent += 2;
 862
 863                memset(page_address(page1), 0, PAGE_SIZE);
 864
 865                /* iterate through data member disks */
 866                for (disk = 0; disk < data_disks; disk++) {
 867                        int dd_idx;
 868                        struct md_rdev *rdev;
 869                        sector_t sector;
 870                        sector_t r_sector = r_sector_first + i +
 871                                            (disk * conf->chunk_sectors);
 872
 873                        pr_debug("%s:%*s data member disk %d start\n",
 874                                 __func__, indent, "", disk);
 875                        indent += 2;
 876
 877                        if (r_sector >= r_sector_last) {
 878                                pr_debug("%s:%*s array sector %llu doesn't need parity update\n",
 879                                         __func__, indent, "",
 880                                         (unsigned long long)r_sector);
 881                                indent -= 2;
 882                                continue;
 883                        }
 884
 885                        update_parity = true;
 886
 887                        /* map raid sector to member disk */
 888                        sector = raid5_compute_sector(conf, r_sector, 0,
 889                                                      &dd_idx, NULL);
 890                        pr_debug("%s:%*s processing array sector %llu => data member disk %d, sector %llu\n",
 891                                 __func__, indent, "",
 892                                 (unsigned long long)r_sector, dd_idx,
 893                                 (unsigned long long)sector);
 894
 895                        rdev = conf->disks[dd_idx].rdev;
 896                        if (!rdev || (!test_bit(In_sync, &rdev->flags) &&
 897                                      sector >= rdev->recovery_offset)) {
 898                                pr_debug("%s:%*s data member disk %d missing\n",
 899                                         __func__, indent, "", dd_idx);
 900                                update_parity = false;
 901                                break;
 902                        }
 903
 904                        pr_debug("%s:%*s reading data member disk %s sector %llu\n",
 905                                 __func__, indent, "", bdevname(rdev->bdev, b),
 906                                 (unsigned long long)sector);
 907                        if (!sync_page_io(rdev, sector, block_size, page2,
 908                                        REQ_OP_READ, 0, false)) {
 909                                md_error(mddev, rdev);
 910                                pr_debug("%s:%*s read failed!\n", __func__,
 911                                         indent, "");
 912                                ret = -EIO;
 913                                goto out;
 914                        }
 915
 916                        ppl_xor(block_size, page1, page2);
 917
 918                        indent -= 2;
 919                }
 920
 921                if (!update_parity)
 922                        continue;
 923
 924                if (pp_size > 0) {
 925                        pr_debug("%s:%*s reading pp disk sector %llu\n",
 926                                 __func__, indent, "",
 927                                 (unsigned long long)(ppl_sector + i));
 928                        if (!sync_page_io(log->rdev,
 929                                        ppl_sector - log->rdev->data_offset + i,
 930                                        block_size, page2, REQ_OP_READ, 0,
 931                                        false)) {
 932                                pr_debug("%s:%*s read failed!\n", __func__,
 933                                         indent, "");
 934                                md_error(mddev, log->rdev);
 935                                ret = -EIO;
 936                                goto out;
 937                        }
 938
 939                        ppl_xor(block_size, page1, page2);
 940                }
 941
 942                /* map raid sector to parity disk */
