linux/drivers/media/dvb-frontends/mb86a20s.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *   Fujitu mb86a20s ISDB-T/ISDB-Tsb Module driver
   4 *
   5 *   Copyright (C) 2010-2013 Mauro Carvalho Chehab
   6 *   Copyright (C) 2009-2010 Douglas Landgraf <dougsland@redhat.com>
   7 */
   8
   9#include <linux/kernel.h>
  10#include <asm/div64.h>
  11
  12#include <media/dvb_frontend.h>
  13#include "mb86a20s.h"
  14
  15#define NUM_LAYERS 3
  16
  17enum mb86a20s_bandwidth {
  18        MB86A20S_13SEG = 0,
  19        MB86A20S_13SEG_PARTIAL = 1,
  20        MB86A20S_1SEG = 2,
  21        MB86A20S_3SEG = 3,
  22};
  23
  24static u8 mb86a20s_subchannel[] = {
  25        0xb0, 0xc0, 0xd0, 0xe0,
  26        0xf0, 0x00, 0x10, 0x20,
  27};
  28
  29struct mb86a20s_state {
  30        struct i2c_adapter *i2c;
  31        const struct mb86a20s_config *config;
  32        u32 last_frequency;
  33
  34        struct dvb_frontend frontend;
  35
  36        u32 if_freq;
  37        enum mb86a20s_bandwidth bw;
  38        bool inversion;
  39        u32 subchannel;
  40
  41        u32 estimated_rate[NUM_LAYERS];
  42        unsigned long get_strength_time;
  43
  44        bool need_init;
  45};
  46
  47struct regdata {
  48        u8 reg;
  49        u8 data;
  50};
  51
  52#define BER_SAMPLING_RATE       1       /* Seconds */
  53
  54/*
  55 * Initialization sequence: Use whatevere default values that PV SBTVD
  56 * does on its initialisation, obtained via USB snoop
  57 */
  58static struct regdata mb86a20s_init1[] = {
  59        { 0x70, 0x0f },
  60        { 0x70, 0xff },
  61        { 0x08, 0x01 },
  62        { 0x50, 0xd1 }, { 0x51, 0x20 },
  63};
  64
  65static struct regdata mb86a20s_init2[] = {
  66        { 0x50, 0xd1 }, { 0x51, 0x22 },
  67        { 0x39, 0x01 },
  68        { 0x71, 0x00 },
  69        { 0x3b, 0x21 },
  70        { 0x3c, 0x3a },
  71        { 0x01, 0x0d },
  72        { 0x04, 0x08 }, { 0x05, 0x05 },
  73        { 0x04, 0x0e }, { 0x05, 0x00 },
  74        { 0x04, 0x0f }, { 0x05, 0x14 },
  75        { 0x04, 0x0b }, { 0x05, 0x8c },
  76        { 0x04, 0x00 }, { 0x05, 0x00 },
  77        { 0x04, 0x01 }, { 0x05, 0x07 },
  78        { 0x04, 0x02 }, { 0x05, 0x0f },
  79        { 0x04, 0x03 }, { 0x05, 0xa0 },
  80        { 0x04, 0x09 }, { 0x05, 0x00 },
  81        { 0x04, 0x0a }, { 0x05, 0xff },
  82        { 0x04, 0x27 }, { 0x05, 0x64 },
  83        { 0x04, 0x28 }, { 0x05, 0x00 },
  84        { 0x04, 0x1e }, { 0x05, 0xff },
  85        { 0x04, 0x29 }, { 0x05, 0x0a },
  86        { 0x04, 0x32 }, { 0x05, 0x0a },
  87        { 0x04, 0x14 }, { 0x05, 0x02 },
  88        { 0x04, 0x04 }, { 0x05, 0x00 },
  89        { 0x04, 0x05 }, { 0x05, 0x22 },
  90        { 0x04, 0x06 }, { 0x05, 0x0e },
  91        { 0x04, 0x07 }, { 0x05, 0xd8 },
  92        { 0x04, 0x12 }, { 0x05, 0x00 },
  93        { 0x04, 0x13 }, { 0x05, 0xff },
  94
  95        /*
  96         * On this demod, when the bit count reaches the count below,
  97         * it collects the bit error count. The bit counters are initialized
  98         * to 65535 here. This warrants that all of them will be quickly
  99         * calculated when device gets locked. As TMCC is parsed, the values
 100         * will be adjusted later in the driver's code.
 101         */
 102        { 0x52, 0x01 },                         /* Turn on BER before Viterbi */
 103        { 0x50, 0xa7 }, { 0x51, 0x00 },
 104        { 0x50, 0xa8 }, { 0x51, 0xff },
 105        { 0x50, 0xa9 }, { 0x51, 0xff },
 106        { 0x50, 0xaa }, { 0x51, 0x00 },
 107        { 0x50, 0xab }, { 0x51, 0xff },
 108        { 0x50, 0xac }, { 0x51, 0xff },
 109        { 0x50, 0xad }, { 0x51, 0x00 },
 110        { 0x50, 0xae }, { 0x51, 0xff },
 111        { 0x50, 0xaf }, { 0x51, 0xff },
 112
 113        /*
 114         * On this demod, post BER counts blocks. When the count reaches the
 115         * value below, it collects the block error count. The block counters
 116         * are initialized to 127 here. This warrants that all of them will be
 117         * quickly calculated when device gets locked. As TMCC is parsed, the
 118         * values will be adjusted later in the driver's code.
 119         */
 120        { 0x5e, 0x07 },                         /* Turn on BER after Viterbi */
 121        { 0x50, 0xdc }, { 0x51, 0x00 },
 122        { 0x50, 0xdd }, { 0x51, 0x7f },
 123        { 0x50, 0xde }, { 0x51, 0x00 },
 124        { 0x50, 0xdf }, { 0x51, 0x7f },
 125        { 0x50, 0xe0 }, { 0x51, 0x00 },
 126        { 0x50, 0xe1 }, { 0x51, 0x7f },
 127
 128        /*
 129         * On this demod, when the block count reaches the count below,
 130         * it collects the block error count. The block counters are initialized
 131         * to 127 here. This warrants that all of them will be quickly
 132         * calculated when device gets locked. As TMCC is parsed, the values
 133         * will be adjusted later in the driver's code.
 134         */
 135        { 0x50, 0xb0 }, { 0x51, 0x07 },         /* Enable PER */
 136        { 0x50, 0xb2 }, { 0x51, 0x00 },
 137        { 0x50, 0xb3 }, { 0x51, 0x7f },
 138        { 0x50, 0xb4 }, { 0x51, 0x00 },
 139        { 0x50, 0xb5 }, { 0x51, 0x7f },
 140        { 0x50, 0xb6 }, { 0x51, 0x00 },
 141        { 0x50, 0xb7 }, { 0x51, 0x7f },
 142
 143        { 0x50, 0x50 }, { 0x51, 0x02 },         /* MER manual mode */
 144        { 0x50, 0x51 }, { 0x51, 0x04 },         /* MER symbol 4 */
 145        { 0x45, 0x04 },                         /* CN symbol 4 */
 146        { 0x48, 0x04 },                         /* CN manual mode */
 147        { 0x50, 0xd5 }, { 0x51, 0x01 },
 148        { 0x50, 0xd6 }, { 0x51, 0x1f },
 149        { 0x50, 0xd2 }, { 0x51, 0x03 },
 150        { 0x50, 0xd7 }, { 0x51, 0x3f },
 151        { 0x1c, 0x01 },
 152        { 0x28, 0x06 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x03 },
 153        { 0x28, 0x07 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0d },
 154        { 0x28, 0x08 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x02 },
 155        { 0x28, 0x09 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x01 },
 156        { 0x28, 0x0a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x21 },
 157        { 0x28, 0x0b }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x29 },
 158        { 0x28, 0x0c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x16 },
 159        { 0x28, 0x0d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x31 },
 160        { 0x28, 0x0e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0e },
 161        { 0x28, 0x0f }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x4e },
 162        { 0x28, 0x10 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x46 },
 163        { 0x28, 0x11 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0f },
 164        { 0x28, 0x12 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x56 },
 165        { 0x28, 0x13 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x35 },
 166        { 0x28, 0x14 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbe },
 167        { 0x28, 0x15 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0x84 },
 168        { 0x28, 0x16 }, { 0x29, 0x00 }, { 0x2a, 0x03 }, { 0x2b, 0xee },
 169        { 0x28, 0x17 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x98 },
 170        { 0x28, 0x18 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x9f },
 171        { 0x28, 0x19 }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xb2 },
 172        { 0x28, 0x1a }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0xc2 },
 173        { 0x28, 0x1b }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0x4a },
 174        { 0x28, 0x1c }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbc },
 175        { 0x28, 0x1d }, { 0x29, 0x00 }, { 0x2a, 0x04 }, { 0x2b, 0xba },
 176        { 0x28, 0x1e }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0x14 },
 177        { 0x50, 0x1e }, { 0x51, 0x5d },
 178        { 0x50, 0x22 }, { 0x51, 0x00 },
 179        { 0x50, 0x23 }, { 0x51, 0xc8 },
 180        { 0x50, 0x24 }, { 0x51, 0x00 },
 181        { 0x50, 0x25 }, { 0x51, 0xf0 },
 182        { 0x50, 0x26 }, { 0x51, 0x00 },
 183        { 0x50, 0x27 }, { 0x51, 0xc3 },
 184        { 0x50, 0x39 }, { 0x51, 0x02 },
 185        { 0x50, 0xd5 }, { 0x51, 0x01 },
 186        { 0xd0, 0x00 },
 187};
 188
 189static struct regdata mb86a20s_reset_reception[] = {
 190        { 0x70, 0xf0 },
 191        { 0x70, 0xff },
 192        { 0x08, 0x01 },
 193        { 0x08, 0x00 },
 194};
 195
 196static struct regdata mb86a20s_per_ber_reset[] = {
 197        { 0x53, 0x00 }, /* pre BER Counter reset */
 198        { 0x53, 0x07 },
 199
 200        { 0x5f, 0x00 }, /* post BER Counter reset */
 201        { 0x5f, 0x07 },
 202
 203        { 0x50, 0xb1 }, /* PER Counter reset */
 204        { 0x51, 0x07 },
 205        { 0x51, 0x00 },
 206};
 207
 208/*
 209 * I2C read/write functions and macros
 210 */
 211
 212static int mb86a20s_i2c_writereg(struct mb86a20s_state *state,
 213                             u8 i2c_addr, u8 reg, u8 data)
 214{
 215        u8 buf[] = { reg, data };
 216        struct i2c_msg msg = {
 217                .addr = i2c_addr, .flags = 0, .buf = buf, .len = 2
 218        };
 219        int rc;
 220
 221        rc = i2c_transfer(state->i2c, &msg, 1);
 222        if (rc != 1) {
 223                dev_err(&state->i2c->dev,
 224                        "%s: writereg error (rc == %i, reg == 0x%02x, data == 0x%02x)\n",
 225                        __func__, rc, reg, data);
 226                return rc;
 227        }
 228
 229        return 0;
 230}
 231
 232static int mb86a20s_i2c_writeregdata(struct mb86a20s_state *state,
 233                                     u8 i2c_addr, struct regdata *rd, int size)
