linux/drivers/media/dvb-frontends/drxd_hard.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
   4 *
   5 * Copyright (C) 2003-2007 Micronas
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/moduleparam.h>
  11#include <linux/init.h>
  12#include <linux/delay.h>
  13#include <linux/firmware.h>
  14#include <linux/i2c.h>
  15#include <asm/div64.h>
  16
  17#include <media/dvb_frontend.h>
  18#include "drxd.h"
  19#include "drxd_firm.h"
  20
  21#define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
  22#define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
  23
  24#define CHUNK_SIZE 48
  25
  26#define DRX_I2C_RMW           0x10
  27#define DRX_I2C_BROADCAST     0x20
  28#define DRX_I2C_CLEARCRC      0x80
  29#define DRX_I2C_SINGLE_MASTER 0xC0
  30#define DRX_I2C_MODEFLAGS     0xC0
  31#define DRX_I2C_FLAGS         0xF0
  32
  33#define DEFAULT_LOCK_TIMEOUT    1100
  34
  35#define DRX_CHANNEL_AUTO 0
  36#define DRX_CHANNEL_HIGH 1
  37#define DRX_CHANNEL_LOW  2
  38
  39#define DRX_LOCK_MPEG  1
  40#define DRX_LOCK_FEC   2
  41#define DRX_LOCK_DEMOD 4
  42
  43/****************************************************************************/
  44
  45enum CSCDState {
  46        CSCD_INIT = 0,
  47        CSCD_SET,
  48        CSCD_SAVED
  49};
  50
  51enum CDrxdState {
  52        DRXD_UNINITIALIZED = 0,
  53        DRXD_STOPPED,
  54        DRXD_STARTED
  55};
  56
  57enum AGC_CTRL_MODE {
  58        AGC_CTRL_AUTO = 0,
  59        AGC_CTRL_USER,
  60        AGC_CTRL_OFF
  61};
  62
  63enum OperationMode {
  64        OM_Default,
  65        OM_DVBT_Diversity_Front,
  66        OM_DVBT_Diversity_End
  67};
  68
  69struct SCfgAgc {
  70        enum AGC_CTRL_MODE ctrlMode;
  71        u16 outputLevel;        /* range [0, ... , 1023], 1/n of fullscale range */
  72        u16 settleLevel;        /* range [0, ... , 1023], 1/n of fullscale range */
  73        u16 minOutputLevel;     /* range [0, ... , 1023], 1/n of fullscale range */
  74        u16 maxOutputLevel;     /* range [0, ... , 1023], 1/n of fullscale range */
  75        u16 speed;              /* range [0, ... , 1023], 1/n of fullscale range */
  76
  77        u16 R1;
  78        u16 R2;
  79        u16 R3;
  80};
  81
  82struct SNoiseCal {
  83        int cpOpt;
  84        short cpNexpOfs;
  85        short tdCal2k;
  86        short tdCal8k;
  87};
  88
  89enum app_env {
  90        APPENV_STATIC = 0,
  91        APPENV_PORTABLE = 1,
  92        APPENV_MOBILE = 2
  93};
  94
  95enum EIFFilter {
  96        IFFILTER_SAW = 0,
  97        IFFILTER_DISCRETE = 1
  98};
  99
 100struct drxd_state {
 101        struct dvb_frontend frontend;
 102        struct dvb_frontend_ops ops;
 103        struct dtv_frontend_properties props;
 104
 105        const struct firmware *fw;
 106        struct device *dev;
 107
 108        struct i2c_adapter *i2c;
 109        void *priv;
 110        struct drxd_config config;
 111
 112        int i2c_access;
 113        int init_done;
 114        struct mutex mutex;
 115
 116        u8 chip_adr;
 117        u16 hi_cfg_timing_div;
 118        u16 hi_cfg_bridge_delay;
 119        u16 hi_cfg_wakeup_key;
 120        u16 hi_cfg_ctrl;
 121
 122        u16 intermediate_freq;
 123        u16 osc_clock_freq;
 124
 125        enum CSCDState cscd_state;
 126        enum CDrxdState drxd_state;
 127
 128        u16 sys_clock_freq;
 129        s16 osc_clock_deviation;
 130        u16 expected_sys_clock_freq;
 131
 132        u16 insert_rs_byte;
 133        u16 enable_parallel;
 134
 135        int operation_mode;
 136
 137        struct SCfgAgc if_agc_cfg;
 138        struct SCfgAgc rf_agc_cfg;
 139
 140        struct SNoiseCal noise_cal;
 141
 142        u32 fe_fs_add_incr;
 143        u32 org_fe_fs_add_incr;
 144        u16 current_fe_if_incr;
 145
 146        u16 m_FeAgRegAgPwd;
 147        u16 m_FeAgRegAgAgcSio;
 148
 149        u16 m_EcOcRegOcModeLop;
 150        u16 m_EcOcRegSncSncLvl;
 151        u8 *m_InitAtomicRead;
 152        u8 *m_HiI2cPatch;
 153
 154        u8 *m_ResetCEFR;
 155        u8 *m_InitFE_1;
 156        u8 *m_InitFE_2;
 157        u8 *m_InitCP;
 158        u8 *m_InitCE;
 159        u8 *m_InitEQ;
 160        u8 *m_InitSC;
 161        u8 *m_InitEC;
 162        u8 *m_ResetECRAM;
 163        u8 *m_InitDiversityFront;
 164        u8 *m_InitDiversityEnd;
 165        u8 *m_DisableDiversity;
 166        u8 *m_StartDiversityFront;
 167        u8 *m_StartDiversityEnd;
 168
 169        u8 *m_DiversityDelay8MHZ;
 170        u8 *m_DiversityDelay6MHZ;
 171
 172        u8 *microcode;
 173        u32 microcode_length;
 174
 175        int type_A;
 176        int PGA;
 177        int diversity;
 178        int tuner_mirrors;
 179
 180        enum app_env app_env_default;
 181        enum app_env app_env_diversity;
 182
 183};
 184
 185/****************************************************************************/
 186/* I2C **********************************************************************/
 187/****************************************************************************/
 188
 189static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len)
 190{
 191        struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len };
 192
 193        if (i2c_transfer(adap, &msg, 1) != 1)
 194                return -1;
 195        return 0;
 196}
 197
 198static int i2c_read(struct i2c_adapter *adap,
 199                    u8 adr, u8 *msg, int len, u8 *answ, int alen)
 200{
 201        struct i2c_msg msgs[2] = {
 202                {
 203                        .addr = adr, .flags = 0,
 204                        .buf = msg, .len = len
 205                }, {
 206                        .addr = adr, .flags = I2C_M_RD,
 207                        .buf = answ, .len = alen
 208                }
 209        };
 210        if (i2c_transfer(adap, msgs, 2) != 2)
 211                return -1;
 212        return 0;
 213}
 214
 215static inline u32 MulDiv32(u32 a, u32 b, u32 c)
 216{
 217        u64 tmp64;
 218
 219        tmp64 = (u64)a * (u64)b;
 220        do_div(tmp64, c);
 221
 222        return (u32) tmp64;
 223}
 224
 225static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags)
 226{
 227        u8 adr = state->config.demod_address;
 228        u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
 229                flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
 230        };
 231        u8 mm2[2];
 232        if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0)
 233                return -1;
 234        if (data)
 235                *data = mm2[0] | (mm2[1] << 8);
 236        return mm2[0] | (mm2[1] << 8);
 237}
 238
 239static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags)
 240{
 241        u8 adr = state->config.demod_address;
 242        u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
 243                flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
 244        };
 245        u8 mm2[4];
 246
 247        if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0)
 248                return -1;
 249        if (data)
 250                *data =
 251                    mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24);
 252        return 0;
 253}
 254
 255static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags)
 256{
 257        u8 adr = state->config.demod_address;
 258        u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff,
 259                flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
 260                data & 0xff, (data >> 8) & 0xff
 261        };
 262
 263        if (i2c_write(state->i2c, adr, mm, 6) < 0)
 264                return -1;
 265        return 0;
 266}
 267
 268static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags)
 269{
 270        u8 adr = state->config.demod_address;
 271        u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff,
 272                flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
 273                data & 0xff, (data >> 8) & 0xff,
 274                (data >> 16) & 0xff, (data >> 24) & 0xff
 275        };
 276
 277        if (i2c_write(state->i2c, adr, mm, 8) < 0)
 278                return -1;
 279        return 0;
 280}
 281
 282static int write_chunk(struct drxd_state *state,
 283                       u32 reg, u8 *data, u32 len, u8 flags)
 284{
 285        u8 adr = state->config.demod_address;
 286        u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff,
 287                flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
 288        };
 289        int i;
 290
 291        for (i = 0; i < len; i++)
 292                mm[4 + i] = data[i];
 293        if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) {
 294                printk(KERN_ERR "error in write_chunk\n");
 295                return -1;
 296        }
 297        return 0;
 298}
 299
 300static int WriteBlock(struct drxd_state *state,
 301                      u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags)
 302{
 303        while (BlockSize > 0) {
 304                u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize;
 305
 306                if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0)
 307                        return -1;
 308                pBlock += Chunk;
 309                Address += (Chunk >> 1);
 310                BlockSize -= Chunk;
 311        }
 312        return 0;
 313}
 314
 315static int WriteTable(struct drxd_state *state, u8 * pTable)
 316{
 317        int status = 0;
 318
 319        if (!pTable)
 320                return 0;
 321
 322        while (!status) {
 323                u16 Length;
 324                u32 Address = pTable[0] | (pTable[1] << 8) |
 325                    (pTable[2] << 16) | (pTable[3] << 24);
 326
 327                if (Address == 0xFFFFFFFF)
 328                        break;
 329                pTable += sizeof(u32);
 330
 331                Length = pTable[0] | (pTable[1] << 8);
 332                pTable += sizeof(u16);
 333                if (!Length)
 334                        break;
 335                status = WriteBlock(state, Address, Length * 2, pTable, 0);
 336                pTable += (Length * 2);
 337        }
 338        return status;
 339}
 340
 341/****************************************************************************/
 342/****************************************************************************/
 343/****************************************************************************/
 344
 345static int ResetCEFR(struct drxd_state *state)
 346{
 347        return WriteTable(state, state->m_ResetCEFR);
 348}
 349
 350static int InitCP(struct drxd_state *state)
 351{
 352        return WriteTable(state, state->m_InitCP);
 353}
 354
 355static int InitCE(struct drxd_state *state)
 356{
 357        int status;
 358        enum app_env AppEnv = state->app_env_default;
 359
 360        do {
 361                status = WriteTable(state, state->m_InitCE);
 362                if (status < 0)
 363                        break;
 364
 365                if (state->operation_mode == OM_DVBT_Diversity_Front ||
 366                    state->operation_mode == OM_DVBT_Diversity_End) {
 367                        AppEnv = state->app_env_diversity;
 368                }
 369                if (AppEnv == APPENV_STATIC) {
 370                        status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0);
 371                        if (status < 0)
 372                                break;
 373                } else if (AppEnv == APPENV_PORTABLE) {
 374                        status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0);
 375                        if (status < 0)
 376                                break;
 377                } else if (AppEnv == APPENV_MOBILE && state->type_A) {
 378                        status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0);
 379                        if (status < 0)
 380                                break;
 381                } else if (AppEnv == APPENV_MOBILE && !state->type_A) {
 382                        status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0);
 383                        if (status < 0)
 384                                break;
 385                }
 386
 387                /* start ce */
 388                status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0);
 389                if (status < 0)
 390                        break;
 391        } while (0);
 392        return status;
 393}
 394
 395static int StopOC(struct drxd_state *state)
 396{
 397        int status = 0;
 398        u16 ocSyncLvl = 0;
 399        u16 ocModeLop = state->m_EcOcRegOcModeLop;
 400        u16 dtoIncLop = 0;
 401        u16 dtoIncHip = 0;
 402
 403        do {
 404                /* Store output configuration */
 405                status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0);
 406                if (status < 0)
 407                        break;
 408                /* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
 409                state->m_EcOcRegSncSncLvl = ocSyncLvl;
 410                /* m_EcOcRegOcModeLop = ocModeLop; */
 411
 412                /* Flush FIFO (byte-boundary) at fixed rate */
 413                status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0);
 414                if (status < 0)
 415                        break;
 416                status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0);
 417                if (status < 0)
 418                        break;
 419                status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0);
 420                if (status < 0)
 421                        break;
 422                status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0);
 423                if (status < 0)
 424                        break;
 425                ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M);
 426                ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC;
 427                status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
 428                if (status < 0)
 429                        break;
 430                status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
 431                if (status < 0)
 432                        break;
 433
 434                msleep(1);
 435                /* Output pins to '0' */
 436                status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0);
 437                if (status < 0)
 438                        break;
 439
 440                /* Force the OC out of sync */
 441                ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M);
 442                status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0);
 443                if (status < 0)
 444                        break;
 445                ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M);
 446                ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE;