 943                parity_sector = raid5_compute_sector(conf, r_sector_first + i,
 944                                0, &disk, &sh);
 945                BUG_ON(sh.pd_idx != le32_to_cpu(e->parity_disk));
 946                parity_rdev = conf->disks[sh.pd_idx].rdev;
 947
 948                BUG_ON(parity_rdev->bdev->bd_dev != log->rdev->bdev->bd_dev);
 949                pr_debug("%s:%*s write parity at sector %llu, disk %s\n",
 950                         __func__, indent, "",
 951                         (unsigned long long)parity_sector,
 952                         bdevname(parity_rdev->bdev, b));
 953                if (!sync_page_io(parity_rdev, parity_sector, block_size,
 954                                page1, REQ_OP_WRITE, 0, false)) {
 955                        pr_debug("%s:%*s parity write error!\n", __func__,
 956                                 indent, "");
 957                        md_error(mddev, parity_rdev);
 958                        ret = -EIO;
 959                        goto out;
 960                }
 961        }
 962out:
 963        if (page1)
 964                __free_page(page1);
 965        if (page2)
 966                __free_page(page2);
 967        return ret;
 968}
 969
 970static int ppl_recover(struct ppl_log *log, struct ppl_header *pplhdr,
 971                       sector_t offset)
 972{
 973        struct ppl_conf *ppl_conf = log->ppl_conf;
 974        struct md_rdev *rdev = log->rdev;
 975        struct mddev *mddev = rdev->mddev;
 976        sector_t ppl_sector = rdev->ppl.sector + offset +
 977                              (PPL_HEADER_SIZE >> 9);
 978        struct page *page;
 979        int i;
 980        int ret = 0;
 981
 982        page = alloc_page(GFP_KERNEL);
 983        if (!page)
 984                return -ENOMEM;
 985
 986        /* iterate through all PPL entries saved */
 987        for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) {
 988                struct ppl_header_entry *e = &pplhdr->entries[i];
 989                u32 pp_size = le32_to_cpu(e->pp_size);
 990                sector_t sector = ppl_sector;
 991                int ppl_entry_sectors = pp_size >> 9;
 992                u32 crc, crc_stored;
 993
 994                pr_debug("%s: disk: %d entry: %d ppl_sector: %llu pp_size: %u\n",
 995                         __func__, rdev->raid_disk, i,
 996                         (unsigned long long)ppl_sector, pp_size);
 997
 998                crc = ~0;
 999                crc_stored = le32_to_cpu(e->checksum);
1000
1001                /* read parial parity for this entry and calculate its checksum */
1002                while (pp_size) {
1003                        int s = pp_size > PAGE_SIZE ? PAGE_SIZE : pp_size;
1004
1005                        if (!sync_page_io(rdev, sector - rdev->data_offset,
1006                                        s, page, REQ_OP_READ, 0, false)) {
1007                                md_error(mddev, rdev);
1008                                ret = -EIO;
1009                                goto out;
1010                        }
1011
1012                        crc = crc32c_le(crc, page_address(page), s);
1013
1014                        pp_size -= s;
1015                        sector += s >> 9;
1016                }
1017
1018                crc = ~crc;
1019
1020                if (crc != crc_stored) {
1021                        /*
1022                         * Don't recover this entry if the checksum does not
1023                         * match, but keep going and try to recover other
1024                         * entries.
1025                         */
1026                        pr_debug("%s: ppl entry crc does not match: stored: 0x%x calculated: 0x%x\n",
1027                                 __func__, crc_stored, crc);
1028                        ppl_conf->mismatch_count++;
1029                } else {
1030                        ret = ppl_recover_entry(log, e, ppl_sector);
1031                        if (ret)
1032                                goto out;
1033                        ppl_conf->recovered_entries++;
1034                }
1035