 234{
 235        int i, rc;
 236
 237        for (i = 0; i < size; i++) {
 238                rc = mb86a20s_i2c_writereg(state, i2c_addr, rd[i].reg,
 239                                           rd[i].data);
 240                if (rc < 0)
 241                        return rc;
 242        }
 243        return 0;
 244}
 245
 246static int mb86a20s_i2c_readreg(struct mb86a20s_state *state,
 247                                u8 i2c_addr, u8 reg)
 248{
 249        u8 val;
 250        int rc;
 251        struct i2c_msg msg[] = {
 252                { .addr = i2c_addr, .flags = 0, .buf = &reg, .len = 1 },
 253                { .addr = i2c_addr, .flags = I2C_M_RD, .buf = &val, .len = 1 }
 254        };
 255
 256        rc = i2c_transfer(state->i2c, msg, 2);
 257
 258        if (rc != 2) {
 259                dev_err(&state->i2c->dev, "%s: reg=0x%x (error=%d)\n",
 260                        __func__, reg, rc);
 261                return (rc < 0) ? rc : -EIO;
 262        }
 263
 264        return val;
 265}
 266
 267#define mb86a20s_readreg(state, reg) \
 268        mb86a20s_i2c_readreg(state, state->config->demod_address, reg)
 269#define mb86a20s_writereg(state, reg, val) \
 270        mb86a20s_i2c_writereg(state, state->config->demod_address, reg, val)
 271#define mb86a20s_writeregdata(state, regdata) \
 272        mb86a20s_i2c_writeregdata(state, state->config->demod_address, \
 273        regdata, ARRAY_SIZE(regdata))
 274
 275/*
 276 * Ancillary internal routines (likely compiled inlined)
 277 *
 278 * The functions below assume that gateway lock has already obtained
 279 */
 280
 281static int mb86a20s_read_status(struct dvb_frontend *fe, enum fe_status *status)
 282{
 283        struct mb86a20s_state *state = fe->demodulator_priv;
 284        int val;
 285
 286        *status = 0;
 287
 288        val = mb86a20s_readreg(state, 0x0a);
 289        if (val < 0)
 290                return val;
 291
 292        val &= 0xf;
 293        if (val >= 2)
 294                *status |= FE_HAS_SIGNAL;
 295
 296        if (val >= 4)
 297                *status |= FE_HAS_CARRIER;
 298
 299        if (val >= 5)
 300                *status |= FE_HAS_VITERBI;
 301
 302        if (val >= 7)
 303                *status |= FE_HAS_SYNC;
 304
 305        /*
 306         * Actually, on state S8, it starts receiving TS, but the TS
 307         * output is only on normal state after the transition to S9.
 308         */
 309        if (val >= 9)
 310                *status |= FE_HAS_LOCK;
 311
 312        dev_dbg(&state->i2c->dev, "%s: Status = 0x%02x (state = %d)\n",
 313                 __func__, *status, val);
 314
 315        return val;
 316}
 317
 318static int mb86a20s_read_signal_strength(struct dvb_frontend *fe)
 319{
 320        struct mb86a20s_state *state = fe->demodulator_priv;
 321        struct dtv_frontend_properties *c = &fe->dtv_property_cache;
 322        int rc;
 323        unsigned rf_max, rf_min, rf;
 324
 325        if (state->get_strength_time &&
 326           (!time_after(jiffies, state->get_strength_time)))
 327                return c->strength.stat[0].uvalue;
 328
 329        /* Reset its value if an error happen */
 330        c->strength.stat[0].uvalue = 0;
 331
 332        /* Does a binary search to get RF strength */
 333        rf_max = 0xfff;
 334        rf_min = 0;
 335        do {
 336                rf = (rf_max + rf_min) / 2;
 337                rc = mb86a20s_writereg(state, 0x04, 0x1f);
 338                if (rc < 0)
 339                        return rc;
 340                rc = mb86a20s_writereg(state, 0x05, rf >> 8);
 341                if (rc < 0)
 342                        return rc;
 343                rc = mb86a20s_writereg(state, 0x04, 0x20);
 344                if (rc < 0)
 345                        return rc;
 346                rc = mb86a20s_writereg(state, 0x05, rf);
 347                if (rc < 0)
 348                        return rc;
 349
 350                rc = mb86a20s_readreg(state, 0x02);
 351                if (rc < 0)
 352                        return rc;
 353                if (rc & 0x08)
 354                        rf_min = (rf_max + rf_min) / 2;
 355                else
 356                        rf_max = (rf_max + rf_min) / 2;
 357                if (rf_max - rf_min < 4) {
 358                        rf = (rf_max + rf_min) / 2;
 359
 360                        /* Rescale it from 2^12 (4096) to 2^16 */
 361                        rf = rf << (16 - 12);
 362                        if (rf)
 363                                rf |= (1 << 12) - 1;
 364
 365                        dev_dbg(&state->i2c->dev,
 366                                "%s: signal strength = %d (%d < RF=%d < %d)\n",
 367                                __func__, rf, rf_min, rf >> 4, rf_max);
 368                        c->strength.stat[0].uvalue = rf;
 369                        state->get_strength_time = jiffies +
 370                                                   msecs_to_jiffies(1000);
 371                        return 0;
 372                }
 373        } while (1);
 374}
 375
 376static int mb86a20s_get_modulation(struct mb86a20s_state *state,
 377                                   unsigned layer)
 378{
 379        int rc;
 380        static unsigned char reg[] = {
 381                [0] = 0x86,     /* Layer A */
 382                [1] = 0x8a,     /* Layer B */
 383                [2] = 0x8e,     /* Layer C */
 384        };
 385
 386        if (layer >= ARRAY_SIZE(reg))
 387                return -EINVAL;
 388        rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
 389        if (rc < 0)
 390                return rc;
 391        rc = mb86a20s_readreg(state, 0x6e);
 392        if (rc < 0)
 393                return rc;
 394        switch ((rc >> 4) & 0x07) {
 395        case 0:
 396                return DQPSK;
 397        case 1:
 398                return QPSK;
 399        case 2:
 400                return QAM_16;
 401        case 3:
 402                return QAM_64;
 403        default:
 404                return QAM_AUTO;
 405        }
 406}
 407
 408static int mb86a20s_get_fec(struct mb86a20s_state *state,
 409                            unsigned layer)
 410{
 411        int rc;
 412
 413        static unsigned char reg[] = {
 414                [0] = 0x87,     /* Layer A */
 415                [1] = 0x8b,     /* Layer B */
 416                [2] = 0x8f,     /* Layer C */
 417        };
 418
 419        if (layer >= ARRAY_SIZE(reg))
 420                return -EINVAL;
 421        rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
 422        if (rc < 0)
 423                return rc;
 424        rc = mb86a20s_readreg(state, 0x6e);
 425        if (rc < 0)
 426                return rc;
 427        switch ((rc >> 4) & 0x07) {
 428        case 0:
 429                return FEC_1_2;
 430        case 1:
 431                return FEC_2_3;
 432        case 2:
 433                return FEC_3_4;
 434        case 3:
 435                return FEC_5_6;
 436        case 4:
 437                return FEC_7_8;
 438        default:
 439                return FEC_AUTO;
 440        }
 441}
 442
 443static int mb86a20s_get_interleaving(struct mb86a20s_state *state,
 444                                     unsigned layer)
 445{
 446        int rc;
 447        int interleaving[] = {
 448                0, 1, 2, 4, 8
 449        };
 450
 451        static unsigned char reg[] = {
 452                [0] = 0x88,     /* Layer A */
 453                [1] = 0x8c,     /* Layer B */
 454                [2] = 0x90,     /* Layer C */
 455        };
 456
 457        if (layer >= ARRAY_SIZE(reg))
 458                return -EINVAL;
 459        rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
 460        if (rc < 0)
 461                return rc;
 462        rc = mb86a20s_readreg(state, 0x6e);
 463        if (rc < 0)
 464                return rc;
 465
 466        return interleaving[(rc >> 4) & 0x07];
 467}
 468
 469static int mb86a20s_get_segment_count(struct mb86a20s_state *state,
 470                                      unsigned layer)
 471{
 472        int rc, count;
 473        static unsigned char reg[] = {
 474                [0] = 0x89,     /* Layer A */
 475                [1] = 0x8d,     /* Layer B */
 476                [2] = 0x91,     /* Layer C */
 477        };
 478
 479        dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
 480
 481        if (layer >= ARRAY_SIZE(reg))
 482                return -EINVAL;
 483
 484        rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
 485        if (rc < 0)
 486                return rc;
 487        rc = mb86a20s_readreg(state, 0x6e);
 488        if (rc < 0)
 489                return rc;
 490        count = (rc >> 4) & 0x0f;
 491
 492        dev_dbg(&state->i2c->dev, "%s: segments: %d.\n", __func__, count);
 493
 494        return count;
 495}
 496
 497static void mb86a20s_reset_frontend_cache(struct dvb_frontend *fe)
 498{
 499        struct mb86a20s_state *state = fe->demodulator_priv;
 500        struct dtv_frontend_properties *c = &fe->dtv_property_cache;
 501
 502        dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
 503
 504        /* Fixed parameters */
 505        c->delivery_system = SYS_ISDBT;
 506        c->bandwidth_hz = 6000000;
 507
 508        /* Initialize values that will be later autodetected */
 509        c->isdbt_layer_enabled = 0;
 510        c->transmission_mode = TRANSMISSION_MODE_AUTO;
 511        c->guard_interval = GUARD_INTERVAL_AUTO;
 512        c->isdbt_sb_mode = 0;
 513        c->isdbt_sb_segment_count = 0;
 514}
 515
 516/*
 517 * Estimates the bit rate using the per-segment bit rate given by
 518 * ABNT/NBR 15601 spec (table 4).