 447                ocModeLop |= 0x2;       /* Magically-out-of-sync */
 448                status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
 449                if (status < 0)
 450                        break;
 451                status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0);
 452                if (status < 0)
 453                        break;
 454                status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
 455                if (status < 0)
 456                        break;
 457        } while (0);
 458
 459        return status;
 460}
 461
 462static int StartOC(struct drxd_state *state)
 463{
 464        int status = 0;
 465
 466        do {
 467                /* Stop OC */
 468                status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
 469                if (status < 0)
 470                        break;
 471
 472                /* Restore output configuration */
 473                status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0);
 474                if (status < 0)
 475                        break;
 476                status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0);
 477                if (status < 0)
 478                        break;
 479
 480                /* Output pins active again */
 481                status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0);
 482                if (status < 0)
 483                        break;
 484
 485                /* Start OC */
 486                status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
 487                if (status < 0)
 488                        break;
 489        } while (0);
 490        return status;
 491}
 492
 493static int InitEQ(struct drxd_state *state)
 494{
 495        return WriteTable(state, state->m_InitEQ);
 496}
 497
 498static int InitEC(struct drxd_state *state)
 499{
 500        return WriteTable(state, state->m_InitEC);
 501}
 502
 503static int InitSC(struct drxd_state *state)
 504{
 505        return WriteTable(state, state->m_InitSC);
 506}
 507
 508static int InitAtomicRead(struct drxd_state *state)
 509{
 510        return WriteTable(state, state->m_InitAtomicRead);
 511}
 512
 513static int CorrectSysClockDeviation(struct drxd_state *state);
 514
 515static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus)
 516{
 517        u16 ScRaRamLock = 0;
 518        const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M |
 519                                    SC_RA_RAM_LOCK_FEC__M |
 520                                    SC_RA_RAM_LOCK_DEMOD__M);
 521        const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M |
 522                                   SC_RA_RAM_LOCK_DEMOD__M);
 523        const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M;
 524
 525        int status;
 526
 527        *pLockStatus = 0;
 528
 529        status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000);
 530        if (status < 0) {
 531                printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status);
 532                return status;
 533        }
 534
 535        if (state->drxd_state != DRXD_STARTED)
 536                return 0;
 537
 538        if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
 539                *pLockStatus |= DRX_LOCK_MPEG;
 540                CorrectSysClockDeviation(state);
 541        }
 542
 543        if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask)
 544                *pLockStatus |= DRX_LOCK_FEC;
 545
 546        if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask)
 547                *pLockStatus |= DRX_LOCK_DEMOD;
 548        return 0;
 549}
 550
 551/****************************************************************************/
 552
 553static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
 554{
 555        int status;
 556
 557        if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
 558                return -1;
 559
 560        if (cfg->ctrlMode == AGC_CTRL_USER) {
 561                do {
 562                        u16 FeAgRegPm1AgcWri;
 563                        u16 FeAgRegAgModeLop;
 564
 565                        status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
 566                        if (status < 0)
 567                                break;
 568                        FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
 569                        FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC;
 570                        status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
 571                        if (status < 0)
 572                                break;
 573
 574                        FeAgRegPm1AgcWri = (u16) (cfg->outputLevel &
 575                                                  FE_AG_REG_PM1_AGC_WRI__M);
 576                        status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0);
 577                        if (status < 0)
 578                                break;
 579                } while (0);
 580        } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
 581                if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) ||
 582                    ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) ||
 583                    ((cfg->speed) > DRXD_FE_CTRL_MAX) ||
 584                    ((cfg->settleLevel) > DRXD_FE_CTRL_MAX)
 585                    )
 586                        return -1;
 587                do {
 588                        u16 FeAgRegAgModeLop;
 589                        u16 FeAgRegEgcSetLvl;
 590                        u16 slope, offset;
 591
 592                        /* == Mode == */
 593
 594                        status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
 595                        if (status < 0)
 596                                break;
 597                        FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
 598                        FeAgRegAgModeLop |=
 599                            FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC;
 600                        status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
 601                        if (status < 0)
 602                                break;
 603
 604                        /* == Settle level == */
 605
 606                        FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) &
 607                                                  FE_AG_REG_EGC_SET_LVL__M);
 608                        status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0);
 609                        if (status < 0)
 610                                break;
 611
 612                        /* == Min/Max == */
 613
 614                        slope = (u16) ((cfg->maxOutputLevel -
 615                                        cfg->minOutputLevel) / 2);
 616                        offset = (u16) ((cfg->maxOutputLevel +
 617                                         cfg->minOutputLevel) / 2 - 511);
 618
 619                        status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0);
 620                        if (status < 0)
 621                                break;
 622                        status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0);
 623                        if (status < 0)
 624                                break;
 625
 626                        /* == Speed == */
 627                        {
 628                                const u16 maxRur = 8;
 629                                static const u16 slowIncrDecLUT[] = {
 630                                        3, 4, 4, 5, 6 };
 631                                static const u16 fastIncrDecLUT[] = {
 632                                        14, 15, 15, 16,
 633                                        17, 18, 18, 19,
 634                                        20, 21, 22, 23,
 635                                        24, 26, 27, 28,
 636                                        29, 31
 637                                };
 638
 639                                u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) /
 640                                    (maxRur + 1);
 641                                u16 fineSpeed = (u16) (cfg->speed -
 642                                                       ((cfg->speed /
 643                                                         fineSteps) *
 644                                                        fineSteps));
 645                                u16 invRurCount = (u16) (cfg->speed /
 646                                                         fineSteps);
 647                                u16 rurCount;
 648                                if (invRurCount > maxRur) {
 649                                        rurCount = 0;
 650                                        fineSpeed += fineSteps;
 651                                } else {
 652                                        rurCount = maxRur - invRurCount;
 653                                }
 654
 655                                /*
 656                                   fastInc = default *
 657                                   (2^(fineSpeed/fineSteps))
 658                                   => range[default...2*default>
 659                                   slowInc = default *
 660                                   (2^(fineSpeed/fineSteps))
 661                                 */
 662                                {
 663                                        u16 fastIncrDec =
 664                                            fastIncrDecLUT[fineSpeed /
 665                                                           ((fineSteps /
 666                                                             (14 + 1)) + 1)];
 667                                        u16 slowIncrDec =
 668                                            slowIncrDecLUT[fineSpeed /
 669                                                           (fineSteps /
 670                                                            (3 + 1))];
 671
 672                                        status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0);
 673                                        if (status < 0)
 674                                                break;
 675                                        status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0);
 676                                        if (status < 0)
 677                                                break;
 678                                        status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0);
 679                                        if (status < 0)
 680                                                break;
 681                                        status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0);
 682                                        if (status < 0)
 683                                                break;
 684                                        status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0);
 685                                        if (status < 0)
 686                                                break;
 687                                }
 688                        }
 689                } while (0);
 690
 691        } else {
 692                /* No OFF mode for IF control */
 693                return -1;
 694        }
 695        return status;
 696}
 697
 698static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
 699{
 700        int status = 0;
 701
 702        if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
 703                return -1;
 704
 705        if (cfg->ctrlMode == AGC_CTRL_USER) {
 706                do {
 707                        u16 AgModeLop = 0;
 708                        u16 level = (cfg->outputLevel);
 709
 710                        if (level == DRXD_FE_CTRL_MAX)
 711                                level++;
 712
 713                        status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000);
 714                        if (status < 0)
 715                                break;
 716
 717                        /*==== Mode ====*/
 718
 719                        /* Powerdown PD2, WRI source */
 720                        state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
 721                        state->m_FeAgRegAgPwd |=
 722                            FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
 723                        status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
 724                        if (status < 0)
 725                                break;
 726
 727                        status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
 728                        if (status < 0)
 729                                break;
 730                        AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
 731                                        FE_AG_REG_AG_MODE_LOP_MODE_E__M));
 732                        AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
 733                                      FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
 734                        status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
 735                        if (status < 0)
 736                                break;
 737
 738                        /* enable AGC2 pin */
 739                        {
 740                                u16 FeAgRegAgAgcSio = 0;
 741                                status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
 742                                if (status < 0)
 743                                        break;
 744                                FeAgRegAgAgcSio &=
 745                                    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
 746                                FeAgRegAgAgcSio |=
 747                                    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
 748                                status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
 749                                if (status < 0)
 750                                        break;
 751                        }
 752
 753                } while (0);
 754        } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
 755                u16 AgModeLop = 0;
 756
 757                do {
 758                        u16 level;
 759                        /* Automatic control */
 760                        /* Powerup PD2, AGC2 as output, TGC source */
 761                        (state->m_FeAgRegAgPwd) &=
 762                            ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
 763                        (state->m_FeAgRegAgPwd) |=
 764                            FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
 765                        status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
 766                        if (status < 0)
 767                                break;
 768