1036                ppl_sector += ppl_entry_sectors;
1037        }
1038
1039        /* flush the disk cache after recovery if necessary */
1040        ret = blkdev_issue_flush(rdev->bdev);
1041out:
1042        __free_page(page);
1043        return ret;
1044}
1045
1046static int ppl_write_empty_header(struct ppl_log *log)
1047{
1048        struct page *page;
1049        struct ppl_header *pplhdr;
1050        struct md_rdev *rdev = log->rdev;
1051        int ret = 0;
1052
1053        pr_debug("%s: disk: %d ppl_sector: %llu\n", __func__,
1054                 rdev->raid_disk, (unsigned long long)rdev->ppl.sector);
1055
1056        page = alloc_page(GFP_NOIO | __GFP_ZERO);
1057        if (!page)
1058                return -ENOMEM;
1059
1060        pplhdr = page_address(page);
1061        /* zero out PPL space to avoid collision with old PPLs */
1062        blkdev_issue_zeroout(rdev->bdev, rdev->ppl.sector,
1063                            log->rdev->ppl.size, GFP_NOIO, 0);
1064        memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
1065        pplhdr->signature = cpu_to_le32(log->ppl_conf->signature);
1066        pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PAGE_SIZE));
1067
1068        if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset,
1069                          PPL_HEADER_SIZE, page, REQ_OP_WRITE | REQ_SYNC |
1070                          REQ_FUA, 0, false)) {
1071                md_error(rdev->mddev, rdev);
1072                ret = -EIO;
1073        }
1074
1075        __free_page(page);
1076        return ret;
1077}
1078
1079static int ppl_load_distributed(struct ppl_log *log)
1080{
1081        struct ppl_conf *ppl_conf = log->ppl_conf;
1082        struct md_rdev *rdev = log->rdev;
1083        struct mddev *mddev = rdev->mddev;
1084        struct page *page, *page2, *tmp;
1085        struct ppl_header *pplhdr = NULL, *prev_pplhdr = NULL;
1086        u32 crc, crc_stored;
1087        u32 signature;
1088        int ret = 0, i;
1089        sector_t pplhdr_offset = 0, prev_pplhdr_offset = 0;
1090
1091        pr_debug("%s: disk: %d\n", __func__, rdev->raid_disk);
1092        /* read PPL headers, find the recent one */
1093        page = alloc_page(GFP_KERNEL);
1094        if (!page)
1095                return -ENOMEM;
1096
1097        page2 = alloc_page(GFP_KERNEL);
1098        if (!page2) {
1099                __free_page(page);
1100                return -ENOMEM;
1101        }
1102
1103        /* searching ppl area for latest ppl */
1104        while (pplhdr_offset < rdev->ppl.size - (PPL_HEADER_SIZE >> 9)) {
1105                if (!sync_page_io(rdev,
1106                                  rdev->ppl.sector - rdev->data_offset +
1107                                  pplhdr_offset, PAGE_SIZE, page, REQ_OP_READ,
1108                                  0, false)) {
1109                        md_error(mddev, rdev);
1110                        ret = -EIO;
1111                        /* if not able to read - don't recover any PPL */
1112                        pplhdr = NULL;
1113                        break;
1114                }
1115                pplhdr = page_address(page);
1116
1117                /* check header validity */
1118                crc_stored = le32_to_cpu(pplhdr->checksum);
1119                pplhdr->checksum = 0;
1120                crc = ~crc32c_le(~0, pplhdr, PAGE_SIZE);
1121
1122                if (crc_stored != crc) {
1123                        pr_debug("%s: ppl header crc does not match: stored: 0x%x calculated: 0x%x (offset: %llu)\n",
1124                                 __func__, crc_stored, crc,
1125                                 (unsigned long long)pplhdr_offset);
1126                        pplhdr = prev_pplhdr;
1127                        pplhdr_offset = prev_pplhdr_offset;
1128                        break;
1129                }
1130
1131                signature = le32_to_cpu(pplhdr->signature);
1132
1133                if (mddev->external) {
1134                        /*
1135                         * For external metadata the header signature is set and
1136                         * validated in userspace.