 519 */
 520static const u32 isdbt_rate[3][5][4] = {
 521        {       /* DQPSK/QPSK */
 522                {  280850,  312060,  330420,  340430 }, /* 1/2 */
 523                {  374470,  416080,  440560,  453910 }, /* 2/3 */
 524                {  421280,  468090,  495630,  510650 }, /* 3/4 */
 525                {  468090,  520100,  550700,  567390 }, /* 5/6 */
 526                {  491500,  546110,  578230,  595760 }, /* 7/8 */
 527        }, {    /* QAM16 */
 528                {  561710,  624130,  660840,  680870 }, /* 1/2 */
 529                {  748950,  832170,  881120,  907820 }, /* 2/3 */
 530                {  842570,  936190,  991260, 1021300 }, /* 3/4 */
 531                {  936190, 1040210, 1101400, 1134780 }, /* 5/6 */
 532                {  983000, 1092220, 1156470, 1191520 }, /* 7/8 */
 533        }, {    /* QAM64 */
 534                {  842570,  936190,  991260, 1021300 }, /* 1/2 */
 535                { 1123430, 1248260, 1321680, 1361740 }, /* 2/3 */
 536                { 1263860, 1404290, 1486900, 1531950 }, /* 3/4 */
 537                { 1404290, 1560320, 1652110, 1702170 }, /* 5/6 */
 538                { 1474500, 1638340, 1734710, 1787280 }, /* 7/8 */
 539        }
 540};
 541
 542static u32 isdbt_layer_min_bitrate(struct dtv_frontend_properties *c,
 543                                   u32 layer)
 544{
 545        int mod, fec, guard;
 546
 547        /*
 548         * If modulation/fec/guard is not detected, the default is
 549         * to consider the lowest bit rate, to avoid taking too long time
 550         * to get BER.
 551         */
 552        switch (c->layer[layer].modulation) {
 553        case DQPSK:
 554        case QPSK:
 555        default:
 556                mod = 0;
 557                break;
 558        case QAM_16:
 559                mod = 1;
 560                break;
 561        case QAM_64:
 562                mod = 2;
 563                break;
 564        }
 565
 566        switch (c->layer[layer].fec) {
 567        default:
 568        case FEC_1_2:
 569        case FEC_AUTO:
 570                fec = 0;
 571                break;
 572        case FEC_2_3:
 573                fec = 1;
 574                break;
 575        case FEC_3_4:
 576                fec = 2;
 577                break;
 578        case FEC_5_6:
 579                fec = 3;
 580                break;
 581        case FEC_7_8:
 582                fec = 4;
 583                break;
 584        }
 585
 586        switch (c->guard_interval) {
 587        default:
 588        case GUARD_INTERVAL_1_4:
 589                guard = 0;
 590                break;
 591        case GUARD_INTERVAL_1_8:
 592                guard = 1;
 593                break;
 594        case GUARD_INTERVAL_1_16:
 595                guard = 2;
 596                break;
 597        case GUARD_INTERVAL_1_32:
 598                guard = 3;
 599                break;
 600        }
 601
 602        return isdbt_rate[mod][fec][guard] * c->layer[layer].segment_count;
 603}
 604
 605static int mb86a20s_get_frontend(struct dvb_frontend *fe)
 606{
 607        struct mb86a20s_state *state = fe->demodulator_priv;
 608        struct dtv_frontend_properties *c = &fe->dtv_property_cache;
 609        int layer, rc, rate, counter;
 610
 611        dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
 612
 613        /* Reset frontend cache to default values */
 614        mb86a20s_reset_frontend_cache(fe);
 615
 616        /* Check for partial reception */
 617        rc = mb86a20s_writereg(state, 0x6d, 0x85);
 618        if (rc < 0)
 619                return rc;
 620        rc = mb86a20s_readreg(state, 0x6e);
 621        if (rc < 0)
 622                return rc;
 623        c->isdbt_partial_reception = (rc & 0x10) ? 1 : 0;
 624
 625        /* Get per-layer data */
 626
 627        for (layer = 0; layer < NUM_LAYERS; layer++) {
 628                dev_dbg(&state->i2c->dev, "%s: getting data for layer %c.\n",
 629                        __func__, 'A' + layer);
 630
 631                rc = mb86a20s_get_segment_count(state, layer);
 632                if (rc < 0)
 633                        goto noperlayer_error;
 634                if (rc >= 0 && rc < 14) {
 635                        c->layer[layer].segment_count = rc;
 636                } else {
 637                        c->layer[layer].segment_count = 0;
 638                        state->estimated_rate[layer] = 0;
 639                        continue;
 640                }
 641                c->isdbt_layer_enabled |= 1 << layer;
 642                rc = mb86a20s_get_modulation(state, layer);
 643                if (rc < 0)
 644                        goto noperlayer_error;
 645                dev_dbg(&state->i2c->dev, "%s: modulation %d.\n",
 646                        __func__, rc);
 647                c->layer[layer].modulation = rc;
 648                rc = mb86a20s_get_fec(state, layer);
 649                if (rc < 0)
 650                        goto noperlayer_error;
 651                dev_dbg(&state->i2c->dev, "%s: FEC %d.\n",
 652                        __func__, rc);
 653                c->layer[layer].fec = rc;
 654                rc = mb86a20s_get_interleaving(state, layer);
 655                if (rc < 0)
 656                        goto noperlayer_error;
 657                dev_dbg(&state->i2c->dev, "%s: interleaving %d.\n",
 658                        __func__, rc);
 659                c->layer[layer].interleaving = rc;
 660
 661                rate = isdbt_layer_min_bitrate(c, layer);
 662                counter = rate * BER_SAMPLING_RATE;
 663
 664                /* Avoids sampling too quickly or to overflow the register */
 665                if (counter < 256)
 666                        counter = 256;
 667                else if (counter > (1 << 24) - 1)
 668                        counter = (1 << 24) - 1;
 669
 670                dev_dbg(&state->i2c->dev,
 671                        "%s: layer %c bitrate: %d kbps; counter = %d (0x%06x)\n",
 672                        __func__, 'A' + layer, rate / 1000, counter, counter);
 673
 674                state->estimated_rate[layer] = counter;
 675        }
 676
 677        rc = mb86a20s_writereg(state, 0x6d, 0x84);
 678        if (rc < 0)
 679                return rc;
 680        if ((rc & 0x60) == 0x20) {
 681                c->isdbt_sb_mode = 1;
 682                /* At least, one segment should exist */
 683                if (!c->isdbt_sb_segment_count)
 684                        c->isdbt_sb_segment_count = 1;
 685        }
 686
 687        /* Get transmission mode and guard interval */
 688        rc = mb86a20s_readreg(state, 0x07);
 689        if (rc < 0)
 690                return rc;
 691        c->transmission_mode = TRANSMISSION_MODE_AUTO;
 692        if ((rc & 0x60) == 0x20) {
 693                /* Only modes 2 and 3 are supported */
 694                switch ((rc >> 2) & 0x03) {
 695                case 1:
 696                        c->transmission_mode = TRANSMISSION_MODE_4K;
 697                        break;
 698                case 2:
 699                        c->transmission_mode = TRANSMISSION_MODE_8K;
 700                        break;
 701                }
 702        }
 703        c->guard_interval = GUARD_INTERVAL_AUTO;
 704        if (!(rc & 0x10)) {
 705                /* Guard interval 1/32 is not supported */
 706                switch (rc & 0x3) {
 707                case 0:
 708                        c->guard_interval = GUARD_INTERVAL_1_4;
 709                        break;
 710                case 1:
 711                        c->guard_interval = GUARD_INTERVAL_1_8;
 712                        break;
 713                case 2:
 714                        c->guard_interval = GUARD_INTERVAL_1_16;
 715                        break;
 716                }
 717        }
 718        return 0;
 719
 720noperlayer_error:
 721
 722        /* per-layer info is incomplete; discard all per-layer */
 723        c->isdbt_layer_enabled = 0;
 724
 725        return rc;
 726}
 727
 728static int mb86a20s_reset_counters(struct dvb_frontend *fe)
 729{
 730        struct mb86a20s_state *state = fe->demodulator_priv;
 731        struct dtv_frontend_properties *c = &fe->dtv_property_cache;
 732        int rc, val;
 733
 734        dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
 735
 736        /* Reset the counters, if the channel changed */
 737        if (state->last_frequency != c->frequency) {
 738                memset(&c->cnr, 0, sizeof(c->cnr));
 739                memset(&c->pre_bit_error, 0, sizeof(c->pre_bit_error));
 740                memset(&c->pre_bit_count, 0, sizeof(c->pre_bit_count));
 741                memset(&c->post_bit_error, 0, sizeof(c->post_bit_error));
 742                memset(&c->post_bit_count, 0, sizeof(c->post_bit_count));
 743                memset(&c->block_error, 0, sizeof(c->block_error));
 744                memset(&c->block_count, 0, sizeof(c->block_count));
 745
 746                state->last_frequency = c->frequency;
 747        }
 748
 749        /* Clear status for most stats */
 750
 751        /* BER/PER counter reset */