 769                        status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
 770                        if (status < 0)
 771                                break;
 772                        AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
 773                                        FE_AG_REG_AG_MODE_LOP_MODE_E__M));
 774                        AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
 775                                      FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC);
 776                        status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
 777                        if (status < 0)
 778                                break;
 779                        /* Settle level */
 780                        level = (((cfg->settleLevel) >> 4) &
 781                                 FE_AG_REG_TGC_SET_LVL__M);
 782                        status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000);
 783                        if (status < 0)
 784                                break;
 785
 786                        /* Min/max: don't care */
 787
 788                        /* Speed: TODO */
 789
 790                        /* enable AGC2 pin */
 791                        {
 792                                u16 FeAgRegAgAgcSio = 0;
 793                                status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
 794                                if (status < 0)
 795                                        break;
 796                                FeAgRegAgAgcSio &=
 797                                    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
 798                                FeAgRegAgAgcSio |=
 799                                    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
 800                                status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
 801                                if (status < 0)
 802                                        break;
 803                        }
 804
 805                } while (0);
 806        } else {
 807                u16 AgModeLop = 0;
 808
 809                do {
 810                        /* No RF AGC control */
 811                        /* Powerdown PD2, AGC2 as output, WRI source */
 812                        (state->m_FeAgRegAgPwd) &=
 813                            ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
 814                        (state->m_FeAgRegAgPwd) |=
 815                            FE_AG_REG_AG_PWD_PWD_PD2_ENABLE;
 816                        status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
 817                        if (status < 0)
 818                                break;
 819
 820                        status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
 821                        if (status < 0)
 822                                break;
 823                        AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
 824                                        FE_AG_REG_AG_MODE_LOP_MODE_E__M));
 825                        AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
 826                                      FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
 827                        status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
 828                        if (status < 0)
 829                                break;
 830
 831                        /* set FeAgRegAgAgcSio AGC2 (RF) as input */
 832                        {
 833                                u16 FeAgRegAgAgcSio = 0;
 834                                status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
 835                                if (status < 0)
 836                                        break;
 837                                FeAgRegAgAgcSio &=
 838                                    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
 839                                FeAgRegAgAgcSio |=
 840                                    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT;
 841                                status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
 842                                if (status < 0)
 843                                        break;
 844                        }
 845                } while (0);
 846        }
 847        return status;
 848}
 849
 850static int ReadIFAgc(struct drxd_state *state, u32 * pValue)
 851{
 852        int status = 0;
 853
 854        *pValue = 0;
 855        if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) {
 856                u16 Value;
 857                status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0);
 858                Value &= FE_AG_REG_GC1_AGC_DAT__M;
 859                if (status >= 0) {
 860                        /*           3.3V
 861                           |
 862                           R1
 863                           |
 864                           Vin - R3 - * -- Vout
 865                           |
 866                           R2
 867                           |
 868                           GND
 869                         */
 870                        u32 R1 = state->if_agc_cfg.R1;
 871                        u32 R2 = state->if_agc_cfg.R2;
 872                        u32 R3 = state->if_agc_cfg.R3;
 873
 874                        u32 Vmax, Rpar, Vmin, Vout;
 875
 876                        if (R2 == 0 && (R1 == 0 || R3 == 0))
 877                                return 0;
 878
 879                        Vmax = (3300 * R2) / (R1 + R2);
 880                        Rpar = (R2 * R3) / (R3 + R2);
 881                        Vmin = (3300 * Rpar) / (R1 + Rpar);
 882                        Vout = Vmin + ((Vmax - Vmin) * Value) / 1024;
 883
 884                        *pValue = Vout;
 885                }
 886        }
 887        return status;
 888}
 889
 890static int load_firmware(struct drxd_state *state, const char *fw_name)
 891{
 892        const struct firmware *fw;
 893
 894        if (request_firmware(&fw, fw_name, state->dev) < 0) {
 895                printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name);
 896                return -EIO;
 897        }
 898
 899        state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL);
 900        if (!state->microcode) {
 901                release_firmware(fw);
 902                return -ENOMEM;
 903        }
 904
 905        state->microcode_length = fw->size;
 906        release_firmware(fw);
 907        return 0;
 908}
 909
 910static int DownloadMicrocode(struct drxd_state *state,
 911                             const u8 *pMCImage, u32 Length)
 912{
 913        u8 *pSrc;
 914        u32 Address;
 915        u16 nBlocks;
 916        u16 BlockSize;
 917        u32 offset = 0;
 918        int i, status = 0;
 919
 920        pSrc = (u8 *) pMCImage;
 921        /* We're not using Flags */
 922        /* Flags = (pSrc[0] << 8) | pSrc[1]; */
 923        pSrc += sizeof(u16);
 924        offset += sizeof(u16);
 925        nBlocks = (pSrc[0] << 8) | pSrc[1];
 926        pSrc += sizeof(u16);
 927        offset += sizeof(u16);
 928
 929        for (i = 0; i < nBlocks; i++) {
 930                Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
 931                    (pSrc[2] << 8) | pSrc[3];
 932                pSrc += sizeof(u32);
 933                offset += sizeof(u32);
 934
 935                BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
 936                pSrc += sizeof(u16);
 937                offset += sizeof(u16);
 938
 939                /* We're not using Flags */
 940                /* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */
 941                pSrc += sizeof(u16);
 942                offset += sizeof(u16);
 943
 944                /* We're not using BlockCRC */
 945                /* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */
 946                pSrc += sizeof(u16);
 947                offset += sizeof(u16);
 948
 949                status = WriteBlock(state, Address, BlockSize,
 950                                    pSrc, DRX_I2C_CLEARCRC);
 951                if (status < 0)
 952                        break;
 953                pSrc += BlockSize;
 954                offset += BlockSize;
 955        }
 956
 957        return status;
 958}
 959
 960static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult)
 961{
 962        u32 nrRetries = 0;
 963        int status;
 964
 965        status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0);
 966        if (status < 0)
 967                return status;
 968
 969        do {
 970                nrRetries += 1;
 971                if (nrRetries > DRXD_MAX_RETRIES) {
 972                        status = -1;
 973                        break;
 974                }
 975                status = Read16(state, HI_RA_RAM_SRV_CMD__A, NULL, 0);
 976        } while (status != 0);
 977
 978        if (status >= 0)
 979                status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0);
 980        return status;
 981}
 982
 983static int HI_CfgCommand(struct drxd_state *state)
 984{
 985        int status = 0;
 986
 987        mutex_lock(&state->mutex);
 988        Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
 989        Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0);
 990        Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0);
 991        Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0);
 992        Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0);
 993
 994        Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
 995
 996        if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) ==
 997            HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)
 998                status = Write16(state, HI_RA_RAM_SRV_CMD__A,
 999                                 HI_RA_RAM_SRV_CMD_CONFIG, 0);
1000        else
1001                status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, NULL);
1002        mutex_unlock(&state->mutex);
1003        return status;
1004}
1005
1006static int InitHI(struct drxd_state *state)
1007{
1008        state->hi_cfg_wakeup_key = (state->chip_adr);
1009        /* port/bridge/power down ctrl */
1010        state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON;
1011        return HI_CfgCommand(state);
1012}
1013
1014static int HI_ResetCommand(struct drxd_state *state)
1015{
1016        int status;
1017
1018        mutex_lock(&state->mutex);
1019        status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A,
1020                         HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1021        if (status == 0)
1022                status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, NULL);
1023        mutex_unlock(&state->mutex);
1024        msleep(1);
1025        return status;
1026}
1027
1028static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge)
1029{
1030        state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M);
1031        if (bEnableBridge)
1032                state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON;
1033        else
1034                state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF;
1035
1036        return HI_CfgCommand(state);
1037}
1038
1039#define HI_TR_WRITE      0x9
1040#define HI_TR_READ       0xA
1041#define HI_TR_READ_WRITE 0xB
1042#define HI_TR_BROADCAST  0x4
1043
1044#if 0
1045static int AtomicReadBlock(struct drxd_state *state,
1046                           u32 Addr, u16 DataSize, u8 *pData, u8 Flags)
1047{
1048        int status;
1049        int i = 0;
1050
1051        /* Parameter check */
1052        if ((!pData) || ((DataSize & 1) != 0))
1053                return -1;
1054
1055        mutex_lock(&state->mutex);
1056
1057        do {
1058                /* Instruct HI to read n bytes */
1059                /* TODO use proper names forthese egisters */
1060                status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0);
1061                if (status < 0)
1062                        break;
1063                status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0);
1064                if (status < 0)
1065                        break;
1066                status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0);
1067                if (status < 0)
1068                        break;
1069                status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0);
1070                if (status < 0)
1071                        break;
1072                status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0);
1073                if (status < 0)
1074                        break;
1075
1076                status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0);
1077                if (status < 0)
1078                        break;
1079
1080        } while (0);
1081
1082        if (status >= 0) {
1083                for (i = 0; i < (DataSize / 2); i += 1) {
1084                        u16 word;
1085
1086                        status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i),
1087                                        &word, 0);
1088                        if (status < 0)
1089                                break;
1090                        pData[2 * i] = (u8) (word & 0xFF);
1091                        pData[(2 * i) + 1] = (u8) (word >> 8);
1092                }
1093        }
1094        mutex_unlock(&state->mutex);
1095        return status;
1096}
1097
1098static int AtomicReadReg32(struct drxd_state *state,
1099                           u32 Addr, u32 *pData, u8 Flags)
1100{
1101        u8 buf[sizeof(u32)];
1102        int status;
1103
1104        if (!pData)
1105                return -1;
1106        status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags);
1107        *pData = (((u32) buf[0]) << 0) +
1108            (((u32) buf[1]) << 8) +
1109            (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24);
1110        return status;
1111}
1112#endif
1113
1114static int StopAllProcessors(struct drxd_state *state)
1115{
1116        return Write16(state, HI_COMM_EXEC__A,
1117                       SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST);
1118}
1119
1120static int EnableAndResetMB(struct drxd_state *state)
1121{
1122        if (state->type_A) {
1123                /* disable? monitor bus observe @ EC_OC */
1124                Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000);
1125        }
1126
1127        /* do inverse broadcast, followed by explicit write to HI */
1128        Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST);
1129        Write16(state, HI_COMM_MB__A, 0x0000, 0x0000);
1130        return 0;
1131}
1132
1133static int InitCC(struct drxd_state *state)
1134{
1135        int status = 0;
1136
1137        if (state->osc_clock_freq == 0 ||
1138            state->osc_clock_freq > 20000 ||
1139            (state->osc_clock_freq % 4000) != 0) {