1137                         */
1138                        ppl_conf->signature = signature;
1139                } else if (ppl_conf->signature != signature) {
1140                        pr_debug("%s: ppl header signature does not match: stored: 0x%x configured: 0x%x (offset: %llu)\n",
1141                                 __func__, signature, ppl_conf->signature,
1142                                 (unsigned long long)pplhdr_offset);
1143                        pplhdr = prev_pplhdr;
1144                        pplhdr_offset = prev_pplhdr_offset;
1145                        break;
1146                }
1147
1148                if (prev_pplhdr && le64_to_cpu(prev_pplhdr->generation) >
1149                    le64_to_cpu(pplhdr->generation)) {
1150                        /* previous was newest */
1151                        pplhdr = prev_pplhdr;
1152                        pplhdr_offset = prev_pplhdr_offset;
1153                        break;
1154                }
1155
1156                prev_pplhdr_offset = pplhdr_offset;
1157                prev_pplhdr = pplhdr;
1158
1159                tmp = page;
1160                page = page2;
1161                page2 = tmp;
1162
1163                /* calculate next potential ppl offset */
1164                for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++)
1165                        pplhdr_offset +=
1166                            le32_to_cpu(pplhdr->entries[i].pp_size) >> 9;
1167                pplhdr_offset += PPL_HEADER_SIZE >> 9;
1168        }
1169
1170        /* no valid ppl found */
1171        if (!pplhdr)
1172                ppl_conf->mismatch_count++;
1173        else
1174                pr_debug("%s: latest PPL found at offset: %llu, with generation: %llu\n",
1175                    __func__, (unsigned long long)pplhdr_offset,
1176                    le64_to_cpu(pplhdr->generation));
1177
1178        /* attempt to recover from log if we are starting a dirty array */
1179        if (pplhdr && !mddev->pers && mddev->recovery_cp != MaxSector)
1180                ret = ppl_recover(log, pplhdr, pplhdr_offset);
1181
1182        /* write empty header if we are starting the array */
1183        if (!ret && !mddev->pers)
1184                ret = ppl_write_empty_header(log);
1185
1186        __free_page(page);
1187        __free_page(page2);
1188
1189        pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
1190                 __func__, ret, ppl_conf->mismatch_count,
1191                 ppl_conf->recovered_entries);
1192        return ret;
1193}
1194
1195static int ppl_load(struct ppl_conf *ppl_conf)
1196{
1197        int ret = 0;
1198        u32 signature = 0;
1199        bool signature_set = false;
1200        int i;
1201
1202        for (i = 0; i < ppl_conf->count; i++) {
1203                struct ppl_log *log = &ppl_conf->child_logs[i];
1204
1205                /* skip missing drive */
1206                if (!log->rdev)
1207                        continue;
1208
1209                ret = ppl_load_distributed(log);
1210                if (ret)
1211                        break;
1212
1213                /*
1214                 * For external metadata we can't check if the signature is
1215                 * correct on a single drive, but we can check if it is the same
1216                 * on all drives.
1217                 */
1218                if (ppl_conf->mddev->external) {
1219                        if (!signature_set) {
1220                                signature = ppl_conf->signature;
1221                                signature_set = true;
1222                        } else if (signature != ppl_conf->signature) {
1223                                pr_warn("md/raid:%s: PPL header signature does not match on all member drives\n",
1224                                        mdname(ppl_conf->mddev));
1225                                ret = -EINVAL;
1226                                break;
1227                        }
1228                }
1229        }
1230
1231        pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
1232                 __func__, ret, ppl_conf->mismatch_count,
1233                 ppl_conf->recovered_entries);
1234        return ret;
1235}
1236
1237static void __ppl_exit_log(struct ppl_conf *ppl_conf)
1238{
1239        clear_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
1240        clear_bit(MD_HAS_MULTIPLE_PPLS, &ppl_conf->mddev->flags);
1241
1242        kfree(ppl_conf->child_logs);
1243
1244        bioset_exit(&ppl_conf->bs);
1245        bioset_exit(&ppl_conf->flush_bs);
1246        mempool_exit(&ppl_conf->io_pool);
1247        kmem_cache_destroy(ppl_conf->io_kc);
1248
1249        kfree(ppl_conf);
1250}
1251
1252void ppl_exit_log(struct r5conf *conf)
1253{
1254        struct ppl_conf *ppl_conf = conf->log_private;
1255
1256        if (ppl_conf) {
1257                __ppl_exit_log(ppl_conf);
1258                conf->log_private = NULL;
1259        }
1260}
1261
1262static int ppl_validate_rdev(struct md_rdev *rdev)
1263{
1264        char b[BDEVNAME_SIZE];
1265        int ppl_data_sectors;
1266        int ppl_size_new;
1267
1268        /*
1269         * The configured PPL size must be enough to store
1270         * the header and (at the very least) partial parity
1271         * for one stripe. Round it down to ensure the data
1272         * space is cleanly divisible by stripe size.