 752        rc = mb86a20s_writeregdata(state, mb86a20s_per_ber_reset);
 753        if (rc < 0)
 754                goto err;
 755
 756        /* CNR counter reset */
 757        rc = mb86a20s_readreg(state, 0x45);
 758        if (rc < 0)
 759                goto err;
 760        val = rc;
 761        rc = mb86a20s_writereg(state, 0x45, val | 0x10);
 762        if (rc < 0)
 763                goto err;
 764        rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
 765        if (rc < 0)
 766                goto err;
 767
 768        /* MER counter reset */
 769        rc = mb86a20s_writereg(state, 0x50, 0x50);
 770        if (rc < 0)
 771                goto err;
 772        rc = mb86a20s_readreg(state, 0x51);
 773        if (rc < 0)
 774                goto err;
 775        val = rc;
 776        rc = mb86a20s_writereg(state, 0x51, val | 0x01);
 777        if (rc < 0)
 778                goto err;
 779        rc = mb86a20s_writereg(state, 0x51, val & 0x06);
 780        if (rc < 0)
 781                goto err;
 782
 783        goto ok;
 784err:
 785        dev_err(&state->i2c->dev,
 786                "%s: Can't reset FE statistics (error %d).\n",
 787                __func__, rc);
 788ok:
 789        return rc;
 790}
 791
 792static int mb86a20s_get_pre_ber(struct dvb_frontend *fe,
 793                                unsigned layer,
 794                                u32 *error, u32 *count)
 795{
 796        struct mb86a20s_state *state = fe->demodulator_priv;
 797        int rc, val;
 798
 799        dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
 800
 801        if (layer >= NUM_LAYERS)
 802                return -EINVAL;
 803
 804        /* Check if the BER measures are already available */
 805        rc = mb86a20s_readreg(state, 0x54);
 806        if (rc < 0)
 807                return rc;
 808
 809        /* Check if data is available for that layer */
 810        if (!(rc & (1 << layer))) {
 811                dev_dbg(&state->i2c->dev,
 812                        "%s: preBER for layer %c is not available yet.\n",
 813                        __func__, 'A' + layer);
 814                return -EBUSY;
 815        }
 816
 817        /* Read Bit Error Count */
 818        rc = mb86a20s_readreg(state, 0x55 + layer * 3);
 819        if (rc < 0)
 820                return rc;
 821        *error = rc << 16;
 822        rc = mb86a20s_readreg(state, 0x56 + layer * 3);
 823        if (rc < 0)
 824                return rc;
 825        *error |= rc << 8;
 826        rc = mb86a20s_readreg(state, 0x57 + layer * 3);
 827        if (rc < 0)
 828                return rc;
 829        *error |= rc;
 830
 831        dev_dbg(&state->i2c->dev,
 832                "%s: bit error before Viterbi for layer %c: %d.\n",
 833                __func__, 'A' + layer, *error);
 834
 835        /* Read Bit Count */
 836        rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
 837        if (rc < 0)
 838                return rc;
 839        rc = mb86a20s_readreg(state, 0x51);
 840        if (rc < 0)
 841                return rc;
 842        *count = rc << 16;
 843        rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
 844        if (rc < 0)
 845                return rc;
 846        rc = mb86a20s_readreg(state, 0x51);
 847        if (rc < 0)
 848                return rc;
 849        *count |= rc << 8;
 850        rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
 851        if (rc < 0)
 852                return rc;
 853        rc = mb86a20s_readreg(state, 0x51);
 854        if (rc < 0)
 855                return rc;
 856        *count |= rc;
 857
 858        dev_dbg(&state->i2c->dev,
 859                "%s: bit count before Viterbi for layer %c: %d.\n",
 860                __func__, 'A' + layer, *count);
 861
 862
 863        /*
 864         * As we get TMCC data from the frontend, we can better estimate the
 865         * BER bit counters, in order to do the BER measure during a longer
 866         * time. Use those data, if available, to update the bit count
 867         * measure.
 868         */
 869
 870        if (state->estimated_rate[layer]
 871            && state->estimated_rate[layer] != *count) {
 872                dev_dbg(&state->i2c->dev,
 873                        "%s: updating layer %c preBER counter to %d.\n",
 874                        __func__, 'A' + layer, state->estimated_rate[layer]);
 875
 876                /* Turn off BER before Viterbi */
 877                rc = mb86a20s_writereg(state, 0x52, 0x00);
 878
 879                /* Update counter for this layer */
 880                rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
 881                if (rc < 0)
 882                        return rc;
 883                rc = mb86a20s_writereg(state, 0x51,
 884                                       state->estimated_rate[layer] >> 16);
 885                if (rc < 0)
 886                        return rc;
 887                rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
 888                if (rc < 0)
 889                        return rc;
 890                rc = mb86a20s_writereg(state, 0x51,
 891                                       state->estimated_rate[layer] >> 8);
 892                if (rc < 0)
 893                        return rc;
 894                rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
 895                if (rc < 0)
 896                        return rc;
 897                rc = mb86a20s_writereg(state, 0x51,
 898                                       state->estimated_rate[layer]);
 899                if (rc < 0)
 900                        return rc;
 901
 902                /* Turn on BER before Viterbi */
 903                rc = mb86a20s_writereg(state, 0x52, 0x01);
 904
 905                /* Reset all preBER counters */
 906                rc = mb86a20s_writereg(state, 0x53, 0x00);
 907                if (rc < 0)
 908                        return rc;
 909                rc = mb86a20s_writereg(state, 0x53, 0x07);
 910        } else {
 911                /* Reset counter to collect new data */
 912                rc = mb86a20s_readreg(state, 0x53);
 913                if (rc < 0)
 914                        return rc;
 915                val = rc;
 916                rc = mb86a20s_writereg(state, 0x53, val & ~(1 << layer));
 917                if (rc < 0)
 918                        return rc;
 919                rc = mb86a20s_writereg(state, 0x53, val | (1 << layer));
 920        }
 921
 922        return rc;
 923}
 924
 925static int mb86a20s_get_post_ber(struct dvb_frontend *fe,
 926                                 unsigned layer,
 927                                  u32 *error, u32 *count)
 928{
 929        struct mb86a20s_state *state = fe->demodulator_priv;
 930        u32 counter, collect_rate;
 931        int rc, val;
 932
 933        dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
 934
 935        if (layer >= NUM_LAYERS)
 936                return -EINVAL;
 937
 938        /* Check if the BER measures are already available */
 939        rc = mb86a20s_readreg(state, 0x60);
 940        if (rc < 0)
 941                return rc;
 942
 943        /* Check if data is available for that layer */
 944        if (!(rc & (1 << layer))) {
 945                dev_dbg(&state->i2c->dev,
 946                        "%s: post BER for layer %c is not available yet.\n",
 947                        __func__, 'A' + layer);
 948                return -EBUSY;
 949        }
 950
 951        /* Read Bit Error Count */
 952        rc = mb86a20s_readreg(state, 0x64 + layer * 3);
 953        if (rc < 0)
 954                return rc;
 955        *error = rc << 16;
 956        rc = mb86a20s_readreg(state, 0x65 + layer * 3);
 957        if (rc < 0)
 958                return rc;
 959        *error |= rc << 8;
 960        rc = mb86a20s_readreg(state, 0x66 + layer * 3);
 961        if (rc < 0)
 962                return rc;
 963        *error |= rc;
 964
 965        dev_dbg(&state->i2c->dev,
 966                "%s: post bit error for layer %c: %d.\n",
 967                __func__, 'A' + layer, *error);
 968
 969        /* Read Bit Count */
 970        rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
 971        if (rc < 0)
 972                return rc;
 973        rc = mb86a20s_readreg(state, 0x51);
 974        if (rc < 0)
 975                return rc;
 976        counter = rc << 8;
 977        rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
 978        if (rc < 0)
 979                return rc;
 980        rc = mb86a20s_readreg(state, 0x51);
 981        if (rc < 0)
 982                return rc;
 983        counter |= rc;
 984        *count = counter * 204 * 8;
 985
 986        dev_dbg(&state->i2c->dev,
 987                "%s: post bit count for layer %c: %d.\n",
 988                __func__, 'A' + layer, *count);
 989
 990        /*
 991         * As we get TMCC data from the frontend, we can better estimate the
 992         * BER bit counters, in order to do the BER measure during a longer
 993         * time. Use those data, if available, to update the bit count
 994         * measure.