1140                printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq);
1141                return -1;
1142        }
1143
1144        status |= Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0);
1145        status |= Write16(state, CC_REG_PLL_MODE__A,
1146                                CC_REG_PLL_MODE_BYPASS_PLL |
1147                                CC_REG_PLL_MODE_PUMP_CUR_12, 0);
1148        status |= Write16(state, CC_REG_REF_DIVIDE__A,
1149                                state->osc_clock_freq / 4000, 0);
1150        status |= Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL,
1151                                0);
1152        status |= Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0);
1153
1154        return status;
1155}
1156
1157static int ResetECOD(struct drxd_state *state)
1158{
1159        int status = 0;
1160
1161        if (state->type_A)
1162                status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0);
1163        else
1164                status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0);
1165
1166        if (!(status < 0))
1167                status = WriteTable(state, state->m_ResetECRAM);
1168        if (!(status < 0))
1169                status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0);
1170        return status;
1171}
1172
1173/* Configure PGA switch */
1174
1175static int SetCfgPga(struct drxd_state *state, int pgaSwitch)
1176{
1177        int status;
1178        u16 AgModeLop = 0;
1179        u16 AgModeHip = 0;
1180        do {
1181                if (pgaSwitch) {
1182                        /* PGA on */
1183                        /* fine gain */
1184                        status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1185                        if (status < 0)
1186                                break;
1187                        AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1188                        AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC;
1189                        status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1190                        if (status < 0)
1191                                break;
1192
1193                        /* coarse gain */
1194                        status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1195                        if (status < 0)
1196                                break;
1197                        AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1198                        AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC;
1199                        status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1200                        if (status < 0)
1201                                break;
1202
1203                        /* enable fine and coarse gain, enable AAF,
1204                           no ext resistor */
1205                        status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000);
1206                        if (status < 0)
1207                                break;
1208                } else {
1209                        /* PGA off, bypass */
1210
1211                        /* fine gain */
1212                        status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1213                        if (status < 0)
1214                                break;
1215                        AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1216                        AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC;
1217                        status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1218                        if (status < 0)
1219                                break;
1220
1221                        /* coarse gain */
1222                        status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1223                        if (status < 0)
1224                                break;
1225                        AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1226                        AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC;
1227                        status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1228                        if (status < 0)
1229                                break;
1230
1231                        /* disable fine and coarse gain, enable AAF,
1232                           no ext resistor */
1233                        status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000);
1234                        if (status < 0)
1235                                break;
1236                }
1237        } while (0);
1238        return status;
1239}
1240
1241static int InitFE(struct drxd_state *state)
1242{
1243        int status;
1244
1245        do {
1246                status = WriteTable(state, state->m_InitFE_1);
1247                if (status < 0)
1248                        break;
1249
1250                if (state->type_A) {
1251                        status = Write16(state, FE_AG_REG_AG_PGA_MODE__A,
1252                                         FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1253                                         0);
1254                } else {
1255                        if (state->PGA)
1256                                status = SetCfgPga(state, 0);
1257                        else
1258                                status =
1259                                    Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
1260                                            B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1261                                            0);
1262                }
1263
1264                if (status < 0)
1265                        break;
1266                status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000);
1267                if (status < 0)
1268                        break;
1269                status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
1270                if (status < 0)
1271                        break;
1272
1273                status = WriteTable(state, state->m_InitFE_2);
1274                if (status < 0)
1275                        break;
1276
1277        } while (0);
1278
1279        return status;
1280}
1281
1282static int InitFT(struct drxd_state *state)
1283{
1284        /*
1285           norm OFFSET,  MB says =2 voor 8K en =3 voor 2K waarschijnlijk
1286           SC stuff
1287         */
1288        return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000);
1289}
1290
1291static int SC_WaitForReady(struct drxd_state *state)
1292{
1293        int i;
1294
1295        for (i = 0; i < DRXD_MAX_RETRIES; i += 1) {
1296                int status = Read16(state, SC_RA_RAM_CMD__A, NULL, 0);
1297                if (status == 0)
1298                        return status;
1299        }
1300        return -1;
1301}
1302
1303static int SC_SendCommand(struct drxd_state *state, u16 cmd)
1304{
1305        int status = 0, ret;
1306        u16 errCode;
1307
1308        status = Write16(state, SC_RA_RAM_CMD__A, cmd, 0);
1309        if (status < 0)
1310                return status;
1311
1312        SC_WaitForReady(state);
1313
1314        ret = Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0);
1315
1316        if (ret < 0 || errCode == 0xFFFF) {
1317                printk(KERN_ERR "Command Error\n");
1318                status = -1;
1319        }
1320
1321        return status;
1322}
1323
1324static int SC_ProcStartCommand(struct drxd_state *state,
1325                               u16 subCmd, u16 param0, u16 param1)
1326{
1327        int ret, status = 0;
1328        u16 scExec;
1329
1330        mutex_lock(&state->mutex);
1331        do {
1332                ret = Read16(state, SC_COMM_EXEC__A, &scExec, 0);
1333                if (ret < 0 || scExec != 1) {
1334                        status = -1;
1335                        break;
1336                }
1337                SC_WaitForReady(state);
1338                status |= Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1339                status |= Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1340                status |= Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1341
1342                SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START);
1343        } while (0);
1344        mutex_unlock(&state->mutex);
1345        return status;
1346}
1347
1348static int SC_SetPrefParamCommand(struct drxd_state *state,
1349                                  u16 subCmd, u16 param0, u16 param1)
1350{
1351        int status;
1352
1353        mutex_lock(&state->mutex);
1354        do {
1355                status = SC_WaitForReady(state);
1356                if (status < 0)
1357                        break;
1358                status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1359                if (status < 0)
1360                        break;
1361                status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1362                if (status < 0)
1363                        break;
1364                status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1365                if (status < 0)
1366                        break;
1367
1368                status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM);
1369                if (status < 0)
1370                        break;
1371        } while (0);
1372        mutex_unlock(&state->mutex);
1373        return status;
1374}
1375
1376#if 0
1377static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result)
1378{
1379        int status = 0;
1380
1381        mutex_lock(&state->mutex);
1382        do {
1383                status = SC_WaitForReady(state);
1384                if (status < 0)
1385                        break;
1386                status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM);
1387                if (status < 0)
1388                        break;
1389                status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0);
1390                if (status < 0)
1391                        break;
1392        } while (0);
1393        mutex_unlock(&state->mutex);
1394        return status;
1395}
1396#endif
1397
1398static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput)
1399{
1400        int status;
1401
1402        do {
1403                u16 EcOcRegIprInvMpg = 0;
1404                u16 EcOcRegOcModeLop = 0;
1405                u16 EcOcRegOcModeHip = 0;
1406                u16 EcOcRegOcMpgSio = 0;
1407
1408                /*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
1409
1410                if (state->operation_mode == OM_DVBT_Diversity_Front) {
1411                        if (bEnableOutput) {
1412                                EcOcRegOcModeHip |=
1413                                    B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR;
1414                        } else
1415                                EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1416                        EcOcRegOcModeLop |=
1417                            EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1418                } else {
1419                        EcOcRegOcModeLop = state->m_EcOcRegOcModeLop;
1420
1421                        if (bEnableOutput)
1422                                EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M));
1423                        else
1424                                EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1425
1426                        /* Don't Insert RS Byte */
1427                        if (state->insert_rs_byte) {
1428                                EcOcRegOcModeLop &=
1429                                    (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M));
1430                                EcOcRegOcModeHip &=
1431                                    (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1432                                EcOcRegOcModeHip |=
1433                                    EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE;
1434                        } else {
1435                                EcOcRegOcModeLop |=
1436                                    EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1437                                EcOcRegOcModeHip &=
1438                                    (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1439                                EcOcRegOcModeHip |=
1440                                    EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE;
1441                        }
1442
1443                        /* Mode = Parallel */
1444                        if (state->enable_parallel)
1445                                EcOcRegOcModeLop &=
1446                                    (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M));
1447                        else
1448                                EcOcRegOcModeLop |=
1449                                    EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL;
1450                }
1451                /* Invert Data */
1452                /* EcOcRegIprInvMpg |= 0x00FF; */
1453                EcOcRegIprInvMpg &= (~(0x00FF));
1454
1455                /* Invert Error ( we don't use the pin ) */
1456                /*  EcOcRegIprInvMpg |= 0x0100; */
1457                EcOcRegIprInvMpg &= (~(0x0100));
1458
1459                /* Invert Start ( we don't use the pin ) */
1460                /* EcOcRegIprInvMpg |= 0x0200; */
1461                EcOcRegIprInvMpg &= (~(0x0200));
1462
1463                /* Invert Valid ( we don't use the pin ) */
1464                /* EcOcRegIprInvMpg |= 0x0400; */
1465                EcOcRegIprInvMpg &= (~(0x0400));
1466
1467                /* Invert Clock */
1468                /* EcOcRegIprInvMpg |= 0x0800; */
1469                EcOcRegIprInvMpg &= (~(0x0800));
1470
1471                /* EcOcRegOcModeLop =0x05; */
1472                status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0);
1473                if (status < 0)
1474                        break;
1475                status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0);
1476                if (status < 0)
1477                        break;
1478                status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000);
1479                if (status < 0)
1480                        break;
1481                status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0);
1482                if (status < 0)
1483                        break;
1484        } while (0);
1485        return status;
1486}
1487
1488static int SetDeviceTypeId(struct drxd_state *state)
1489{
1490        int status = 0;
1491        u16 deviceId = 0;
1492
1493        do {
1494                status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1495                if (status < 0)
1496                        break;
1497                /* TODO: why twice? */
1498                status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1499                if (status < 0)