1273         */
1274        ppl_data_sectors = rdev->ppl.size - (PPL_HEADER_SIZE >> 9);
1275
1276        if (ppl_data_sectors > 0)
1277                ppl_data_sectors = rounddown(ppl_data_sectors,
1278                                RAID5_STRIPE_SECTORS((struct r5conf *)rdev->mddev->private));
1279
1280        if (ppl_data_sectors <= 0) {
1281                pr_warn("md/raid:%s: PPL space too small on %s\n",
1282                        mdname(rdev->mddev), bdevname(rdev->bdev, b));
1283                return -ENOSPC;
1284        }
1285
1286        ppl_size_new = ppl_data_sectors + (PPL_HEADER_SIZE >> 9);
1287
1288        if ((rdev->ppl.sector < rdev->data_offset &&
1289             rdev->ppl.sector + ppl_size_new > rdev->data_offset) ||
1290            (rdev->ppl.sector >= rdev->data_offset &&
1291             rdev->data_offset + rdev->sectors > rdev->ppl.sector)) {
1292                pr_warn("md/raid:%s: PPL space overlaps with data on %s\n",
1293                        mdname(rdev->mddev), bdevname(rdev->bdev, b));
1294                return -EINVAL;
1295        }
1296
1297        if (!rdev->mddev->external &&
1298            ((rdev->ppl.offset > 0 && rdev->ppl.offset < (rdev->sb_size >> 9)) ||
1299             (rdev->ppl.offset <= 0 && rdev->ppl.offset + ppl_size_new > 0))) {
1300                pr_warn("md/raid:%s: PPL space overlaps with superblock on %s\n",
1301                        mdname(rdev->mddev), bdevname(rdev->bdev, b));
1302                return -EINVAL;
1303        }
1304
1305        rdev->ppl.size = ppl_size_new;
1306
1307        return 0;
1308}
1309
1310static void ppl_init_child_log(struct ppl_log *log, struct md_rdev *rdev)
1311{
1312        struct request_queue *q;
1313
1314        if ((rdev->ppl.size << 9) >= (PPL_SPACE_SIZE +
1315                                      PPL_HEADER_SIZE) * 2) {
1316                log->use_multippl = true;
1317                set_bit(MD_HAS_MULTIPLE_PPLS,
1318                        &log->ppl_conf->mddev->flags);
1319                log->entry_space = PPL_SPACE_SIZE;
1320        } else {
1321                log->use_multippl = false;
1322                log->entry_space = (log->rdev->ppl.size << 9) -
1323                                   PPL_HEADER_SIZE;
1324        }
1325        log->next_io_sector = rdev->ppl.sector;
1326
1327        q = bdev_get_queue(rdev->bdev);
1328        if (test_bit(QUEUE_FLAG_WC, &q->queue_flags))
1329                log->wb_cache_on = true;
1330}
1331
1332int ppl_init_log(struct r5conf *conf)
1333{
1334        struct ppl_conf *ppl_conf;
1335        struct mddev *mddev = conf->mddev;
1336        int ret = 0;
1337        int max_disks;
1338        int i;
1339
1340        pr_debug("md/raid:%s: enabling distributed Partial Parity Log\n",
1341                 mdname(conf->mddev));
1342
1343        if (PAGE_SIZE != 4096)
1344                return -EINVAL;
1345
1346        if (mddev->level != 5) {
1347                pr_warn("md/raid:%s PPL is not compatible with raid level %d\n",
1348                        mdname(mddev), mddev->level);
1349                return -EINVAL;
1350        }
1351
1352        if (mddev->bitmap_info.file || mddev->bitmap_info.offset) {
1353                pr_warn("md/raid:%s PPL is not compatible with bitmap\n",
1354                        mdname(mddev));
1355                return -EINVAL;
1356        }
1357
1358        if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