 995         */
 996
 997        if (!state->estimated_rate[layer])
 998                goto reset_measurement;
 999
1000        collect_rate = state->estimated_rate[layer] / 204 / 8;
1001        if (collect_rate < 32)
1002                collect_rate = 32;
1003        if (collect_rate > 65535)
1004                collect_rate = 65535;
1005        if (collect_rate != counter) {
1006                dev_dbg(&state->i2c->dev,
1007                        "%s: updating postBER counter on layer %c to %d.\n",
1008                        __func__, 'A' + layer, collect_rate);
1009
1010                /* Turn off BER after Viterbi */
1011                rc = mb86a20s_writereg(state, 0x5e, 0x00);
1012
1013                /* Update counter for this layer */
1014                rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
1015                if (rc < 0)
1016                        return rc;
1017                rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
1018                if (rc < 0)
1019                        return rc;
1020                rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
1021                if (rc < 0)
1022                        return rc;
1023                rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
1024                if (rc < 0)
1025                        return rc;
1026
1027                /* Turn on BER after Viterbi */
1028                rc = mb86a20s_writereg(state, 0x5e, 0x07);
1029
1030                /* Reset all preBER counters */
1031                rc = mb86a20s_writereg(state, 0x5f, 0x00);
1032                if (rc < 0)
1033                        return rc;
1034                rc = mb86a20s_writereg(state, 0x5f, 0x07);
1035
1036                return rc;
1037        }
1038
1039reset_measurement:
1040        /* Reset counter to collect new data */
1041        rc = mb86a20s_readreg(state, 0x5f);
1042        if (rc < 0)
1043                return rc;
1044        val = rc;
1045        rc = mb86a20s_writereg(state, 0x5f, val & ~(1 << layer));
1046        if (rc < 0)
1047                return rc;
1048        rc = mb86a20s_writereg(state, 0x5f, val | (1 << layer));
1049
1050        return rc;
1051}
1052
1053static int mb86a20s_get_blk_error(struct dvb_frontend *fe,
1054                            unsigned layer,
1055                            u32 *error, u32 *count)
1056{
1057        struct mb86a20s_state *state = fe->demodulator_priv;
1058        int rc, val;
1059        u32 collect_rate;
1060        dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1061
1062        if (layer >= NUM_LAYERS)
1063                return -EINVAL;
1064
1065        /* Check if the PER measures are already available */
1066        rc = mb86a20s_writereg(state, 0x50, 0xb8);
1067        if (rc < 0)
1068                return rc;
1069        rc = mb86a20s_readreg(state, 0x51);
1070        if (rc < 0)
1071                return rc;
1072
1073        /* Check if data is available for that layer */
1074
1075        if (!(rc & (1 << layer))) {
1076                dev_dbg(&state->i2c->dev,
1077                        "%s: block counts for layer %c aren't available yet.\n",
1078                        __func__, 'A' + layer);
1079                return -EBUSY;
1080        }
1081
1082        /* Read Packet error Count */
1083        rc = mb86a20s_writereg(state, 0x50, 0xb9 + layer * 2);
1084        if (rc < 0)
1085                return rc;
1086        rc = mb86a20s_readreg(state, 0x51);
1087        if (rc < 0)
1088                return rc;
1089        *error = rc << 8;
1090        rc = mb86a20s_writereg(state, 0x50, 0xba + layer * 2);
1091        if (rc < 0)
1092                return rc;
1093        rc = mb86a20s_readreg(state, 0x51);
1094        if (rc < 0)
1095                return rc;
1096        *error |= rc;
1097        dev_dbg(&state->i2c->dev, "%s: block error for layer %c: %d.\n",
1098                __func__, 'A' + layer, *error);
1099
1100        /* Read Bit Count */
1101        rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
1102        if (rc < 0)
1103                return rc;
1104        rc = mb86a20s_readreg(state, 0x51);
1105        if (rc < 0)
1106                return rc;
1107        *count = rc << 8;
1108        rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
1109        if (rc < 0)
1110                return rc;
1111        rc = mb86a20s_readreg(state, 0x51);
1112        if (rc < 0)
1113                return rc;
1114        *count |= rc;
1115
1116        dev_dbg(&state->i2c->dev,
1117                "%s: block count for layer %c: %d.\n",
1118                __func__, 'A' + layer, *count);
1119
1120        /*
1121         * As we get TMCC data from the frontend, we can better estimate the
1122         * BER bit counters, in order to do the BER measure during a longer
1123         * time. Use those data, if available, to update the bit count
1124         * measure.
1125         */
1126
1127        if (!state->estimated_rate[layer])
1128                goto reset_measurement;
1129
1130        collect_rate = state->estimated_rate[layer] / 204 / 8;
1131        if (collect_rate < 32)
1132                collect_rate = 32;
1133        if (collect_rate > 65535)
1134                collect_rate = 65535;
1135
1136        if (collect_rate != *count) {
1137                dev_dbg(&state->i2c->dev,
1138                        "%s: updating PER counter on layer %c to %d.\n",
1139                        __func__, 'A' + layer, collect_rate);
1140
1141                /* Stop PER measurement */
1142                rc = mb86a20s_writereg(state, 0x50, 0xb0);
1143                if (rc < 0)
1144                        return rc;
1145                rc = mb86a20s_writereg(state, 0x51, 0x00);
1146                if (rc < 0)
1147                        return rc;
1148
1149                /* Update this layer's counter */
1150                rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
1151                if (rc < 0)
1152                        return rc;
1153                rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
1154                if (rc < 0)
1155                        return rc;
1156                rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
1157                if (rc < 0)
1158                        return rc;
1159                rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
1160                if (rc < 0)
1161                        return rc;
1162
1163                /* start PER measurement */
1164                rc = mb86a20s_writereg(state, 0x50, 0xb0);
1165                if (rc < 0)
1166                        return rc;
1167                rc = mb86a20s_writereg(state, 0x51, 0x07);
1168                if (rc < 0)
1169                        return rc;
1170
1171                /* Reset all counters to collect new data */
1172                rc = mb86a20s_writereg(state, 0x50, 0xb1);
1173                if (rc < 0)
1174                        return rc;
1175                rc = mb86a20s_writereg(state, 0x51, 0x07);
1176                if (rc < 0)
1177                        return rc;
1178                rc = mb86a20s_writereg(state, 0x51, 0x00);
1179
1180                return rc;
1181        }
1182
1183reset_measurement:
1184        /* Reset counter to collect new data */
1185        rc = mb86a20s_writereg(state, 0x50, 0xb1);
1186        if (rc < 0)
1187                return rc;
1188        rc = mb86a20s_readreg(state, 0x51);
1189        if (rc < 0)
1190                return rc;
1191        val = rc;
1192        rc = mb86a20s_writereg(state, 0x51, val | (1 << layer));
1193        if (rc < 0)
1194                return rc;
1195        rc = mb86a20s_writereg(state, 0x51, val & ~(1 << layer));
1196
1197        return rc;
1198}
1199
1200struct linear_segments {
1201        unsigned x, y;
1202};
1203
1204/*
1205 * All tables below return a dB/1000 measurement
1206 */
1207
1208static const struct linear_segments cnr_to_db_table[] = {
1209        { 19648,     0},
1210        { 18187,  1000},
1211        { 16534,  2000},
1212        { 14823,  3000},
1213        { 13161,  4000},
1214        { 11622,  5000},
1215        { 10279,  6000},
1216        {  9089,  7000},
1217        {  8042,  8000},
1218        {  7137,  9000},
1219        {  6342, 10000},
1220        {  5641, 11000},
1221        {  5030, 12000},
1222        {  4474, 13000},
1223        {  3988, 14000},
1224        {  3556, 15000},
1225        {  3180, 16000},
1226        {  2841, 17000},
1227        {  2541, 18000},
1228        {  2276, 19000},
1229        {  2038, 20000},
1230        {  1800, 21000},
1231        {  1625, 22000},
1232        {  1462, 23000},
1233        {  1324, 24000},
1234        {  1175, 25000},
1235        {  1063, 26000},
1236        {   980, 27000},
1237        {   907, 28000},
1238        {   840, 29000},
1239        {   788, 30000},
1240};
1241
1242static const struct linear_segments cnr_64qam_table[] = {
1243        { 3922688,     0},
1244        { 3920384,  1000},
1245        { 3902720,  2000},
1246        { 3894784,  3000},
1247        { 3882496,  4000},
1248        { 3872768,  5000},
1249        { 3858944,  6000},
1250        { 3851520,  7000},
1251        { 3838976,  8000},
1252        { 3829248,  9000},
1253        { 3818240, 10000},
1254        { 3806976, 11000},
1255        { 3791872, 12000},
1256        { 3767040, 13000},
1257        { 3720960, 14000},
1258        { 3637504, 15000},
1259        { 3498496, 16000},
1260        { 3296000, 17000},
1261        { 3031040, 18000},
1262        { 2715392, 19000},
1263        { 2362624, 20000},
1264        { 1963264, 21000},
1265        { 1649664, 22000},
1266        { 1366784, 23000},
1267        { 1120768, 24000},
1268        {  890880, 25000},
1269        {  723456, 26000},
1270        {  612096, 27000},
1271        {  518912, 28000},
1272        {  448256, 29000},
1273        {  388864, 30000},
1274};
1275
1276static const struct linear_segments cnr_16qam_table[] = {
1277        { 5314816,     0},
1278        { 5219072,  1000},
1279        { 5118720,  2000},
1280        { 4998912,  3000},
1281        { 4875520,  4000},
1282        { 4736000,  5000},
1283        { 4604160,  6000},
1284        { 4458752,  7000},
1285        { 4300288,  8000},
1286        { 4092928,  9000},
1287        { 3836160, 10000},
1288        { 3521024, 11000},
1289        { 3155968, 12000},
1290        { 2756864, 13000},
1291        { 2347008, 14000},
1292        { 1955072, 15000},
1293        { 1593600, 16000},
1294        { 1297920, 17000},
1295        { 1043968, 18000},
1296        {  839680, 19000},
1297        {  672256, 20000},
1298        {  523008, 21000},
1299        {  424704, 22000},
1300        {  345088, 23000},
1301        {  280064, 24000},
1302        {  221440, 25000},
1303        {  179712, 26000},
1304        {  151040, 27000},
1305        {  128512, 28000},
1306        {  110080, 29000},
1307        {   95744, 30000},
1308};
1309
1310static const struct linear_segments cnr_qpsk_table[] = {
1311        { 2834176,     0},
1312        { 2683648,  1000},
1313        { 2536960,  2000},
1314        { 2391808,  3000},
1315        { 2133248,  4000},
1316        { 1906176,  5000},
1317        { 1666560,  6000},
1318        { 1422080,  7000},
1319        { 1189632,  8000},
1320        {  976384,  9000},
1321        {  790272, 10000},
1322        {  633344, 11000},
1323        {  505600, 12000},
1324        {  402944, 13000},
1325        {  320768, 14000},
1326        {  255488, 15000},
1327        {  204032, 16000},
1328        {  163072, 17000},
1329        {  130304, 18000},
1330        {  105216, 19000},
1331        {   83456, 20000},
1332        {   65024, 21000},
1333        {   52480, 22000},
1334        {   42752, 23000},
1335        {   34560, 24000},
1336        {   27136, 25000},
1337        {   22016, 26000},
1338        {   18432, 27000},