1500                        break;
1501                printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId);
1502
1503                state->type_A = 0;
1504                state->PGA = 0;
1505                state->diversity = 0;
1506                if (deviceId == 0) {    /* on A2 only 3975 available */
1507                        state->type_A = 1;
1508                        printk(KERN_INFO "DRX3975D-A2\n");
1509                } else {
1510                        deviceId >>= 12;
1511                        printk(KERN_INFO "DRX397%dD-B1\n", deviceId);
1512                        switch (deviceId) {
1513                        case 4:
1514                                state->diversity = 1;
1515                                fallthrough;
1516                        case 3:
1517                        case 7:
1518                                state->PGA = 1;
1519                                break;
1520                        case 6:
1521                                state->diversity = 1;
1522                                fallthrough;
1523                        case 5:
1524                        case 8:
1525                                break;
1526                        default:
1527                                status = -1;
1528                                break;
1529                        }
1530                }
1531        } while (0);
1532
1533        if (status < 0)
1534                return status;
1535
1536        /* Init Table selection */
1537        state->m_InitAtomicRead = DRXD_InitAtomicRead;
1538        state->m_InitSC = DRXD_InitSC;
1539        state->m_ResetECRAM = DRXD_ResetECRAM;
1540        if (state->type_A) {
1541                state->m_ResetCEFR = DRXD_ResetCEFR;
1542                state->m_InitFE_1 = DRXD_InitFEA2_1;
1543                state->m_InitFE_2 = DRXD_InitFEA2_2;
1544                state->m_InitCP = DRXD_InitCPA2;
1545                state->m_InitCE = DRXD_InitCEA2;
1546                state->m_InitEQ = DRXD_InitEQA2;
1547                state->m_InitEC = DRXD_InitECA2;
1548                if (load_firmware(state, DRX_FW_FILENAME_A2))
1549                        return -EIO;
1550        } else {
1551                state->m_ResetCEFR = NULL;
1552                state->m_InitFE_1 = DRXD_InitFEB1_1;
1553                state->m_InitFE_2 = DRXD_InitFEB1_2;
1554                state->m_InitCP = DRXD_InitCPB1;
1555                state->m_InitCE = DRXD_InitCEB1;
1556                state->m_InitEQ = DRXD_InitEQB1;
1557                state->m_InitEC = DRXD_InitECB1;
1558                if (load_firmware(state, DRX_FW_FILENAME_B1))
1559                        return -EIO;
1560        }
1561        if (state->diversity) {
1562                state->m_InitDiversityFront = DRXD_InitDiversityFront;
1563                state->m_InitDiversityEnd = DRXD_InitDiversityEnd;
1564                state->m_DisableDiversity = DRXD_DisableDiversity;
1565                state->m_StartDiversityFront = DRXD_StartDiversityFront;
1566                state->m_StartDiversityEnd = DRXD_StartDiversityEnd;
1567                state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ;
1568                state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ;
1569        } else {
1570                state->m_InitDiversityFront = NULL;
1571                state->m_InitDiversityEnd = NULL;
1572                state->m_DisableDiversity = NULL;
1573                state->m_StartDiversityFront = NULL;
1574                state->m_StartDiversityEnd = NULL;
1575                state->m_DiversityDelay8MHZ = NULL;
1576                state->m_DiversityDelay6MHZ = NULL;
1577        }
1578
1579        return status;
1580}
1581
1582static int CorrectSysClockDeviation(struct drxd_state *state)
1583{
1584        int status;
1585        s32 incr = 0;
1586        s32 nomincr = 0;
1587        u32 bandwidth = 0;
1588        u32 sysClockInHz = 0;
1589        u32 sysClockFreq = 0;   /* in kHz */
1590        s16 oscClockDeviation;
1591        s16 Diff;
1592
1593        do {
1594                /* Retrieve bandwidth and incr, sanity check */
1595
1596                /* These accesses should be AtomicReadReg32, but that
1597                   causes trouble (at least for diversity */
1598                status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0);
1599                if (status < 0)
1600                        break;
1601                status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0);
1602                if (status < 0)
1603                        break;
1604
1605                if (state->type_A) {
1606                        if ((nomincr - incr < -500) || (nomincr - incr > 500))
1607                                break;
1608                } else {
1609                        if ((nomincr - incr < -2000) || (nomincr - incr > 2000))
1610                                break;
1611                }
1612
1613                switch (state->props.bandwidth_hz) {
1614                case 8000000:
1615                        bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
1616                        break;
1617                case 7000000:
1618                        bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
1619                        break;
1620                case 6000000:
1621                        bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
1622                        break;
1623                default:
1624                        return -1;
1625                }
1626
1627                /* Compute new sysclock value
1628                   sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
1629                incr += (1 << 23);
1630                sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21);
1631                sysClockFreq = (u32) (sysClockInHz / 1000);
1632                /* rounding */
1633                if ((sysClockInHz % 1000) > 500)
1634                        sysClockFreq++;
1635
1636                /* Compute clock deviation in ppm */
1637                oscClockDeviation = (u16) ((((s32) (sysClockFreq) -
1638                                             (s32)
1639                                             (state->expected_sys_clock_freq)) *
1640                                            1000000L) /
1641                                           (s32)
1642                                           (state->expected_sys_clock_freq));
1643
1644                Diff = oscClockDeviation - state->osc_clock_deviation;
1645                /*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
1646                if (Diff >= -200 && Diff <= 200) {
1647                        state->sys_clock_freq = (u16) sysClockFreq;
1648                        if (oscClockDeviation != state->osc_clock_deviation) {
1649                                if (state->config.osc_deviation) {
1650                                        state->config.osc_deviation(state->priv,
1651                                                                    oscClockDeviation,
1652                                                                    1);
1653                                        state->osc_clock_deviation =
1654                                            oscClockDeviation;
1655                                }
1656                        }
1657                        /* switch OFF SRMM scan in SC */
1658                        status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0);
1659                        if (status < 0)
1660                                break;
1661                        /* overrule FE_IF internal value for
1662                           proper re-locking */
1663                        status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0);
1664                        if (status < 0)
1665                                break;
1666                        state->cscd_state = CSCD_SAVED;
1667                }
1668        } while (0);
1669
1670        return status;
1671}
1672
1673static int DRX_Stop(struct drxd_state *state)
1674{
1675        int status;
1676
1677        if (state->drxd_state != DRXD_STARTED)
1678                return 0;
1679
1680        do {
1681                if (state->cscd_state != CSCD_SAVED) {
1682                        u32 lock;
1683                        status = DRX_GetLockStatus(state, &lock);
1684                        if (status < 0)
1685                                break;
1686                }
1687
1688                status = StopOC(state);
1689                if (status < 0)
1690                        break;
1691
1692                state->drxd_state = DRXD_STOPPED;
1693
1694                status = ConfigureMPEGOutput(state, 0);
1695                if (status < 0)
1696                        break;
1697
1698                if (state->type_A) {
1699                        /* Stop relevant processors off the device */
1700                        status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000);
1701                        if (status < 0)
1702                                break;
1703
1704                        status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1705                        if (status < 0)
1706                                break;
1707                        status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1708                        if (status < 0)
1709                                break;
1710                } else {
1711                        /* Stop all processors except HI & CC & FE */
1712                        status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1713                        if (status < 0)
1714                                break;
1715                        status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1716                        if (status < 0)
1717                                break;
1718                        status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1719                        if (status < 0)
1720                                break;
1721                        status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1722                        if (status < 0)
1723                                break;
1724                        status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1725                        if (status < 0)
1726                                break;
1727                        status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1728                        if (status < 0)
1729                                break;
1730                        status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0);
1731                        if (status < 0)
1732                                break;
1733                }
1734
1735        } while (0);
1736        return status;
1737}
1738
1739#if 0   /* Currently unused */
1740static int SetOperationMode(struct drxd_state *state, int oMode)
1741{
1742        int status;
1743
1744        do {
1745                if (state->drxd_state != DRXD_STOPPED) {
1746                        status = -1;
1747                        break;
1748                }
1749
1750                if (oMode == state->operation_mode) {
1751                        status = 0;
1752                        break;
1753                }
1754
1755                if (oMode != OM_Default && !state->diversity) {
1756                        status = -1;
1757                        break;
1758                }
1759
1760                switch (oMode) {
1761                case OM_DVBT_Diversity_Front:
1762                        status = WriteTable(state, state->m_InitDiversityFront);
1763                        break;
1764                case OM_DVBT_Diversity_End:
1765                        status = WriteTable(state, state->m_InitDiversityEnd);
1766                        break;
1767                case OM_Default:
1768                        /* We need to check how to
1769                           get DRXD out of diversity */
1770                default:
1771                        status = WriteTable(state, state->m_DisableDiversity);
1772                        break;
1773                }
1774        } while (0);
1775
1776        if (!status)
1777                state->operation_mode = oMode;
1778        return status;
1779}
1780#endif
1781
1782static int StartDiversity(struct drxd_state *state)
1783{
1784        int status = 0;
1785        u16 rcControl;
1786
1787        do {
1788                if (state->operation_mode == OM_DVBT_Diversity_Front) {
1789                        status = WriteTable(state, state->m_StartDiversityFront);
1790                        if (status < 0)
1791                                break;
1792                } else if (state->operation_mode == OM_DVBT_Diversity_End) {
1793                        status = WriteTable(state, state->m_StartDiversityEnd);
1794                        if (status < 0)
1795                                break;
1796                        if (state->props.bandwidth_hz == 8000000) {
1797                                status = WriteTable(state, state->m_DiversityDelay8MHZ);
1798                                if (status < 0)
1799                                        break;
1800                        } else {
1801                                status = WriteTable(state, state->m_DiversityDelay6MHZ);
1802                                if (status < 0)
1803                                        break;
1804                        }
1805
1806                        status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0);
1807                        if (status < 0)
1808                                break;
1809                        rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M);
1810                        rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON |
1811                            /*  combining enabled */
1812                            B_EQ_REG_RC_SEL_CAR_MEAS_A_CC |
1813                            B_EQ_REG_RC_SEL_CAR_PASS_A_CC |
1814                            B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC;
1815                        status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0);
1816                        if (status < 0)
1817                                break;
1818                }
1819        } while (0);
1820        return status;
1821}
1822
1823static int SetFrequencyShift(struct drxd_state *state,
1824                             u32 offsetFreq, int channelMirrored)
1825{
1826        int negativeShift = (state->tuner_mirrors == channelMirrored);
1827
1828        /* Handle all mirroring
1829         *
1830         * Note: ADC mirroring (aliasing) is implictly handled by limiting
1831         * feFsRegAddInc to 28 bits below
1832         * (if the result before masking is more than 28 bits, this means
1833         *  that the ADC is mirroring.