1359                pr_warn("md/raid:%s PPL is not compatible with journal\n",
1360                        mdname(mddev));
1361                return -EINVAL;
1362        }
1363
1364        max_disks = sizeof_field(struct ppl_log, disk_flush_bitmap) *
1365                BITS_PER_BYTE;
1366        if (conf->raid_disks > max_disks) {
1367                pr_warn("md/raid:%s PPL doesn't support over %d disks in the array\n",
1368                        mdname(mddev), max_disks);
1369                return -EINVAL;
1370        }
1371
1372        ppl_conf = kzalloc(sizeof(struct ppl_conf), GFP_KERNEL);
1373        if (!ppl_conf)
1374                return -ENOMEM;
1375
1376        ppl_conf->mddev = mddev;
1377
1378        ppl_conf->io_kc = KMEM_CACHE(ppl_io_unit, 0);
1379        if (!ppl_conf->io_kc) {
1380                ret = -ENOMEM;
1381                goto err;
1382        }
1383
1384        ret = mempool_init(&ppl_conf->io_pool, conf->raid_disks, ppl_io_pool_alloc,
1385                           ppl_io_pool_free, ppl_conf->io_kc);
1386        if (ret)
1387                goto err;
1388
1389        ret = bioset_init(&ppl_conf->bs, conf->raid_disks, 0, BIOSET_NEED_BVECS);
1390        if (ret)
1391                goto err;
1392
1393        ret = bioset_init(&ppl_conf->flush_bs, conf->raid_disks, 0, 0);
1394        if (ret)
1395                goto err;
1396
1397        ppl_conf->count = conf->raid_disks;
1398        ppl_conf->child_logs = kcalloc(ppl_conf->count, sizeof(struct ppl_log),
1399                                       GFP_KERNEL);
1400        if (!ppl_conf->child_logs) {
1401                ret = -ENOMEM;
1402                goto err;
1403        }
1404
1405        atomic64_set(&ppl_conf->seq, 0);
1406        INIT_LIST_HEAD(&ppl_conf->no_mem_stripes);
1407        spin_lock_init(&ppl_conf->no_mem_stripes_lock);
1408        ppl_conf->write_hint = RWH_WRITE_LIFE_NOT_SET;
1409
1410        if (!mddev->external) {
1411                ppl_conf->signature = ~crc32c_le(~0, mddev->uuid, sizeof(mddev->uuid));
1412                ppl_conf->block_size = 512;
1413        } else {
1414                ppl_conf->block_size = queue_logical_block_size(mddev->queue);
1415        }
1416
1417        for (i = 0; i < ppl_conf->count; i++) {
1418                struct ppl_log *log = &ppl_conf->child_logs[i];
1419                struct md_rdev *rdev = conf->disks[i].rdev;
1420
1421                mutex_init(&log->io_mutex);
1422                spin_lock_init(&log->io_list_lock);
1423                INIT_LIST_HEAD(&log->io_list);
1424
1425                log->ppl_conf = ppl_conf;
1426                log->rdev = rdev;
1427
1428                if (rdev) {
1429                        ret = ppl_validate_rdev(rdev);
1430                        if (ret)
1431                                goto err;
1432
1433                        ppl_init_child_log(log, rdev);
1434                }
1435        }
1436
1437        /* load and possibly recover the logs from the member disks */
1438        ret = ppl_load(ppl_conf);
1439
1440        if (ret) {
1441                goto err;
1442        } else if (!mddev->pers && mddev->recovery_cp == 0 &&
1443                   ppl_conf->recovered_entries > 0 &&
1444                   ppl_conf->mismatch_count == 0) {
1445                /*
1446                 * If we are starting a dirty array and the recovery succeeds
1447                 * without any issues, set the array as clean.