1339        {   15616, 28000},
1340        {   13312, 29000},
1341        {   11520, 30000},
1342};
1343
1344static u32 interpolate_value(u32 value, const struct linear_segments *segments,
1345                             unsigned len)
1346{
1347        u64 tmp64;
1348        u32 dx, dy;
1349        int i, ret;
1350
1351        if (value >= segments[0].x)
1352                return segments[0].y;
1353        if (value < segments[len-1].x)
1354                return segments[len-1].y;
1355
1356        for (i = 1; i < len - 1; i++) {
1357                /* If value is identical, no need to interpolate */
1358                if (value == segments[i].x)
1359                        return segments[i].y;
1360                if (value > segments[i].x)
1361                        break;
1362        }
1363
1364        /* Linear interpolation between the two (x,y) points */
1365        dy = segments[i].y - segments[i - 1].y;
1366        dx = segments[i - 1].x - segments[i].x;
1367        tmp64 = value - segments[i].x;
1368        tmp64 *= dy;
1369        do_div(tmp64, dx);
1370        ret = segments[i].y - tmp64;
1371
1372        return ret;
1373}
1374
1375static int mb86a20s_get_main_CNR(struct dvb_frontend *fe)
1376{
1377        struct mb86a20s_state *state = fe->demodulator_priv;
1378        struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1379        u32 cnr_linear, cnr;
1380        int rc, val;
1381
1382        /* Check if CNR is available */
1383        rc = mb86a20s_readreg(state, 0x45);
1384        if (rc < 0)
1385                return rc;
1386
1387        if (!(rc & 0x40)) {
1388                dev_dbg(&state->i2c->dev, "%s: CNR is not available yet.\n",
1389                         __func__);
1390                return -EBUSY;
1391        }
1392        val = rc;
1393
1394        rc = mb86a20s_readreg(state, 0x46);
1395        if (rc < 0)
1396                return rc;
1397        cnr_linear = rc << 8;
1398
1399        rc = mb86a20s_readreg(state, 0x46);
1400        if (rc < 0)
1401                return rc;
1402        cnr_linear |= rc;
1403
1404        cnr = interpolate_value(cnr_linear,
1405                                cnr_to_db_table, ARRAY_SIZE(cnr_to_db_table));
1406
1407        c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
1408        c->cnr.stat[0].svalue = cnr;
1409
1410        dev_dbg(&state->i2c->dev, "%s: CNR is %d.%03d dB (%d)\n",
1411                __func__, cnr / 1000, cnr % 1000, cnr_linear);
1412
1413        /* CNR counter reset */
1414        rc = mb86a20s_writereg(state, 0x45, val | 0x10);
1415        if (rc < 0)
1416                return rc;
1417        rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
1418
1419        return rc;
1420}
1421
1422static int mb86a20s_get_blk_error_layer_CNR(struct dvb_frontend *fe)
1423{
1424        struct mb86a20s_state *state = fe->demodulator_priv;
1425        struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1426        u32 mer, cnr;
1427        int rc, val, layer;
1428        const struct linear_segments *segs;
1429        unsigned segs_len;
1430
1431        dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1432
1433        /* Check if the measures are already available */
1434        rc = mb86a20s_writereg(state, 0x50, 0x5b);
1435        if (rc < 0)
1436                return rc;
1437        rc = mb86a20s_readreg(state, 0x51);
1438        if (rc < 0)
1439                return rc;
1440
1441        /* Check if data is available */
1442        if (!(rc & 0x01)) {
1443                dev_dbg(&state->i2c->dev,
1444                        "%s: MER measures aren't available yet.\n", __func__);
1445                return -EBUSY;
1446        }
1447
1448        /* Read all layers */
1449        for (layer = 0; layer < NUM_LAYERS; layer++) {
1450                if (!(c->isdbt_layer_enabled & (1 << layer))) {
1451                        c->cnr.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1452                        continue;
1453                }
1454
1455                rc = mb86a20s_writereg(state, 0x50, 0x52 + layer * 3);
1456                if (rc < 0)
1457                        return rc;
1458                rc = mb86a20s_readreg(state, 0x51);
1459                if (rc < 0)
1460                        return rc;
1461                mer = rc << 16;
1462                rc = mb86a20s_writereg(state, 0x50, 0x53 + layer * 3);
1463                if (rc < 0)
1464                        return rc;
1465                rc = mb86a20s_readreg(state, 0x51);
1466                if (rc < 0)
1467                        return rc;
1468                mer |= rc << 8;
1469                rc = mb86a20s_writereg(state, 0x50, 0x54 + layer * 3);
1470                if (rc < 0)
1471                        return rc;
1472                rc = mb86a20s_readreg(state, 0x51);
1473                if (rc < 0)
1474                        return rc;
1475                mer |= rc;
1476
1477                switch (c->layer[layer].modulation) {
1478                case DQPSK:
1479                case QPSK:
1480                        segs = cnr_qpsk_table;
1481                        segs_len = ARRAY_SIZE(cnr_qpsk_table);
1482                        break;
1483                case QAM_16:
1484                        segs = cnr_16qam_table;
1485                        segs_len = ARRAY_SIZE(cnr_16qam_table);
1486                        break;
1487                default:
1488                case QAM_64:
1489                        segs = cnr_64qam_table;
1490                        segs_len = ARRAY_SIZE(cnr_64qam_table);
1491                        break;
1492                }
1493                cnr = interpolate_value(mer, segs, segs_len);
1494
1495                c->cnr.stat[1 + layer].scale = FE_SCALE_DECIBEL;
1496                c->cnr.stat[1 + layer].svalue = cnr;
1497
1498                dev_dbg(&state->i2c->dev,
1499                        "%s: CNR for layer %c is %d.%03d dB (MER = %d).\n",
1500                        __func__, 'A' + layer, cnr / 1000, cnr % 1000, mer);
1501
1502        }
1503
1504        /* Start a new MER measurement */
1505        /* MER counter reset */
1506        rc = mb86a20s_writereg(state, 0x50, 0x50);
1507        if (rc < 0)
1508                return rc;
1509        rc = mb86a20s_readreg(state, 0x51);
1510        if (rc < 0)
1511                return rc;
1512        val = rc;
1513
1514        rc = mb86a20s_writereg(state, 0x51, val | 0x01);
1515        if (rc < 0)
1516                return rc;
1517        rc = mb86a20s_writereg(state, 0x51, val & 0x06);
1518        if (rc < 0)
1519                return rc;
1520
1521        return 0;
1522}
1523
1524static void mb86a20s_stats_not_ready(struct dvb_frontend *fe)
1525{
1526        struct mb86a20s_state *state = fe->demodulator_priv;
1527        struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1528        int layer;
1529
1530        dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1531
1532        /* Fill the length of each status counter */
1533
1534        /* Only global stats */
1535        c->strength.len = 1;
1536
1537        /* Per-layer stats - 3 layers + global */
1538        c->cnr.len = NUM_LAYERS + 1;
1539        c->pre_bit_error.len = NUM_LAYERS + 1;
1540        c->pre_bit_count.len = NUM_LAYERS + 1;
1541        c->post_bit_error.len = NUM_LAYERS + 1;
1542        c->post_bit_count.len = NUM_LAYERS + 1;
1543        c->block_error.len = NUM_LAYERS + 1;
1544        c->block_count.len = NUM_LAYERS + 1;
1545
1546        /* Signal is always available */
1547        c->strength.stat[0].scale = FE_SCALE_RELATIVE;
1548        c->strength.stat[0].uvalue = 0;
1549
1550        /* Put all of them at FE_SCALE_NOT_AVAILABLE */
1551        for (layer = 0; layer < NUM_LAYERS + 1; layer++) {
1552                c->cnr.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1553                c->pre_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1554                c->pre_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1555                c->post_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1556                c->post_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1557                c->block_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1558                c->block_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1559        }
1560}
1561
1562static int mb86a20s_get_stats(struct dvb_frontend *fe, int status_nr)
1563{
1564        struct mb86a20s_state *state = fe->demodulator_priv;
1565        struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1566        int rc = 0, layer;
1567        u32 bit_error = 0, bit_count = 0;
1568        u32 t_pre_bit_error = 0, t_pre_bit_count = 0;
1569        u32 t_post_bit_error = 0, t_post_bit_count = 0;
1570        u32 block_error = 0, block_count = 0;
1571        u32 t_block_error = 0, t_block_count = 0;
1572        int active_layers = 0, pre_ber_layers = 0, post_ber_layers = 0;
1573        int per_layers = 0;
1574
1575        dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1576
1577        mb86a20s_get_main_CNR(fe);
1578
1579        /* Get per-layer stats */
1580        mb86a20s_get_blk_error_layer_CNR(fe);
1581
1582        /*
1583         * At state 7, only CNR is available
1584         * For BER measures, state=9 is required
1585         * FIXME: we may get MER measures with state=8
1586         */
1587        if (status_nr < 9)
1588                return 0;
1589
1590        for (layer = 0; layer < NUM_LAYERS; layer++) {
1591                if (c->isdbt_layer_enabled & (1 << layer)) {
1592                        /* Layer is active and has rc segments */
1593                        active_layers++;
1594
1595                        /* Handle BER before vterbi */
1596                        rc = mb86a20s_get_pre_ber(fe, layer,
1597                                                  &bit_error, &bit_count);
1598                        if (rc >= 0) {
1599                                c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1600                                c->pre_bit_error.stat[1 + layer].uvalue += bit_error;
1601                                c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1602                                c->pre_bit_count.stat[1 + layer].uvalue += bit_count;
1603                        } else if (rc != -EBUSY) {
1604                                /*
1605                                        * If an I/O error happened,
1606                                        * measures are now unavailable
1607                                        */
1608                                c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1609                                c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1610                                dev_err(&state->i2c->dev,
1611                                        "%s: Can't get BER for layer %c (error %d).\n",
1612                                        __func__, 'A' + layer, rc);
1613                        }
1614                        if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1615                                pre_ber_layers++;
1616
1617                        /* Handle BER post vterbi */
1618                        rc = mb86a20s_get_post_ber(fe, layer,
1619                                                   &bit_error, &bit_count);
1620                        if (rc >= 0) {
1621                                c->post_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1622                                c->post_bit_error.stat[1 + layer].uvalue += bit_error;
1623                                c->post_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1624                                c->post_bit_count.stat[1 + layer].uvalue += bit_count;
1625                        } else if (rc != -EBUSY) {
1626                                /*