1834         * The masking is in fact the aliasing of the ADC)
1835         *
1836         */
1837
1838        /* Compute register value, unsigned computation */
1839        state->fe_fs_add_incr = MulDiv32(state->intermediate_freq +
1840                                         offsetFreq,
1841                                         1 << 28, state->sys_clock_freq);
1842        /* Remove integer part */
1843        state->fe_fs_add_incr &= 0x0FFFFFFFL;
1844        if (negativeShift)
1845                state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr);
1846
1847        /* Save the frequency shift without tunerOffset compensation
1848           for CtrlGetChannel. */
1849        state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq,
1850                                             1 << 28, state->sys_clock_freq);
1851        /* Remove integer part */
1852        state->org_fe_fs_add_incr &= 0x0FFFFFFFL;
1853        if (negativeShift)
1854                state->org_fe_fs_add_incr = ((1L << 28) -
1855                                             state->org_fe_fs_add_incr);
1856
1857        return Write32(state, FE_FS_REG_ADD_INC_LOP__A,
1858                       state->fe_fs_add_incr, 0);
1859}
1860
1861static int SetCfgNoiseCalibration(struct drxd_state *state,
1862                                  struct SNoiseCal *noiseCal)
1863{
1864        u16 beOptEna;
1865        int status = 0;
1866
1867        do {
1868                status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0);
1869                if (status < 0)
1870                        break;
1871                if (noiseCal->cpOpt) {
1872                        beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1873                } else {
1874                        beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1875                        status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0);
1876                        if (status < 0)
1877                                break;
1878                }
1879                status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0);
1880                if (status < 0)
1881                        break;
1882
1883                if (!state->type_A) {
1884                        status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0);
1885                        if (status < 0)
1886                                break;
1887                        status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0);
1888                        if (status < 0)
1889                                break;
1890                }
1891        } while (0);
1892
1893        return status;
1894}
1895
1896static int DRX_Start(struct drxd_state *state, s32 off)
1897{
1898        struct dtv_frontend_properties *p = &state->props;
1899        int status;
1900
1901        u16 transmissionParams = 0;
1902        u16 operationMode = 0;
1903        u16 qpskTdTpsPwr = 0;
1904        u16 qam16TdTpsPwr = 0;
1905        u16 qam64TdTpsPwr = 0;
1906        u32 feIfIncr = 0;
1907        u32 bandwidth = 0;
1908        int mirrorFreqSpect;
1909
1910        u16 qpskSnCeGain = 0;
1911        u16 qam16SnCeGain = 0;
1912        u16 qam64SnCeGain = 0;
1913        u16 qpskIsGainMan = 0;
1914        u16 qam16IsGainMan = 0;
1915        u16 qam64IsGainMan = 0;
1916        u16 qpskIsGainExp = 0;
1917        u16 qam16IsGainExp = 0;
1918        u16 qam64IsGainExp = 0;
1919        u16 bandwidthParam = 0;
1920
1921        if (off < 0)
1922                off = (off - 500) / 1000;
1923        else
1924                off = (off + 500) / 1000;
1925
1926        do {
1927                if (state->drxd_state != DRXD_STOPPED)
1928                        return -1;
1929                status = ResetECOD(state);
1930                if (status < 0)
1931                        break;
1932                if (state->type_A) {
1933                        status = InitSC(state);
1934                        if (status < 0)
1935                                break;
1936                } else {
1937                        status = InitFT(state);
1938                        if (status < 0)
1939                                break;
1940                        status = InitCP(state);
1941                        if (status < 0)
1942                                break;
1943                        status = InitCE(state);
1944                        if (status < 0)
1945                                break;
1946                        status = InitEQ(state);
1947                        if (status < 0)
1948                                break;
1949                        status = InitSC(state);
1950                        if (status < 0)
1951                                break;
1952                }
1953
1954                /* Restore current IF & RF AGC settings */
1955
1956                status = SetCfgIfAgc(state, &state->if_agc_cfg);
1957                if (status < 0)
1958                        break;
1959                status = SetCfgRfAgc(state, &state->rf_agc_cfg);
1960                if (status < 0)
1961                        break;
1962
1963                mirrorFreqSpect = (state->props.inversion == INVERSION_ON);
1964
1965                switch (p->transmission_mode) {
1966                default:        /* Not set, detect it automatically */
1967                        operationMode |= SC_RA_RAM_OP_AUTO_MODE__M;
1968                        fallthrough;    /* try first guess DRX_FFTMODE_8K */
1969                case TRANSMISSION_MODE_8K:
1970                        transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K;
1971                        if (state->type_A) {
1972                                status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000);
1973                                if (status < 0)
1974                                        break;
1975                                qpskSnCeGain = 99;
1976                                qam16SnCeGain = 83;
1977                                qam64SnCeGain = 67;
1978                        }
1979                        break;
1980                case TRANSMISSION_MODE_2K:
1981                        transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K;
1982                        if (state->type_A) {
1983                                status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000);
1984                                if (status < 0)
1985                                        break;
1986                                qpskSnCeGain = 97;
1987                                qam16SnCeGain = 71;
1988                                qam64SnCeGain = 65;
1989                        }
1990                        break;
1991                }
1992
1993                switch (p->guard_interval) {
1994                case GUARD_INTERVAL_1_4:
1995                        transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
1996                        break;
1997                case GUARD_INTERVAL_1_8:
1998                        transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8;
1999                        break;
2000                case GUARD_INTERVAL_1_16:
2001                        transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16;
2002                        break;
2003                case GUARD_INTERVAL_1_32:
2004                        transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32;
2005                        break;
2006                default:        /* Not set, detect it automatically */
2007                        operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M;
2008                        /* try first guess 1/4 */
2009                        transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2010                        break;
2011                }
2012
2013                switch (p->hierarchy) {
2014                case HIERARCHY_1:
2015                        transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1;
2016                        if (state->type_A) {
2017                                status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000);
2018                                if (status < 0)
2019                                        break;
2020                                status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000);
2021                                if (status < 0)
2022                                        break;
2023
2024                                qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2025                                qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1;
2026                                qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1;
2027
2028                                qpskIsGainMan =
2029                                    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2030                                qam16IsGainMan =
2031                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2032                                qam64IsGainMan =
2033                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2034
2035                                qpskIsGainExp =
2036                                    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2037                                qam16IsGainExp =
2038                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2039                                qam64IsGainExp =
2040                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2041                        }
2042                        break;
2043
2044                case HIERARCHY_2:
2045                        transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2;
2046                        if (state->type_A) {
2047                                status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000);
2048                                if (status < 0)
2049                                        break;
2050                                status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000);
2051                                if (status < 0)
2052                                        break;
2053
2054                                qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2055                                qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2;
2056                                qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2;
2057
2058                                qpskIsGainMan =
2059                                    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2060                                qam16IsGainMan =
2061                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE;
2062                                qam64IsGainMan =
2063                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE;
2064
2065                                qpskIsGainExp =
2066                                    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2067                                qam16IsGainExp =
2068                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE;
2069                                qam64IsGainExp =
2070                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE;
2071                        }
2072                        break;
2073                case HIERARCHY_4:
2074                        transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4;
2075                        if (state->type_A) {
2076                                status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000);
2077                                if (status < 0)
2078                                        break;
2079                                status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000);
2080                                if (status < 0)
2081                                        break;
2082
2083                                qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2084                                qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4;
2085                                qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4;
2086
2087                                qpskIsGainMan =
2088                                    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2089                                qam16IsGainMan =
2090                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE;
2091                                qam64IsGainMan =
2092                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE;
2093
2094                                qpskIsGainExp =
2095                                    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2096                                qam16IsGainExp =
2097                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE;
2098                                qam64IsGainExp =
2099                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE;
2100                        }
2101                        break;
2102                case HIERARCHY_AUTO:
2103                default:
2104                        /* Not set, detect it automatically, start with none */
2105                        operationMode |= SC_RA_RAM_OP_AUTO_HIER__M;
2106                        transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO;
2107                        if (state->type_A) {
2108                                status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000);
2109                                if (status < 0)
2110                                        break;
2111                                status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000);
2112                                if (status < 0)
2113                                        break;
2114
2115                                qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK;
2116                                qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN;
2117                                qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN;
2118
2119                                qpskIsGainMan =
2120                                    SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE;
2121                                qam16IsGainMan =
2122                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2123                                qam64IsGainMan =
2124                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2125
2126                                qpskIsGainExp =
2127                                    SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE;
2128                                qam16IsGainExp =
2129                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2130                                qam64IsGainExp =
2131                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2132                        }
2133                        break;
2134                }
2135                if (status < 0)
2136                        break;
2137
2138                switch (p->modulation) {
2139                default:
2140                        operationMode |= SC_RA_RAM_OP_AUTO_CONST__M;
2141                        fallthrough;    /* try first guess DRX_CONSTELLATION_QAM64 */
2142                case QAM_64:
2143                        transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64;
2144                        if (state->type_A) {
2145                                status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000);
2146                                if (status < 0)
2147                                        break;
2148                                status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000);
2149                                if (status < 0)
2150                                        break;
2151                                status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000);
2152                                if (status < 0)
2153                                        break;
2154                                status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000);
2155                                if (status < 0)
2156                                        break;
2157                                status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000);
2158                                if (status < 0)
2159                                        break;
2160
2161                                status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000);
2162                                if (status < 0)
2163                                        break;
2164                                status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000);
2165                                if (status < 0)
2166                                        break;
2167                                status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000);