1448                 */
1449                mddev->recovery_cp = MaxSector;
1450                set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
1451        } else if (mddev->pers && ppl_conf->mismatch_count > 0) {
1452                /* no mismatch allowed when enabling PPL for a running array */
1453                ret = -EINVAL;
1454                goto err;
1455        }
1456
1457        conf->log_private = ppl_conf;
1458        set_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
1459
1460        return 0;
1461err:
1462        __ppl_exit_log(ppl_conf);
1463        return ret;
1464}
1465
1466int ppl_modify_log(struct r5conf *conf, struct md_rdev *rdev, bool add)
1467{
1468        struct ppl_conf *ppl_conf = conf->log_private;
1469        struct ppl_log *log;
1470        int ret = 0;
1471        char b[BDEVNAME_SIZE];
1472
1473        if (!rdev)
1474                return -EINVAL;
1475
1476        pr_debug("%s: disk: %d operation: %s dev: %s\n",
1477                 __func__, rdev->raid_disk, add ? "add" : "remove",
1478                 bdevname(rdev->bdev, b));
1479
1480        if (rdev->raid_disk < 0)
1481                return 0;
1482
1483        if (rdev->raid_disk >= ppl_conf->count)
1484                return -ENODEV;
1485
1486        log = &ppl_conf->child_logs[rdev->raid_disk];
1487
1488        mutex_lock(&log->io_mutex);
1489        if (add) {
1490                ret = ppl_validate_rdev(rdev);
1491                if (!ret) {
1492                        log->rdev = rdev;
1493                        ret = ppl_write_empty_header(log);
1494                        ppl_init_child_log(log, rdev);
1495                }
1496        } else {
1497                log->rdev = NULL;
1498        }
1499        mutex_unlock(&log->io_mutex);
1500
1501        return ret;
1502}
1503
1504static ssize_t
1505ppl_write_hint_show(struct mddev *mddev, char *buf)
1506{
1507        size_t ret = 0;
1508        struct r5conf *conf;
1509        struct ppl_conf *ppl_conf = NULL;
1510
1511        spin_lock(&mddev->lock);
1512        conf = mddev->private;
1513        if (conf && raid5_has_ppl(conf))
1514                ppl_conf = conf->log_private;
1515        ret = sprintf(buf, "%d\n", ppl_conf ? ppl_conf->write_hint : 0);
1516        spin_unlock(&mddev->lock);
1517
1518        return ret;
1519}
1520
1521static ssize_t
1522ppl_write_hint_store(struct mddev *mddev, const char *page, size_t len)
1523{
1524        struct r5conf *conf;
1525        struct ppl_conf *ppl_conf;
1526        int err = 0;
1527        unsigned short new;
1528
1529        if (len >= PAGE_SIZE)
1530                return -EINVAL;
1531        if (kstrtou16(page, 10, &new))
1532                return -EINVAL;
1533
1534        err = mddev_lock(mddev);
1535        if (err)
1536                return err;
1537
1538        conf = mddev->private;
1539        if (!conf) {
1540                err = -ENODEV;
1541        } else if (raid5_has_ppl(conf)) {
1542                ppl_conf = conf->log_private;
1543                if (!ppl_conf)
1544                        err = -EINVAL;
1545                else
1546                        ppl_conf->write_hint = new;
1547        } else {
1548                err = -EINVAL;
1549        }
1550
1551        mddev_unlock(mddev);
1552
1553        return err ?: len;
1554}
1555
1556struct md_sysfs_entry
1557ppl_write_hint = __ATTR(ppl_write_hint, S_IRUGO | S_IWUSR,
1558                        ppl_write_hint_show,
1559                        ppl_write_hint_store);
1560