1627                                        * If an I/O error happened,
1628                                        * measures are now unavailable
1629                                        */
1630                                c->post_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1631                                c->post_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1632                                dev_err(&state->i2c->dev,
1633                                        "%s: Can't get BER for layer %c (error %d).\n",
1634                                        __func__, 'A' + layer, rc);
1635                        }
1636                        if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1637                                post_ber_layers++;
1638
1639                        /* Handle Block errors for PER/UCB reports */
1640                        rc = mb86a20s_get_blk_error(fe, layer,
1641                                                &block_error,
1642                                                &block_count);
1643                        if (rc >= 0) {
1644                                c->block_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1645                                c->block_error.stat[1 + layer].uvalue += block_error;
1646                                c->block_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1647                                c->block_count.stat[1 + layer].uvalue += block_count;
1648                        } else if (rc != -EBUSY) {
1649                                /*
1650                                        * If an I/O error happened,
1651                                        * measures are now unavailable
1652                                        */
1653                                c->block_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1654                                c->block_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1655                                dev_err(&state->i2c->dev,
1656                                        "%s: Can't get PER for layer %c (error %d).\n",
1657                                        __func__, 'A' + layer, rc);
1658
1659                        }
1660                        if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1661                                per_layers++;
1662
1663                        /* Update total preBER */
1664                        t_pre_bit_error += c->pre_bit_error.stat[1 + layer].uvalue;
1665                        t_pre_bit_count += c->pre_bit_count.stat[1 + layer].uvalue;
1666
1667                        /* Update total postBER */
1668                        t_post_bit_error += c->post_bit_error.stat[1 + layer].uvalue;
1669                        t_post_bit_count += c->post_bit_count.stat[1 + layer].uvalue;
1670
1671                        /* Update total PER */
1672                        t_block_error += c->block_error.stat[1 + layer].uvalue;
1673                        t_block_count += c->block_count.stat[1 + layer].uvalue;
1674                }
1675        }
1676
1677        /*
1678         * Start showing global count if at least one error count is
1679         * available.
1680         */
1681        if (pre_ber_layers) {
1682                /*
1683                 * At least one per-layer BER measure was read. We can now
1684                 * calculate the total BER
1685                 *
1686                 * Total Bit Error/Count is calculated as the sum of the
1687                 * bit errors on all active layers.
1688                 */
1689                c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1690                c->pre_bit_error.stat[0].uvalue = t_pre_bit_error;
1691                c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1692                c->pre_bit_count.stat[0].uvalue = t_pre_bit_count;
1693        } else {
1694                c->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1695                c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1696        }
1697
1698        /*
1699         * Start showing global count if at least one error count is
1700         * available.
1701         */
1702        if (post_ber_layers) {
1703                /*
1704                 * At least one per-layer BER measure was read. We can now
1705                 * calculate the total BER
1706                 *
1707                 * Total Bit Error/Count is calculated as the sum of the
1708                 * bit errors on all active layers.
1709                 */
1710                c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1711                c->post_bit_error.stat[0].uvalue = t_post_bit_error;
1712                c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1713                c->post_bit_count.stat[0].uvalue = t_post_bit_count;
1714        } else {
1715                c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1716                c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1717        }
1718
1719        if (per_layers) {
1720                /*
1721                 * At least one per-layer UCB measure was read. We can now
1722                 * calculate the total UCB
1723                 *
1724                 * Total block Error/Count is calculated as the sum of the
1725                 * block errors on all active layers.
1726                 */
1727                c->block_error.stat[0].scale = FE_SCALE_COUNTER;
1728                c->block_error.stat[0].uvalue = t_block_error;
1729                c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1730                c->block_count.stat[0].uvalue = t_block_count;
1731        } else {
1732                c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1733                c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1734        }
1735
1736        return rc;
1737}
1738
1739/*
1740 * The functions below are called via DVB callbacks, so they need to
1741 * properly use the I2C gate control
1742 */
1743
1744static int mb86a20s_initfe(struct dvb_frontend *fe)
1745{
1746        struct mb86a20s_state *state = fe->demodulator_priv;
1747        u64 pll;
1748        u32 fclk;
1749        int rc;
1750        u8  regD5 = 1, reg71, reg09 = 0x3a;
1751
1752        dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1753
1754        if (fe->ops.i2c_gate_ctrl)
1755                fe->ops.i2c_gate_ctrl(fe, 0);
1756
1757        /* Initialize the frontend */
1758        rc = mb86a20s_writeregdata(state, mb86a20s_init1);
1759        if (rc < 0)
1760                goto err;
1761
1762        if (!state->inversion)
1763                reg09 |= 0x04;
1764        rc = mb86a20s_writereg(state, 0x09, reg09);
1765        if (rc < 0)
1766                goto err;
1767        if (!state->bw)
1768                reg71 = 1;
1769        else
1770                reg71 = 0;
1771        rc = mb86a20s_writereg(state, 0x39, reg71);
1772        if (rc < 0)
1773                goto err;
1774        rc = mb86a20s_writereg(state, 0x71, state->bw);
1775        if (rc < 0)
1776                goto err;
1777        if (state->subchannel) {
1778                rc = mb86a20s_writereg(state, 0x44, state->subchannel);
1779                if (rc < 0)
1780                        goto err;
1781        }
1782
1783        fclk = state->config->fclk;
1784        if (!fclk)
1785                fclk = 32571428;
1786
1787        /* Adjust IF frequency to match tuner */
1788        if (fe->ops.tuner_ops.get_if_frequency)
1789                fe->ops.tuner_ops.get_if_frequency(fe, &state->if_freq);
1790
1791        if (!state->if_freq)
1792                state->if_freq = 3300000;
1793
1794        pll = (((u64)1) << 34) * state->if_freq;
1795        do_div(pll, 63 * fclk);
1796        pll = (1 << 25) - pll;
1797        rc = mb86a20s_writereg(state, 0x28, 0x2a);
1798        if (rc < 0)
1799                goto err;
1800        rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
1801        if (rc < 0)
1802                goto err;
1803        rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
1804        if (rc < 0)
1805                goto err;
1806        rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
1807        if (rc < 0)
1808                goto err;
1809        dev_dbg(&state->i2c->dev, "%s: fclk=%d, IF=%d, clock reg=0x%06llx\n",
1810                __func__, fclk, state->if_freq, (long long)pll);
1811
1812        /* pll = freq[Hz] * 2^24/10^6 / 16.285714286 */
1813        pll = state->if_freq * 1677721600L;
1814        do_div(pll, 1628571429L);
1815        rc = mb86a20s_writereg(state, 0x28, 0x20);
1816        if (rc < 0)
1817                goto err;
1818        rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
1819        if (rc < 0)
1820                goto err;
1821        rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
1822        if (rc < 0)
1823                goto err;
1824        rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
1825        if (rc < 0)
1826                goto err;
1827        dev_dbg(&state->i2c->dev, "%s: IF=%d, IF reg=0x%06llx\n",
1828                __func__, state->if_freq, (long long)pll);
1829
1830        if (!state->config->is_serial)
1831                regD5 &= ~1;
1832
1833        rc = mb86a20s_writereg(state, 0x50, 0xd5);
1834        if (rc < 0)
1835                goto err;
1836        rc = mb86a20s_writereg(state, 0x51, regD5);
1837        if (rc < 0)
1838                goto err;
1839
1840        rc = mb86a20s_writeregdata(state, mb86a20s_init2);
1841        if (rc < 0)
1842                goto err;
1843
1844
1845err:
1846        if (fe->ops.i2c_gate_ctrl)
1847                fe->ops.i2c_gate_ctrl(fe, 1);
1848
1849        if (rc < 0) {
1850                state->need_init = true;
1851                dev_info(&state->i2c->dev,
1852                         "mb86a20s: Init failed. Will try again later\n");
1853        } else {
1854                state->need_init = false;
1855                dev_dbg(&state->i2c->dev, "Initialization succeeded.\n");
1856        }
1857        return rc;
1858}
1859
1860static int mb86a20s_set_frontend(struct dvb_frontend *fe)
1861{
1862        struct mb86a20s_state *state = fe->demodulator_priv;
1863        struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1864        int rc, if_freq;
1865        dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1866
1867        if (!c->isdbt_layer_enabled)
1868                c->isdbt_layer_enabled = 7;
1869
1870        if (c->isdbt_layer_enabled == 1)
1871                state->bw = MB86A20S_1SEG;
1872        else if (c->isdbt_partial_reception)
1873                state->bw = MB86A20S_13SEG_PARTIAL;
1874        else
1875                state->bw = MB86A20S_13SEG;
1876
1877        if (c->inversion == INVERSION_ON)
1878                state->inversion = true;
1879        else
1880                state->inversion = false;
1881
1882        if (!c->isdbt_sb_mode) {
1883                state->subchannel = 0;
1884        } else {
1885                if (c->isdbt_sb_subchannel >= ARRAY_SIZE(mb86a20s_subchannel))
1886                        c->isdbt_sb_subchannel = 0;
1887
1888                state->subchannel = mb86a20s_subchannel[c->isdbt_sb_subchannel];
1889        }
1890
1891        /*
1892         * Gate should already be opened, but it doesn't hurt to
1893         * double-check
1894         */
1895        if (fe->ops.i2c_gate_ctrl)
1896                fe->ops.i2c_gate_ctrl(fe, 1);
1897        fe->ops.tuner_ops.set_params(fe);
1898
1899        if (fe->ops.tuner_ops.get_if_frequency)
1900                fe->ops.tuner_ops.get_if_frequency(fe, &if_freq);
1901
1902        /*
1903         * Make it more reliable: if, for some reason, the initial
1904         * device initialization doesn't happen, initialize it when
1905         * a SBTVD parameters are adjusted.