2168                                if (status < 0)
2169                                        break;
2170                                status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000);
2171                                if (status < 0)
2172                                        break;
2173                        }
2174                        break;
2175                case QPSK:
2176                        transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK;
2177                        if (state->type_A) {
2178                                status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000);
2179                                if (status < 0)
2180                                        break;
2181                                status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000);
2182                                if (status < 0)
2183                                        break;
2184                                status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2185                                if (status < 0)
2186                                        break;
2187                                status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000);
2188                                if (status < 0)
2189                                        break;
2190                                status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2191                                if (status < 0)
2192                                        break;
2193
2194                                status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000);
2195                                if (status < 0)
2196                                        break;
2197                                status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000);
2198                                if (status < 0)
2199                                        break;
2200                                status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000);
2201                                if (status < 0)
2202                                        break;
2203                                status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000);
2204                                if (status < 0)
2205                                        break;
2206                        }
2207                        break;
2208
2209                case QAM_16:
2210                        transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16;
2211                        if (state->type_A) {
2212                                status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000);
2213                                if (status < 0)
2214                                        break;
2215                                status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000);
2216                                if (status < 0)
2217                                        break;
2218                                status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2219                                if (status < 0)
2220                                        break;
2221                                status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000);
2222                                if (status < 0)
2223                                        break;
2224                                status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2225                                if (status < 0)
2226                                        break;
2227
2228                                status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000);
2229                                if (status < 0)
2230                                        break;
2231                                status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000);
2232                                if (status < 0)
2233                                        break;
2234                                status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000);
2235                                if (status < 0)
2236                                        break;
2237                                status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000);
2238                                if (status < 0)
2239                                        break;
2240                        }
2241                        break;
2242
2243                }
2244                if (status < 0)
2245                        break;
2246
2247                switch (DRX_CHANNEL_HIGH) {
2248                default:
2249                case DRX_CHANNEL_AUTO:
2250                case DRX_CHANNEL_LOW:
2251                        transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO;
2252                        status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000);
2253                        break;
2254                case DRX_CHANNEL_HIGH:
2255                        transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI;
2256                        status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000);
2257                        break;
2258                }
2259
2260                switch (p->code_rate_HP) {
2261                case FEC_1_2:
2262                        transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2;
2263                        if (state->type_A)
2264                                status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000);
2265                        break;
2266                default:
2267                        operationMode |= SC_RA_RAM_OP_AUTO_RATE__M;
2268                        fallthrough;
2269                case FEC_2_3:
2270                        transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3;
2271                        if (state->type_A)
2272                                status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000);
2273                        break;
2274                case FEC_3_4:
2275                        transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4;
2276                        if (state->type_A)
2277                                status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000);
2278                        break;
2279                case FEC_5_6:
2280                        transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6;
2281                        if (state->type_A)
2282                                status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000);
2283                        break;
2284                case FEC_7_8:
2285                        transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8;
2286                        if (state->type_A)
2287                                status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000);
2288                        break;
2289                }
2290                if (status < 0)
2291                        break;
2292
2293                /* First determine real bandwidth (Hz) */
2294                /* Also set delay for impulse noise cruncher (only A2) */
2295                /* Also set parameters for EC_OC fix, note
2296                   EC_OC_REG_TMD_HIL_MAR is changed
2297                   by SC for fix for some 8K,1/8 guard but is restored by
2298                   InitEC and ResetEC
2299                   functions */
2300                switch (p->bandwidth_hz) {
2301                case 0:
2302                        p->bandwidth_hz = 8000000;
2303                        fallthrough;
2304                case 8000000:
2305                        /* (64/7)*(8/8)*1000000 */
2306                        bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
2307
2308                        bandwidthParam = 0;
2309                        status = Write16(state,
2310                                         FE_AG_REG_IND_DEL__A, 50, 0x0000);
2311                        break;
2312                case 7000000:
2313                        /* (64/7)*(7/8)*1000000 */
2314                        bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
2315                        bandwidthParam = 0x4807;        /*binary:0100 1000 0000 0111 */
2316                        status = Write16(state,
2317                                         FE_AG_REG_IND_DEL__A, 59, 0x0000);
2318                        break;
2319                case 6000000:
2320                        /* (64/7)*(6/8)*1000000 */
2321                        bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
2322                        bandwidthParam = 0x0F07;        /*binary: 0000 1111 0000 0111 */
2323                        status = Write16(state,
2324                                         FE_AG_REG_IND_DEL__A, 71, 0x0000);
2325                        break;
2326                default:
2327                        status = -EINVAL;
2328                }
2329                if (status < 0)
2330                        break;
2331
2332                status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000);
2333                if (status < 0)
2334                        break;
2335
2336                {
2337                        u16 sc_config;
2338                        status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0);
2339                        if (status < 0)
2340                                break;
2341
2342                        /* enable SLAVE mode in 2k 1/32 to
2343                           prevent timing change glitches */
2344                        if ((p->transmission_mode == TRANSMISSION_MODE_2K) &&
2345                            (p->guard_interval == GUARD_INTERVAL_1_32)) {
2346                                /* enable slave */
2347                                sc_config |= SC_RA_RAM_CONFIG_SLAVE__M;
2348                        } else {
2349                                /* disable slave */
2350                                sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M;
2351                        }
2352                        status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0);
2353                        if (status < 0)
2354                                break;
2355                }
2356
2357                status = SetCfgNoiseCalibration(state, &state->noise_cal);
2358                if (status < 0)
2359                        break;
2360
2361                if (state->cscd_state == CSCD_INIT) {
2362                        /* switch on SRMM scan in SC */
2363                        status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000);
2364                        if (status < 0)
2365                                break;
2366/*            CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
2367                        state->cscd_state = CSCD_SET;
2368                }
2369
2370                /* Now compute FE_IF_REG_INCR */
2371                /*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
2372                   ((SysFreq / BandWidth) * (2^21) ) - (2^23) */
2373                feIfIncr = MulDiv32(state->sys_clock_freq * 1000,
2374                                    (1ULL << 21), bandwidth) - (1 << 23);
2375                status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000);
2376                if (status < 0)
2377                        break;
2378                status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000);
2379                if (status < 0)
2380                        break;
2381                /* Bandwidth setting done */
2382
2383                /* Mirror & frequency offset */
2384                SetFrequencyShift(state, off, mirrorFreqSpect);
2385
2386                /* Start SC, write channel settings to SC */
2387
2388                /* Enable SC after setting all other parameters */
2389                status = Write16(state, SC_COMM_STATE__A, 0, 0x0000);
2390                if (status < 0)
2391                        break;
2392                status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000);
2393                if (status < 0)
2394                        break;
2395
2396                /* Write SC parameter registers, operation mode */
2397#if 1
2398                operationMode = (SC_RA_RAM_OP_AUTO_MODE__M |
2399                                 SC_RA_RAM_OP_AUTO_GUARD__M |
2400                                 SC_RA_RAM_OP_AUTO_CONST__M |
2401                                 SC_RA_RAM_OP_AUTO_HIER__M |
2402                                 SC_RA_RAM_OP_AUTO_RATE__M);
2403#endif
2404                status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode);
2405                if (status < 0)
2406                        break;
2407
2408                /* Start correct processes to get in lock */
2409                status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN);
2410                if (status < 0)
2411                        break;
2412
2413                status = StartOC(state);
2414                if (status < 0)
2415                        break;
2416
2417                if (state->operation_mode != OM_Default) {
2418                        status = StartDiversity(state);
2419                        if (status < 0)
2420                                break;
2421                }
2422
2423                state->drxd_state = DRXD_STARTED;
2424        } while (0);
2425
2426        return status;
2427}
2428
2429static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency)
2430{
2431        u32 ulRfAgcOutputLevel = 0xffffffff;
2432        u32 ulRfAgcSettleLevel = 528;   /* Optimum value for MT2060 */
2433        u32 ulRfAgcMinLevel = 0;        /* Currently unused */
2434        u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX; /* Currently unused */
2435        u32 ulRfAgcSpeed = 0;   /* Currently unused */
2436        u32 ulRfAgcMode = 0;    /*2;   Off */
2437        u32 ulRfAgcR1 = 820;
2438        u32 ulRfAgcR2 = 2200;
2439        u32 ulRfAgcR3 = 150;
2440        u32 ulIfAgcMode = 0;    /* Auto */
2441        u32 ulIfAgcOutputLevel = 0xffffffff;
2442        u32 ulIfAgcSettleLevel = 0xffffffff;
2443        u32 ulIfAgcMinLevel = 0xffffffff;
2444        u32 ulIfAgcMaxLevel = 0xffffffff;
2445        u32 ulIfAgcSpeed = 0xffffffff;
2446        u32 ulIfAgcR1 = 820;
2447        u32 ulIfAgcR2 = 2200;
2448        u32 ulIfAgcR3 = 150;
2449        u32 ulClock = state->config.clock;
2450        u32 ulSerialMode = 0;
2451        u32 ulEcOcRegOcModeLop = 4;     /* Dynamic DTO source */
2452        u32 ulHiI2cDelay = HI_I2C_DELAY;
2453        u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY;
2454        u32 ulHiI2cPatch = 0;
2455        u32 ulEnvironment = APPENV_PORTABLE;
2456        u32 ulEnvironmentDiversity = APPENV_MOBILE;
2457        u32 ulIFFilter = IFFILTER_SAW;
2458
2459        state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2460        state->if_agc_cfg.outputLevel = 0;
2461        state->if_agc_cfg.settleLevel = 140;
2462        state->if_agc_cfg.minOutputLevel = 0;
2463        state->if_agc_cfg.maxOutputLevel = 1023;
2464        state->if_agc_cfg.speed = 904;
2465
2466        if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2467                state->if_agc_cfg.ctrlMode = AGC_CTRL_USER;
2468                state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel);
2469        }
2470
2471        if (ulIfAgcMode == 0 &&
2472            ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2473            ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2474            ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2475            ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2476                state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2477                state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel);
2478                state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel);
2479                state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel);
2480                state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed);
2481        }
2482
2483        state->if_agc_cfg.R1 = (u16) (ulIfAgcR1);
2484        state->if_agc_cfg.R2 = (u16) (ulIfAgcR2);
2485        state->if_agc_cfg.R3 = (u16) (ulIfAgcR3);
2486
2487        state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1);
2488        state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2);
2489        state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3);
2490
2491        state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2492        /* rest of the RFAgcCfg structure currently unused */
2493        if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2494                state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER;
2495                state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel);
2496        }
2497
2498        if (ulRfAgcMode == 0 &&
2499            ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2500            ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2501            ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2502            ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2503                state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2504                state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel);
2505                state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel);
2506                state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel);
2507                state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed);
2508        }
2509
2510        if (ulRfAgcMode == 2)
2511                state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF;
2512
2513        if (ulEnvironment <= 2)
2514                state->app_env_default = (enum app_env)
2515                    (ulEnvironment);
2516        if (ulEnvironmentDiversity <= 2)
2517                state->app_env_diversity = (enum app_env)
2518                    (ulEnvironmentDiversity);
2519
2520        if (ulIFFilter == IFFILTER_DISCRETE) {
2521                /* discrete filter */
2522                state->noise_cal.cpOpt = 0;
2523                state->noise_cal.cpNexpOfs = 40;
2524                state->noise_cal.tdCal2k = -40;
2525                state->noise_cal.tdCal8k = -24;
2526        } else {
2527                /* SAW filter */
2528                state->noise_cal.cpOpt = 1;
2529                state->noise_cal.cpNexpOfs = 0;
2530                state->noise_cal.tdCal2k = -21;
2531                state->noise_cal.tdCal8k = -24;
2532        }
2533        state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop);
2534
2535        state->chip_adr = (state->config.demod_address << 1) | 1;
2536        switch (ulHiI2cPatch) {
2537        case 1:
2538                state->m_HiI2cPatch = DRXD_HiI2cPatch_1;
2539                break;
2540        case 3:
2541                state->m_HiI2cPatch = DRXD_HiI2cPatch_3;
2542                break;
2543        default:
2544                state->m_HiI2cPatch = NULL;
2545        }
2546
2547        /* modify tuner and clock attributes */
2548        state->intermediate_freq = (u16) (IntermediateFrequency / 1000);
2549        /* expected system clock frequency in kHz */
2550        state->expected_sys_clock_freq = 48000;
2551        /* real system clock frequency in kHz */
2552        state->sys_clock_freq = 48000;
2553        state->osc_clock_freq = (u16) ulClock;
2554        state->osc_clock_deviation = 0;
2555        state->cscd_state = CSCD_INIT;
2556        state->drxd_state = DRXD_UNINITIALIZED;
2557
2558        state->PGA = 0;
2559        state->type_A = 0;
2560        state->tuner_mirrors = 0;
2561
2562        /* modify MPEG output attributes */
2563        state->insert_rs_byte = state->config.insert_rs_byte;
2564        state->enable_parallel = (ulSerialMode != 1);
2565
2566        /* Timing div, 250ns/Psys */
2567        /* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
2568
2569        state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) *
2570                                          ulHiI2cDelay) / 1000;
2571        /* Bridge delay, uses oscilator clock */
2572        /* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
2573        state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) *
2574                                            ulHiI2cBridgeDelay) / 1000;
2575
2576        state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2577        /* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
2578        state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2579        return 0;
2580}
2581
2582static int DRXD_init(struct drxd_state *state, const u8 *fw, u32 fw_size)
2583{
2584        int status = 0;
2585        u32 driverVersion;
2586
2587        if (state->init_done)
2588                return 0;
2589
2590        CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2591
2592        do {
2593                state->operation_mode = OM_Default;
2594
2595                status = SetDeviceTypeId(state);
2596                if (status < 0)
2597                        break;
2598
2599                /* Apply I2c address patch to B1 */
2600                if (!state->type_A && state->m_HiI2cPatch) {
2601                        status = WriteTable(state, state->m_HiI2cPatch);
2602                        if (status < 0)
2603                                break;
2604                }
2605
2606                if (state->type_A) {
2607                        /* HI firmware patch for UIO readout,
2608                           avoid clearing of result register */
2609                        status = Write16(state, 0x43012D, 0x047f, 0);
2610                        if (status < 0)
2611                                break;
2612                }
2613
2614                status = HI_ResetCommand(state);
2615                if (status < 0)
2616                        break;
2617
2618                status = StopAllProcessors(state);
2619                if (status < 0)
2620                        break;
2621                status = InitCC(state);
2622                if (status < 0)
2623                        break;
2624
2625                state->osc_clock_deviation = 0;
2626
2627                if (state->config.osc_deviation)
2628                        state->osc_clock_deviation =
2629                            state->config.osc_deviation(state->priv, 0, 0);
2630                {
2631                        /* Handle clock deviation */
2632                        s32 devB;
2633                        s32 devA = (s32) (state->osc_clock_deviation) *
2634                            (s32) (state->expected_sys_clock_freq);
2635                        /* deviation in kHz */
2636                        s32 deviation = (devA / (1000000L));
2637                        /* rounding, signed */
2638                        if (devA > 0)
2639                                devB = (2);
2640                        else
2641                                devB = (-2);
2642                        if ((devB * (devA % 1000000L) > 1000000L)) {
2643                                /* add +1 or -1 */
2644                                deviation += (devB / 2);
2645                        }
2646
2647                        state->sys_clock_freq =
2648                            (u16) ((state->expected_sys_clock_freq) +
2649                                   deviation);
2650                }
2651                status = InitHI(state);
2652                if (status < 0)
2653                        break;
2654                status = InitAtomicRead(state);
2655                if (status < 0)
2656                        break;
2657
2658                status = EnableAndResetMB(state);
2659                if (status < 0)
2660                        break;
2661                if (state->type_A) {
2662                        status = ResetCEFR(state);
2663                        if (status < 0)
2664                                break;
2665                }
2666                if (fw) {
2667                        status = DownloadMicrocode(state, fw, fw_size);
2668                        if (status < 0)
2669                                break;
2670                } else {
2671                        status = DownloadMicrocode(state, state->microcode, state->microcode_length);
2672                        if (status < 0)
2673                                break;
2674                }
2675
2676                if (state->PGA) {
2677                        state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO;
2678                        SetCfgPga(state, 0);    /* PGA = 0 dB */
2679                } else {
2680                        state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2681                }
2682
2683                state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2684
2685                status = InitFE(state);
2686                if (status < 0)
2687                        break;
2688                status = InitFT(state);
2689                if (status < 0)
2690                        break;
2691                status = InitCP(state);
2692                if (status < 0)
2693                        break;
2694                status = InitCE(state);
2695                if (status < 0)
2696                        break;
2697                status = InitEQ(state);
2698                if (status < 0)
2699                        break;
2700                status = InitEC(state);
2701                if (status < 0)
2702                        break;
2703                status = InitSC(state);
2704                if (status < 0)
2705                        break;
2706
2707                status = SetCfgIfAgc(state, &state->if_agc_cfg);
2708                if (status < 0)
2709                        break;
2710                status = SetCfgRfAgc(state, &state->rf_agc_cfg);
2711                if (status < 0)
2712                        break;
2713
2714                state->cscd_state = CSCD_INIT;
2715                status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2716                if (status < 0)
2717                        break;
2718                status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2719                if (status < 0)
2720                        break;
2721
2722                driverVersion = (((VERSION_MAJOR / 10) << 4) +
2723                                 (VERSION_MAJOR % 10)) << 24;
2724                driverVersion += (((VERSION_MINOR / 10) << 4) +
2725                                  (VERSION_MINOR % 10)) << 16;
2726                driverVersion += ((VERSION_PATCH / 1000) << 12) +
2727                    ((VERSION_PATCH / 100) << 8) +
2728                    ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10);
2729
2730                status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0);
2731                if (status < 0)
2732                        break;
2733
2734                status = StopOC(state);
2735                if (status < 0)
2736                        break;
2737
2738                state->drxd_state = DRXD_STOPPED;
2739                state->init_done = 1;
2740                status = 0;
2741        } while (0);
2742        return status;
2743}
2744
2745static int DRXD_status(struct drxd_state *state, u32 *pLockStatus)
2746{
2747        DRX_GetLockStatus(state, pLockStatus);
2748
2749        /*if (*pLockStatus&DRX_LOCK_MPEG) */
2750        if (*pLockStatus & DRX_LOCK_FEC) {
2751                ConfigureMPEGOutput(state, 1);
2752                /* Get status again, in case we have MPEG lock now */
2753                /*DRX_GetLockStatus(state, pLockStatus); */
2754        }
2755
2756        return 0;
2757}
2758
2759/****************************************************************************/
2760/****************************************************************************/
2761/****************************************************************************/
2762
2763static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
2764{
2765        struct drxd_state *state = fe->demodulator_priv;
2766        u32 value;
2767        int res;
2768
2769        res = ReadIFAgc(state, &value);
2770        if (res < 0)
2771                *strength = 0;
2772        else
2773                *strength = 0xffff - (value << 4);
2774        return 0;
2775}
2776
2777static int drxd_read_status(struct dvb_frontend *fe, enum fe_status *status)
2778{
2779        struct drxd_state *state = fe->demodulator_priv;
2780        u32 lock;
2781
2782        DRXD_status(state, &lock);
2783        *status = 0;
2784        /* No MPEG lock in V255 firmware, bug ? */
2785#if 1
2786        if (lock & DRX_LOCK_MPEG)
2787                *status |= FE_HAS_LOCK;
2788#else
2789        if (lock & DRX_LOCK_FEC)
2790                *status |= FE_HAS_LOCK;
2791#endif
2792        if (lock & DRX_LOCK_FEC)
2793                *status |= FE_HAS_VITERBI | FE_HAS_SYNC;
2794        if (lock & DRX_LOCK_DEMOD)
2795                *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
2796
2797        return 0;
2798}
2799
2800static int drxd_init(struct dvb_frontend *fe)
2801{
2802        struct drxd_state *state = fe->demodulator_priv;
2803
2804        return DRXD_init(state, NULL, 0);
2805}
2806
2807static int drxd_config_i2c(struct dvb_frontend *fe, int onoff)
2808{
2809        struct drxd_state *state = fe->demodulator_priv;
2810
2811        if (state->config.disable_i2c_gate_ctrl == 1)
2812                return 0;
2813
2814        return DRX_ConfigureI2CBridge(state, onoff);
2815}
2816
2817static int drxd_get_tune_settings(struct dvb_frontend *fe,
2818                                  struct dvb_frontend_tune_settings *sets)
2819{
2820        sets->min_delay_ms = 10000;
2821        sets->max_drift = 0;
2822        sets->step_size = 0;
2823        return 0;
2824}
2825
2826static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber)
2827{
2828        *ber = 0;
2829        return 0;
2830}
2831
2832static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr)
2833{
2834        *snr = 0;
2835        return 0;
2836}
2837
2838static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
2839{
2840        *ucblocks = 0;
2841        return 0;
2842}
2843
2844static int drxd_sleep(struct dvb_frontend *fe)
2845{
2846        struct drxd_state *state = fe->demodulator_priv;
2847
2848        ConfigureMPEGOutput(state, 0);
2849        return 0;
2850}
2851
2852static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
2853{
2854        return drxd_config_i2c(fe, enable);
2855}
2856
2857static int drxd_set_frontend(struct dvb_frontend *fe)
2858{
2859        struct dtv_frontend_properties *p = &fe->dtv_property_cache;
2860        struct drxd_state *state = fe->demodulator_priv;
2861        s32 off = 0;
2862
2863        state->props = *p;
2864        DRX_Stop(state);
2865
2866        if (fe->ops.tuner_ops.set_params) {
2867                fe->ops.tuner_ops.set_params(fe);
2868                if (fe->ops.i2c_gate_ctrl)
2869                        fe->ops.i2c_gate_ctrl(fe, 0);
2870        }
2871
2872        msleep(200);
2873
2874        return DRX_Start(state, off);
2875}
2876
2877static void drxd_release(struct dvb_frontend *fe)
2878{
2879        struct drxd_state *state = fe->demodulator_priv;
2880
2881        kfree(state);
2882}
2883
2884static const struct dvb_frontend_ops drxd_ops = {
2885        .delsys = { SYS_DVBT},
2886        .info = {
2887                 .name = "Micronas DRXD DVB-T",
2888                 .frequency_min_hz =  47125 * kHz,
2889                 .frequency_max_hz = 855250 * kHz,
2890                 .frequency_stepsize_hz = 166667,
2891                 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
2892                 FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
2893                 FE_CAN_FEC_AUTO |
2894                 FE_CAN_QAM_16 | FE_CAN_QAM_64 |
2895                 FE_CAN_QAM_AUTO |
2896                 FE_CAN_TRANSMISSION_MODE_AUTO |
2897                 FE_CAN_GUARD_INTERVAL_AUTO |
2898                 FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS},
2899
2900        .release = drxd_release,
2901        .init = drxd_init,
2902        .sleep = drxd_sleep,
2903        .i2c_gate_ctrl = drxd_i2c_gate_ctrl,
2904
2905        .set_frontend = drxd_set_frontend,
2906        .get_tune_settings = drxd_get_tune_settings,
2907
2908        .read_status = drxd_read_status,
2909        .read_ber = drxd_read_ber,
2910        .read_signal_strength = drxd_read_signal_strength,
2911        .read_snr = drxd_read_snr,
2912        .read_ucblocks = drxd_read_ucblocks,
2913};
2914
2915struct dvb_frontend *drxd_attach(const struct drxd_config *config,
2916                                 void *priv, struct i2c_adapter *i2c,
2917                                 struct device *dev)
2918{
2919        struct drxd_state *state = NULL;
2920
2921        state = kzalloc(sizeof(*state), GFP_KERNEL);
2922        if (!state)
2923                return NULL;
2924
2925        state->ops = drxd_ops;
2926        state->dev = dev;
2927        state->config = *config;
2928        state->i2c = i2c;
2929        state->priv = priv;
2930
2931        mutex_init(&state->mutex);
2932
2933        if (Read16(state, 0, NULL, 0) < 0)
2934                goto error;
2935
2936        state->frontend.ops = drxd_ops;
2937        state->frontend.demodulator_priv = state;
2938        ConfigureMPEGOutput(state, 0);
2939        /* add few initialization to allow gate control */
2940        CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2941        InitHI(state);
2942
2943        return &state->frontend;
2944
2945error:
2946        printk(KERN_ERR "drxd: not found\n");
2947        kfree(state);
2948        return NULL;
2949}
2950EXPORT_SYMBOL(drxd_attach);
2951
2952MODULE_DESCRIPTION("DRXD driver");
2953MODULE_AUTHOR("Micronas");
2954MODULE_LICENSE("GPL");
2955