1906         *
1907         * Unfortunately, due to a hard to track bug at tda829x/tda18271,
1908         * the agc callback logic is not called during DVB attach time,
1909         * causing mb86a20s to not be initialized with Kworld SBTVD.
1910         * So, this hack is needed, in order to make Kworld SBTVD to work.
1911         *
1912         * It is also needed to change the IF after the initial init.
1913         *
1914         * HACK: Always init the frontend when set_frontend is called:
1915         * it was noticed that, on some devices, it fails to lock on a
1916         * different channel. So, it is better to reset everything, even
1917         * wasting some time, than to loose channel lock.
1918         */
1919        mb86a20s_initfe(fe);
1920
1921        if (fe->ops.i2c_gate_ctrl)
1922                fe->ops.i2c_gate_ctrl(fe, 0);
1923
1924        rc = mb86a20s_writeregdata(state, mb86a20s_reset_reception);
1925        mb86a20s_reset_counters(fe);
1926        mb86a20s_stats_not_ready(fe);
1927
1928        if (fe->ops.i2c_gate_ctrl)
1929                fe->ops.i2c_gate_ctrl(fe, 1);
1930
1931        return rc;
1932}
1933
1934static int mb86a20s_read_status_and_stats(struct dvb_frontend *fe,
1935                                          enum fe_status *status)
1936{
1937        struct mb86a20s_state *state = fe->demodulator_priv;
1938        int rc, status_nr;
1939
1940        dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1941
1942        if (fe->ops.i2c_gate_ctrl)
1943                fe->ops.i2c_gate_ctrl(fe, 0);
1944
1945        /* Get lock */
1946        status_nr = mb86a20s_read_status(fe, status);
1947        if (status_nr < 7) {
1948                mb86a20s_stats_not_ready(fe);
1949                mb86a20s_reset_frontend_cache(fe);
1950        }
1951        if (status_nr < 0) {
1952                dev_err(&state->i2c->dev,
1953                        "%s: Can't read frontend lock status\n", __func__);
1954                rc = status_nr;
1955                goto error;
1956        }
1957
1958        /* Get signal strength */
1959        rc = mb86a20s_read_signal_strength(fe);
1960        if (rc < 0) {
1961                dev_err(&state->i2c->dev,
1962                        "%s: Can't reset VBER registers.\n", __func__);
1963                mb86a20s_stats_not_ready(fe);
1964                mb86a20s_reset_frontend_cache(fe);
1965
1966                rc = 0;         /* Status is OK */
1967                goto error;
1968        }
1969
1970        if (status_nr >= 7) {
1971                /* Get TMCC info*/
1972                rc = mb86a20s_get_frontend(fe);
1973                if (rc < 0) {
1974                        dev_err(&state->i2c->dev,
1975                                "%s: Can't get FE TMCC data.\n", __func__);
1976                        rc = 0;         /* Status is OK */
1977                        goto error;
1978                }
1979
1980                /* Get statistics */
1981                rc = mb86a20s_get_stats(fe, status_nr);
1982                if (rc < 0 && rc != -EBUSY) {
1983                        dev_err(&state->i2c->dev,
1984                                "%s: Can't get FE statistics.\n", __func__);
1985                        rc = 0;
1986                        goto error;
1987                }
1988                rc = 0; /* Don't return EBUSY to userspace */
1989        }
1990        goto ok;
1991
1992error:
1993        mb86a20s_stats_not_ready(fe);
1994
1995ok:
1996        if (fe->ops.i2c_gate_ctrl)
1997                fe->ops.i2c_gate_ctrl(fe, 1);
1998
1999        return rc;
2000}
2001
2002static int mb86a20s_read_signal_strength_from_cache(struct dvb_frontend *fe,
2003                                                    u16 *strength)
2004{
2005        struct dtv_frontend_properties *c = &fe->dtv_property_cache;
2006
2007
2008        *strength = c->strength.stat[0].uvalue;
2009
2010        return 0;
2011}
2012
2013static int mb86a20s_tune(struct dvb_frontend *fe,
2014                        bool re_tune,
2015                        unsigned int mode_flags,
2016                        unsigned int *delay,
2017                        enum fe_status *status)
2018{
2019        struct mb86a20s_state *state = fe->demodulator_priv;
2020        int rc = 0;
2021
2022        dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
2023
2024        if (re_tune)
2025                rc = mb86a20s_set_frontend(fe);
2026
2027        if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
2028                mb86a20s_read_status_and_stats(fe, status);
2029
2030        return rc;
2031}
2032
2033static void mb86a20s_release(struct dvb_frontend *fe)
2034{
2035        struct mb86a20s_state *state = fe->demodulator_priv;
2036
2037        dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
2038
2039        kfree(state);
2040}
2041
2042static enum dvbfe_algo mb86a20s_get_frontend_algo(struct dvb_frontend *fe)
2043{
2044        return DVBFE_ALGO_HW;
2045}
2046
2047static const struct dvb_frontend_ops mb86a20s_ops;
2048
2049struct dvb_frontend *mb86a20s_attach(const struct mb86a20s_config *config,
2050                                    struct i2c_adapter *i2c)
2051{
2052        struct mb86a20s_state *state;
2053        u8      rev;
2054
2055        dev_dbg(&i2c->dev, "%s called.\n", __func__);
2056
2057        /* allocate memory for the internal state */
2058        state = kzalloc(sizeof(*state), GFP_KERNEL);
2059        if (!state)
2060                return NULL;
2061
2062        /* setup the state */
2063        state->config = config;
2064        state->i2c = i2c;
2065
2066        /* create dvb_frontend */
2067        memcpy(&state->frontend.ops, &mb86a20s_ops,
2068                sizeof(struct dvb_frontend_ops));
2069        state->frontend.demodulator_priv = state;
2070
2071        /* Check if it is a mb86a20s frontend */
2072        rev = mb86a20s_readreg(state, 0);
2073        if (rev != 0x13) {
2074                kfree(state);
2075                dev_dbg(&i2c->dev,
2076                        "Frontend revision %d is unknown - aborting.\n",
2077                       rev);
2078                return NULL;
2079        }
2080
2081        dev_info(&i2c->dev, "Detected a Fujitsu mb86a20s frontend\n");
2082        return &state->frontend;
2083}
2084EXPORT_SYMBOL(mb86a20s_attach);
2085
2086static const struct dvb_frontend_ops mb86a20s_ops = {
2087        .delsys = { SYS_ISDBT },
2088        /* Use dib8000 values per default */
2089        .info = {
2090                .name = "Fujitsu mb86A20s",
2091                .caps = FE_CAN_RECOVER  |
2092                        FE_CAN_FEC_1_2  | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
2093                        FE_CAN_FEC_5_6  | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
2094                        FE_CAN_QPSK     | FE_CAN_QAM_16  | FE_CAN_QAM_64 |
2095                        FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_QAM_AUTO |
2096                        FE_CAN_GUARD_INTERVAL_AUTO    | FE_CAN_HIERARCHY_AUTO,
2097                /* Actually, those values depend on the used tuner */
2098                .frequency_min_hz =  45 * MHz,
2099                .frequency_max_hz = 864 * MHz,
2100                .frequency_stepsize_hz = 62500,
2101        },
2102
2103        .release = mb86a20s_release,
2104
2105        .init = mb86a20s_initfe,
2106        .set_frontend = mb86a20s_set_frontend,
2107        .read_status = mb86a20s_read_status_and_stats,
2108        .read_signal_strength = mb86a20s_read_signal_strength_from_cache,
2109        .tune = mb86a20s_tune,
2110        .get_frontend_algo = mb86a20s_get_frontend_algo,
2111};
2112
2113MODULE_DESCRIPTION("DVB Frontend module for Fujitsu mb86A20s hardware");
2114MODULE_AUTHOR("Mauro Carvalho Chehab");
2115MODULE_LICENSE("GPL");
2116